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Abstract. In light of the recent swampland conjectures, we explore quantum cosmology and
eternal inflation beyond the slow roll regime. We consider a model of a closed universe with
a scalar field „ in the framework of tunneling approach to quantum cosmology. The scalar
field potential is assumed to have a maximum at „ = 0 and can be approximated in its
vicinity as V („) ¥ 3H2 ≠ 1

2
m2„2. Using the instanton method, we find that for m < 2H the

dominant nucleation channel for the universe is tunneling to a homogeneous, spherical de
Sitter space. For larger values of m/H, the most probable tunneling is to an inhomogeneous
closed universe with a domain wall wrapped around its equator. We determine the quantum
state of the field „ in the nucleated universe by solving the Wheeler-DeWitt equation with
tunneling boundary conditions. Our results agree with earlier work which assumed a slow-roll
regime m π H. We finally show that spherical universes nucleating with m < 2H undergo
stochastic eternal inflation with inflating regions forming a fractal of dimension d > 2. For
larger values of m the field „ is unstable with respect to formation of domain walls and
cannot be described by a perturbative stochastic approach.
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1 Introduction

It is a widely held view that in order to understand how the universe originated we should
treat the universe quantum mechanically and describe it by a wave function � rather than by
a classical spacetime. The picture that has emerged from this approach is that a small closed
universe can spontaneously nucleate out of nothing, where ‘nothing’ refers to a state with no
classical space and time [1–6]. The cosmological wave function � can be used to calculate
the probability distribution for the initial states in the ensemble of nucleating universes. At
least some of these universes are expected to go through a period of inflation, driven by the
potential energy V („) of the inflaton field „. This energy is eventually thermalized, inflation
ends, and from then on the universe follows the standard hot cosmological scenario. Inflation
is a necessary ingredient in this kind of scheme, since it provides the only way to get from a
tiny nucleated universe to the large universe we live in today.

The wave function of the universe � satisfies the Wheeler-DeWitt (WDW) equation

H� = 0, (1.1)

where H is the Hamiltonian operator. To solve this equation, one has to choose some bound-
ary conditions for �. The most developed proposals for this choice are the Hartle-Hawking [2]
and the tunneling [7, 8] boundary conditions. The predictions resulting from the two pro-
posals have mostly been studied assuming a slowly varying potential V („),1

|V Õ|/V π 1, |V ÕÕ|/V π 1 (1.2)

in reduced Planck units (8fiG = 1). Then the Hartle-Hawking wave function predicts that
the universe is most likely to nucleate with the lowest (positive) value of V („) and thus

1
We assume for simplicity that the potential depends on a single scalar field „. An extension to multiple

fields is briefly discussed in section 2.
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disfavors inflation. The tunneling wave function, on the other hand, predicts nucleation with
„ near the maximum of V („), which is a favorable initial condition for (hilltop) inflation.
Here we shall adopt the tunneling proposal.

With this choice, and assuming that the conditions (1.2) are satisfied, most of the
universes nucleate with „ close to the maximum of V („) and immediately enter the regime of
stochastic eternal inflation [9–11]. The dynamics of the field „ near the top of the potential
is dominated by quantum fluctuations and is well approximated by a random walk. In any
horizon region the field gradually drifts away from the top and eventually rolls down to the
minimum of V („), but in di�erent regions this happens at di�erent times, and at any time
there are parts of the universe that are still inflating with „ near the top. The inflating regions
form a self-similar fractal [12], with their total volume growing exponentially with time.

This scenario, however, is now being seriously questioned. There is growing evidence
that a wide class of quantum field theories do not admit a UV completion within the theory
of quantum gravity, even though they look perfectly consistent otherwise. Such theories are
said to belong to the swampland, as opposed to the landscape. A number of di�erent criteria
that the landscape potential V („) should satisfy have recently been suggested [13, 14]. One
of them is the so-called refined swampland conjecture [15, 16], which asserts that at any value
of „ with V („) > 0 one of the two conditions has to be satisfied:

|V Õ| Ø cV, or V ÕÕ Æ ≠c̃V, (1.3)

where c and c̃ are positive constants of order one. This conjecture is clearly incompatible
with the conditions (1.2). It is also in considerable tension with the inflationary scenario,
which usually requires a slowly varying potential V („).

The swampland conjecture (1.3) as it stands may or may not be true. We take an
agnostic attitude to this issue, but the above discussion motivates us to reconsider quantum
cosmology and eternal inflation in the regime where the slow variation conditions (1.2) are
not satisfied. This is our goal in the present paper. We start with quantum cosmology in
section 2. The tunneling wave function is expected to be peaked near the maximum of the
potential, where V („) can be approximated as

V („) ¥ V0 ≠ 1
2m2„2. (1.4)

We have |V ÕÕ|/V (0) = m2/3H2, where H = (V0/3)1/2 is the expansion rate of a de Sitter
universe of vacuum energy density V0. The slow variation condition (1.2) is then m π H.
Here we are mostly interested in the regime m & H.

We start in section 2 by discussing nucleation of the universe using the instanton method.
For su�ciently small values of the mass parameter, µ © m/H < 2, we find that nucleation
is described by the homogeneous de Sitter instanton having the geometry of a 4-sphere. The
initial state is then a spherical universe with „ = 0, as usually assumed. On the other hand,
for µ > 2 the dominant instanton describes nucleation of a "domain wall universe." In this
case the initial state still has the topology of a 3-sphere, but is inhomogeneous, having a
domain wall centered on a 2-sphere (the ‘equator’) where „ = 0. We briefly discuss possible
scenarios of subsequent evolution of a domain wall universe, referring to appropriate literature
for more detail.

