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We study the dynamics of a cosmic string loop captured by a rotating black hole, ignoring string
reconnections. A loop is numerically evolved in Kerr spacetime, with the result that it turns into one or
more growing or contracting double-lines rotating around the black hole in the equatorial plane. This is in
good agreement with the approximate analytical treatment of the problem investigated by Xing et al., who
studied the evolution of the auxiliary curve associated with the string loop. We confirm that the auxiliary
curve deformation can indeed describe the string motion in realistic physical scenarios to a reasonable
accuracy, and can thus be used to further study other phenomena such as superradiance and reconnections
of the captured loop.
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I. INTRODUCTION

Black holes and cosmic strings are fundamental geo-
metric objects in theoretical physics. Black holes are
nontrivial stationary solutions of the Einstein field equa-
tions; they can be formed by the collapse of massive dying
stars and are ubiquitous in our universe, playing a signifi-
cant role in a large number of astrophysical phenomena.
The classical motion of a string can be described by
the Nambu-Goto action. Although they have not been
observed, cosmic strings can naturally arise in high energy
physics as remnants of possible phase transitions in the
early universe [1,2]. Oscillating string loops or a string
network can generate potentially detectable phenomena,
such as gravitational wave bursts [3,4] and a stochastic
gravitational wave background [4–9].
As the string network evolves and string loops float

around in the universe, it is conceivable that they are
scattered or even captured by black holes. The interaction
between these two fundamental objects has received
relatively little attention in the literature. An infinitely long
string or a circular string loop scattered or captured by a

black hole was studied in Refs. [10–16]. References [17–19]
found and investigated stationary string solutions in Kerr
metric, demonstrating that the string can extract angular
momentum from the rotating black hole.
It has recently been argued in Ref. [20] that for a

significant range of string tension, cosmic string loops
are likely to be captured by supermassive black holes at the
galactic centers. It is also possible that supermassive black
holes themselves were seeded by string loops: a gas cloud
at redshifts z ¼ Oð100Þ could fall into a superconducting
string loop and directly collapse into a massive black hole
[21], which may capture the loop afterward. In addition, if
primordial black holes co-existed with cosmic strings in the
early universe, it is expected that nearly all of them would
end up with string loops attached to them as a result of
reconnections in the string network [20,22].
Inspired by previous studies, Ref. [20] investigated the

evolution of a string loop captured by a rotating black
hole significantly smaller in size than the loop. It was
found that after several reconnections that took place
on the loop oscillation timescale, the loop settled into a
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nonself-intersecting trajectory that evolved secularly due to
the loop’s interaction with the black hole. An approximate
formalism was developed to study this process, where a
mathematical tool called the auxiliary curve was intro-
duced. Within this framework, it was predicted that the loop
would either get fully swallowed by the black hole, or
asymptotically turn into one or more lengthening double-
lines rotating close to the equatorial plane of the black hole
spin, with one end attached to the black hole, and the tip
moving at a speed close to that of light (Fig. 1). The lengths
of the double-lines would keep growing until the black hole
loses all of its rotational energy. These double-lines are
possible sources of gravitational radiation.
In the present work, we apply numerical simulations to

investigate the string dynamics in a realistic setting and
inspect the predictions made in Ref. [20]. We will show
how the structure of double-lines as shown in Fig. 1 arises,
and how the estimates in Ref. [20] are indeed compatible
with numerical experiments.
The rest of the paper is organized as follows. In Sec. II

we review the concept of auxiliary curve introduced in
Ref. [20]. In Sec. III we detail our simulation setup and
show the simulation results of string loops being captured
by a rotating black hole. In Sec. IV we briefly discuss the
effect of superradiance on the captured string. Conclusions
are summarized and further discussed in Sec. V. Supple-
mentary materials are provided in the appendices. We set
c ¼ G ¼ 1 throughout the paper.

II. AUXILIARY CURVE

The dynamics of a captured string loop can be found by
simulating the string motion in black hole spacetime, the
details of which will be shown and discussed in Sec. III. In
this section, we shall briefly review a mathematically
convenient approach in estimating the string motion, with
the help of the so-called auxiliary curve. This method
was developed in Ref. [20]. As we will see later, though
restricted by some assumptions, the approximation turns
out to be consistent with simulations in general relativity.

A. String reconstruction

Let M be the black hole mass. We first consider a
simplified scenario, where a string with a length L ≫ M is
moving in Minkowski spacetime and two ends of the string
are attached to the black hole. A standard form of the string
equation of motion in Minkowski spacetime is [2]

Ẍ − X00 ¼ 0: ð1Þ

Here, X ¼ Xðσ; tÞ is the position of a string point in our
three-dimensional space, where σ is the spatial coordinate
marking points along the string and t is time. We have
defined _≡ ∂=∂t and 0 ≡ ∂=∂σ. This equation is obtained by
specifying the so-called conformal gauge:

_X · X0 ¼ 0; ð2Þ

_X2 þ X02 ¼ 1: ð3Þ

In this gauge, the conserved total energy of the string is
given by E ¼ μ

R
dσ ¼ μL, where μ is the constant string

mass density (or the string tension).
Of course, the string loop’s energy is not conserved in the

presence of the black hole. Part of the string would fall into
the horizon, which decreases the string length; meanwhile,
the string may extract energy from the black hole’s rotation,
which increases the string length. However, for L ≫ M,
the oscillation period of the string loop is much smaller than
the time it takes for the string loop’s energy to change
significantly.
Therefore, within an oscillation period, we can neglect

the black hole’s gravitational effect, and the string loop
simply evolves in Minkowski spacetime with one point
pinned at the black hole. From Eq. (1), it can easily be
shown that the motion of the free part is given by

