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Reinforcement Learning for User Association and
Handover in mmWave-Enabled Networks
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Abstract— Using a multi-armed bandit technique, we propose
centralized and semi-distributed online algorithms for load bal-
ancing user association and handover in mmWave-enabled net-
works. Load balancing at all base stations (BSs) imposes explicit
constraints that makes the actions of all user equipment (UEs) co-
dependent, a challenging twist to reinforcement learning. We pro-
pose a central load balancer to guarantee load balancing at all
BSs for every learning step. We consider two association vectors:
one for leaning update, and one best-to-date for data transmis-
sion, allowing UEs to engage in best-result data transmission
while effectively participating in a background learning process
indefinitely. For dynamic networks, we introduce a measurement
model capturing rapid channel variations and user mobility.
To minimize handover rate, we also differentiate between the
handover cost for transmission and that for learning, and intro-
duce a learning handover cost decreasing with sojourn time. The
proposed algorithms can be implemented online as they require
no offline training and can effectively adapt to network dynamics.
Numerical results show that the proposed algorithms exhibit
fast learning convergence and outperform 3GPP handover by
achieving an order of magnitude lower handover rate at a signif-
icantly higher network sum-rate, reaching within 94-97% of the
near-optimal worst connection swapping benchmark algorithm.

Index Terms— Multi-armed bandit, user association, load
balancing, handover, mmWave-enabled cellular networks.

I. INTRODUCTION

THE ever-increasing demand for higher data rates requires
deployment of dense cellular networks with coexistence

of sub-6 GHz macro base stations (MBSs) and millimeter
wave (mmWave) small base stations (SBSs). A challenging
problem in these dense networks is load balancing user asso-
ciation: finding the best connections between BSs and user
equipment (UEs) to achieve an optimal network performance
while balancing the BSs’ loads (maximum number of data
streams transmitted by each BS). In a mobile mmWave-
enabled network, this problem integrates with handover and
becomes even more complicated.
Coordinated multipoint (CoMP) allows a UE to connect

with multiple cooperating BSs, simultaneously. For downlink
CoMP, there are two main categories: 1) joint processing, and
2) coordinated scheduling/beamforming (CS/CB). In the joint
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processing, data for each UE is available at more than one BS,
while in CS/CB, the data for each UE is only available at and
transmitted from one BS; however, the cooperating BSs jointly
make decisions about user scheduling/beamforming. In this
paper, we focus on the first approach which improves the data
rate of cell-edge UEs, while at the same time, complicate the
user association and handover problems [2].

A. Related and Prior Work

The problem of unique user association has attracted the
attention of many researchers due to its importance and
impact on network performance. In this problem, each UE
can only connect to a BS at each time instant. Load bal-
ancing unique user association results in a complex integer
non-linear programming which is usually NP-hard [3]. The-
oretical approaches and algorithms have been designed to
solve this problem and achieve near optimal solutions [3]–[5].
An analytical solution for this problem is proposed in [3],
where the authors relaxed unique association constraints to
solve the problem and then used a rounding method to
convert to integer association variables. A similar approach
for massive MIMO networks is studied in [4]. For a 60 GHz
wireless network, the user association is studied in [5], where
the authors assumed negligible interference due to highly
directional transmissions. This assumption, however, becomes
inaccurate for mmWave-enabled cellular networks as they can
transit from noise-limited to interference-limited regimes [6].
In [7], the authors proposed a heuristic algorithm for load
balancing user association, called worst connection swapping
(WCS), which achieves near-optimal performance by taking
into account the dependency of user association and interfer-
ence. The WCS algorithm has been used as a near-optimal
benchmark performance in [8], [9].
The aforementioned works studied the user association

problem in an static setting without user mobility. In a highly
dynamic mmWave-enabled network, however, an efficient user
association algorithm must take into account both the effects of
abrupt channel variations and user mobility. The 3GPP user
association and handover mechanism is based on maximum
signal to interference and noise ratio (max-SINR) strategy,
where each UE associate with the best available BS providing
the highest SINR value. This approach, however, is not effi-
cient for B5G mmWave-enabled networks as it incurs large
number of handovers and thus significant signaling overhead
due to abrupt mmWave channel variations [10]. In mmWave-
enabled networks, the UE may remain associated with a BS
for a very short period of time, as little as 0.75 s [11].
In recent years, reinforcement learning (RL) emerges

as a potential technique for effective user association in
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cellular networks. RL is a powerful machine learning tech-
nique which can learn from real-time interaction with the
system without requiring extensive training, making it particu-
larly suitable for dynamic wireless systems. In RL, a learning
agent interacts with its environment to receive a reward,
and take an action to achieve an optimal policy. Distributed
learning algorithms, including federated learning and multi
agent-RL in particular, have a strong potential to be applied
in wireless networks to solve many existing challenges [12].
For example, a distributed RL algorithm can be used to find
optimal trajectories maximizing the coverage of ground users
served by a set of drone BSs [13]. RL provides a solution
for this non-convex optimization problem in a dynamic and
unpredictable environment.
With regards to user association and handover problems,

deep RL has been used for user association in dense and static
networks [14], [15], and multi-agent Q-learning for joint power
optimization and user association [16]. Deep learning is also
used to perform online user association in massive MIMO 4G
networks, where inputs to the neural network are only UEs
locations [17]. For mobile mmWave networks, user associa-
tion is formulated as a non-convex optimization and a deep
deterministic gradient method is employed to approximate its
in [9]. In these works, load balancing is commonly imposed
only on SBSs but not on the MBS, allowing fully loaded SBS
to offload to the MBS [14]–[16]. Alternatively, load constraints
are formulated in a user association optimization, and a relaxed
version is solved using standard linear programming to build
a training set, which is then used to train a neural network
with quota of BSs as inputs and optimal association as
outputs [9], [17]. All these works, however, did not enforce
the load balancing at all base stations and hence left open
the question whether reinforcement learning could be used
effectively for user association with load balancing.
In order to show that reinforcement learning can be effec-

tive for user association and handover under load balancing,
we focus on multi-agent multi-armed bandit (MA-MAB),
a simple but powerful RL framework in which, given a
set of actions, each agent takes an action at each learning
step and receives a reward in progress towards a goal. The
agents have no prior knowledge about the rewards; however,
at each learning step, each agent explores and exploits different
actions, receives instantaneous rewards, and updates their
expected average rewards in order to find their best possible
next actions [18]. In general RL, there is a notion of the state
perceived by each agent about the environment, and transition
of each agent to the next state depends on the current state
and the action taken; however, MAB is a classical stateless
RL in which the environment is not associated with any state.
An MA-MAB framework has been used for dynamic spectrum
scheduling [19], where the agents used the upper confidence
bound (UCB) action selection rule to either explore a new
channel to learn more about channel statistics, or exploit
the known best channel (with the highest expected reward)
to minimize the expected total regret. An MAB technique
is also utilized to solve a joint beam tracking and adaptive
rate selection problem in mmWave networks [20], improving
the throughput by up to 182% compared to static beam
management proposed for 5G NR [21].

In the context of user association, a UE can be considered
as an agent and selecting a BS can be considered as taking
an action. Thus, a user association problem can be cast as
an MA-MAB. MAB techniques have been applied for user
association in LTE networks, but without load balancing and
user mobility, where each UE tend to connect to the BS
which provides the highest average reward regardless of BSs’
loads [22]. MAB is employed to mitigate frequent handover
in dense cellular networks [23], [24], where only single-agent
MAB technique for a typical UE is applied to study the han-
dover problem. MA-MAB techniques have not been applied to
wireless handover problem. Furthermore, with load balancing
constraints at all BSs, the actions of all agents (UEs) are
interdependent, which introduces new complexity and has not
been considered using RL.