Focusing on the spherical initial configuration, we then discuss the quantum state of
the nucleated universe in section 3. We expand the scalar field „(x, t) in spherical modes
on a 3-sphere and solve the WDW equation for the wave function �(a, „n), where a is the

– 2 –
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scale factor and „n are the mode amplitudes. Of special interest is the homogeneous mode
n = 1. We find that the probability distribution for „1 is fully consistent with the instanton
analysis. For small values of µ the wave function is peaked at „1 = 0, while for µ > 2 this
behavior is modified and the top of the potential becomes a local minimum of |�|. We argue
that this marks a transition to a domain wall universe. For inhomogeneous modes, n > 1,
the quantum state is an analytic continuation of the standard Bunch-Davies vacuum to a
tachyonic field (with a possible exception of the dipole mode n = 2).

We finally discuss under what conditions nucleation of the universe is followed by
stochastic inflation. One expects that there is some value µmax above which stochastic
inflation is not possible. Several attempts have been made to determine this threshold value
in the literature with di�erent results [17–19], so the question is still open at this time. We
address this issue in section 4, with the conclusion that µmax = 2 – that is, stochastic inflation
occurs for all values of µ that allow nucleation of a spherical universe.

Our conclusions are summarized and discussed in section 5.

2 Instanton analysis

We consider a model of a scalar field „ minimally coupled to gravity. The action of the
model is

S =
⁄ Ô

≠gd4x
3

R

2 ≠ 1
2(Ò„)2 ≠ V („)

4
. (2.1)

We assume that the potential V („) has a maximum at „ = 0, where it can be approximated
as in eq. (1.4):

V („) = 3H2

3
1 ≠ 1

6µ2„2

4
, (2.2)

where µ = m/H.
In the leading order of semiclassical approximation, nucleation of the universe can be de-

scribed using the instanton method. According to the tunneling prescription, the nucleation
probability is then given by

Pnuc Ã e≠|SE |, (2.3)
where SE is the action of the Euclidean instanton solution. The dominant instanton is the
one with the smallest magnitude of the action |SE |. It is usually assumed [1–5] that this is
the homogeneous de Sitter instanton with „ = 0 and the geometry of a 4-sphere of radius
H≠1. The corresponding Euclidean action is

S(dS)

E
= ≠8fi2

H2
. (2.4)

We will now argue that this assumption is valid only for su�ciently small values of the mass
parameter: µ < 2. For larger values of µ the dominant instanton is an inhomogeneous domain
wall instanton.

Domain wall instantons were first discussed in refs. [20, 21] in the context of domain
wall nucleation in the inflationary universe. They generally have O(4)◊Z2 symmetry and the
topology of a 4-sphere. Here we will mostly be interested in the regime of µ ¥ 2, corresponding
to the transition between de Sitter and domain wall instantons. In this case the instanton
solution covers only a small range of „ near „ = 0, so we can use the approximate form of the
potential (2.2) and the geometry is accurately described by the Euclideanized de Sitter metric

ds2 = H≠2{d’2 + cos2 ’[d‰2 + sin2 ‰(d◊2 + sin2 ◊d„2)]}. (2.5)

– 3 –
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The domain wall instanton can be found with the ansatz „ = „(’). The field equation for „
is then

„ÕÕ ≠ 3 tan ’„Õ + µ2„ = 0 (2.6)

with boundary conditions „Õ(≠fi/2) = „Õ(fi/2) = 0. With µ ¥ 2, this equation has two
solutions: „ = 0 and

„(’) ¥ A sin ’ (2.7)

with A = const. The first solution corresponds to de Sitter instanton and the second to
domain wall instanton.

The constant A depends on the nonlinear terms in the potential V („) [21]. Its particular
value will not be important for our discussion, but as an illustrative example let us include
in the potential (2.2) an additional quartic term:

V („) = 3H2 ≠ 1
2H2µ2„2 + ⁄„4. (2.8)

Substituting this and the solution (2.7) into the Euclidean action

SE = 2fi2H≠4

⁄
fi

0

d’ cos3 ’
51

2(„Õ)2 + V („)
6

, (2.9)

we find
SE = 2fi2

H2

5
3H2 ≠ 2

15H2(µ2 ≠ 4)A2 + 4
35⁄A4

6
. (2.10)

This action is minimized by
A2 = 7

12⁄
(µ2 ≠ 4) (2.11)

for µ > 2 and by A = 0 for µ < 2. Note that the domain wall instanton solution (2.7), (2.11)
does not exist for µ < 2. Note also that this threshold value depends only on µ and is not
sensitive to the nonlinear part of the potential. A numerical calculation in ref. [21] confirms
that |S(wall)

E
| < |S(dS)

E
| for all µ > 2.2

Negative modes of the de Sitter instanton have been discussed in the appendix of ref. [21].
It shows that a homogeneous negative mode „ = const is always present for µ2 > 0, as it
should be in a tunneling instanton. There are no other negative modes for µ < 2, but
for µ > 2 additional, dipole negative modes of the form (2.7) appear. They signal that
the de Sitter instanton is no longer dominant and that the leading instanton has a domain
wall structure.

We conclude that the dominant nucleation channel in models with µ > 2 is to a domain
wall universe. Possible scenarios for subsequent evolution of such a universe depend on the
shape of the potential V („) away from „ = 0; they have been discussed in ref. [25]. A few
characteristic examples are illustrated in figure 1.