Xðσ; tÞ ¼ 1

2
½aðσ − tÞ − að−σ − tÞ&; ð4Þ

FIG. 1. Schematic pictures of the fate of a string loop near a rotating black hole. The loop may experience complex motion after being
captured, but eventually, it would turn into a simple structure: growing double-lines rotating in a direction close to that of the black hole
spin. The tips of the double-lines move at a speed close to that of light.
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where aðζÞ is a periodic function satisfying aðζÞ ¼ aðζ þ
2LÞ and ja0j ¼ 1. Hence the string loop oscillates around
the black hole with a period of 2L. The periodic function a
defines a closed curve in three dimensions called the
auxiliary curve. Since ja0j ¼ 1, the parameter ζ denotes
the arc length along the curve. Once aðζÞ is known, we can
tell the string configuration at any time t, with string
length L.

B. Torque from black hole

The black hole can both absorb energy from and provide
energy to the oscillating string loop, changing its length and
shape. In order to take this into account, one can consider
the total torque acting on the string, which effectively gives
Eq. (1) two boundary conditions imposed respectively on
the two string ends attached to the black hole. Since
L ≫ M, viewed from the vicinity of the black hole, a
string stretches toward the horizon from a distance≫ M on
a nearly radial straight line, until it is curved by the black
hole’s rotational drag. Let Ωstring ¼ n × _n be the angular
velocity of the straight part of the string, where n is the unit
vector pointing along the string in the direction away from
the black hole. Suppose Ωstring is much smaller than the
angular velocity of the black hole ΩBH, then the string can
be regarded as quasistationary. The torque it receives from
the black hole’s rotational drag is QRD ¼ −ðμ=MÞ×
ðJ × nÞ × n, where J is the angular momentum of the
black hole. This comes from the analytic solution of a
stationary string in Kerr spacetime, first found in Ref. [17].
In addition, the slowly rotating string experiences

another torque that comes from the so-called “horizon
friction” [20]. For a small black hole spin (MΩBH ≪ 1), we
expect that this torque QHF ∝ Ωstring.

1 The prefactor can be
determined by requiring that the straight string corotates
with the black hole when the total torque acting on it
vanishes, i.e., Ωstring ¼ ΩBH ≈ J=4M3 when Q ¼ QRD þ
QHF ¼ 0. This gives QHF ¼ 4 μM2Ωstring.
Therefore, the total torque exerting on a string slowly

rotating around a slowly rotating black hole can be
estimated as

Q ¼ μ
M

ð4M3 _n − J × nÞ × n: ð5Þ

C. Auxiliary curve equation

The torque Q applied to the string changes its energy and
angular momentum. As proposed in Ref. [20], it also
changes the shape of the auxiliary curve aðζÞ—the

auxiliary curve moves with velocity vðζÞ given by2 [20]:

v ¼ 4

MLa
ð4M3a00 þ J × a0Þ; ð6Þ

where La is the length of the auxiliary curve and the
derivatives are understood to be evaluated with respect to ζ.
Therefore, instead of solving Eq. (1) with boundary

conditions, we can evolve this simple equation and find
aðζÞ at any time, then use Eq. (4) to reconstruct the
corresponding string configurations within a timescale
∼La, during which the string has length ∼La=2.

3 The
change of LaðtÞ is given by

_La ¼ −
I

v · a00dζ: ð7Þ

This can be used as an accuracy check when solving Eq. (6)
numerically.

D. Predictions from auxiliary curve

If the curve is initially smooth enough, its evolution is
particularly simple. Several typical scenarios are shown
in Appendix A. Roughly speaking, the term containing a00

in Eq. (6) (the horizon friction term) tends to shrink the
curve into a circle, whereas the term containing J (the
rotational drag term) tends to turn the curve into an ever-
expanding circle lying in the black hole’s equatorial plane.
By Eq. (4), a circular auxiliary curve of length La ¼ 2L
corresponds to a string loop that extends radially from the
black hole to radius L=π and then traces the same radial
line back to the black hole. This double-line rotates around
the black hole with angular velocity π=L, and its tip moves
at the speed of light.
Therefore, no matter which term dominates in the

auxiliary curve equation, the corresponding string loop
would eventually turn into a shortening/lengthening, rotat-
ing double-line with one end attached to the black hole. If
the rotational drag term dominates, the double-line would
eventually be rotating in the equatorial plane.4

It should be stressed again that the derivation of the
horizon friction term (∼a00) in the auxiliary curve equation
(or QHF in Q) assumes a small black hole spin. We would
now argue that this term becomes insignificant in the case
of large black hole spin. To the order of magnitude, the first
term inside the bracket in Eq. (6) is ∼ðM=LÞM2, while the

1To the lowest order in Ωstring, QHF may also contain other
terms such as ∼ðΩstring ·ΩBHÞΩBH and ∼Ωstring ×ΩBH. These
terms are subordinate compared to ∼Ωstring when MΩBH ≪ 1.

2Note that there is a correction of sign compared to the
corresponding equation in Ref. [20].

3When the evolution of the auxiliary curve is taken into
account, there is no longer a strict definition of oscillation period
for the string. But since the curve is expected to stay almost
unchanged within time ∼La, it can be used to find the approxi-
mate string configurations within this timescale.