B. Our Contributions

We propose MAB-based centralized and semi-distributed
algorithms for load balancing user association and handover in
mmWave-enabled networks with CoMP technology, applicable
to B5G/6G systems. Load-balancing conditions impose cou-
pling and inter-dependency between all users’ actions and are
enforced by a central entity, which uses reward information
of all users to assign BS connections to satisfy the load
constraints and achieve a high total reward. The proposed
algorithms can be implemented online as they require no
training and can efficiently adapt to network dynamics by
exhibiting fast convergence. These algorithms allow UEs to
engage in data transmission while effectively participating
in a learning process which continues indefinitely in the
background. To the best of our knowledge, this is the first work
that employs MAB techniques for online user association and
handover with explicit load balancing at all BSs. The main
contributions of this paper are:
i) Our learning algorithm ensures load balancing at all BSs

in all tiers (instead of just the small BSs as considered in the
literature) by considering a specific quota for each MBS and
each SBS separately. Load balancing at all BSs introduces
inter-dependency among the actions of all UEs. In existing
learning-based approaches, each UE tends to connect with the
BS providing the highest reward independently of the actions
of other UEs, which can cause a collision if the number of
UEs simultaneously selecting a BS is more that its quota.
To overcome collision and the associated penalty in such
a multi-agent RL setting, we propose a joint-UCB (J-UCB)
action selection rule and introduce a central entity, the central
load balancer (CLB), to assign association to obtain a high
network sum-rate and guarantee load balancing. This CLB
handles all the dependency among UEs’ actions and removes
any need for UEs to exchange messages among themselves.
To the best of our knowledge, our work thus provides the first
learning solution to this difficult problem of guaranteeing BSs
load balancing in user association.
ii) Employing the CLB, we propose both a centralized

and a semi-distributed MAB algorithms, using only local
measurements to compute the reward at each UE and do
not require full channel state information. Actions are chosen
by the CLB in the centralized approach, and by the UEs in
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the semi-distributed one. In both approaches, we differentiate
between the learning and the transmission processes, and use
two association vectors: one for learning update, and one
as the best-to-date association for transmission. These two
association vectors allow the learning process to utilize its
history while using the best learned results for transmission.
iii) We propose a number of innovations for handover,

including a measurement model which captures the underlined
user mobility, and the concept of handover cost for learning
that is different from handover cost for data transmission.
We also propose a learning handover cost model that has
decreasing cost the longer the UE has connected to the current
BS. We introduce two updating rules with regards to the
learning and the best-to-date association vectors, and apply
different updating frequencies to utilize the latest measure-
ments. Real-time learning carries out a single update with each
new measurement, whereas background learning allows the
updating to continue in the background in between measure-
ments in order to improve the reward estimates. These different
learning algorithms produce interesting trade-offs between the
handover rate and the network throughput.
iv) The proposed algorithms allow online implementation

since the learning process can continue indefinitely in the
background, while UEs are engaged in data transmission
according to the best-to-date association vector. Our results
show fast convergence of both the proposed centralized and
semi-distributed algorithms in a static network. For a dynamic
networks, our results also confirm their efficacy and show that
the proposed online centralized MAB algorithm outperforms
3GPP handover algorithm in terms of both network throughput
and handover rate. Compared to a near-optimal non-learning
centralized solution which requires full CSI of all UEs and BSs
at the central entity [7], our learning algorithms reach closely
within 94-97% its performance with only local measurements
at each UE.

C. Notation

We denote the scalars and sets by italic letters
(e.g. x or X) and calligraphy letters (e.g. X ), respectively.
|X | denotes the cardinality of set X . Vectors are represented by
lowercase boldface letters (e.g. x), and matrices by uppercase
boldface letters (e.g. X). Superscript (.)T and (.)∗ represent
the transpose operator and the conjugate transpose operator,
respectively. log(.) stands for base-2 logarithm, and big-O
notation O(.) expresses the complexity. We define the delta
functions δ(x, y) and δ̄(x, y) such that δ(x, y) = 1 if x = y
and δ(x, y) = 0 if x �= y, and δ̄(x, y) = 1 − δ(x, y).

II. SYSTEM MODEL

We study the problem of user association in a multi-tier
HetNet with MBSs operating at a microwave (sub-6 GHz)
band and SBSs working at a mmWave band. In this section,
we introduce the network, channel, and signal models.

A. Network and Channel Models

We consider the downlink of a two-tier cellular HetNet
with JB MBSs in tier-1, JS SBSs in tier-2, and K UEs.

Let JB , JS , and J = {1, . . . , j, . . . , J} denote the respective
sets of MBSs, SBSs, and all BSs with J = JB + JS , and
K = {1, . . . , k, . . . , K} represents the set of UEs. Each UE k
can request up to nk data streams for data transmission and
receive data from multiple BSs via joint transmission CoMP
technique [2]. This is different from fractional association as
defined in [4], where association variables are not integer and
represent long-term average associations. Instead, we allow
each UE k to receive multiple data streams from multiple
BSs, and assume it is composed of nk virtual UEs (VUEs)
each requesting a single data stream. Moreover, we define
V = {11, . . . , 1n1 , . . . , k1, . . . , knk

, . . . , K1, . . . , KnK} as the
set of VUEs with |V| =

∑K
k=1 nk, and allow each VUE kv

(v ∈ {1, 2, . . . , nk}) to associate with either a MBS or a SBS.
Each BS j is equipped with a uniform planar array (UPA)

antenna with Mj elements, and has a specific quota qj which
represents the maximum number of downlink data streams it
can transmit. We assume 1 ≤ qj ≤ Mj , where the upper bound
is due to the fact that the number of data streams transmitted
by each BS cannot exceed the number of its antennas. We also
define the quota vector of BSs as q = [q1, . . . , qJ ]. Each UE
k is equipped with an antenna array with NμW

k elements for
sub-6 GHz band and an antenna array with NmmW

k elements
for mmWave band such that 1 ≤ nk ≤ NμW

k + NmmW
k .

In the sub-6 GHz band, we use the well-known Gaussian
MIMO channel model. Denote HμW

k,j ∈ CNμW
k ×Mj as the

channel matrix between MBS j and UE k where the entries
are i.i.d. complex Gaussian random variables given by HμW ∼
CN (0, 1). In the mmWave band, the transmissions are highly
directional and the simple Gaussian MIMO channel may not
hold. Instead, we employ the NmmW

k ×Mj clustered mmWave
MIMO channel between SBS j and UE k which includes
C clusters with G rays per cluster defined as [25], [26]

HmmW
k,j =

1√
CG

C∑
c=1

G∑
g=1

√
γc a(φc,g

k , θc,g
k ) a∗(φc,g

j , θc,g
j ) (1)

where γc is the power gain of the cth cluster. The parameters
φ and θ represent azimuth and elevation angles, respectively.
The vector a(φ, θ) is the response vector of a uniform pla-
nar array (UPA) which allows 3D beamforming in both the
azimuth and elevation directions. We consider the probability
of LoS and NLoS as given in [27], and utilize the path loss
model for LoS and NLoS links as given in [25].

B. Signal Model

We assume all BSs and UEs, regardless of their operating
band, are capable of performing beamforming technique which
is introduced for both LTE [28] and 5G new radio (NR) [29].
Thus, BSs use precoders for data transmission and UEs employ
combiners for data reception.
The effective interfering channel gain on VUE kv from

BS j while serving VUE lu can be expressed as

hkv ,lu,j = w∗
kv

Hk,jflu,j (2)

where flu,j ∈ CMj×1 is the linear precoder (transmit beam-
forming vector) at BS j intended for VUE lu, and wkv ∈
CNk×1 is the linear combiner (receive beamforming vector)
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of VUE kv . Thus, the effective channel gain between BS j
and VUE kv is hkv ,j = w∗

kv
Hk,jfkv ,j .

Next, we define Kj as the activation set of BS j which
represents the set of all active VUEs in BS j. Thus, the
Mj × 1 transmitted signal from BS j is given by

xj =
∑

kv∈Kj

fkv ,jskv ,j (3)

where skv,j ∈ C is the transmitted symbol from BS j to
VUE kv , such that E[skv ,js

∗
kv ,j ] = Pkv ,j , and Pkv ,j is the

transmit power from BS j dedicated to VUE kv .
Thus, the post-processed received signal (after combiner) at

VUE kv connected to BS j can be written as

ykv =
∑
j∈J

∑
lu∈Kj

hkv ,lu,jslu,j + w∗
kv

zkv (4)

where zkv ∼ CN (0, N0) is the complex additive white
Gaussian noise at VUE kv , and N0 is the noise power.
The presented signal model is applicable for all types of

transmit beamforming and receive combining. In mmWave
MIMO systems, hybrid beamforming can be implemented to
reduces the number of RF chains and thus control the relevant
cost and power consumption. In this paper, we employ SVD
beamforming technique to obtain the precoder and combiner
vectors at BSs and UEs, respectively [7].

C. User Association and Transmission Rate

We consider a learning-based user association approach.
The proposed approach is online in the sense that while UEs
are engaged in data transmission, the learning process contin-
ues indefinitely in the background, to update the best-to-date
association vector for data transmission. Thus, we introduce
two association vectors to distinguish between the learning
process and data transmission process: 1) learning associa-
tion vector η(t), and 2) best-to-date association vector for
data transmission β. The superscript t in η(t) represents
the learning time step. During the learning process, the UE
may connect to BSs in η(t) briefly (in a much shorter time
scale compared to transmission time) to collect rewards for
learning purposes. After that, the UEs switch their associations
to the best-to-date β for transmission. Thus, associations for
learning purposes can alter as fast as every time step t,
while associations for data transmission change whenever
there is a better association vector. This learning model makes
our user association scheme suitable for highly dynamic
mmWave-enabled cellular networks, while the transmissions
remain at the best-to-date rates.
The learning associations between VUEs and BSs at learn-

ing time step t can be defined by association vector

η(t) � [η(t)
1 , . . . ,η

(t)
K ]T , (5)

where η
(t)
k represents the learning association vector of UE k

defined as

η
(t)
k � [η(t)

k1
, . . . , η

(t)
knk

]T (6)

and η
(t)
kv
denotes the index of BS to which user k is associated

with for receiving data stream v during learning time step t.