In figure 1(a) the potential is a double well with a maximum at „ = 0 sandwiched
between two symmetric de Sitter minima. Then at late times we have an approximately
spherical expanding de Sitter universe with a domain wall on its equator. An important
point is that domain walls of a fixed physical thickness exist in de Sitter space only for
µ > 2 [26, 27]. In the opposite case, wall-like configurations like eq. (2.7) are smeared by the

2
This is similar to Coleman-de Luccia instanton [22] describing bubble nucleation in false vacuum. This

instanton solution is dominant when it exists, but it disappears and is replaced by the Hawking-Moss instan-

ton [23] when the tunneling barrier becomes su�ciently flat near the top [24].
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(a) Two de-Sitter vacua symmetric about „ = 0. (b) Two Minkowski vacua symmetric about „ = 0.

(c) An anti de-Sitter vacuum at „ < 0 and a
Minkowski vacuum at „ > 0.

Figure 1. A plot of V („) with µ > 2 and a local maximum at „ = 0 in between two local minima.

expansion of the universe, evolving towards a homogeneous „ = 0 solution. In figure 1(b)
the minima of the potential are at V = 0. The universe then evolves to an inflating domain
wall solution with two asymptotically Minkowski regions bounded by an expanding domain
wall [28]. More precisely, the regions on the two sides of the wall have the geometry of open
(k = ≠1) FRW universes. The minima of V („) do not have to be symmetric; an example
is shown in figure 1(c). Once again, the wall separates two regions containing open FRW
universes evolving with „ > 0 and „ < 0 branches of the potential. With a suitable choice of
parameters, the potential can have a flat portion which can lead to a long inflationary period;
an example is discussed in [25]. The potential minimum at „ < 0 in figure 1(c) is at V < 0.
As a result the FRW universe on that side of the wall develops a big crunch singularity [29].

We finally briefly discuss multi-field models where the potential can be approximated
near its maxima as

V („) = 3H2 ≠ 1
2

Nÿ

i=1

m2

i „2

i . (2.12)

Instanton solutions for such models in the de Sitter background have been discussed in [21]
assuming that the potential has an O(N) symmetry, so that all mass parameters m2

i
are equal

to one another. For N = 2 the de Sitter instanton dominates if mi < 2H. Otherwise, the
dominant nucleation channel is to a ‘global string universe’, having a global string wrapped
around its equator. Similarly, for N = 3 with mi > 2H, the dominant tunneling is to a ‘global
monopole universe’, having a global monopole and anti-monopole at its opposite poles. For
models with lower symmetry the nucleated universe would have a more complicated defect
structure. For example, in an N = 2 model with Z2 ◊ Z2 symmetry we would have m1 ”= m2

and the global string would be attached to four walls.
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3 Quantum state of the universe

3.1 General formalism
We shall first review the standard minisuperspace analysis of the tunneling wave function. It
was originally performed in the slow-roll regime µ π 1 (e.g., [30, 31]). Here we will extend
this analysis, but we will keep µ2„2 π 1, so that the expansion about the maximum of the
potential is justified.

The metric is assumed to be homogeneous, isotropic and compact:

ds2 = a(÷)2
1
≠d÷2 + d�2

3

2
(3.1)

where a(÷) is the scale factor, ÷ is the conformal time and d�3 is the metric on a unit 3-sphere.
We expand our field „ in spherical harmonics Q:

„ = (2fi2)1/2
ÿ

n,l,m

„nlm(t)Qn

lm(x), (3.2)

where (2fi2)1/2 is a normalization factor and n, l, m are harmonic numbers on a 3-sphere.
For further convenience we will denote all harmonic numbers as n.

The Wheeler-DeWitt (WDW) equation for the model is obtained through the quanti-
zation of the Hamiltonian constraint. In this case it recasts to

C
1

24fi2

ˆ2

ˆa2
≠ 6fi2V (a) ≠

ÿ

n

Hn

D

�(a, „n) = 0, (3.3)

where we have neglected the factor ordering ambiguity and

V (a) = a2
1
1 ≠ H2a2

2
, (3.4)

Hn = 1
2a2

ˆ2

ˆ„2
n

≠ 1
2a2

Ê2

n„2

n, (3.5)

Ê2

n = (n2 ≠ 1)a4 ≠ m2a6, (3.6)

where n œ {1, 2, 3, . . .}.
The next step is to solve the WDW equation. We will treat the scalar field modes „n

as small perturbations. Then a solution to (3.3) can be obtained with the ansantz

� Ã exp
5
≠12fi2S0(a) ≠ 1

2Rn(a)„2

n

6
. (3.7)

Substituting the above to (3.3) and neglecting subdominant terms in the WKB expansion
along with terms of order O

!
„4

n

"
, we have

3
dS0

da

42

≠ V (a) = 0 (3.8)

and
a2

3
dS0

da

4 3
dRn

da

4
≠ R2

n + Ê2

n = 0. (3.9)

The solution to (3.8) is straightforward and given by

dS±
0

da
= ±

Ò
V (a) ≠æ S±

0
(a) = û

!
1 ≠ H2a2

"3/2

3H2
(3.10)
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where S±
0

(a) correspond respectively to the decreasing and growing branches in the under-
barrier region Ha < 1. In the classically allowed region Ha > 1 they are the contracting and
expanding branches.