4In general, we would expect that more than one string
segment is captured, and so a string loop would turn into a
number of growing double-lines.
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second term is ∼M2 for a large spin. As long as L ≫ M,
which is the case in realistic physical scenarios, the rota-
tional drag term dominates, and so whether or not the
horizon friction is accurately accounted for becomes
irrelevant. Therefore, the auxiliary curve equation is
expected to hold in general.
On the other hand, the derivation of this equation

involves a number of approximations and assumptions
which are heuristically plausible but do not have a rigorous
justification. This includes the approximation of the loop as
moving in Minkowski space with a fixed point at the black
hole location and the assumptions we made about the
torque due to horizon friction (see footnote 1).
Does the auxiliary curve equation give only a qualitative

picture of string motion or a quantitative description? To
figure this out is a goal of this work. In the next section, we
will directly evolve string loops in black hole spacetime,
inspecting the aforementioned predictions from auxiliary
curve deformation.

III. SIMULATING STRING–BLACK HOLE
INTERACTION

In this section, we show how we applied numerical
simulations to study a string loop interacting with a rotating
black hole. We will see how a captured loop turns into
lengthening/shortening rotating double-lines as it oscillates
around the black hole. The results will be compared with
those from the method of auxiliary curve.

A. Black hole spacetime as background

We simulated the evolution of a Nambu-Goto string in a
fixed black hole background. This is plausible as long as
the gravitational effect from the string is negligible, i.e., the
string has a mass much smaller than the black hole mass.
The line element of Kerr spacetime in the standard

Boyer-Lindquist coordinates is given by

ds2 ¼ −
!
1 −

2Mr
ρ2

"
2

dt2 −
4Mar sin2 θ

ρ2
dtdϕ

þ Σ
ρ2

sin2 θdϕ2 þ ρ2

Δ
dr2 þ ρ2dθ2; ð8Þ

where

ρ2 ¼ r2 þ a2 cos2 θ; ð9Þ

Δ ¼ r2 − 2Mrþ a2; ð10Þ

Σ ¼ ðr2 þ a2Þ2 − a2Δ sin2 θ: ð11Þ

Here a is known as the Kerr parameter. The angular
momentum of the black hole is J ¼ aMẑ, with jaj < M.
The outer horizon of the black hole is located at

r ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð12Þ

It would be more convenient to simulate the string using
Cartesian coordinates. The Kerr-Schild metric is a possible
option, but we found it more convenient to use the so-called
quasi-isotropic metric (see, e.g., Ref. [23]), where the string
gets “frozen” as it approaches the outer horizon and hence
avoids any singularities. To this end, we first perform the
following transformation, replacing r by r̄ in Boyer-
Lindquist coordinates:

r ¼ r̄
!
1þM þ a

2r̄

"!
1þM − a

2r̄

"
: ð13Þ

The line element is then of a quasi-isotropic form

ds2 ¼ −
!
1−

2Mr
ρ2

"
dt2 þ

!
ρ
r̄

"
2

½dr̄2 þ r̄2ðdθ2 þ sin2θdϕ2Þ&

−
4Marsin2θ

ρ2
dtdϕþ

!
1þ 2Mr

ρ2

"
a2sin4θdϕ2: ð14Þ

The outer horizon is given by

r̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

2
: ð15Þ

In order to express the line element in Cartesian coordi-
nates, let

x ¼ r̄ sin θ cosϕ; ð16Þ

y ¼ r̄ sin θ sinϕ; ð17Þ

z ¼ r̄ cos θ: ð18Þ

Then we get

ds2 ¼ −
!
1 −

2Mr
ρ2

"
dt2 þ

!
ρ
r̄

"
2

ðdx2 þ dy2 þ dz2Þ

þ 4Mr
ρ2

a
r̄2
ðydx − xdyÞdt

þ
!
1þ 2Mr

ρ2

"!
a
r̄2

"
2

ðydx − xdyÞ2: ð19Þ

This is the metric we use to evolve the string motion. If
a ¼ 0, it reduces to the line element of a Schwarzschild
black hole expressed in the well-known isotropic coordi-
nates,

ds2 ¼ −
ð1 − M

2r̄Þ
2

ð1þ M
2r̄Þ

2
dt2 þ

!
1þM

2r̄

"
2

ðdx2 þ dy2 þ dz2Þ;

ð20Þ
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which can be used for simulations in the case of non-
rotating black hole.

B. String equation of motion

Having specified the spacetime background gαβ, we need
to write down the string equation of evolution, which should
be the generalization ofEq. (1).Aone-dimensional string can
be represented by a two-dimensional surface in spacetime,

xν ¼ xνðζiÞ; ð21Þ

where ν ¼ 0, 1, 2, 3 and i ¼ 0, 1. This is called the string
world sheet. The coordinates ζi are arbitrary parameters: ζ0 is
chosen to be timelike, while ζ1 is spacelike. The two-
dimensional world sheet metric is given by

γij ¼ gαβ
∂xα

∂ζi
∂xβ

∂ζj
: ð22Þ

The contravariant metric tensor γij can be defined by
γijγjk ¼ δik. The string equation of motion can then be
obtained from the Nambu-Goto action, and is given by [2]

1
ffiffiffiffiffiffi−γp

∂

∂ζi

!
ffiffiffiffiffiffi−γp

γij
∂xν

∂ζj

"
þ Γν

αβγ
ij ∂x

α

∂ζi
∂xβ

∂ζj
¼ 0; ð23Þ

where γ ≡ detðγijÞ and Γν
αβ is the Christoffel symbol asso-

ciated with gαβ.
Now, it is convenient to set ζ0 ¼ t, which is simply the

time for the four-dimensional spacetime. Let σ ≡ ζ1, then
xðσ; tÞ is the position of a string point σ at time t. Imposing
a gauge condition _x · x0 ¼ 0, the string world sheet metric
γαβ can be found as γ00 ¼ _x2, γ11 ¼ x02 and γ01 ¼ 0. The
string equation of motion (23) then becomes [2]

∂t

!
_xν

F

"
− ðFxν0Þ0 þ Γν

αβ

!
_xα _xβ

F
− Fxα0xβ0

"
¼ 0; ð24Þ

where we have defined

F≡
ffiffiffiffiffiffiffiffiffiffi

−
_x2

x02

s

: ð25Þ

We solve Eqs. (24) to find x ¼ ðx; y; zÞ as functions of t and
σ. In addition, although FðσÞ can in principle be given by
xðσÞ and _xðσÞ from its definition, we found it computa-
tionally more convenient to evolve F as well. The equation
for F is simply the 0-component of Eq. (24).