We can define the load balancing constraint for BS j as∑
kv∈V

1
(t)
kv ,j ≤ qj (7)

where 1
(t)
kv,j = 1 if η

(t)
kv

= j, and 1
(t)
kv,j = 0 if η

(t)
kv

�= j.
This constraint indicates that the total number of data streams
requested by VUEs associated with BS j at learning time
step t, cannot exceed the maximum number of downlink data
streams of BS j.
Due to highly directional links between BSs and UEs, fast-

varying nature of mmWave channels, and their short coherence
time, there is a dependency between user association and inter-
ference structure in mmWave cellular systems [7]. Considering
the received signal ykv in (4), the learning instantaneous rate
(instantaneous reward) of VUE kv from BS j at learning time
step t is obtained as

Rkv ,j(η(t)) = Bj log2

(
1 +

Pkv ,jhkv,jh
∗
kv ,j

Ikv ,j

)
(8)

where Bj is the bandwidth of BS j, and Ikv ,j is the interfer-
ence plus noise given as

Ikv ,j =
∑

ku∈K(t)
j

u�=v

Pku,jhkv ,ku,jh
∗
kv,ku,j (9)

+
∑

lu∈K(t)
j

l �=k

Plu,jhkv,lu,jh
∗
kv ,lu,j

+
∑
i∈J
i�=j

∑
lu∈K(t)

i

Plu,ihkv,lu,ih
∗
kv,lu,i + N0Bjw∗

kv
wkv

where the first, second and third terms represent inter-stream,
intra-cell and inter-cell interferences, respectively. The pres-
ence of the activation set of BSs (K(t)

j ) in Ikv ,j indicates the
dependency of interference and user association. We note that,
for example, if VUE kv is associated with BS j ∈ JB , the
interference at the VUE comes from the BSs in the same tier,
i.e., i ∈ JB .
The overall learning instantaneous transmission rate of

physical UE k is obtained by summing over all the VUEs
corresponding to that physical UE. The total instantaneous
reward computed as the overall network sum-rate given by

r(η(t)) =
K∑

k=1

nk∑
v=1

R
kv ,η

(t)
kv

(10)

This sum-rate will be used as a measure of network perfor-
mance. All the above parameters are defined as a function of
the learning association vector η(t) for each learning step t.
Based on the above definitions, then the best-to-date associ-

ation vector for transmission up to time step T can be defined
as

β = argmax
t={1,...,T}

r(η(t)) (11)

In a similar way as in (8)-(10), we can define the data rates
for transmissions as a function of the best-to-date association
vector β.
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D. Optimization Problem

In user association problem, the ultimate goal is to find an
optimal association vector which maximizes a network utility
function. In this paper, we consider the widely-used sum-
rate utility function defined in (10). Thus, the user association
optimization problem at learning time step t can be written
as

maximize
η(t)

r(η(t)) (12a)

subject to
∑
j∈J

1
(t)
kv ,j ≤ 1, ∀kv ∈ V (12b)

∑
kv∈V

1
(t)
kv ,j ≤ Dj , ∀j ∈ J (12c)

where η(t) includes all the (integer) optimization variables
η
(t)
kv

, ∀k ∈ K, v ∈ {1, 2, . . . , nk} (see (5)-(6)). The set of con-
straints in (12b) represents the unique association constraints,
meaning that each VUE can only connect to one BS at each
time, and the constraints in (12c) allows our user association
scheme to limit each BS’s load separately. Assuming the
number of data streams (Dj) is chosen based on the available
resources at each BS, this set of constraints guarantees that
each BS can serve all its associated UEs up to the specified
total number of data streams simultaneously.
This optimization problem in its simplest form (without con-

sidering the dependency between user association and inter-
ference) is known to be NP-hard because of its non-convex
nonlinear structure and presence of integer variables [3], [4].
Taking into account this association and interference depen-
dency as formulated in (9) significantly increases the com-
plexity of the problem, and makes exhaustive search the only
known technique to guarantee an optimal solution. However,
employing exhaustive search quickly becomes infeasible as
the network size (number of BSs and UEs) increases. A cen-
tralized heuristic approach is proposed in [7], which achieves
the optimal solution compared to exhaustive search when
it is feasible, but requires full knowledge of CSI between
all BSs and UEs at a central entity and suffers from high
computational cost and time complexity. Moreover, solving an
optimization problem in a highly dynamic network may not
be practically feasible, since the optimization is a one-shot
for each time slot t, and the problem need to be re-solved at
each t as the network dynamics change. In this case, an RL
algorithm for user association is more efficient as it can adapt
in real time to networks dynamics. While an RL algorithm
may not be optimal, it can reach high performance compared
to benchmark solutions such as [7]. In this paper, we employ
RL and propose efficient centralized and semi-distributed algo-
rithms to achieve a near-optimal solution. We note that while
the proposed solutions do not optimally solve this optimization
problem, they aim to achieve the highest sum-rate through a
learning process while adapting to the changes in the wireless
environment and network in real time.

III. CENTRAL LOAD BALANCER FOR
LOAD BALANCING ASSIGNMENT

In a RL-based user association, each VUE takes an action
and receives a reward. At learning time step t, each VUE can

pick the best BS based on its updated reward vector containing
rewards from the connection with each BS. However, due to
the load balancing constrains in (7), the decision of each VUE
is inter-dependent on the decisions of other VUEs. A collision
can happen if the number of VUEs simultaneously picking
the same BS is more than its quota allows. In order to avoid
collisions, a load balancing assignment algorithm is required
to determine user associations based on load constraints of
all BSs. A load balancing learning algorithm produces a load
balanced association vector based on the most recent rewards
collected from all UEs. Because of this gathering of informa-
tion from all UEs, one approach is to enforce these constraints
by using a central entity. In this section, we introduce a central
entity, the central load balancer (CLB), to associate VUEs
with BSs according to these load constraints.

A. Upper Confidence Bound Action Selection Rule

We consider a load balancing assignment scheme based on
the UCB action selection rule, also known as UCB descision-
making rule, or UCB policy [18]. This assignment scheme
guarantees a balance between exploiting the current best action
and exploring other possible actions for each UE. In the UCB
action selection approach, at each learning time step t, each
VUE kv wants to be associated with a BS which provides the
highest possible reward based on the UCB rule. We define a
reward matrix Ω that contains UCB-updated rewards for all
VUEs with the following elements

ωkv,i = Γ(t−1)
kv,i +

√
2 ln t

T
(t−1)
kv,i

(13)

where Γ(t−1)
kv ,j is the updated reward of VUE kv received from

BS j at the end of learning time step t − 1, and T
(t−1)
kv,i

represents the number of times VUE kv has been associated
with BS i up to and including learning time step t−1. We also
define T(t) = [Tkv,j ]kv∈V,j∈J as the matrix of number of BS
selection. Then the UCB rule specifies user kv selecting the
action (the base station for association) as

j = argmax
i∈J

Ωkv (14)

where Ωkv = [ωkv ,i]i∈J is row kthv of Ω. The UCB technique
guarantees a certain and diminishing amount of exploration
during the learning process.
If there were no load constraints (quota limits) on the BSs,

then each UE kv can directly implement the resulting choice
of (14) as the association decision for the next learning step,
independent of other VUEs’ choices. With load balancing
constraints, however, we need to modify these decisions in
order to satisfy the BSs’ quotas.