We now turn our attention to (3.9). We make a change of variables

da

d·
=

Y
_]

_[


V (a) · < 0

≠


V (a) · > 0
(3.11)

where · is the Euclidean conformal time related to ÷ through ÷ = i· and

a = 1
H cosh(·) . (3.12)

With this change (3.9) becomes

a2
dR±

n

d·
≠ R±

n

2 + Ê2

n = 0. (3.13)

This is a Riccati equation and can be linearized via the transformation

R±
n (·) = ≠a2

‹n

d‹n

d·
. (3.14)

The resulting ODE recasts to

‹̈n + 2 ȧ

a
‹̇n ≠

1
n2 ≠ 1 ≠ m2a2

2
‹n = 0, (3.15)

where we substituted the explicit form of Ên.
The solutions to the above can be expressed in terms of the associated Legendre func-

tions:
‹n(·) = An cosh · P n

“+1(tanh ·) + Bn cosh · Qn

“+1(tanh ·), (3.16)

where

“ =
A

9
4 + m2

H2

B1/2

≠ 3
2 (3.17)

and An, Bn are constant coe�cients. The functions ‹n correspond to the mode functions of a
tachyonic field „̂ of mass im in the de-Sitter background geometry. Selecting the integration
constants in (3.16) is equivalent to selecting the quantum state of the scalar field „̂.

The tunneling boundary conditions yield a total of three branches: growing and decaying
under the barrier and expanding in the allowed region. The under the barrier components �+

and �≠ are to be evaluated for · < 0 and · > 0 respectively. The expanding branch in the
Lorentzian region can be found by analytically continuing �≠ to imaginary conformal time
÷ = i· . The coe�cients multiplying the exponentials in eq. (3.7) can then be determined by
matching at the turning point · = ÷ = 0 [30].

– 7 –



J
C
A
P
0
4
(
2
0
2
3
)
0
3
4

3.2 Regularity conditions
In order to specify the tunneling wave function we will need to determine the arbitrary
coe�cients An, Bn in eq. (3.16). This can be done by requiring that the wave functions
for the mode amplitudes „n in (3.7) for all three branches are Gaussian rather than inverse
Gaussian:

R±
n (a) Ø 0 , Re{Rn(a)} Ø 0. (3.18)

Here, R+
n and R≠

n are for the decaying and growing branches respectively and Rn is for the
expanding branch. (Note that R±

n are real.) Following earlier literature, we will call eq. (3.18)
the regularity condition. It ensures that the wave function is peaked at „n = 0, so that field
fluctuations are suppressed.

We begin by examining the behavior of the growing branch well inside the Euclidean
region, Ha π 1.3 In the limit · æ +Œ the mode functions ‹n behave as4

‹n(·) ¥ Ãn e(1≠n)· + B̃n e(n+1)· (3.19)

where we have absorbed numerical factors in Ãn and B̃n. For Bn ”= 0, the dominant term is
the second one, so that ‹n Ã e(n+1)· . This would give

R≠
n (a) = ≠a2

d ln ‹n

d·
¥ ≠(n + 1)a2 < 0. (3.20)

The regularity condition can be satisfied if we set Bn = 0; then

R≠
n (a) ¥ (n ≠ 1)a2 Ø 0. (3.21)

This suggests that we set
‹n(·) = cosh · P n

“+1(tanh ·). (3.22)
We next check regularity at the turning point (a = H≠1, · = 0). Continuity of the

wave function at this point requires that

lim
·æ0+

R≠
n (·) = lim

·æ0≠
R+

n (·) = lim
÷æ0+

Rn(÷) (3.23)

The Legendre functions and their derivatives are continuous at the origin. This implies that
the constants An and Bn ought to be identical and the values of Rn(· = 0) should be the
same for all three branches.

It is shown in ref. [32] that with the mode functions (3.22) the regularity condition at
the turning point is satisfied for all inhomogeneous modes (n > 1) with µ < 2. Furthermore,
it is shown in ref. [33] that the regularity condition is satisfied in the entire classically allowed
range Ha > 1 if it is satisfied at the turning point. However, the homogeneous mode n = 1
has R1(a = H≠1) < 0 for all µ2 > 0. At smaller values of a it also develops a singularity
on the dominant branch: R+

1
(a æ a1) æ ≠Œ at some point a1 in the range 0 < a1 < H≠1.

This mode therefore requires a special treatment.
To find the mode function suitable for the homogeneous mode, we shall use the results

of refs. [7, 31] for slow-roll potentials as a guide. They suggest that in the regime Ha π 1
and µ„1 π 1, the relevant part of the decaying branch should behave as

�+(Ha π 1) Ã exp
C

≠6fi2a2 ≠ fi2H2a4

4 µ2„2

1

D

, (3.24)

3
Here we follow the analysis in ref. [32].

4
This expansion along with additional properties of Legendre functions which will be used throughout the

paper can be found in DLMF or obtained with Mathematica.
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Figure 2. A plot of R1(· = 0) with respect to µ. For µ < 2 regularity holds. As larger values of µ
it still holds for some subregions.

where we kept the leading terms in a and „1. Comparing this with (3.7) we have

S+

0
(Ha π 1) ¥ a2

2 , R+

1
(Ha π 1) ¥ fi2H2a4

2 µ2, (3.25)

where the second expression is valid for µ π 1.
On the other hand, the homogeneous mode function at · æ ≠Œ (or Ha π 1) will

generally behave as

‹1(· æ ≠Œ) Ã (2A1 sin “fi + B1fi cos “fi) e≠2· = C1e≠2· , (3.26)

where we defined
C1 = 2A1 sin “fi + B1fi cos “fi. (3.27)

For C1 ”= 0 this gives
R+

1
(Ha π 1) = ≠a2

d ln ‹1

d·
¥ 2a2, (3.28)

which disagrees with (3.25). An agreement is achieved only if we set

B1 = ≠A1

2
fi

tan(“fi), (3.29)

so that C1 = 0.
The value of R+

1
(0) for the above choice of the homogeneous mode is plotted as a

function of µ in figure 2. We see that regularity is satisfied for µ < 2 and violated in some
range above µ = 2. This violation of regularity first occurs precisely at µ = 2, when the de
Sitter instanton becomes subdominant. At still larger values of µ, R+

1
(0) becomes positive

in some subregions. However, inhomogeneous modes with n > 1 follow regularity patterns
that interfere with the pockets of regularity of the homogeneous mode. This becomes clear
from figure 3 where we plot Rn(0) for a number of leading inhomogeneous modes. When the
mode n = 1 becomes regular at µ > 2, higher order modes violate regularity.