C. Simulation setup

In our simulations,we startwith a string loop that is not yet
captured by the black hole, and then model both the process
of the capture and the subsequent evolution of the loop. We
use the standard finite-difference method to numerically
solve Eq. (24), where x and F are “fields” evolving on the
one-dimensional string. Since we are dealing with string

loops, we need to impose periodic boundary conditions. The
initial conditions are less trivial: we need to find xðσÞ, _xðσÞ,
FðσÞ and _FðσÞ at the initial time that satisfy

_x · x0 ¼ 0; ð26Þ

_x2 þ F2x02 ¼ 0: ð27Þ

where the first equation is our imposed gauge condition and
the second one is from the definition ofF. Note that these two
conditions look very similar to the conformal gauge for
strings living in Minkowski spacetime [Eqs. (2) and (3)],
where a number of analytic solutionsXðσ; tÞ have been found
in the literature (e.g., Refs. [24,25]). It would be convenient if
we couldmodify these known solutions and turn them into the
initial conditions needed in our simulations. By doing so, we
can place the loopnear the black hole at the initial time and the
runtime of simulations can thus be reduced significantly.5

While theway to obtainx and _x fromXðσ; tÞ is not unique,we
found the following transformations shouldworkwell for our
purposes:

x ¼ X; ð28Þ

_x
F
¼ _X þ BX0; ð29Þ

where B is a function of X; _X, and X0, and can be found by
solving Eqs. (26) and (27). The expressions of B and F are
rather complicated due to the complicated Kerr metric. It is
shownwithmore details inAppendixBhow theyare obtained.
An important fact about our formalism is that Eq. (26) and

ζ0 ¼ t do not fix the gauge completely. We still have the
freedom to perform transformations σ → σ̃ðσÞ. This can be
seen by observing that terms with Fxα0 in Eq. (24) stay
invariant under the transformation of σ. In simulations, this
meanswe can freely add points in our grid (with grid spacing
unchanged6) as long as Fxα0 is invariant at each string point.
This is especially useful when dealing with a lengthening
string: one can simply add more grid points to the segment
being stretched (near the black hole horizon), such that a
sufficient numerical resolution is guaranteed.7

5In some previous works (e.g., Ref. [15]) the initial string was
placed at a large distance from the black hole such that the string
motion can be studied in the weak-field limit.

6This means we need not perform adaptive refinement in either
grid spacing or time step.

7In some earlier works studying the string-black hole inter-
action (e.g., Refs. [13–15]), the string was described in the
conformal gauge, i.e., _x · x0 ¼ 0 and _x2 þ x02 ¼ 0, where _≡
∂=∂ζ0 and 0 ≡ ∂=∂ζ1. By adopting these two conditions, the
residual gauge freedom no longer allows ζ0 ¼ t. In our formal-
ism, we abandon the second condition and replace it with ζ0 ¼ t.
This not only provides a more physical description of the string
but also allows us to freely transform the spacelike coordinate σ,
which is extremely helpful when adding grid points to a length-
ening string segment.
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In order to evaluate the accuracy of our numerical results,
we can check the “invariant length” of the string loop,
which is basically a check of energy conservation. To begin
with, the conservation of the energy-momentum tensor Tαβ

gives

∂νðTν
α

ffiffiffiffiffiffi−gp Þ − 1

2

ffiffiffiffiffiffi−gp
Tνρ∂αgνρ ¼ 0: ð30Þ

In stationary spacetime, ∂0gνρ ¼ 0, and it follows that for a
localized matter distribution, the total energy

E≡
Z

T0
0

ffiffiffiffiffiffi−gp
d3x ¼ const: ð31Þ

Specific expressions for Tαβ of the string can be found
as [2]

Tαβ ffiffiffiffiffiffi−gp ¼ μ
Z

d2ζ
ffiffiffiffiffiffi−γp

γijxα;ix
β
;jδ

ð4Þðxν − xνðζiÞÞ ð32Þ

Imposing our gauge condition (26) and ζ0 ¼ t, we finally
get

E ¼ μ
Z

_x0
F
dσ; ð33Þ

where _x0 ¼ g0α _xα. Since E ¼ const, we define Li ≡ E=μ
as the invariant length of the string loop. In static space-
time (where g0α ¼ 0 except for g00), _x0 ¼ g00, and, from
the 0-component of the string equation of motion (24),
∂tðg00=FÞ ¼ 0. Therefore, we have Li ∝

