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ABSTRACT: Determining sample similarity underlies many foundational principles in analytical chemistry. For example, calibra-
tion models are unsuitable to predict outliers. Calibration transfer methods assume a moderate degree of sample and measurement
dissimilarities between a calibration set and target prediction samples. Classification approaches link target sample similarities to
groups of similar class samples. Although similarity is ubiquitous in analytical chemistry and everyday life, quantifying sample
similarity is without a straightforward solution, especially when target domain samples are unlabeled and the only known features
are measurables such as spectra (the focus of this paper). The process proposed to assess sample similarity integrates spectral simi-
larity information with contextual considerations between source analyte contents, model, and analyte predictions. This hybrid ap-
proach named physicochemical responsive integrated similarity measure (PRISM) amplifies hidden-but-essential physicochemical
properties encoded within respective spectra. PRISM is tested on four near-infrared (NIR) datasets for four diverse application areas
to show efficacy. These applications are assessment of prediction reliability and model updating for model generalizability, outlier
detection, and basic matrix matching evaluation. Discussion is provided on adapting PRISM to classification problems. Results indi-
cate that PRISM collects large amounts of similarity information and effectively integrates it to produce a quantitative similarity
evaluation between a target sample and a source domain. The approach is also useful for biological samples with additional physio-
chemical variations. While PRISM is dynamically tested on NIR data, parts of PRISM were previously applied to other data types

and PRISM should be applicable to other measurement systems perturbed by matrix effects.

Essential to analytical chemistry (and other disciplines) is the
ability to characterize the similarity between samples. For ex-
ample, a key issue is ascertaining if a model formed for a certain
analyte using a source calibration (training) set, e.g., a partial
least squares (PLS) model, can be used to predict target domain
samples for the same analyte. In other words, are any target
samples outliers to the source domain samples? Unfortunately,
the answer depends on how similarity is defined and an abun-
dance of similarity measures exist.!® Specifically, each similar-
ity measure is typically used independently to provide its re-
spective partial view of the intricate underlying similarity struc-
ture between samples. Additionally, many measures necessitate
optimization®”’ that can be impractical when using computers
for automated decision-making capabilities such as outlier de-
tection.” Thus, despite the intuitive nature defining similarity by
object (sample) closeness relative to the degree of agreement
between respective features, it is difficult to remediate this en-
trenched human similarity notion with its mathematical realiza-
tion. Some theorists believe that it is unclear to state object “A
is similar to object B” and it is only significant to state “A is
similar to B with respect to C.”>? In other words, A is only sim-
ilar to B qualified to the measurable merit(s) used.

The focus of this paper is determining spectral similarity and
a comprehensive autonomous similarity measure should be ap-
plicable to all spectroscopic situations requiring similarity as-
sessment. A common ensemble process to ascertain an overall
similarity between two sample spectra is to combine the Euclid-
ean distance (magnitude difference) with the cosine of angle
(shape difference).!® This binary approach requires optimizing

a weighting scheme balancing the two measures. An alternative
approach combines Mahalanobis distance and Q-residual as
used in the popular soft independent modelling by class analogy
(SIMCA) classification algorithm.® Both SIMCA measures de-
pend on a principal component analysis (PCA) of the source
domain spectra and it is debatable as to how to optimize the
number of PCs.'"'? Another approach assesses similarity by
comparing respective dataset covariance shapes, magnitudes,
and centroid locations to distinguish structure differences.®’

However, influencing each similarity merit is that certain
sample properties are not always strongly responding in spectra
and hence, large changes in the prediction property of interest,
e.g., analyte amount, may go unnoticed in spectra. Equally,
small sample-wise changes in less important sample frame-
works could impact spectral structure and the similarity value.
These sample-wise matrix effects stem from the degree of inter-
and intra-molecular interactions between sample species that
further depend on the nature and strengths of respective associ-
ations relative to species amounts.'>'* Other sample and meas-
urement conditions, e.g., pH, temperature and instrument are
also considered part of the full matrix effects in this paper. Sam-
ple and measurement conditions (except instrument) are
grouped under the term physicochemical causes of matrix ef-
fects. In biological systems, physiochemical effects based on
additional interactions between physiological and chemical pro-
cesses are part of the matrix effects. Thus, while a dual spectral
similarity view, e.g., SIMCA, is an improvement over a singular
perspective, a more complete measure is needed.