So far we have only verified the regularity condition at a æ 0 and a Ø H≠1. By sampling
di�erent values of µ numerically, we convinced ourselves that regularity holds at µ < 2 on

– 9 –
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Figure 3. A plot of Rn(· = 0) vs. µ for the modes n = 2, 3, 4, 5. Higher order modes violate
regularity at larger values of µ. This leads to a pattern of interference in the pockets of regularity
after µ > 2.

both growing and decaying branches in the entire classically forbidden range 0 Æ a Æ H≠1.
There are however two exceptions to this rule.

The first exception is the homogeneous mode n = 1 on the growing branch, which
has R≠

1
(a) < 0 in a range of a adjacent to a = 0 for all µ2 > 0. The other exception is

the dipole mode n = 2, which violates regularity on the decaying branch for 1.9 . µ < 2.
These regularity violations are discussed in appendix A, where we argue that they are not
necessarily dangerous.

Overall, our analysis suggests the following choice of the mode functions:

‹n(·) =

Y
]

[
cosh ·

Ë
P 1

“+1(tanh ·) ≠ 2

fi
tan(“fi) Q1

“+1(tanh ·)
È

n = 1

cosh · P n
“+1(tanh ·) n > 1

(3.30)

We note that inhomogeneous modes follow the usual Bunch-Davies prescription, the only
di�erence being that we are now dealing with a tachyonic field. As a result the modes with
n > 1 will be regular even if we analytically continue to a field with a positive mass (µ2 < 0).
The same does not hold for the homogeneous mode which would yield

R+

1
(Ha π 1) ¥ ≠fi2H2a4

2 |µ2|. (3.31)

This is a clear characteristic of the tunneling wave function, for which the probability density
is maximized at the maxima and minimized at the minima of the scalar potential.5

On the other hand, the appropriate choice for the Hartle-Hawking state is to select the
Bunch-Davies modes (3.22) for all n. This gives a regular wave function for µ2 < 0 – that is,

5
Note that this conclusion di�ers from that in ref. [34] which discussed a free massive scalar field (µ2 < 0)

model using the Bunch-Davies mode function for the homogeneous mode. This mode function is regular for a

non-tachyonic field discussed in that paper, but would exhibit pathological behavior in more general models

that would include tachyonic fields at the maxima of the potential.
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for an ordinary (non-tachyonic) massive field. Note that the di�erence between the tunneling
and Hartle-Hawking approaches is limited only to the behavior of the homogeneous mode,
and thus they predict the same quantum state for scalar field perturbations.

4 Condition for eternal inflation

Suppose now that the universe nucleates with „ near the top of the potential, where V („)
is well approximated by eq. (2.2) with µ < 2, and has initial geometry close to de Sitter.
We want to determine the conditions under which the universe will then undergo stochastic
eternal inflation.

4.1 From Fokker-Planck equation
We shall first review the case of a small mass, µ π 1, which has been extensively studied in
the literature. The scalar field dynamics in this case is accurately described by the Fokker-
Planck equation [11]

ˆfl

ˆt
= H3

8fi2

ˆ2fl

ˆ„2
+ 1

3H

ˆ

ˆ„

3
fl

ˆV

ˆ„

4
. (4.1)

The field „ here should be understood as its average over a horizon volume ≥ H≠3, and the
quantity fl(„, t)d„ has the meaning of the probability for „ to be in the range [„, „ + d„]
at time t. The first term on the right-hand side of (4.1) accounts for quantum di�usion of
the field and the second term for the classical drift due to the potential. Comparing the two
terms and using V („) from eq. (2.2) and ‘naive’ estimates like ˆV/ˆ„ ≥ V/„, we find that
quantum fluctuations dominate at

|„| π „q © H2/m. (4.2)

The eternally inflating region (EIR) of spacetime can be defined as the region where „ is in
this range. We note that for such values of „

m2„2

V0

π H2 π 1, (4.3)

where the last inequality assumes that the potential energy density at the top of the potential
is small compared to Planck density. It follows from eq. (4.3) that the geometry of EIR is
well approximated by de Sitter space of energy density V0.