R
dσ up to a

constant factor, which is consistent with the commonly
used definition in Minkowski spacetime.
At a first glance, E ¼ const seems incompatible with

the concept of “string-lengthening/shortening” discussed
previously. When we say “string-shortening” (which is
due to horizon friction), we imagine that part of the
string falls into the horizon as it rotates around the black
hole. This is no longer the case when we use the
(quasi-)isotropic coordinates because it takes forever
for the string to get to the horizon. Instead, the string
would “wrap around” the black hole, much like a strand
of yarn wrapping around a yarn ball. If we include the
part “frozen” on the horizon, the total energy of the string
loop is indeed conserved. “String-shortening” only refers
to the part “away” from the black hole horizon. The
definition of “away” is rather arbitrary, because the whole
string is technically always outside the horizon. When
discussing the change of the string length, we only take
into account the string segment whose distance from the
black hole center is larger than, say, 1.1 times the
horizon. The exact length scale here is not very important
as long as it is much smaller than the string length.
Similarly, for a string loop experiencing “string-
lengthening,” we neglect the part that is already attached

to the black hole’s outer horizon.8 In fact, this frozen part
has negative energy, compensating for the growing part
outside the black hole. The total energy defined by
Eq. (33) is conserved.
A related numerical issue occurs when a string segment

is very close to the outer horizon. Theoretically, the string
gets asymptotically close to the horizon and never reaches
it. In simulations, however, due to inevitable errors from the
grid setup, a grid point on the string may get inside the
horizon, leading to numerical instabilities. To avoid this,
we stop evolving a grid point when it is “sufficiently” close
to the horizon, which, again, can be defined more or less
arbitrarily. In our experiments, we manually force the
smallest distance from a grid point to the black hole center
to be 1þ 10−5 times the outer horizon. A string segment is
said to be “captured” once it reaches this minimum radius.

D. Two examples: Initial conditions

In what follows, we will consider two examples from our
simulations, one with a relatively large black hole spin and
the other with a small spin. The initial string configurations
for the two examples are shown in blue in Fig. 2.
To set up the initial conditions, let us first consider a

circular string loop in Minkowski spacetime:

Xðσ; tÞ ¼ Li

4π
ðsin σ− þ sin σþ;− cos σ− − cos σþ; 0Þ; ð34Þ

where σþ ≡ ð2π=LiÞðσ þ tÞ, σ− ≡ ð2π=LiÞðσ − tÞ, and Li
is a constant parameter. This is a solution of Eqs. (1)–(3). It
describes an oscillating circular loop of period Li in the
z ¼ 0 plane that collapses to a point and then reexpands
into a circle. The loop has an invariant length Li. At time
t ¼ 0, the circle has a maximum radius Li=2π, and the
string velocity _X vanishes everywhere.
In our simulations, a black hole of massM is centered at

(0,0,0), and its angular momentum is set to be parallel to the
z-axis. The invariant length of the string loop in Eq. (34) is
set to be Li ¼ 300M.
We consider the following two examples. (A) The black

hole’s Kerr parameter is set to be a ¼ −0.8M, so the spin is
relatively large. The center of the initial loop is shifted to
Li
4π ð1; 0.5; 0.1Þ. The circle lies in a plane close to the plane
of z ¼ 0. (B) The Kerr parameter is set to be a ¼ −0.1M,
hence a relatively small black hole spin. The center of the
initial loop is shifted to Li

4π ð1; 0.5; 0Þ; then the loop is tilted
by an angle π=4 about the diameter parallel to the y-axis
such that its initial angular momentum does not align with
the black hole spin. These two examples will be referred to
as example A and example B, respectively.
After the Minkowski solutions X and _X are specified, we

transform them into the initial x and _x for Kerr spacetime

8Apart from being frozen on the outer horizon, this part of the
string is also corotating with the black hole.
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according to Eqs. (28) and (29). Strictly speaking, the
invariant length is no longer (exactly) Li, but the difference
is insignificant when Li ≫ M.

E. Results

1. String-lengthening/shortening

Several snapshots of the string configuration in the early
stage of the two examples are shown in Fig. 2. After the
simulation sets off, the string loop starts to shrink (blue →
orange → green). In the meantime, part of the string is
attracted toward the black hole. A string segment
is captured at time t ≈ 0.3Li (red); then another segment
is captured at t ≈ 0.5Li (purple). As a result, two sub-loops
are formed, and their initial lengths are both ∼Li=2. The
two loops then independently rotate almost in the plane of
the initial circle, with one loop rotating clockwise and the
other counterclockwise.
As we can see from Fig. 2, in the early stage the string

motions are more or less the same in example A and
example B (except that the loop is “tilted” in example B).
However, the difference in black hole spin then leads to
different kinds of string evolution. For example A, the
sub-loop rotating in the same direction as the black hole
spin (clockwise) extracts so much rotational energy that it
is able to defy horizon friction, get lengthened, and turn
into a growing double-line. The other sub-loop, while also
turning into a double-line, would be gradually swallowed.
This process is shown with snapshots in Figs. 3 and 4. The
simulation begins with a big circle of vanishing velocity
and ends up with an ever-growing, rotating double-line,
the tip of which moves at a speed close to the speed
of light.

For example B, due to the relatively small black hole
spin, both sub-loops would eventually be absorbed.9 The
one whose angular momentum has a negative z-component
(the same as the black hole spin) struggles for a longer time
before being eaten up as it is able to borrow energy from the
black hole. The evolution of this sub-loop at late times is
shown in Fig. 5. It turns into a shrinking double line whose
motion gets closer to the equatorial plane. This outcome
agrees with the predictions in Ref. [20].