Developed in this paper is a new similarity measure named
physicochemical responsive integrated similarity measure
(PRISM) composed of many similarity measures. These se-
lected similarity measures (and other others can be included)
are fused to form the PRISM value. The proposed integrated
PRISM unites multiple similarity assessments to assess comple-
mentary information achieving a thorough view of sample ma-
trix similarity. This approach reduces the effects of contradic-
tory results (local anomalies) and increases the reliability of the
PRISM value. Physicochemical is used to name PRISM be-
cause such effects typically dominate spectral differences but it
is understood that PRISM evaluates other sources of matrix ef-
fect differences. Presented in the Supporting Information (SI) is
a mathematical framework illustrating the underlying sample
matrix effects and why spectra visually appearing similar are
not necessarily similar. Unique to PRISM is that it focuses on
using spectra as measurable abstractions of the underlying or-
ders of matrix effect differences between source and target do-
mains. Analogous to the sorting of electromagnetic frequencies
by a conventional prism, PRISM discriminates source-target
sample combinations according to their PRISM value.

It has been stated that similarity measures should be directly
related to the property of interest with the association ascer-
tained by using information about processes responsible for the
property.®> However, this information is rarely known for the
target domain. In particular, for quantitative analysis, many
properties may be available for the calibration set, but only
measured target spectra are known. Compounding proper spec-
tral similarity assessment for quantitative analysis purposes is,
as previously noted, the amount of analyte and other matrix ef-
fecting species. Only evaluating spectral similarity may not be
enough for quantitative analysis. To overcome this barrier,
PRISM uses sample matrix effects to strengthen key spectral
features by emphasizing analyte content dissimilarities between
source and target domain samples using a source calibration
model to direct the similarity characterization.'® Presented in
the SI is a mathematical framework realizing this goal.

Because PRISM can be used to assess similarity for both clas-
sification and quantitative analysis, similarity is henceforth
grouped into spectral contributions denoted by PRISMx and
those guided by quantitative source models, and consequently,
source analyte values, termed PRISM,. In this framework,
measurements from the PRISMx measures are complementary
to the PRISMy measures. Other work has found it useful to com-
bine complementary information by balancing the exploration
of the chemical space with exploitation of the prediction
model.'*!” If classification is the situation, then only PRISMx
is applicable.

The underlying fundamental analytical chemistry question
being addressed in this paper is how to determine if source do-
main-based models (calibration or classifier) are generalizable
to target domain samples. PRISM is applied to four crucial an-
alytical chemistry areas using near-infrared (NIR) spectra to
demonstrate its versatility. These applications involve quantita-
tive analysis using PLS models to assess prediction reliability,
calibration transfer complexity for model generalizability, out-
lier detection, and matrix matching assessment. The importance
of these four fundamental areas is described next. Classifica-
tion is another important area of analytical chemistry and is a
facsimile to outlier detection and matrix matching. Some brief

comments on adapting PRISM for classification are provided at
the end of Results and Discussion. While PRISM is robustly
tested on NIR data, it is applicable to other measurement sys-
tems affected by matrix effects. This attribute is also discussed
at the end of the Results and Discussion.

PRISM APPLICATIONS

Because the paper focus is towards quantitative analysis, a
brief overview of multivariate calibration and prediction is pro-
vided in the SI if the reader is not familiar.

Prediction Reliability. The calibration set applicability do-
main (AD), a term commonly used in quantitative structure ac-
tivity relationship (QSAR) modeling, identifies where target
samples are accurately predicted with confidence by the source
model.'32% In order for new target samples from the deployment
domain to best fit into the AD, target samples must be independ-
ent and identically distributed (iid) matched to the source cali-
bration set matrix effects. The similarity measure used to define
AD sets the perspective to determine the source model general-
izability to the target domain. An effective similarity criterion
should be consistent with the axiom that target sample similar-
ity is correlated to prediction accuracy?*?* and hence PRISM
values should be correlated with prediction error. However, it
is impractical to expect the correlation to be strongly linear
since prediction error is not inherently exactly related to simi-
larity. In particular, a target sample dissimilar to a calibration
set can be accurately predicted, but it should not be the case that
a target sample deemed similar be poorly predicted.

In the presented prediction reliability application, we strive
to assess whether minor, moderate, or substantial prediction er-
rors are expected for target samples relative to the source do-
main calibration set. This evaluation is performed by comparing
target sample PRISM values against the source predicting target

(SPT) prediction errors (| y- )7| ) and analyzing the correlation
over all the datasets.

Related to the AD, it has been found that prediction error does
not depend on the machine-learning method, but on the similar-
ity to the training samples.?*>* Target samples with the highest
similarity and most neighbors were best predicted especially
with a narrow training set compared to a diverse set.?? Thus, if
the target domain is well matched to the source domain, then all
calibration (machine-learning) methods essentially predict with
equal accuracy. The effect of domain sample size on AD was
recently studied. In this case, the goal was to assess “hard over-
lap” versus “soft overlap” scoring mechanisms to ascertain if a
machine learning algorithm is actually maintaining superior
performance.?® Such studies were not performed with PRISM.