Outside of EIR scalar field dynamics is nearly classical, so „ rolls down from the top of
the potential and the geometry significantly deviates from de Sitter. However, this exterior
region can a�ect the geometry of EIR only within a small distance ≥ H≠1 from its boundary.
The 3-volume of EIR at a late time t can be estimated as

VEIR(t) ≥ V0 exp(3Ht)
⁄

Ÿ„q

≠Ÿ„q

fl(„, t)d„, (4.4)

where Ÿ ∫ 1, V0 = 2fi2H≠3 is the initial volume at nucleation and exp(3Ht) is the volume
expansion factor of inflating regions. The parameter Ÿ depends on our definition of EIR; its
precise value is not important for our discussion here, while the condition Ÿ ∫ 1 ensures
that the integration range in (4.4) covers the region where quantum fluctuations of „ are
non-negligible.
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With initial condition fl(„, 0) = ”(„), the solution of the Fokker-Planck equation is given
by a Gaussian distribution

fl(„, t) = (2fi)≠1/2‡≠1(t) exp[≠„2/2‡2(t)]. (4.5)

with [12]

‡2(t) = 3H2

8fi2µ2

5
exp

32
3µ2Ht

4
≠ 1

6
. (4.6)

In the limit of large t it approaches a „-independent form

fl = const · exp(≠µ2Ht/3) (4.7)

and eq. (4.4) gives
VEIR(t) Ã exp(dHt), (4.8)

where
d = 3 ≠ µ2/3. (4.9)

It was shown in ref. [12] that the eternally inflating region in this case is a self-similar fractal
of fractal dimension d.

The solution (4.5), (4.6) was used by Rudelius [17] to determine the condition for eternal
inflation (see also references in [17] for earlier attempts in this direction). Requiring that the
inflating volume grows with time, he found from eq. (4.8) the condition µ < 3. We note
however that the Fokker-Planck equation on which the above solution is based is applicable
only for slowly varying potentials satisfying the conditions (1.2), which in our case correspond
to µ π 1. Here we need to explore the regime of µ ≥ 1, so we cannot rely on the Fokker-
Planck approximation.

4.2 From quantum cosmology
Our approach will be based on quantum cosmology. The wave function of the universe in
the classically allowed region Ha > 1 is given by eq. (3.7)

� Ã exp
5
≠12fi2S0(a) ≠ 1

2Rn(a)„2

n

6
(4.10)

with
Rn(÷) = ≠a2

‹n

d‹n

d÷
, (4.11)

where a(÷) = ≠1/H÷ and the mode functions ‹n(÷) are obtained by analytic continuation
· æ i÷ from eq. (3.16). In this section it will be more convenient to use the proper time
t = ≠H≠1 ln(≠H÷) instead of the conformal time ÷.

The mode amplitudes „n behave as independent Gaussian variables; hence the proba-
bility distribution for „n can be written as

dP ({„n}, t) =
Ÿ

n

d„nfln(„n), (4.12)

where
fln(„n, t) = (2fi)≠1/2‡≠1

n (t) exp[≠„2

n/2‡2

n(t)]. (4.13)
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From eq. (4.10) it is clear that the variances ‡n(t) are given by

‡2

n(t) = 1
2Re(Rn(t)) (4.14)

The mode variances ‡n are calculated in appendix B.
The total field „, comprising all the modes, depends linearly on the mode amplitudes;

hence its probability distribution is also Gaussian:

dP („, t) = fl(„, t)d„ = (2fi)≠1/2‡≠1(t) exp[≠„2/2‡2(t)]d„, (4.15)

where
‡2 = È„2Í =

ÿ

n

n2‡2

n (4.16)

and n2 is the mode degeneracy factor.
As it stands, the sum in eq. (4.16) is divergent at large n. This is not surprising:

quantum fluctuations of „ on scale l grow as l is decreased, so a calculation of the expectation
value of „2 at a point always gives a divergent result. This divergence can be regulated by
smoothing the field operator „̂(x, t) over horizon-size regions (l ≥ H≠1). We can do this
using a Gaussian window function, or more conveniently by cutting o� the summation over
n in (4.16) at some nú ≥ eHt.

The probability distribution for a smoothed field is still given by the Gaussian distribu-
tion (4.15). To analyze the regime of eternal inflation, we will be interested in this distribution
in the limit of t æ Œ. We found in appendix B that in this limit the time dependence of ‡n

is the same for all n:
‡2

n Ã exp(2“Ht), (4.17)

where

“ =
39

4 + µ2

41/2

≠ 3
2 , (4.18)

as before. Hence
‡2 =

núÿ

n=1

n2‡2

n = CH2 exp(2“Ht). (4.19)

The dimensionless constant C is estimated in appendix B:

C ¥ 21+2“

sin(“fi)

Ë
�

1
“ + 3

2

2È2

� (“ + 1) � (“ + 3) . (4.20)

In principle, C should depend on the cuto� nú. However, we show in appendix B that
large-n terms in eq. (4.16) make a negligible contribution to the series, making C e�ectively
independent of nú. This indicates that ‡2 is not sensitive to the size of the smoothing region.
We note that C is divergent at “ = 1 (µ = 2) when the modes become unstable. Another
divergence is observed in the massless limit “ æ 0 (µ æ 0) which corresponds to the infrared
singularity in de-Sitter space (see [35–37]).

We can now estimate the volume of EIR in the same way as we did in the preceding
subsection:

VEIR ≥ V0

⁄
Ÿ„q

≠Ÿ„q

fl(„, t)d„ = V0

2Ÿ„q

H
Ô

C
e≠“Ht. (4.21)
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The result depends on the definition of EIR (parameter Ÿ), but the fractal dimension d of
the inflating region depends only on the time dependence of the inflating volume:

VEIR Ã e(3≠“)Ht © edHt. (4.22)

This gives

d = 3 ≠ “ = 9
2 ≠

39
4 + µ2

41/2

. (4.23)

It follows that for µ < 2 we have stochastic inflation with fractal dimension d > 2. As µ
approaches 2 from below, the fractal dimension approaches that of a domain wall, d = 2.
And as we discussed in section 2, for µ > 2 the dominant instanton describes nucleation of a
domain wall universe.