2. Comparing with auxiliary curve

A goal of the present work is to check whether the
auxiliary curve can be used to describe the string motion,
especially when the black hole spin is relatively large, and
when the string motion is not close to the equatorial plane.
The initial configuration of the auxiliary curve can be
obtained from Eq. (4), which gives

_xðσ; t ¼ 0Þ ¼ 1

2

$
−
daðσÞ
dζ

þ dað−σÞ
dζ

%
; ð35Þ

x0ðσ; t ¼ 0Þ ¼ 1

2

$
daðσÞ
dζ

þ dað−σÞ
dζ

%
: ð36Þ

Hence

dað∓ σÞ
dζ

¼ x0ðσÞ ' _xðσÞ; ð37Þ

FIG. 2. Several snapshots of string configuration in the early stage of the interaction. The black hole is centered at (0,0,0) and is
depicted as a sphere with a radius given by Eq. (15), which is the outer horizon (and is much smaller than the scale of the box in the
figures so it appears to be a point at the center). In both examples, the initial string loop is a circle with perimeter Li ≈ 300M. The loop is
attracted toward the black hole, and a string segment is captured at time t ≈ 0.3Li (red). Then at t ≈ 0.5Li, another segment is captured,
and two loops are formed (purple). One of them (the one in the region y < 0) then starts rotating clockwise almost in the plane of the
initial circle, while the other rotates counterclockwise.

9Whether energy extraction can defeat horizon friction de-
pends not only on the black hole spin but also on the string length.
A sufficiently large Li may also lead to string lengthening even
for a small black hole spin. Such an example is not presented here
due to the cost of simulating a large string loop.
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which can be numerically integrated along the arc length ζ
to find aðζÞ. Then we solve Eq. (6) to find the deformation
of aðζÞ.
In order to see how well the auxiliary curve behaves, one

can first compare its length LaðtÞ to the length of the

simulated string LðtÞ, where LðtÞ is obtained according to
Eq. (33) (only string segments away from the horizon
should be taken into account). The comparison tells
whether the evolution of the auxiliary curve correctly
accounts for the energy transfer between the black hole

FIG. 3. Snapshots of string configuration of example A at time t ≈ 0.9Li; 2.7Li; 4Li and 5Li, after the two sub-loops are formed. The
brown one has an angular momentum (almost) in the same direction as the black hole and is rotating clockwise, whereas the grey one
rotates counterclockwise. We can see that the grey loop gradually turns into a double-line with a decreasing length, and disappears in the
last figure. On the other hand, for the brown loop, energy extraction from the black hole spin defeats the energy loss due to horizon
friction, and the length of the loop increases over time.

FIG. 4. Snapshots of string configuration of example A at time t ≈ 4.6Li; 17.5Li and 24.8Li, after the shortening loop is completely
absorbed. The remaining brown loop rotates (almost) in the same direction as the black hole. It gradually turns into a double-line with an
ever-increasing length (see Fig. 6).
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and the string. If the auxiliary curve gives a good
approximation, one should have L ¼ La=2 for any string
configurations and black hole spins.
In our two examples, all sub-loops have string

lengths ∼Li=2 when they are formed at t ≈ 0.5Li. For
example A, one sub-loop grows afterward, while the
other decays. From Fig. 6, we can see that LðtÞ and
LaðtÞ=2 agree with each other very well. For example B,
both sub-loops are gradually eaten up by the black hole.
The comparison of LðtÞ and LaðtÞ=2 are shown in
Fig. 7. Except for the discrepancy at late times, the
prediction from the auxiliary curve is in general com-
patible with our experiment.
It should be noted that the good agreement shown in

Fig. 6 indicates that the horizon friction experienced by the
loop in example A is accurately described by the estimated
fiction term in Eq. (5) or (6); this is understood as a happy
coincidence. We found discrepancies for loops not rotating
near the black hole’s equatorial plane, when the horizon

friction may also depend on the black hole spin (see
footnote 1), especially if the black hole spin is large.
Moreover, the consistency in L does not mean the string

configurations reconstructed from the auxiliary curve resem-
ble those from simulations. In fact, we found in our examples
that deviations in string shape develop with time, which
indicates an error in the auxiliary curve equation. We also
found that increasing the string length and decreasing the
black hole spin can alleviate the discrepancy. This is
consistent with our discussion in Sec. II D.
Restricted by the numerical cost of simulating longer

strings, we conclude that the auxiliary curve deformation
indeed provides a reasonable approximation to the evolu-
tion of an actual string. Whether or not it is accurate for
sufficiently long strings rotating around a black hole with a
large spin remains to be explored. If the accuracy is shown
to be satisfactory for longer strings, then the auxiliary curve
approach is much more feasible in studying more compli-
cated string motions.

FIG. 5. Snapshots of string configuration of example B at time t ≈ 21.9Li; 54Li and 76.5Li, after one sub-loop is completely absorbed.
The remaining loop rotates with an angular velocity that has a negative z-component. The three snapshots are chosen such that the loop
lies almost in the plane of y ¼ 0. As it turns into a decaying double-line (see also Fig. 7), the loop is pulled toward the equatorial plane of
the black hole.

FIG. 6. Example A. String length obtained from the auxiliary
curve (LaðtÞ=2, dashed blue) and that from actual string simu-
lation (LðtÞ, solid red).

FIG. 7. Example B. String length obtained from the auxiliary
curve (LaðtÞ=2, dashed blue) and that from actual string simu-
lation (LðtÞ, solid red).
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IV. SUPERRADIANCE