Model Update. If a target sample is deemed a nonmember of
the AD, recourse is available by calibration transfer using trans-
fer learning methods.?”-? These techniques adapt the calibration
model to account for the novel target domain conditions, either
by spectral preprocessing or direct model adaptation by model
updating.?*** Model updating reorients the model in direction
and magnitude to accurately predict source and target samples.
In terms of eq. S5 in the SI, model updating attempts to alter the
model b such that the non-analyte part of u matched to source
and target sample matrix effect differences s goes to zero. Many
model updating algorithms exist ranging from expensive
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requiring some target domain sample analyte reference val-

ues,!*2 to cheap requiring no target sample reference val-
ues 29,31,32

The model updating application assesses updating difficulty
relative to model generalizability, an assessment problem that
to date, lacks any potential solution.”®® The model updating
methods local mean centering (LMC)* and null augmented re-
gression eigenvalue (NARE)**? are used to evaluate PRISM
and the reader is referred to the respective references for details
on the methods. The primary difference is that LMC requires a
few target reference samples and NARE does not. It is expected
that LMC with target reference values will handle a greater de-
gree of PRISM dissimilarity between source and target do-
mains. Because model updating updates from a source calibra-
tion set to a collection of target samples, not just one target sam-
ple, then for this work, mean PRISM values between source and
target datasets are compared to mean analyte prediction accu-
racy for LMC and NARE processes across the random data
splits. Ranges for the number of PLS LVs and respective LMC
and NARE weighting parameters generate thousands of models
necessitating model selection for final prediction (see Experi-
mental for dataset dependent LV and weight ranges). The au-
tonomous model diversity and prediction similarity (MDPS)
approach?* is used to select models and the corresponding val-
idation errors, reported as root mean square error (RMSEV),
and R? statistics are reported. Also presented are LMC and
NARE first quartiles of all generated models to characterize the
efficacy of LMC and NARE relative to PRISM values.

Outlier Detection. The third application is outlier detection®
where it is determined if a target sample is within the source
AD. Outlier detection is analogous to rigorous one-class classi-
fication® but classification was not studied. To evaluate the out-
lier detection ability of PRISM, a sample is removed from a cal-
ibration set to act as a target sample and PRISM compares this
target sample to each available source calibration set. The pro-
cess is repeated until every calibration sample has been tested
as a target sample. Two methods determining accuracy are eval-
uated: checking whether target samples are identified as outliers
to calibration sets other than the source set of origin and if
PRISM-deemed outliers have degraded prediction errors com-
pared to errors obtained using the calibration set of origin. This
type of outlier detection should not be associated with outlier
‘cleaning’ of a sample set. In that situation, analyte reference
values are known and outlier detection measures such as stu-
dentized residuals can be used. A process similar to PRISM was
developed and applied for this case®* and PRISM could be
slightly modified to work with this analytical chemistry prob-
lem as well. Shown in the SI is an outlier detection example.

Matrix Match. This application situation occurs when mul-
tiple source calibration sets are present and a target sample must
be classified (matrix matched) into the most similar set before
prediction.” This classification-then-regression protocol, some-
times termed bucket of models, is especially suitable when a
source set is naturally grouped into subsets with constrained in-
tra-group matrix effect variances. To evaluate PRISM for this
matrix matching task, samples are removed from calibration
sets to act as target samples and PRISM compares these target
samples to all source sets determining which set they are most
similar to. Two methods for determining accuracy are evalu-
ated: checking whether target samples are matched back to the

sets of origin and if prediction accuracies for the PRISM-
selected similar sets correspond to the lowest sample prediction
errors. Although these two assessment methods often produce
equivalent results, depending on the degree of intra- and inter-
matrix variances, the selected set with the most accurate predic-
tion may not be sample origin set. This setup is analogous to
multi-class classification.*

PRISM

This work assumes that a sample spectrum is a linear sum of
its component parts where the primary parts are chemical con-
stituents, amounts, and respective pure spectra. Perturbing these
pure spectra are sample matrix effects. Described in the SI is
the mathematical framework. Basic concerns with all similarity
assessments are which similarity merit to use, PC optimization
protocol if pertinent, and the integration method for multiple
similarity measures. These items for PRISM are now discussed.

Overview. PRISM is a consensus method and like all con-
sensus approaches, similarity measures fused to form PRISM
should accurately characterize the situation more times than
not. Thus, an extensive analysis was performed to identify ef-
fective similarity measures to assure proper consensus assess-
ments. This analysis resulted in 13 spectral measures for
PRISMx and 10 model-based measures for PRISMy. Similarity
equations are presented in the SI. Other measures can be sup-
plemented by the user to the selected measures.