B. Proposed UCB-Based Central Load Balancer

The problem we consider here is an instance of the
MA-MAB setting [30], but one with additional constraints
that govern the set of actions among participating agents.
In traditional MA-MAB problems, multiple agents share the
same set of arms and must decide on the same action to take in
order to achieve a global goal, which can either be to minimize
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Algorithm 1 Joint-UCB Load Balancing Assignment
Input: Learning time step t, reward matrix Ω, quota

vector q, best-to-date sum-rate r(β)
1 while Ω has nonzero entries do
2 J-UCB Action Selection: Select the best VUE-BS pair

[kv, j] according to (15);
3 if qj > 0 then
4 Assign the VUE’s learning association: η

(t)
kv

= j;
5 Update BS’s quota: qj ← qj − 1;
6 Zero out row kv in reward matrix Ω;
7 else
8 Zero out column j in reward matrix Ω;
9 end

10 end
11 Calculate sum-rate r(η(t)) according to (10);
12 if r(η(t)) > r(β) then
13 Update the best-to-date association vector β = η(t);
14 end

Output: Learning association vector η(t) and
best-to-date association vector β

the total regret [31]–[33] or to maximize the total reward [34].
The agents achieve the goal often by communicating their
actions with each other in a pair-wise fashion, over which
a action-decision rule such as the majority rule is used to
select the common action which would converge over time.
In these traditional MA-MAB problems, however, the actions
of these agents are not explicitly constrained by any condition.
In our considered problem, however, the load balancing at the
base stations place explicit constraints on the actions of any
group of agents at any one time, such that no more than a
certain number of agents can take the same action to connect
to a certain base station. Furthermore, traditional MA-MAB
problems lead to the same final action for all agents, whereas
our problem does not require the agents to take the same action
in the end. On the contrary, the agents here are competing in
the sense that they can take different actions to maximize their
own reward. Only that their actions are constrained explicitly
by the load balancing conditions.
Specifically, due to the load balancing constrains in (7), the

decision of each VUE is inter-dependent on the decisions of
other VUEs. Here, we introduce a joint-UCB (J-UCB) action
selection mechanism to address this dependency. Based on the
J-UCB, we then propose a centralized entity (algorithm), the
CLB, to collect the reward vectors of all UEs and perform
load balancing assignment algorithm. The load balancing
assignment algorithm is performed at the CLB which has the
knowledge of the entire updated reward matrix Ω and the
history matrix T at the beginning of learning time step t.
The assignment algorithm repeatedly performs the following

two steps:

1) J-UCB Action Selection: Select the VUE-BS pair with
the maximum reward in the current Ω matrix as

[kv, j] = arg max
lu∈V,i∈J

Ω (15)

where Ω = [ωlu,i]lu∈V,i∈J represents the input reward
matrix.

2) Updating Ω: Update the reward matrix by zeroing out
row kv of Ω, and zeroing out column j if the quota of
BS j is full, to form a new Ω.

These two steps are repeated until associations are identified
for all VUEs. That is, an association occurs according to (15)
by selecting the VUE-BS connection with the highest reward.
After an association happens, the association vector η(t) is
updated, the corresponding row from Ω is zeroed out, and the
quota of serving BS is updated. If a BS runs out of quota,
we zero out the corresponding column from Ω. These steps
are repeated until all entries of reward matrix are equal to
zero, i.e., Ω = 0. At this point, the load-balanced vector
η(t) is complete and specifies the associations of all VUEs.
The J-UCB load balancing assignment is formally described
in Alg. 1.

Lemma 1: The proposed J-UCB load balancing assignment
in Alg. 1 ensures no collisions among all UEs’ actions while
simultaneously satisfying all BSs’ load-balancing constraints.
Proof: The zeroing out of row kv after user kv is selected
ensures unique association, such that each VUE is connected
to only a single BS. The zeroing out of column j if the quota
of BS j is full ensures no collisions of more VUEs connecting
to a BS than its quota. At the end of this process, all BSs quota
or load constraints are observed.

IV. MAB ALGORITHMS FOR USER ASSOCIATION
IN STATIC NETWORKS

In this section, we study the user association problem in a
static network, where the network settings, including wireless
channels and user locations, are static for a duration of T
learning time steps (as in a block fading channel). We propose
an MAB-based learning algorithm and refer to it as the basic
learning (BL) algorithm, as a basis for later algorithms dealing
with mobility and channel dynamics. The goal is to adapt the
association vector β for data transmission which specifies the
best-to-date connections between BSs and VUEs based on all
association vectors η(t) learned up to the current time t.
We cast our user association problem as a stateless

MA-MAB model where VUEs (agents) are not associated with
any state, and their received rewards from BSs (arms) cannot
be attributed to any specific distribution [35]. We start with
defining the components of our proposed MAB-based learning
approach and discuss its regret analysis and convergence prop.
Then, we describe the reward updating rule for BL. The
location at which this update occurs in the system, at the UE or
a BS, will require different signaling mechanisms and timing
phases, which leads to different learning algorithms. We use
the BL updating rule to design two algorithms: a centralized
one where update occurs at a BS, and a semi-distributed one
where update is carried out by the UE. We then discuss in
detail the signaling overhead and computational complexity
of these two algorithms.

A. MAB Components

In this subsection, we define the main components of our
proposed MAB-based user association framework.
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Algorithm 2 CLB Updating Rule for Basic Learning (BL)

Input: α, Γ(t−1), T(t−1), R(t)
kv ,j for all kv ∈ V

1 for kv ∈ V do
2 - Update Γ(t)

kv ,j = Γ(t−1)
kv ,j + α(R(t)

kv ,j − Γ(t−1)
kv ,j );

3 - Update T
(t)
kv,j = T

(t−1)
kv,j + 1;

4 end
Output: Updated Γ(t)

1) Environment: The environment is the cellular network
composed of all BSs, their locations with respect to UEs, and
all channels between each UE-BS pair.

2) Agent: Each VUE is an agent which interacts with the
environment to achieve a goal. As a result, the proposed
user association framework is an MA-MAB with |V| agents.
At each learning time step, each agent takes an action accord-
ing to a policy and receives an instantaneous reward.

3) Action: At each learning time step, VUE (agent) kv takes
an action a

(t)
kv

∈ J indicating that VUE kv selects (or wishes

to select) BS a
(t)
kv
for association. The current action at learning

step t will be the next association at learning time step t + 1,
i.e., η(t+1)

kv
= a

(t)
kv
.

4) Policy: The solution of a bandit problem is a policy
(action selection rule) that determines which action should
be taken at each learning step. In this paper, we employ
the well-known UCB policy as defined in Sec. III-A [18].
Thus, the policy of our proposed MA-MAB algorithm π(t)

at learning step t is a |V| × 1 vector defined as: π(t) �
[π(t)

1 , . . . ,π
(t)
K ]T , where π

(t)
k � [a(t)

k1
, . . . , a

(t)
knk

]T represents
the policy vector of UE k.

5) Instantaneous Reward: Each VUE receives an instanta-
neous reward R

(t)
kv ,j after taking an action at each learning

time step. This instantaneous reward will be used to update
the reward value of VUE kv (Γ

(t)
kv,j) according to an updating

rule (see (17), (24), (25)). The ultimate goal of each VUE is to
make better decisions during the learning process to achieve
a higher expected reward.

6) Reward Vector: Each VUE kv maintains and updates a
reward vector Γk which contains the reward for all its actions
and has the size of 1 × J . While the instantaneous reward
indicates the immediate value of selecting a BS, the reward
vector is an estimate of the long-term expected reward value
of selecting each BS. The (network) reward matrix Γ can be
obtained by vertical concatenation of the reward vectors of all
VUEs and has the total size of |V|×J . Our stateless MA-MAB
framework requires less data to store compared to other RL
methods with states and hence allows this tabular implemen-
tation which in turn reduces the complexity of our proposed
algorithms and facilitates their online implementations.

B. Regret and Convergence

Cumulative regret is the most common metric to measure
the performance of an RL policy and is defined as the
amount of loss due to deviating from the optimal strategy.
For each agent kv , the cumulative regret (external regret) of
any RL policy for stateless bandits up to learning step T is

defined as [35]

Rkv = max
j∈J

E

[
T∑

t=1

R
(t)
kv ,j

]
− E

[
T∑

t=1

R
(t)

kv ,a
(t)
kv

]
(16)

This external regret can be bounded above by another notion of
regret for adversarial bandits, called internal regret, as Rkv ≤
J.RInt

kv
[36]. From each agent’s perspective, an MA-MAB

model can be seen as a game with two players: the agent itself,
and the set of other agents. For internal regret, the following
theorem regarding convergence holds:

Theorem 1 ([36], [37]): In an MA-MAB game with a set
of agents V , if each agent kv ∈ V plays according to
some policy that exhibits per-round vanishing internal regret,
i.e., limT→∞ 1

T RInt
kv

= 0, the game converges to the set of
correlated equilibrium in a time-average sense.
It is shown that UCB policy guarantees an expected regret

of O(log T ) [38], and thus satisfies the vanishing condi-
tion in Theorem 1, meaning that our proposed UCB-based
MA-MAB algorithms converge to an equilibrium. Our simu-
lation results in Sec. VII-A show that this convergence is quite
fast and occurs in only few number of learning steps.

C. Updating Rule for Basic Learning (BL)

In the proposed learning framework, the reward matrix Γ
and the matrix of number of BS selection T are updated
at each learning time step t. Each VUE kv takes an action
(selects BS j = η

(t)
kv
) at learning time step t and receives an

instantaneous reward R
(t)
kv ,j . The expected reward of VUE kv

is then updated as follows [18]

Γ(t)
kv ,j = Γ(t−1)

kv,j + α
(
Rkv ,j − Γ(t−1)

kv ,j

)
(17)

where α is the learning rate. The number of BS selection of
VUE kv is also updated as T

(t)
kv ,j = T

(t−1)
kv ,j + 1. Since the

network is static and there is no handover, we call these steps
the updating rule for basic learning (BL) as shown in Alg. 2.