In the previous section, we show two simple examples
from string simulations, where the initial string loops are
almost circles, but in general, a loop can have wiggles
composed of a spectrum of modes, and the resulting string
motion would be rather complicated. These wiggles could
get enhanced by the black hole spin due to the effect of
superradiance, which plays a significant role in the string-
black hole interaction [20]. As a result, self-intersections
are expected to be rather common, which can produce a
number of free loops if reconnections occur. It is also
possible that reconnections rarely take place when two
string segments intersect, such as in the model of cosmic
superstring. In what follows, we ignore reconnections (as
we do in the previous section), and use auxiliary curve
deformation to demonstrate superradiance with several
examples.
We first construct a random auxiliary curve aðζÞ, which

should satisfy ja0j ¼ 1. Details of how this can be done
numerically are described in Ref. [20]. This curve is shown
in Fig. 8(a). Its length is La ¼ 400M and the orientation is
counterclockwise from the angle of the figure.
We can then evolve this curve by Eq. (6) with different

black hole spins. The results are shown in Figs. 8(b)–8(f).
Each figure shows a snapshot of the curve after some
deformation with a specific black hole spin (characterized

by the Kerr parameter a). Roughly speaking, what the black
hole rotation does is filtering out wiggling modes with an
angular speed larger than that of the black hole [20]. In our
example, for a ¼ −0.2M [Fig. 8(b)], all wiggles are
smoothed out, and the curve simply grows into a circle
in the equatorial plane, and the corresponding string turns
into an ever-growing double-line rotating clockwise. As jaj
increases from 0.4M to 0.8M [Figs. 8(c)–8(f)], more and
more modes develop and grow. Depending on the black
hole spin, a typical auxiliary curve turns into a closed
growing coil-like configuration, where the coils are asymp-
totically parallel to the black hole’s equatorial plane. In
Fig. 8(g) we also show a case with a ¼ 0.8M. The auxiliary
curve first shrinks to a smaller size and then reexpands into
a growing coil with a helicity opposite to those with a < 0.
The string configurations corresponding to these coil-

like structures are rather interesting. In Fig. 9 we show
several snapshots of the string loop constructed from the
auxiliary curve in Fig. 8(d). We can clearly see three
spikes in the loop. The loop would gradually move to the
black hole’s equatorial plane, with more segments captured
by the black hole. The spikes then become rotating
double-lines.
Apparently, strings reconstructed from the coils can be

rather complicated, where self-intersections certainly occur.
If free loops are generated via string reconnections, we

FIG. 8. (a) A random auxiliary curve with small wiggles. (b–f) Snapshots of the curve after some deformation in the case of different
black hole spins characterized by the Kerr parameter a.
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would have a new auxiliary curve that continues deforming,
leading to new string motion. Although straightforward in
principle, a detailed investigation of how a general auxiliary
curve evolves with string reconnections taken into account
needs careful numerical work and is left for future research.

V. CONCLUSIONS AND DISCUSSION

By introducing the auxiliary curve, Ref. [20] shows that
a loop captured by a rotating black hole can experience a
complicated motion as it extracts energy from the black
hole’s spin. A number of free loops can be generated as
string segments self-intersect and reconnect, and the
remaining loop can turn into a number of growing
double-lines rotating around the black hole in the equatorial
plane, with the tips moving at the speed of light until the
black hole loses its rotational energy.
Using the auxiliary curve deformation to describe the

string motion is based on the following assumptions: (1) the
string outside the black hole moves as a free string in
Minkowski space, and (2) the interaction between the string
loop and the black hole is described by the torque in the
quasistationary string solution with a correction (the “hori-
zon friction”) due to the slow string motion. These approx-
imations may look reasonable, but they were not justified.
In this work, we have carried out direct numerical

simulations to inspect the validity of the auxiliary curve
treatment. In our numerical experiments, we observe how a
string segment is captured by the black hole, and how the
loop turns into decaying or growing double-lines. We found
that the energy exchange between the black hole and the
string can be described by the auxiliary curve deformation
to a reasonable accuracy.
In our simulations, we mainly dealt with strings that are

relatively smooth, while a general string is expected to
be full of wiggles, and the effect of superradiance should be
present. In order to fully understand the consequence of
superradiance and string reconnections, as well as what
kinds of astrophysical/cosmological phenomena they could
produce, further numerical work is needed. However, it

would be extremely computationally expensive to do this
with direct simulations; solving for the evolution of the
auxiliary curve is more feasible. Our results give confi-
dence that the latter approach can be reliable.
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APPENDIX A: DEFORMATION OF SMOOTH
AUXILIARY CURVES

In this appendix, we consider three limits of the auxiliary
curve equation [Eq. (6)]. For simplicity, suppose the curve
aðζÞ is sufficiently “smooth” such that superradiance does
not occur.
(1) First, for a nonrotating black hole, we have v ∝ a00.

This is known in geometry as the equation of a “curve-
shortening flow” (see, e.g., Refs. [26–28]). Asymptotically,
any shape of a closed curve would turn into a shrinking
planar circle, and disappear in a dot after a finite time. An
example of this scenario is shown in Fig. 10(a). By Eq. (4),
a circular auxiliary curve of length La ¼ 2L corresponds to
a string loop that extends radially from the black hole to
radius L=π and then traces the same radial line back to the
black hole. This double-line rotates around the black hole
with angular velocity π=L, and its tip moves at the speed of
light. Physically, this tells us that, for a nonrotating black
hole, any captured string loop would gradually turn into a
double-line, which would eventually be eaten up by the
black hole. It can easily be shown that a double-line with
length L decays as

_L ¼ −8π2
!
M
L

"
2

: ðA1Þ

(2) For the second limit, we consider a rotating black
hole with angular momentum J ¼ jJj ∼M2 (M2 is the
largest angular momentum a black hole can have). For a
simple auxiliary curve, ja00j ∼ 1=L (which is the curvature
of the curve) and jJ × a0j ∼M2. Since L ≫ M, this means
the first term in Eq. (6) can be neglected. In this case, if
v ∝ J × a0 points outward, i.e., the curve orientation is
opposite to the black hole rotation, the auxiliary
curve expands in the direction perpendicular to the black
hole spin and becomes increasingly circular (Fig. 10b).