Five of the 13 PRISMx measures are PCA based. A novel
aspect of PRISM is that unlike SIMCA and other PC based
methods, the number of PCs is not optimized. Recent work has
shown strong accuracy is obtainable by using non-optimized
windows of PCs integrated to form a consensus perspective.*3%
3 As noted in these references, PC windows reduce the chance
of anomalous similarity value for a particular target sample, i.e.,
less likely to obtain false positives or negatives.

PLS is the calibration modeling method for analyte predic-
tion. Because the 10 PRISMy measures are not as robust to dif-
ferent numbers of PLS latent variables (LVs) as the PRISMx
measures are to PCs, LV optimization is required. Latent varia-
ble selection is well studied and many methods to select an op-
timal model exist such as cross-validation, U-curve, or model
diversity and prediction similarity.*3° The U-curve is used here
for its speed, bias/variance balanced decision, self-directing,
and it has been thoroughly documented to work well.**** To
form a U-curve in the PRISM, algorithm, 100 random splits of
the source data is used with 80% of the samples going to the
calibration set and 20% for the validation set. Respective mean
RMSEC, RMSECV, model 2-norm, and jaggedness values are
range-scaled and summed to form a final mean U-curve. The
number of LVs selected resides at the U-curve minimum.

Algorithm. To obtain the similarity between a target domain
sample and a source domain sample set, PRISM uses differ-
ences (A) in similarity measures between target samples and
each source sample one at a time across all similarity measures.
Comparing to each source sample allows PRISM to maximize
capturing similarity information embedded in the source do-
main covariance structure relative to target domain samples.
Differences have been used in other studies to expand and better
detail the sought information for other purposes. !>’



As an example, let the Mahalanobis distance (MD) be the
spectral similarity measure symbolized by f'and x; and x; re-
spectively designate spectra for a sample in the source domain
D and a target sample. The corresponding MDs are denoted f;
and f5. The similarity difference used in PRISMx is then Af =
(i — f2). Specifically, source domain spectra X form the source
covariance space. The usual MD assess the distance from the
centroid of Xp to x; and x,, but instead, Af uses the difference
between the MDs of x, and x; relative to Xp. Contained in the
SI is a detailed mathematical description of Af. All similarity
measures are generalized to this Af form in the SIL.

The view of sample-wise difference is that if x, is similar to
X, then it should appropriately respond when probed with sim-
ilarity measurements. By design, source sample x; is similar to
Xp and hence, acts as a similarity benchmark value for compar-
ison with x,. If x; and x; are similar to Xp by a small Af, then x;
is likely matched to Xp. The greater Af’is, the more likely x» is
not similar x; and hence, not similar to Xp.

The Af'value can be positive or negative. Two approaches are
taken when averaging Af values to form composite similarity
values. One is referred to as signed where the signs are kept in
the averaging and the others is unsigned, where absolute values
of Af are averaged. By using signed and unsigned AfS, the
PRISMx and PRISMy measures are correspondingly expanded
from 13 to 26 and 10 to 18 values. Signed and unsigned equa-
tions are further discussed in the SI.

The collection of sample-wise Af'similarity perspectives pro-
vide comprehensive PRISMx and PRISM, similarity views. For
example, a single target sample compared to a source domain
set of 80 samples generates 16,320 sample-wise Af similarity
measures for the target sample. Reported in the SI is this exam-
ple showing the calculation. However, these target sample
measurements are not useful unless normalized to a reference
similarity value to remove dataset dependency. An effective
normalization process is to standardize to the similarity vari-
ance (structure) of the source domain set. This standardization
is performed by sequentially removing each source sample and
treating it as a pseudo-target sample to obtain the corresponding
sample-wise PRISMx and PRISM, Af similarity values. Thus,
it is important to note that x, can be one of two samples. One is
a target domain sample as described earlier and the other is a
source domain sample removed to act as a pseudo-target sam-
ple. For this second situation, D is now D1 indicating one source
domain sample has been removed and the source sample used
for x, are sequentially the remaining D1 samples not being used
as the pseudo-target x, Continuing with the 80 sample source
example, 16,116 Af values for each pseudo-target source sam-
ple are obtained. In totality, 1,305,600 Af similarity measures
are evaluated to determine the final target sample PRISM value.

The Af values for a target sample (over 1.3 million for the
example) need to be distilled into a single number to quantify
the overall PRISM similarity of that target sample to the source
domain. For each pseudo-target sample, the average of the sam-
ple-wise PC Af'values is taken over the PC windows of each PC
based similarity measurement producing one mean Af'value for
each PC based method. Equally, respective average sample-
wise Af values are obtained for each of the other similarity
measures. The pseudo-target sample now has 26 PRISMx and
18 PRISM, mean measures. The process is repeated for each
source sample acting as a pseudo-target sample and then for the

actual target sample. Values are assembled into corresponding
PRISMx and PRISM, similarity arrays of respective sizes 26 x
m+1 and 18 x m+1 where m is the number of source domain
samples and the +1 for the target sample. Similarity measures
(each row) are normalized to unit length to remove magnitude
discrepancies between similarity measures.