D. Centralized MAB User Association Algorithm

Here, we propose a centralized user association algorithm
in which the reward update (17) occurs at the CLB. In each
learning time step t ≤ T , the CLB executes the UCB
load balancing assignment (Alg. 1) to obtain association
vector η(t) and informs all UEs of their connections for the
next learning time step. It also compares the new network
sum-rate resulting from η(t) with the current best-to-date
value. If the new sum-rate is higher, the CLB updates the
best-to-date association vector as β = η(t), and informs all
UEs of this new β for data transmission.
The process at each VUE kv takes place in five phases.

During the first phase, the VUE receives η
(t)
kv
to be used for

learning, and the best-to-date association βkv . Then, in the
second and third phase, the VUE connects to its assigned-
for-learning-purposes BS j = η

(t)
kv
, measures an instanta-

neous reward R
(t)
kv ,j and reports it to the CLB. The VUE

implements the best-to-date association j� = βkv in phase
four and maintains it for data transmission in the fifth phase
(see Fig. 1.a). After receiving the R

(t)
kv ,j in phase three, the
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Algorithm 3 Centralized MAB Load Balancing User
Association
Input: Learning rates α, BSs’ quota vector q, initial

reward matrix Γ(0), initial matrix of number of
BS selection T(0) = 0

1 for t = 1 : T do
2 Central load-balancer (CLB):
3 - Applies UCB formula to obtain input reward matrix

Ω = Γ(t−1) +
√

2 ln(t)
T(t−1) ;

4 - Executes Alg. 1 to obtain η(t) and β;

5 - Informs VUEs of their η
(t)
kv
, and βkv if changed;

6 Each VUE kv:

7 - Connects to BS j = η
(t)
kv
;

8 - Receives reward R
(t)
kv ,j and reports it to CLB;

9 CLB:
10 - Executes an updating rule: BL (Alg. 2), or RTL

(Alg. 5), or BGL (Alg. 6) to obtain Γ(t) and T(t);
11 end

Output: Best-to-date association vector β (up to time
step T ), Γ(T ) and T(T )

CLB execute the updating rule in (17) to obtain the reward
matrix Γ(t) and the matrix of number of BS selection T(t).
In this algorithm, the first three phases are dedicated for
learning which use current association result (instead of the
best-to-date) to allow sufficient learning exploration, whereas
the last two phases are for actual data transmission which
use the best-to-date association in order to achieve the highest
data rate. A summary of this centralized algorithm is shown in
Alg. 3. This algorithm is centralized in the sense that the CLB
makes all association decisions for learning and transmission
phases.

E. Semi-Distributed MAB User Association Algorithm

Next, we introduce a semi-distributed algorithm in which
each VUE performs the reward updating in (14) and proposes
an association decision based on its local reward history.
Distributed approaches provide low-complexity solutions with
minimal signaling overhead between network entities. Distrib-
uted algorithms performance, however, is usually worse than
that of centralized algorithms since association decisions for
learning purposes are made based on local and not global
information.
For load balancing user association, the difficulty in imple-

menting a fully-distributed algorithm comes from the fact that
the association decision of each individual UE based on their
local information does not guarantee load balancing. This
drawback is due to the lack of information about the asso-
ciation of other UEs. While each UE can perform its learning
procedure in a distributed fashion, but we still need a central
entity to track the association of all UEs and enforce the load
balancing constraints. This idea leads us to a semi-distributed
MAB algorithm as follows.
In a semi-distributed algorithm, instead of receiving an

action from the CLB, each VUE proposes an action based
on its locally updated reward vectors. At each learning time

Algorithm 4 Semi-Distributed MAB Load Balancing User
Association

Input: Learning rate α, BSs’ quota vector q, initial
reward matrix Γ(0), initial matrix of number of
BS selection T(0) = 0

1 for t = 1 : T do
2 qtemp = q;
3 Each VUE kv:
4 - Applies to best BS according to (14):

j = argmaxi∈J

(
Γ(t−1)

kv ,i +
√

2 ln t

T
(t−1)
kv ,i

)
;

5 if qtemp
j > 0 then

6 VUE kv receives new reward R
(t)
kv ,j from BS j;

7 BS j updates its quota: qtempj ← qtempj − 1;
8 else
9 BS j rejects VUE kv;

10 VUE kv receives new reward R
(t)
kv ,j = 0

11 end
12 - Executes an updating rule: BL (Alg. 2), or RTL

(Alg. 5), or BGL (Alg. 6) to obtain Γ(t)
kv
and T(t)

kv
;

13 - Reports Γ(t)
kv
to CLB;

14 Central load-balancer (CLB)
15 - Executes Alg. 1 with Ω = Γ(t) to obtain β;
16 - Informs VUEs about their βkv if changed;
17 end

Output: Best association vector β (up to time step T ),
Γ(T ) and T(T )

step t, each VUE follows a six-phase operation: (i) applying
to a BS for learning, (ii) receiving the associated instantaneous
reward, (iii) reporting updated reward, (iv) receiving best-to-
date association βkv from CLB, (v) performing association
for transmission, and (vi) carrying out data transmission (see
Fig. 1.b). In particular, each VUE kv uses the UCB formula
in (14) to find best BS providing highest reward. Then, the
VUE executes an apply-response mechanism, in which the
VUE applies to its best BS and receives an instantaneous
reward. The reward will be a positive value if the BS has
enough quota, but will be zero if the BS is fully loaded. Based
on this instantaneous reward, the VUE updates its local reward
value according to (17) and also the number of times it has
applied to that BS. Then, each VUE kv reports its Γkv ,j and
Tkv,j to the CLB.
In this algorithm, similar to Alg. 3, the CLB is responsible

for balancing the loads of BSs by performing the Alg. 1
using the updated rewards, keeping track of the best-to-date
association β, and informing VUEs about this β for data
transmission. This algorithm is semi-distributed in the sense
that each VUE updates its expected reward based on its own
decision, instead of the CLB updating rewards as in Alg. 3.
This semi-distributed algorithm is summarized in Alg. 4.

F. Signaling Overhead and Complexity Analysis

1) Signaling Overhead: In both the proposed algorithms,
information exchange only happens between UEs and the
CLB, and there is no communication or exchange among UEs.
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Fig. 1. Learning and transmission phases of VUE kv in a) Centralized MAB algorithm, and b) Semi-distributed MAB algorithm, during a single learning
time step t.

Hence the overhead here refers to the amount of signaling
exchange between UEs and the CLB. We first analyzed the
signaling overhead of the centralized MAB algorithm. Assume
that reporting an instantaneous reward Rkv ,j of a VUE to CLB
requires m1 bits. Since each UE k reports nk rewards, the
total number of bits sent to CLB is Q1 =

∑K
k=1

∑nk

v=1 m1.
After performing the load balancing assignment (Alg. 1), the
CLB needs to inform VUEs about their associations for both
learning (η(t)) and transmission (only if β changes) phases.
Assuming each signaling of an association variable requires
m2 bits, the total number of bits for each association vector is
equal to Q2 =

∑K
k=1

∑nk

v=1 m2. This process repeats at each
learning time step. Thus, the overall signaling overhead per
learning time step for this centralized MAB user association
is Qcent = Q1 + 2Q2 bits.
In the semi-distributed algorithm, the reward reporting from

VUEs to the CLB is similar to the centralized one and requires
Q1 bits. After performing the load balancing assignment in
Alg. 1, the CLB is only required to inform UEs about their best
associations (only if β changes), which necessitates Q2 bits
of signaling. Thus, the overall signaling overhead per learning
time step for this semi-distributed MAB user association
is Qsemi-dist = Q1 + Q2 bits, lower than the centralized
algorithm.
The reward reporting mechanism in the proposed algorithms

is equivalent to measurement reporting in the max-SINR
scheme, for which informing UEs about their associations
necessitates Q2 bits of signaling, resulting in overall signaling
overhead of Qmax-SINR = Q1+Q2 bits. Thus, max-SINR incurs
the same signaling overhead as the semi-distributed algorithm,
which is slightly lower than for the centralized algorithm.
As shown in Fig. 1, the semi-distributed algorithm has more

phases which results in a longer time overhead compared
to the centralized algorithm. In particular, after Phase 3 in
the semi-distributed algorithm, the UE needs to wait for the
CLB to produce and send the new association for transmission
(βkv ) if it changes. In the centralized approach, however, there
is no waiting time since the VUE receives its association
for transmission in Phase 1 and can use it immediately in
transmission phases (Phases 4-5). We note, however, that the
learning pace of the semi-distributed algorithm is faster than
that for the centralized algorithm, as shown later in learning
convergence results. The semi-distributed algorithm converges
faster, albeit to a lower reward and performance value.