We derived the fractal dimension (4.23) assuming that the universe originated by quan-
tum nucleation from nothing. This result, however, is more general; it is not sensitive to
the assumption about the initial state. For example, Guth and Pi [38] calculated the scalar
field variance in de Sitter space with flat spatial sections assuming a thermal initial state.
They found the same asymptotic time dependence of È„2Í as in (4.19), and this would give
the same fractal dimension of EIR as in (4.23).6 This conclusion would formally also apply
for µ > 2, suggesting d < 2. However, in this case de Sitter space admits stable domain
wall solutions, so fluctuations of the field „ are unstable with respect to formation of domain
walls. These are nonlinear structures; they inflate along the wall surfaces and keep a fixed
thickness in the transverse direction. Thus a description in terms of stochastic inflation is
appropriate only for µ < 2.

5 Conclusions

In this paper we studied quantum cosmology and eternal inflation in the regime where the
slow-roll conditions are violated. Our approach was based on the wave function of the universe
with tunneling boundary conditions. We considered a model of a closed universe with a scalar
field „, focusing on the range of „ near the top of its potential, where the potential can be
approximated as V („) ¥ 3H2 ≠ (1/2)m2„2. We were mostly interested in the regime m & H.
Our analysis shows that the physics of both nucleation of the universe and eternal inflation
undergo a sharp transition at the critical value of m = 2H.

We first used the instanton method in section 2 to study nucleation of the universe from
nothing. For small values of the steepness parameter µ = m/H we find that the dominant
nucleation channel is to a spherical de Sitter universe with the scalar field at the top of the
potential, „ = 0. As the value of µ increases and reaches the threshold µ = 2, another
possible nucleation channel appears – to an inhomogeneous domain wall universe having a
domain wall wrapped around its equator. This channel, when it exists, always dominates the
nucleation probability. These conclusions are largely based on the work [21] in the context
of domain wall nucleation in de Sitter space (which is described by the same instanton as
nucleation of a domain wall universe). This earlier work, however, did not make a connection
to quantum cosmology. The subsequent evolution of a domain wall universe depends on
the nature of the vacua separated by the wall (which are generally di�erent). We discussed

6
We note that µ < 2 was also suggested as the condition for topological inflation in which inflation takes

place inside the cores of domain walls [39, 40]. For numerical simulations of the fractal structure of such

models see [41].
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possible scenarios for the cases of (A)dS and Minkowski vacua, following earlier discussion
in ref. [25].

The quantum state of a nucleated spherical universe is discussed in section 3, where we
extend earlier treatments which assumed a slow-roll potential. To this end, we expand the
field in spherical harmonics and solve the Wheeler-DeWitt equation for the wave function
of the universe �(a, „n) with tunneling boundary conditions. The tunneling prescription
instructs us to impose the regularity condition, ensuring that |�| decreases as the mode
amplitudes „n are increased. We find a regular quantum state for µ < 2, while for larger
values of µ such states do not exist. These results are consistent with the instanton approach.

A caveat in the above analysis is the behavior of the dipole mode which violates regu-
larity in the narrow range 2 > µ & 1.9. This feature is discussed in appendix A, where we
argue that it is not necessarily problematic. We note that the origin of this behavior remains
enigmatic for us and it should, perhaps, be further investigated.

Eternal inflation in the nucleated universe is discussed in section 4. The standard
treatment using the Fokker-Planck equation is not applicable beyond the slow-roll regime.
Our approach here is based on quantum cosmology and does not su�er from this limitation.
The wave function of the universe provides Gaussian probability distributions for individual
modes „n. We use this to find the distribution for the total field „ (comprising all the modes)
smoothed over horizon regions, and then use it in turn to estimate the volume of the eternally
inflating region (EIR). We find that for µ < 2 this volume grows exponentially with time,
indicating that eternal inflation does occur in this range of µ. The rate of volume growth is
related to the fractal dimension d of EIR, and we find that d > 2 and that d æ 2 from above
as µ æ 2 from below. For µ > 2 stable domain wall solutions exist in de Sitter space, and
fluctuations of the field „ are unstable with respect to formation of walls. A description in
terms of stochastic inflation is not appropriate in this regime.

As a final remark, we comment on the status of inflation in relation to swampland
conjectures. Inflationary cosmology has impressive observational support and at this time
there seem to be no viable alternatives. It seems reasonable therefore to assume that the
swampland criteria, whatever their final form will be, must be consistent with slow-roll
inflation. It is possible for example that the constants c, cÕ in eq. (1.3) have somewhat
smaller values, e.g., ≥ 0.1≠0.01 [42]. This would be compatible with slow-roll inflation, even
though the possible form of the inflaton potential would be strongly restricted. Depending on
the values of c and c̃, quantum random walk of the inflaton field and the associated eternal
inflation may or may not be excluded [43–45]. Some authors have even suggested that
regardless of the validity of any specific form of the swampland conjecture, eternal inflation
may be forbidden by some fundamental principle [17, 46, 47]. As stated in the introduction
we take an agnostic approach towards these views. However, let’s assume for a moment that
stochastic eternal inflation is forbidden. The most probable scenario is then a domain wall
universe whose walls will inflate indefinitely spawning new inflationary regions [25]. It would
be interesting to explore the issues related to anthropic selection and to the measure problem
in this new kind of multiverse.
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Figure 4. A plot of R+
2 (a) for several values of µ. Lower curves correspond to higher values of µ,

with the yellow curve which nearly violates regularity corresponding to µ = 1.9.