The sum of ranking differences (SRD)* process with the
SRD rank target set to ‘max’ is used separately on the PRISMx
and PRISM;y arrays to combine all of the respective similarity
measures forming two similarity values for each source sample
and the target sample labled sx and s,. SRD is used due to its
effective fusion mechanism capable of detecting similarity dis-
crepancies. Alternatively, a sum fusion rule or other fusion pro-
cess could be used to produce similar results. The sx and sy sim-
ilarity values for the source samples are then Z scored charac-
terizing the source similarity distribution providing final
PRISMx and PRISMy Z scores for each source sample. Using
the source Z distribution mean and standard deviation, the target
sample is Z scored to form its PRISMx and PRISM; values.
These two values for the target sample are the final spectral and
model perspectives of target similarity to the source domain. As
such, they are not independent similarity merits but rather com-
plementary measures of the same hypothesis. Under this frame-
work, the two Z scores can be combined for one PRISM value
using Stouffer’s Z score method computed by

PRISM =2 [(PRISMX +PRISM, ) /2] (1)

that is similar to Fisher’s method of combining p-values.*’ The
process is repeated for each target domain sample. Detailed in
the SI are the specific steps for a target sample.

The large number of target sample similarity measures have
now been combined and standardized to the source distribution
such that they are interpretable as a Z score distance relative to
the source domain. Because the SRD ranking target is ‘max’,
each target sample will almost always have lower Z scores than
the source domain samples and therefore the target PRISM Z
score will often be negative. For example, a target PRISM Z
score of -5 indicates a very high degree of dissimilarity between
the target sample and the source domain, whereas a PRISM Z
score of -1 is most likely within the source distribution.

It may be possible to alter the stages just described to provide
additional benefits to PRISM. For example, changing the fusion
rule or training a machine learning algorithm to weight each
similarity measure according to its importance to overall sample
similarity. The number of possible changes is too large to study
for the purpose of this work.

EXPERIMENTAL

Datasets. Corn. This dataset is used to evaluate PRISM for
all four applications. Corn contains 80 cornmeal samples meas-
ured on three near-infrared (NIR) instruments (m5, mp5, and
mp6) from 1100-2500 nm at 2 nm intervals with reference val-
ues moisture, oil, protein, and starch.’® For prediction reliabil-
ity, outlier detection, and matrix matching, the same sample is
removed from each instrument leaving 79 for the instrument-
based source domains. The process is repeated until each sam-
ple has been removed. For model updating, 100 random splits
are used and mean results are reported. To avoid the same sam-
ples being selected for both the source and target instrument
sample sets, then for each instrument updating situation per
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random split, 40 source instrument samples are selected for the
calibration set and theses samples are removed from target in-
strument consideration; 5 target instrument labeled samples
from the remining 40 target samples are used for LMC; and 15
unlabeled target samples from the remaining 35 target samples
for NARE. These 15 samples are used for model updating pre-
diction by LMC and NARE.

Temperature. The temperature dataset is used to evaluate
PRISM for prediction reliability and matrix matching. Sixteen
mixtures containing known amounts of ethanol, water, and 2-
propanol were measured on a NIR instrument from 590-1091
nm at 1-nm intervals at 30°, 40°, 50°, 60°, and 70° C.’! The
PRISM scores are evaluated by removing a sample from each
temperature dataset and characterizing its spectrum at one tem-
perature against each of the other five temperatures. The pro-
cess is repeated until each sample has been removed and as-
sessed by PRISM. This data set is also used to substantiate the
PRISM matrix matching mathematics described in the SI for a
spectral situation with known primary matrix effects perturbing
the PLS model orthogonality.

Melamine. This dataset is used to evaluate PRISM for model
updating. Melamine-formaldehyde samples were measured for
their polymerization turbidity temperature point (the analyte)
indicating polymer length. Temperature values were converted
to Kelvin making positive values. Four different batch polymer-
ization recipes were measured (562, 568, 861, and 862)*"*2 and
turbidity point values for all four recipes are bimodal. For this
study, each recipe was split into two calibration sets: one with
analyte turbidity temperatures from 267-283K and the other
from 293-316K denoted ‘low’ and ‘high’, respectively. Tabu-
lated in Table S3 of the SI are mean temperatures and standard
deviations for these eight calibrations sets that form 64 updating
settings. Updating situations are labeled by whether the matrix
effects and/or analyte amounts are different between the source
and target set. The first grouping is termed calibration if target
samples are from the same source recipe with an equivalent an-
alyte range. The second category, domain adaptation, involves
the same analyte range but different recipes. If the same recipe
but a different analyte range is used, then this case is labeled
easy transfer learning. The last group, hard transfer learning,
simultaneously deals with different recipes and analyte ranges.