2) Computational Complexity: Given that computing
instantaneous rewards and updating the expected reward
matrix (Γ(t)) and number of BS selection (T(t)) are simple
scalar multiplication and addition operations, the computation
complexity of both the centralized and semi-distributed MAB
algorithms is dominated by executing Alg. 1. The cost of
sorting algorithm, finding “argmax” over a set of n variables,
is O(nlog(n)) [39]. During each while loop in Alg. 1, the
“argmax” is taken over all the nonzero elements of the
reward matrix Ω. Thus, the complexity of each loop is
O(LJ log(LJ)). Since the total number of loops is in order
of L, the total cost of executing Alg. 1 is O(L2J log(LJ)).
In short, the semi-distributed algorithm requires less sig-

naling for communications between the UEs and BSs. For
complexity, computation costs mainly incur at the CLB which
leads to a similar computation complexity cost for both
algorithms.

V. MOBILITY AND MEASUREMENT MODELS

We now consider a dynamic network with user mobility and
wireless channel variation, and extend our learning algorithms
for both user association and handover. In this section, we dis-
cuss mobility model, measurement model, and performance
metrics for handover.

A. Mobility Model

We consider UE movement across the network according to
the modified random waypoint (MRWP) model, which is close
to the Levy walk model and human mobility patterns [40].
This model is defined by an infinite sequence of quadruples as
{(Xk,n−1,Xk,n, Vk,n, Sk,n)}k∈K, n∈N, where n denotes the
nth moving step during which UE k travels from starting
waypoint Xk,n−1 with coordinate on a 2D plane to a target
waypoint Xk,n. Vk,n represents the random velocity which
is uniformly chosen in the range (0, Vmax], and Sk,n is the
random pause time at the target waypoint.
In this mobility model, given a source waypoint Xk,n−1,

a homogeneous Poisson point process (PPP) Φ(n) with
intensity λ is generated, and the nearest point in Φ(n) is
selected as the target waypoint, i.e., Xk,n = arg minx∈Φ(n) ||
x − Xk,n−1||.
Thus, the transition length of UE k during moving step n

can be calculated as Lk,n = ||Xk,n − Xk,n−1||, and its
transition time is Tk,n = Lk,n/Vk,n.
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Fig. 2. Structure of moving step n during which UE k travels from source waypoint Xk,n−1 to target waypoint Xk,n with velocity Vk,n. The number of
MBs for each moving step is obtained according to (18), and depends on UE velocity Vk,n, the distance between source and target waypoints Lk,n, and the
time duration of each MB TMB. The learning process is fulfilled inside each MB based on T measurements, each obtained in a learning time step t.

We note that our proposed online user association algorithm
in the next section is not specific to the MRWP model and can
be applicable to other mobility models, as long as the model
provides a way to compute the transition length and time.

B. Measurement Model

Each moving step includes multiple measurement blocks1

(MBs), each with a time duration TMB. Inside each MB,
each UE can perform multiple measurements from its serving
and neighbor BSs. According to 3GPP standards [42], for
each measurement, UE suspends its communication with the
serving BS (for a duration called measurement gap) to measure
a neighbor BS. This mechanism helps the UE to engage in
data transmission while effectively measuring the neighbor
cells for the learning purposes. The measurement quantities,
as currently specified in the 3GPP standards, can be the refer-
ence signal received power (RSRP), reference signal received
quality (RSRQ), or SINR, with two measurement reporting
options: periodic and event-based [41]. These measurements
are then reported to the network every TMB seconds for the
purpose of handover. Thus, the number of MBs for UE k
during moving step n is determined by rounding up the ratio
between the transition time of the UE and the report interval
as follows:

Bk,n =
⌈

Tk,n

TMB

⌉
(18)

As a result, Bk,n is a random number and changes from
one moving step to another. At the end of each MB, the
network can decide about handover decisions based on the new
measurements, which may lead to changes in associations.
Each MB contains a fixed number of measurements denoted

as T which corresponds to the total number of learning steps
in static network case. We consider a block timing model in
which each new measurement inside a MB corresponds to a
learning time step t. At the end of each learning time step t,
a new learning association vector η(t) is produced, and at the
end of each MB b, the best-to-date association vector β(b)

is declared which will be used for data transmission in the
next MB b + 1. We note that it is also possible to update
the best-to-date association at the end of each learning time
step, but it may result in less stable associations and frequent
handover problem. At each learning step t, the CLB specifies

1This parameter is known as information element ReportInterval in 3GPP
standardization, which indicates the interval between periodical reports. The
range for the ReportInterval in 5G NR is 120 ms - 60 min [41].

from which BS each VUE should collect the measurement.
Each MB b has a best-to-date association vector β(b), chosen
from the best-to-date association vector β(b−1) and all the
learning association vector η(t) within that MB as

β(b) = arg max
t={0,...,T}

r(η(t)) (19)

where r(.) is given in (10) and the initial learning association
vector at each MB b is the best-to-date association vector from
the previous MB b − 1, that is η(0) = β(b−1). In this way,
β(b) is the best-to-date association vector taking into account
all past history. Fig. 2 shows the block timing model of a
typical UE k traveling from starting waypointXk,n−1 to target
waypoint Xk,n with velocity Vn,k.

C. Handover Performance Metrics

We define important handover metrics in cellular network,
including handover rate and sojourn time. Considering β(b) as
the best-to-date association vector by the end of MB b, then
β(b) = β(b+1) means no handover occurred from MB b to
MB b + 1, and β(b) �= β(b+1) indicates that there is at least
one handover.

1) Handover Rate: In order to calculate the handover rate,
we first define Zkv ,n as the number of handovers for VUE kv

during moving step n, which can be calculated by comparing
the best-to-date association vectors (e.g. β(b) and β(b+1), b ∈
{1, 2, . . . , Bk,n}) in consecutive MBs as follows:

Zkv ,n =
Bk,n∑
b=1

δ̄
(
β

(b)
kv

, β
(b+1)
kv

)
(20)

The average handover rate per VUE during N moving steps
can be then obtained as

R =

∑N
n=1

∑K
k=1

∑nk

kv=1 Zkv,n

|V|∑N
n=1 Tn

(21)

where |V| represents the total number of VUEs.
2) Sojourn Time: The sojourn time is the time duration dur-

ing which the VUE kv remains associated with a serving BS.
Since handover can happen at the end of each MB, the sojourn
time is a multiple of MB time duration TMB defined by

τ
(b)
kv

= N
(b)
kv

.TMB (22)

where N (b)
kv
is the number of MBs during which the asso-

ciation of VUE kv has remained unchanged, which can be

Authorized licensed use limited to: TUFTS UNIV. Downloaded on September 14,2023 at 22:51:34 UTC from IEEE Xplore.  Restrictions apply. 



9722 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022

calculated as

N (b)
kv

=
b−1∑
i=0

⎡
⎣δ

(
β

(i)
kv

, β
(i+1)
kv

) b−1∏
j=i

δ
(
β

(j)
kv

, β
(j+1)
kv

)⎤
⎦. (23)

In Sec. VII, we employ these handover metrics to evaluate
the performance of our proposed learning-based user associa-
tion algorithms.

VI. MAB ALGORITHMS FOR USER ASSOCIATION AND
HANDOVER IN DYNAMIC NETWORKS

In this section, we extend the basic MAB learning algo-
rithms to design association and handover algorithms for a
dynamic network under user mobility with handover costs.
The proposed algorithms can be implemented online and can
track network dynamics including user mobility and wireless
channel variations at both small and large scales. The algo-
rithms utilize all available measurements at each MB and
performs an MAB user association per MB, such that at
the end of each MB b, each algorithm produces a best-to-
date association vector β(b). Specifically, we adapt the reward
updating rules to include new measurements and handover
costs. These updating rules can then be used in either the
centralized or semi-distributed MAB algorithm to make these
algorithms adapt to user mobility and channel dynamics.

A. Updating Rules With Handover Cost

In order to integrate the effect of user mobility and channel
dynamics in the learning process, we apply a handover cost
in the learning process by considering a reduction in the
instantaneous reward. Since there are two sets of association
vectors, one for learning (η) and one for transmission (β),
we propose two different rules for reward updating in the
learning process.
The first option is to apply a cost on the instantaneous

reward if the current learning association of VUE kv dif-
fers from its best-to-date association from the previous MB
(i.e., η

(t)
kv

�= β
(b−1)
kv

). In this case, we define the best-to-date
updating rule (BU) as follows:

Γ(t)
kv ,j =Γ(t−1)

kv ,j +α
((

1 − ζ(τ (b)
kv

)δ̄(β(b−1)
kv

, j)
)
Rkv ,j−Γ(t−1)

kv,j

)
(24)

where j = η
(t)
kv
represents the current learning association of

VUE kv at learning time step t, β
(b−1)
kv

is the best-to-date
association of VUE kv at the end of previous MB (b−1), and
ζ(τ) represents the handover cost which is discussed in the
next section.
The second option is to apply a handover cost by com-

paring two consecutive learning associations. That is, the
current learning association j = η

(t)
kv
is compared with the

previous learning association in the current MB η
(t−1)
kv

, and

not with β
(b−1)
kv

. In this case, we define the current learning
updating rule (LU) as follows:

Γ(t)
kv ,j =Γ(t−1)

kv,j +α
((

1−ζ(τ (b)
kv

)δ̄(η(t−1)
kv

, j)
)
Rkv ,j − Γ(t−1)

kv ,j

)
(25)

This updating rule applies a handover cost only if there is
an immediate change in the association during the learning
process, instead of comparing to β

(b−1)
kv

.