FIG. 9. Three snapshots of string loop constructed from the
auxiliary curve in Fig. 8(d).
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Correspondingly, the double-line rotates around the black
hole, approaching the equatorial plane of the black hole,
and the string length increases with time. It can be shown
that a double-line with length L grows as

_L ¼ 2π
J

ML
: ðA2Þ

From the above two equations, we can see that whether
there are energy and angular momentum exchanges
between the black hole and the captured string loop
depends on the relation between the black hole spin and
the string length. A double-line with length L larger
(smaller) than 4πM3=J would grow (decay).
(3) As for the third limit, let us consider a case similar to

that in the second limit, except that v now points inward.
In this case, if the initial curve is not exactly in the

equatorial plane of the black hole, it gets even more tilted
toward the z-axis as the curve deforms and shrinks. If
the friction term in Eq. (6) dominates afterward, the
auxiliary curve simply shrinks to a dot as in the first
limit [Fig. 10(c)]. It is also possible that the curve is tilted
such that its orientation gets flipped. If the string length is
sufficiently large, the curve could start to expand as in the
second limit [Fig. 10(c)].
In Fig. 10 we show the evolution of auxiliary curves in

these different scenarios. All four subfigures have the same
initial curve: an ellipse with a semi-major axis 50M and
semi-minor axis 40M, tilted by π=6 with respect to the x–y
plane, its orientation being counterclockwise. The black
hole’s angular momentum is parallel to the z-axis, and is
given by J ¼ aMẑ. We can see how different black hole
spins lead to different outcomes.

FIG. 10. Evolution of a smooth auxiliary curve in several typical scenarios. Four subfigures have the same initial curve (blue): an
ellipse with a semimajor axis 50M and semiminor axis 40M, tilted by π=6 with respect to the x–y plane, orientation being
counterclockwise. (a) J ¼ 0, hence Schwarzschild black hole. The curve gradually shrinks to a small circle, then a dot in the end.
(b) J ¼ −0.8M2ẑ, hence v points away from the center. The curve expands into an ever-growing circle perpendicular to the z-axis.
(c) J ¼ 0.4M2ẑ, hence v points inward. The curve is tilted toward the z-axis, and shrinks into a dot in the meantime. (d) J ¼ 0.8M2ẑ,
hence v points inward. The curve gets tilted and shrinks, but then its orientation is flipped (red and purple) and it re-expands into an ever-
growing circle perpendicular to the z-axis.
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APPENDIX B: INITIAL CONDITIONS
OF SIMULATIONS

In this appendix, we show the details of setting up the
string loop’s initial conditions in our simulations. We
would like to transform known string solutions Xðσ; tÞ
in Minkowski spacetime into xðσÞ and _xðσÞ in Kerr
spacetime.
For notational simplicity, we adopt a general stationary

metric (instead of the specific Kerr metric):

ds2 ¼ ðg00ðxÞ − fðxÞÞdt2 þ gðxÞdx2

þ fðxÞðdtþ AiðxÞdxiÞ2: ðB1Þ

Comparing with the quasi-isotropic metric (19) gives

g00 ¼ −
!
1 − 2Mr

ρ2

"
; ðB2Þ

f ¼
!
2Mr
ρ2

"
2
!
1þ 2Mr

ρ2

"−1
; ðB3Þ

g ¼
!
ρ
r̄

"
2

; ðB4Þ

A1 ¼
!
1þ ρ2

2Mr

"
ay
r̄2

; ðB5Þ

A2 ¼ −
!
1þ ρ2

2Mr

"
ax
r̄2

; ðB6Þ

A3 ¼ 0: ðB7Þ

Suppose the initial conditions of the string loop in
simulations are given by

x ¼ X; ðB8Þ

_x ¼ Fð _X þ BX0Þ; ðB9Þ

where B and F are functions of X; _X and X0. The task is to
find expressions for B and F such that the string obeys the
following two conditions [Eqs. (26) and (27)]

_x · x0 ¼ 0; ðB10Þ

_x2 þ F2x02 ¼ 0: ðB11Þ

Using the metric (B1) as well as the fact that the Minkowski
solution X satisfies _X · X0 ¼ 0 and _X2 þ X02 ¼ 1, these
two conditions can be spelled out as equations for
B and F:

½gX02 þ fðA · X0Þ2&Bþ fðA · X0ÞðF−1 þ A · _XÞ ¼ 0;

ðB12Þ

ff½ðA · _XÞ2 þ ðA · X0Þ2 þ ðA · X0ÞðA · _XÞB& þ ggF2 þ f½2ðA · _XÞ þ ðA · X0ÞB&F þ g00 ¼ 0: ðB13Þ

From the first equation, we can write B as a function of F. Inserting it into the second equation gives a quadratic equation
for F:

$
fgðA · _XÞ2X02

gX02 þ fðA · X0Þ2
þ fðA · X0Þ2 þ g

%
F2 þ 2fgðA · _XÞX02

gX02 þ fðA · X0Þ2
F þ

$
g00 −

f2ðA · X0Þ2

gX02 þ fðA · X0Þ2

%
¼ 0: ðB14Þ

It can easily be checked that, if this equation has
real solutions, the two roots are of different signs.
By the definition of F [Eq. (27)], F ≥ 0. So we
should take the positive root, and FðσÞ along the
string is thus determined. Then we use Eq. (B12) to
obtain BðσÞ.

The existence of solutions for B and F is not guaranteed
if a string segment is too close to the black hole at the initial
time, because the quadratic equation for F may not have
real solutions. Empirically, in our numerical experiments,
we found that solutions exist if the string point closest to the
black hole is farther than Oð1–10Þ times the horizon.
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