The original dataset includes 8,127 samples with two NIR
spectral ranges from 5458-62542 cm™ and 65957-69752 cm’!
unequally divided between recipe and analyte categories. To
create equal division of samples and improve computational
time, each of the eight source sets (recipe/low or high) were re-
duced once to 100 randomly selected samples for respective
source sets. Similar to the corn dataset, 100 random splits are
used and mean results are reported. For each updating situation
per random split, 70 samples are selected from the 100 source
domain samples for the calibration set and theses samples are
removed from target domain consideration when the target do-
main is same as the source set; 5 labeled target domain samples
from the remaining 30 source samples or from the 100-target
domain set and are used for LMC; and 20 unlabeled target sam-
ples from the remaining 25 source samples or 95 target samples
for NARE. These 25 samples are used for model updating pre-
diction by LMC and NARE.

Mango. This dataset is used to evaluate PRISM for model
updating. The dataset consists of 11,691 NIR spectra measured

from 742-990 nm of mango samples with corresponding dry
matter amount. The mangos originate from Australia during the
2015-2018 growing seasons and vary in region, cultivar, ripe-
ness, and NIR sensor temperature.** The 11,691 samples were
downsized to a 10,243 training set and this set was used to select
source samples from. The target dataset consists of 501 mango
samples originating from Brazil in the 2020 growing season
made up of two cultivars included in the source collection and
varying ripeness. Spectra were recorded from 684-990 nm on a
different instrument than the source.>* Source wavelengths were
trimmed to match the target. For computational efficiency, the
source and target were sorted reduced to every 50th sample for
the source set, totaling 205 samples, and every third sample for
the target set, totaling 167 samples. No effort was made to
equally represent source and target domain variances such as
cultivar, ripeness, etc. Similar to the corn and melamine da-
tasets, 100 random splits are used and mean results are reported.
For each prediction situation per random split, 150 samples are
selected from the 205 Australia source domain samples for the
calibration set and theses samples are removed from target do-
main consideration when the target domain is Australia; 10 la-
beled target domain samples from the remaining 55 Australia
samples or 167 Brazil samples are used for LMC; and 30 unla-
beled target samples from the remaining 45 Australia samples
or 157 Brazil samples for NARE. These 30 samples are used for
model updating prediction by LMC and NARE. The target an-
alyte distribution has a small shift from the source. Shown in
the SIis Fig. S11 with the two distributions overlayed.

LMC and NARE Tuning Parameter Ranges. Initially, the
weight value range is 1000 times the singular value range of the
source dataset incremented in the one’s place. The initial LV
range is from 1 LV to sufficiently overdetermined, e.g., 99%
rule. Before model selection by MDPS, weight and LV values
are dynamically resized per dataset to remove model quality
zones of convergence.?**

Software. Algorithms were developed by the authors using
MATLAB 2022a and the Parallel Computing Toolbox. The
PRISM algorithm can be downloaded.*® Access to the Parallel
Computing Toolbox reduces computational time but is not nec-
essary to run the code.

RESULTS and DISCUSSION

Underlying all the results in this paper is the assumption that
samples similar to a source set will be predicted accurately by
that set, and dissimilar samples will be predicted poorly. Be-
cause prediction reliability, outlier detection, and matrix match-
ing are related, just different goals, outlier detection and matrix
matching results are shown and discussed in the SI. Also shown
in the SI are enlargements of all the Figures.

Prediction Reliability. Plotted in Fig. 1 are the source pre-
dicting target (SPT) prediction errors (| y- }7| ) against PRISM

values for are all 9 corn dataset combinations across the four
analytes making 36 situations. The left plot shows all samples
acting as targets and the corresponding 36 mean PRISM values
are presented on the right. The general trend over all the scenar-
ios is prediction error increasing with more negative PRISM Z
scores for greater dissimilarity. The relationship is more linear
relative to each analyte. The slope of an analyte specific line



characterizes the sensitivity of the prediction error to matrix ef-
fects, i.e., how much error to expect per unit change in PRISM.

Recalling that more negative PRISM Z scores indicate a
greater degree of dissimilarity from the source set, Fig. 1 shows
those samples and sets identified as similar by PRISM are pre-
dicted well. Likewise, samples identified dissimilar are typi-
cally predicted poorly. As expected, when calibration samples
and target samples are measured on the same instrument, Z
scores are closest to 0 and all samples are accurately predicted.

Interestingly, two primary instrument comparison groups ap-
pear. The grouping on the left in both Fig. 1 plots involves in-
strument m5 as the source or target instrument respectively
compared to instrument mp5 or mp6 indicating m5 is dissimilar
to these instruments. Conversely, when instruments mp5 or
mp6 are compared to each other, PRISM Z scores specify these
instruments as similar. PRISM shows that these instruments can
predict samples measured on the other instrument.