A chosen updating rule, either (24) or (25), is applied in the
learning process inside the MB b which include multiple learn-
ing time steps t = {1, 2, . . . , T}. Since the channel dynamics
are assumed to be static inside an MB, changes between two
consecutive learning associations η

(t−1)
kv

and η
(t)
kv

are most

likely caused by user mobility, whereas changes between η
(t)
kv

and βkv are caused by both user mobility and wireless channel
variations. These differences can lead to different probabilities
of applying a handover cost, which consequently can lead to
trade-offs between the network sum-rate and the handover rate.
These trade-offs are analyzed via simulations in Sec. VII.

B. Handover Cost Function

The handover cost function is an important design choice
which affects the learning performance. Similar to using two
different association vectors, one for transmission and one for
learning, here we propose the use of two separate handover
costs, one for system performance and one for the learning
process. For system performance measures such as user data
rate, each handover action incurs a fixed percentage cost due
to the handover time overhead that could otherwise be used
for data transmission. For the learning process, we propose a
variable handover cost as a function of the sojourn time, the
time that a VUE has stayed connected with a BS (see (22)).
This model includes as a special case the fixed cost model
which is prevalent for both learning and performance in the
literature. To the best of our knowledge, our proposed concept
of using two different cost functions for system performance
and learning process is novel.
We consider a handover cost model for learning that

includes a ’soft’ cost component Cd and a ’hard’ cost com-
ponent C0. The soft-cost Cd can be amortized over time such
that the cost decreases the longer an user has stayed connected
to the current BS before a handover occurs. The hard-cost
component stays fixed throughout the learning process. For
example, the hard cost can account for the overhead occurred
in a handover process (such as measurements and signaling),
and the soft cost can account for the loss in learning perfor-
mance due to handover causing the rewards to change. Both
of these cost components are only for the learning process.
We propose a learning handover cost as a decreasing

function of the sojourn time as

ζη(τ) = Cde
− τ

10 + C0 (26)

This learning handover cost is applied in the learning process
to produce the learning association vector η(t). Here Cd is
amortized over time and the handover cost reduces to C0 as
τ → ∞. Note that the value for C0 can be zero, which
makes the learning cost approach zero asymptotically with
increasing sojourn time. This cost function is novel and can
lead to higher learning performance by alleviating the frequent
handover problem. We note that this decreasing handover cost
over longer sojourn time is also simple to implement and is
appealing from a practical perspective.
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Algorithm 5 CLB Updating Rule for Real-Time Learning
(RTL)

Input: Reward matrix Γ(t−1), matrix of number of BS
selection T(t−1)

1 for each kv ∈ V at MB b do
2 - Perform a reward updating rule with handover cost

((24) or (25));

3 - Update T
(t)
kv,j = T

(t−1)
kv,j + 1;

4 end
Output: Updated Γ(t) and T(t)

In numerical results section, we will also consider two
special cases of this learning handover cost model. First is
zero cost ζ = 0, in which the updating rule in (24) or (25)
reduces to the BL updating rule in (17). This means any
handover effect such as reduction in the instantaneous reward
due to handover delay is ignored. In a mobile network, this
can increase signaling overhead and result in a high handover
rate. Second is a fixed cost model, in which ζ = Cf is
constant and does not change over time. This fixed cost model
is common in the literature and is simple to obtain a first order
effect of handover, but may be sub-optimal in performance
since it ignores the effect of sojourn time. Impact on system
performance of these two special cases of handover cost will
be analyzed and compared with the proposed cost in (26).
In all cases, the handover cost for system performance ε is

a fixed percentage such that the instantaneous rate of VUE kv

resulting from using the best-to-date association vector with
handover is

R̃kv ,j(β(b)) = (1 − ε)δ̄(β(b−1)
kv

, j)Rkv ,j(β(b)) (27)

where j = β
(b)
kv

is the bets-to-date association of VUE kv.
Consequently, the network sum-rate with handover can be
calculated according to (10) by using R̃kv ,j(β(b)).

C. Proposed User Association and Handover Learning
Approaches

Next, we introduce two learning approaches different in the
process and the frequency in which the reward updating is
carried out. Both approaches utilize the local measurements at
UEs to continuously adapt user association to network dynam-
ics, and provide the best-to-date association vector at the end
of each MB. During an MB, there are T measurement steps,
and during each step, each VUE performs one measurement.
The two approaches differ in how the expected rewards are
updated during each measurement step.
Both approaches can be applied to either the centralized

MAB algorithm (Alg. 3) or the semi-distributed one (Alg. 4)
to adapt these algorithms to the dynamic networks. For the
purpose of discussion, we will describe these two approaches
as applying to the centralized algorithm, where the reward
updates are carried out at the CLB. For the semi-distributed
algorithm, these updates will be performed at each VUE.

1) Real-Time Learning (RTL): In this approach, at each
learning time step t of an MAB algorithm, only a single
update is performed according to (24) or (25), based on the

Algorithm 6 CLB Updating Rule for Background
Learning (BGL)

Input: Reward matrix Γ(t−1), matrix of number of BS
selection T(t−1)

1 for i = 1 : NBGL do
2 - Execute Alg. 5 and perform the updates with the

same instantaneous reward;
3 end

Output: Updated Γ(t) and T(t)

new measurement obtained in that learning time step. The
association vector obtained at the end of each MB is used as
the initial association of the next MB. Because these updates
are performed as new measurements arrive, we refer to this
approach as real-time learning or RTL. The learning process in
RTL is updated to match to the same speed as new knowledge
of the system is obtained. The CLB updating rule for RTL
approach is shown in Alg. 5.

2) Background Learning (BGL): In RL, the reward com-
puted at each step is an estimate of the expected reward that
would result if the learning process was carried out for its time
duration and reached the final value [18]. Thus this estimate
of the reward at each step can be improved by performing
the reward update more frequently. One way to do this is to
continue to update the expected rewards in-between the mea-
surements. At each time step t of MAB algorithm, each VUE
uses its measurement to perform multiple updates of its reward
vector and vector of number of BS selection. These updates are
based on the same measurement at time step t. This approach
enhances the effect of most recent measurements compared to
the previous ones. The CLB updating rule for this learning
approach is given in Alg. 6. In the next section, we provide
numerical results to compare these learning approaches which
reveal the trade-offs in performance among them.

VII. NUMERICAL RESULTS

We evaluate the performance of the proposed MAB
algorithms in the downlink of a mmWave-enabled HetNet,
including JB = 2 MBS operating at 1.8 GHz, JS = 4
SBSs operating at 28 GHz, K = 30 UEs. The load bal-
ancing constraints are specified by BSs’ quota vector q =
[18, 18, 6, 6, 6, 6], and we assume each UE requests two data
streams (nk = 2), each can be received from either a MBS or
a SBS. We pick a fixed value for learning rate α = 0.8, which
is found via extensive simulations to work well. The channels
for sub-6 GHz links and the mmWave links are generated
as described in Sec. II-B. We assume each mmWave link is
composed of 5 clusters with 10 rays per cluster. In order to
implement 3D beamforming, each BS is equipped with a UPA
of size 8 × 8 (Mj = 64), and each UE is equipped with
a 2-element antenna module designed for sub-6 GHz band,
and a 4 × 1 ULA of antennas designed for mmWave band
(Nk = 4). The noise power spectral density is −174 dBm/Hz,
and the bandwidths for sub-6 GHz band and mmWave band
are 20 MHz and 400 MHz, respectively. Also, we assume
that the transmit power of MBS is 10dB higher than that for
SBSs. Network nodes are deployed in a 500× 500 m2 square
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Fig. 3. a) Total expected rewards of all VUEs (upper figure) and expected reward of two typical UEs (lower figure) versus learning time step for the centralized
MAB user association algorithm (Network 1). b) Comparing average network sum-rate of the proposed MAB algorithms versus number of learning time steps.

where the BSs are placed at specific locations and the UEs
are distributed randomly according to a homogeneous Poisson
point process (PPP).