A Anomalous behavior of n = 1, 2 modes

We noted at the end of section 3.2 that the homogeneous mode n = 1 violates regularity on
the growing branch and the dipole mode n = 2 violates regularity on the decaying branch.
The latter violation occurs in an intermediate range of a for 1.9 . µ < 2 (see figure 4).
We will argue that these violations are not necessarily dangerous, after discussing a related
issue below.

Our selection of the mode functions in eq. (3.30) was partly based on the analysis of
the growing branch of the wave function �≠(a, „n). However, this branch is exponentially
suppressed compared to the decreasing branch (at „n = 0), so keeping it while we neglect
larger corrections to the WKB formula requires some justification. This issue was addressed
in refs. [30, 32] with the following argument. First note that the growing and decreasing
branches have comparable magnitudes near the turning point, Ha ≥ 1, so keeping the growing
branch is justified in this range. Furthermore, it was argued in [32] that

Pn(a) © R≠
n (a)

R+
n (a)

< 1 (A.1)

in the entire classically forbidden region Ha < 1. This means that the function �+(a, „n)
decreases with „n exponentially faster than �≠(a, „n), and therefore �≠ dominates at su�-
ciently large „n. We thus have a continuous domain in the {a, „n} superspace, ranging from
a = H≠1 to a = 0, where �≠ is non-negligible compared to �+. The inclusion of the growing
branch can therefore be extended all the way to a = 0. The condition (A.1) was verified near
the turning point in ref. [32]. Here we used numerical methods to extend this analysis to the
entire range Ha < 1.

To illustrate the characteristic behavior of the ratio Pn(a), we plotted it in figure 5(a)
in the Euclidean region Ha < 1 for the leading inhomogeneous modes with µ = 3/2. It is
always less than 1, apart from the turning point Ha = 1, where Pn(H≠1) = 1. By sampling
di�erent values of µ, we found that his behavior holds in the entire range of µ œ (0, 2) for all
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(a) (b)

Figure 5. A plot of Pn(a) in the entire Euclidean region for the modes n = 1, 2, 3, 4, 5 and µ = 3/2.

Figure 6. A plot of Pn(a) in the entire Euclidean region for the modes n = 2, 3, 4, 5 and µ = 1.75.

modes, with the following two exceptions. One exception is the homogeneous mode n = 1
which exhibits a segment adjacent to the turning point where P1(a) > 1 for all µ > 0 (see
figure 5(b)). The other is the dipole mode n = 2 which exhibits similar behavior for µ & 1.6
(see figure 6).

For modes violating the condition (A.1), we cannot trust their behavior on the growing
branch in the classically forbidden region. For the homogeneous mode this means that
violation of regularity by R≠

1
(a) may be spurious in this case. Note also that even if R≠

1
(a) < 0

in some range of a < H≠1, this would not necessarily be a problem. The homogeneous mode
on the growing branch behaves as the Hartle-Hawking wave function which has a minimum
at the maximum of V („). This would not be problematic, as long as the growing branch
remains subdominant.

For the dipole mode, violation of (A.1) implies that we could not have used regularity of
R≠

2
(a) to select the mode function ‹2(a) for µ & 1.6. This suggests that in this range of µ a

di�erent dipole mode function could be selected which would satisfy the regularity condition.
We have verified that this is indeed the case for mode functions (3.16) with a range of values
of B2/A2. We note however that a specific value of B2/A2 is not selected in this case. The
significance of the anomalous behavior of the dipole mode is not clear to us. This issue may
require further study.
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B Field variance

In this section we will calculate the individual variances for each mode and the total variance
of the field by determining the values of Re(Rn(a)). We will first consider the inhomogeneous
modes n > 1. An explicit calculation yields:

Re(Rn(a)) = ≠ Ha3

h1 + h2 + h3

(B.1)

where the functions hi, i = 1, 2, 3 are given respectively by:

h1 ≥ (Ha)3+2“
� (≠1 ≠ “ + n)
� (2 + “ + n) , (B.2)

h2 ≥ 1, (B.3)

h3 ≥ (Ha)≠(3+2“)
� (2 + “ + n)

� (≠1 ≠ “ + n) , (B.4)

where we factored out O(1) terms independent of n and a.
For n ∫ 1 we can use the asymptotics of Gamma functions to find

h1 ≥
3

Ha

n

43+2“

, (B.5)

h3 ≥
3

n

Ha

43+2“

. (B.6)

(Note that the range of interest for “ is 0 < “ < 1.) It follows that for n π nú ≥ Ha we
have h1 ∫ h2, h3; hence we can drop h2 and h3 in eq. (B.1). Then using eqs. (4.14), (B.5)
we obtain

‡2

n ≥ H2n≠3≠2“(Ha)2“ . (B.7)

Since “ > 0, successive terms in the sum of eq. (4.16) decrease faster than n≠1, and thus the
sum is not sensitive to the cuto� nú. For n ≥ nú, we have h1 ≥ h2 ≥ h3, but this does not
change the estimate (B.7) by order of magnitude. In any case, the estimate of ‡n at large n
is unimportant, since the large-n terms give a negligible contribution to the sum.

Including now O(1) factors, we find

‡2

n = fi� (“ + 2 + n)

4“+1|� (≠“ ≠ 1 + n) |
Ë
�

1
“ + 3

2

2È2

(Ha)≠2“

H2
(B.8)

where the absolute value is necessary to include the homogeneous mode n = 1. To a good
approximation we can extend the summation in eq. (4.16) to n æ Œ. This gives

‡2 ¥ CH2(Ha)2“ , (B.9)

where

C = 21+2“

sin(“fi)

Ë
�

1
“ + 3

2

2È2

� (“ + 1) � (“ + 3) (B.10)
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