Of the four analytes, oil is well predicted regardless of the Z
score value. Noticeable is that four of the oil comparison situa-
tions involving instrument m5 as the source or target are still
predicted well even though greater Z score values indicate un-
reliable predictions are expected. It is difficult to ascertain ex-
actly why but a possible reason is that respective instrument
source models are naturally orthogonal to the oil matrix effect
differences. Provided in the SI is further discussion including
Fig. S14 inferring model orthogonality as a reasonable explana-
tion. Even though these samples are predicted accurately with
the larger Z scores, the usual solution would be to update the
model to the new target instrument. The Model Update section
shows that oil is still accurately predicted.

Displayed in Fig. 2 are respective PRISMx and PRISM, val-
ues combined to form the PRISM values in Fig. 1. Revealed is
that PRISM is responsible for the two groupings observed in
Fig. 1. The PRISM, values produce the differentiation because
PRISM, is designed to detect minor variations that can affect
predictive accuracy but do not largely affect spectral shape.
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Fig. 1. SPT prediction errors against PRISM Z scores for the 36
corn situations color coded to 9 dataset combinations with data
point shapes representing the analyte. Shown are all samples (left)
and mean PRISM Z scores (right).

Presented in Fig. 3 are SPT prediction errors against PRISM
values for all 25 temperature dataset combinations across the
three analytes making 75 situations. Trends regarding the cor-
relation of predicted error to PRISM are similar to that as the
corn data in Fig. 1. Prediction errors increase as PRISM Z
scores become more negative with greater temperature differ-
ence disclosing greater dissimilarity between source and target
samples. Again, PRISM Z scores effectively indicate at approx-
imately -1 predictions are assuredly accurate compared to an-
ticipating when prediction errors will begin to degrade. This

PRISM Z score is where calibration and prediction at the same
temperature transitions to mild temperature matrix effect shifts.
These temperature results are similar to those previously ob-
tained® using SRD rankings in an outlier detection set-up.*
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Fig. 2. SPT prediction error against PRISMx and PRISMy Z scores
for the corn data as in Fig. 1.

Summarizing, PRISM Z scores identify when analyte predic-
tions are highly likely to be accurate versus when predictions
are more unlikely to be accurate. In this framework, PRISM can
be thought as determining if a new sample is an outlier to the
calibration set. Lastly, it is worth mentioning again that related
to the AD, it has been found that prediction error does not de-
pend on the machine-learning method, but on the similarity of
the target domain to the calibration source samples.?'"'* Specif-
ically, if the prediction reliability is deemed satisfactory, say by
PLS as used in this study, then all calibration (machine-learn-
ing) methods will essentially predict with equal accuracy.
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Fig. 3. SPT prediction errors against PRISM Z scores for the 75
temperature situations colored to the 25 dataset comparisons with
data point shapes symbolizing analytes. Shown are all samples
(top) and mean PRISM Z scores (bottom).

Model Update. The corn dataset is often used for model up-
dating. Plotted in Fig. 4 are results for no model updating
(source predicting target (SPT)), LMC, and NARE for all four
analytes and the nine possible combinations of source and target
instrument updating. Shown for each situation are mean results
across the 100 random data splits for the MDPS?*3? selected
models. First quartile results for all models formed are pre-
sented in the SI. The SPT results in Fig. 4 and SI are as expected
where prediction errors degrade as the source and target
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domains become more dissimilar indicated by the more nega-
tive PRISM Z scores. As in Figs. 1 and 2, oil is again the excep-
tion. The best SPT results are generally when the source and
target domains are the same instrument. The SPT R? values also
degrade as the source and target domains become less similar.
However, NARE and LMC trends differ for most of the ana-
lytes. At more negative PRISM Z scores, NARE does not per-
form as well as LMC that updates with only a few labeled sam-
ples. This observation persists with the first quartile results in
the SI. Since LMC consistently produces accurate results com-
pared to NARE, it is generally recommended. However, since
the collection of reference values from the target domain can be
unreasonable for some applications, NARE can be similarly ef-
fective when the analyte domains are matched. Lastly, models
selected by MDPS generally provide similar prediction errors
as the first quartile (see SI), indicating that MDPS continues to
select acceptable models when dataset similarity decreases.
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Fig. 4. Mean corn RMSEYV and R2 values against PRISM Z scores
for the 9 updating situations using model updating by LMC and
NARE and no updating with SPT. All models selected by MDPS.