A. Learning Analysis

In this section, we consider a static network and evaluate
the convergence of expected rewards and the effect of number
of learning steps on network performance.
Fig. 3.a depicts the convergence of the total expected reward

of all VUEs and the expected rewards of two typical UEs
(including their VUEs) with respect to learning time steps
for the centralized MAB algorithm. These figures show a
clear trend of that the total reward increasing as learning time
step grows. The small number of 16 time steps required for
reaching near maximum is encouraging. This result indicates
that online implementation of the proposed algorithm can
reach close to its best performance even in a reasonable
number of learning time steps.
Fig. 3.b depicts the best-to-date per user data rate ver-

sus the number of learning steps for the centralized and
semi-distributed MAB algorithms for two network sizes. In a
wireless network, the number of learning steps correspond
to the number of time steps in which the channels stay
unchanged, which is set by the channel coherence time. These
results show that in both network sizes, the semi-distributed
algorithm converges faster than the centralized algorithm,
but to a lower data rate value. The convergence for both
algorithms, however, is quite fast; for example, the central-
ized algorithm reaches its maximum average value after only
20-25 steps.

B. Centralized vs. Semi-Distributed MAB Algorithms in a
Static Network

Consider a static network with non-CoMP transmission
and t = 50 learning time steps. Fig. 4 compares the per-
formance of the proposed centralized and semi-distributed
MAB user association algorithms with 1) a benchmark as
the (non-learning) centralized WCS algorithm [7], 2) a cen-
tralized Fractional association scheme [4], and 3) the

Fig. 4. Comparing average network sum-rate of the proposed MAB
algorithms versus transmit power of SBSs. Transmit power of MBSs is 10 dB
higher than SBSs.

conventional 3GPP Max-SINR user association approach.
For the Fractional scheme we used Alg. 1 to convert
fractional associations to integer associations. For the 3GPP
Max-SINR scheme, each UE connects to the BS providing the
highest max-SINR, and we also applied Alg. 1 to satisfy the
load constraints. This figure shows that both the proposed cen-
tralized and semi-distributed MAB algorithms achieve a net-
work throughput close to, within 94-97% and 79-88% of, the
WCS algorithm, while outperforming both the Fractional
and 3GPP Max-SINR algorithms. We note that the proposed
learning-based algorithms utilize the available measurements
at UEs, and thus have much lower signaling overhead and
complexity with respect to WCS algorithm which requires full
CSI information. This figure also shows that our proposed
J-UCB rule used in the centralized algorithm achieves 8-20%
higher network sum-rate compared to original UCB rule used
in the semi-distributed algorithm.
In Fig. 5, we compare NonCoMP and CoMP transmis-

sion scenarios. In this simulation the quota for MBSs is
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Fig. 5. Comparing a) average network sum-rate, and b) percentage of UEs with CoMP connections, in a network with 6 BSs. Transmit powers of MBSs
and SBSs are 45 dBm and 35 dBm, respectively.

Fig. 6. Comparing average network sum-rate and average handover rate of a) the MAB algorithm with three handover cost models where Cf = 0.3,
Cd = 0.9 and C0 = 0, and b) the MAB algorithm (with decreasing handover cost model) against the WCS and max-SINR algorithms.

fixed (q1 = q2 = 18), while the quota of SBSs increase
from 4 to 12 data streams per BS, and the corresponding
number of UEs areK ∈ {26, 30, 34, 38, 42}. In the NonCoMP
case, each UE is enforced to receive its both data streams
(nk = 2) from a single BS, whereas in CoMP transmis-
sion, each UE is allowed to connect with multiple BSs and
received data streams independently. Subfigure 5.a shows that
enabling CoMP results in a higher network sum-rate for all
three schemes. For the proposed MAB algorithms the CoMP
advantage is more significant when the quota of SBSs and
consequently the number of UEs are smaller, because of less
interference between data streams. Subfigure 5.b indicates that
the proposed centralized algorithm has much lower percentage
of CoMP connections compared to max-SINR scheme, which

is advantageous because of lower CoMP signal overhead,
while still achieving higher network sum-rate.

C. User Association and Handover in a Dynamic Network

We now consider a dynamic network with user mobility
and study the handover performance. The handover cost for
system performance is ε = 0.05. At each moving step
n ∈ {1, 2, . . . , 20}, we assume 10 randomly selected (out of
K = 30) UEs are moving across the network, and each VUE
performs T = 6 SINR measurements (during each MB) as
directed by the CLB. For each moving UE, the next waypoint
is generated based on the MRWP model as described in
Sec. V-A. The velocity of moving UEs is assumed to be fixed
unless otherwise indicated. The number of MBs per moving
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Fig. 7. a) Average handover rate, and b) Average sojourn time of the centralized MAB algorithm with decreasing handover cost (Cd = 0.9). The velocity
ranges of moving UEs are: 1) walking [5, 7] km/h, 2) running [9, 11] km/h, 3) biking [15, 20] km/h, and 4) city driving [30, 40, 50] km/h.

step is calculated based on (18). For RTL approach (Alg. 5),
the reward of each VUE is updated once, while for BGL
(Alg. 6), the reward is updated NBGL = 10 times. The 3GPP
and WCS algorithms are used as baseline and benchmark
comparisons, where the 3GPP handover is triggered when a
neighbor BS becomes an offset amount better than serving BS
(Event A3) [41].
Fig. 6 depicts the average network sum-rate and average

handover rate of different association schemes versus moving
steps. Fig. 6.a shows a clear trade-off between handover
rate and achievable data rate among the different learning
cost models. The decreasing cost model achieves the lowest
handover rate (at 33% lower than fixed cost and 50% lower
than zero cost) at only a slight reduction (3-4%) in network
sum-rate. As such, we use the decreasing handover cost for
all subsequent simulations.
Fig. 6.b compares the performance of the centralized MAB

algorithm with decreasing cost model and the WCS and
3GPP Max-SINR algorithms. These results show that the
proposed learning algorithm significantly outperforms 3GPP
Max-SINR in terms of both handover rate and network
sum-rate, achieving 1.5 times the throughput at an order of
magnitude lower in handover rate. Compared to WCS, there
is a trade-off between handover rate and network throughput,
where the handover rate of the learning algorithm is drastically
lower. The initial ramping up of the learning algorithm is due
to limited number of measurements and short history at the
beginning. As the number of measurements increases and the
learning history becomes richer, the proposed algorithm can
utilize the learning history and ramps up its performance. This
adaptation is quite fast and is fulfilled during the very first few
MBs inside the first moving step, attesting to the validity of
this learning approach.
Fig. 7 compares RTL and BGL learning approaches with

dynamic updating rules in (24) and (25) indicated by BU
and LU, respectively. For this simulation, we use the Non-
CoMP version of centralized MAB algorithm with decreasing
handover cost (Cd = 0.9, C0 = 0). The results indicate
BU achieves lower handover rate and higher sojourn time
compared to LU. This is due to the fact that the best-to-date

Fig. 8. Comparing average network sum-rate of the RTL and BGL learning
approaches with two updating rules given in (24) and (25). Transmit powers
of MBSs and SBSs are 45 dBm and 35 dBm, respectively.

association vector β is updated less frequently in BU. More-
over, BGL outperforms RTL in terms of both handover rate
and sojourn time. The reason is that BGL enhances the effect
of most recent measurements by performing multiple reward
updating in-between the measurements, thus UEs are more
willing to keep their last best-to-date associations.
Fig. 8 compares the RTL and BGL learning approaches with

updating rules BU and LU. As the total BS quotas and number
of UEs grow, the sum-rate decreases at first, due to the fact
that BSs are sharing the same amount of power among more
UEs. After a threshold point (qj = 8, j ∈ JS), however, the
sum-rate increases as the higher number of UEs increases the
chance of having more UEs closer to SBSs, resulting in higher
data rates for those UEs. Compared to the plots in Fig. 7, there
is a clear trade-off among the four learning schemes in terms
of handover and sum-rate performance.

VIII. CONCLUSION

Using an MAB reinforcement learning technique, we pro-
posed centralized and semi-distributed learning algorithms
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to perform user association and handover in a mmWave-
enabled HetNet, while maintaining load balancing. The algo-
rithms explicitly satisfy the load balancing constraints by
employing a central load balancer to associate UEs with BSs
based on their quotas. We utilized a user mobility model
and introduced a measurement model for dynamic networks.
We proposed a learning cost model decreasing with connection
time to reduce frequent handover, and considered several
updating rules for the learning rewards, including real-time
and background learning to boost performance. Our numerical
results showed that the learning process in these algorithms is
fast and efficient, outperforms 3GPP handover scheme, and
reaches closely the throughput performance of the benchmark
WCS algorithm, while significantly reducing the handover
rate. These features make our proposed algorithms potentially
suitable for online user association and handover in highly-
dynamic mmWave-enabled HetNets.
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