As noted earlier, the analyte distributions between source and
target domains need to be matched for NARE to be successful.
In corn, this is always the case, but the melamine dataset was
reconfigured to construct unmatched analyte distributions with
no analyte overlap between the high and low domains. Plotted
in Fig. 5 are the results for these contrived model updating sit-
uations described in the Experimental section. The prominent
observation is that LMC is able to maintain low prediction er-
rors for all for situations including the instances where the ana-
lyte distributions are not matched (easy and hard transfer learn-
ing). Similar to the corn dataset, the best SPT results are gener-
ally when the source and target domains are the same (the cali-
bration situation). When the analyte distributions are matched
for domain adaptation cases, NARE performs just as well as
LMC. However, when the analyte distributions are mismatched
as with the hard and easy transfer situations, then NARE often
underperforms LMC and SPT independent of Z scores. The par-
ticular matrix effect difference in NARE hard and easy transfer
causes the models to be orthogonal not only to the matrix effect
differences, but also the net analyte difference between the two
sets and effectively eliminates any possibility for model extrap-
olations. Thus, NARE is highly effective relative to Z scores if
source and target domains have equivalent analyte distributions
as in the calibration and domain adaptation situations. First
quartile results in the SI substantiate the results in Fig. 5.

Mango model updating results presented in Fig. S13 of the SI
corroborate NARE’s difficulty observed in Fig. 5 due to the
source and target (Australia and Brazil) analyte distribution
mismatch shown in Fig. S11. The LMC results are accurate re-
gardless. The PRISM Z scores plotted in Fig. S12 agree with

other datasets where greater negative PRISM Z scores indicate
am upper-bound on prediction reliability.
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Fig. 5. Mean melamine RMSEV and R2 values against PRISM Z
scores for the 64 updating situations using model updating by LMC
and NARE and no updating with SPT. Data point shapes indicate
the model updating categories calibration, domain adaptation, easy
transfer learning, and hard transfer learning defined in the Mela-
mine section of the Experimental section. All models are selected
by MDPS.

From the results presented in Figs. 5, S12 and S13 it presently
seems infeasible for PRISM to consistently identify when the
analyte distributions are not matched. An alternative interpreta-
tion of PRISM Z scores is that analyte and matrix effect simi-
larities are simultaneously expressed. That is, any given PRISM
Z score is degenerate as to whether it only conveys analyte in-
formation, only matrix effect content, or partially both facets. If
target sample analyte amounts were approximately known, then
these values could be decoupled, but with entirely unlabeled tar-
get data, this task is difficult if not impossible for the easy and
hard transfer cases. Nevertheless, even without a prior infor-
mation, PRISM, as studied here, weakly correlates to prediction
error for the hard and easy transfer situations and is more cor-
related in the calibration and domain adaptation circumstances.

Other Data Types and PRISM as a Classification Method.
The dynamics of PRISM has been demonstrated with NIR data.
Detailed in this section are other data types previously used with
several PRISMx and PRISM, measures. The section concludes
discussing PRISM for one- and multi-class classification.

Many PRISMx measures have been used for food and bever-
age characterization. These include using mid-infrared, NIR,
UV, and VIS full spectra and thermogravimetric data for beer
product authentication,* ICP-MS for authenticating fava beans
from Santorini,’” mid-infrared to detect adulteration of straw-
berry puree with other fruits,® contamination of clams with
heavy metals,” authentication of meat as either turkey or
chicken,’” and microplastic identification.® A collection of 13
chemical measurements were used to classify three wine culti-
vars frown in Italy.*® Lastly, PRISMx measures were applied to
restore defaced serial numbers using lock-in infrared thermog-
raphy.*”® The original PRISM, measures were recently devel-
oped and applied to NMR data for matrix matching samples to
particular calibration sets.'> Because PRISMx and PRISM, sim-
ilarity measures successfully served their purposes with numer-
ous other data types and matrix effects dominate most measure-
ments, it is reasonable to assume that PRISM will work the
same with these and other data types as it did with NIR data.

Outlier detection and matrix matching described in the SI are
respectively analogues to one- and multi-class classification.
Outlier detection and one-class classification both seek to
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identify whether a sample belongs to one particular group or
not. Matrix matching and multi-class classification both iden-
tify which source set a target sample is most similar to. The
PRISM Z score can be easily altered to become one- and multi-
class classification algorithms, since the only change is that the
PRISM, measures are not used. The PRISMx in the classifica-
tion context would likely be especially useful due to the inter-
pretability of the Z scores and ease of thresholding for rigorous
one-class modeling (without any non-class samples to opti-
mize).

CONCLUSIONS

Composite PRISM Z scores balance two complementary per-
spectives, PRISMx and PRISM,, to fully characterize the simi-
larity of two domains. The PRISMx view focuses on exploring
spectral matrix effected domain differences and PRISM, probes
the domain differences using a model vector directing the com-
parison towards analyte differences. Presented in the SI is a the-
oretical framework to understand PRISM.

Because PRISM is based on a statistical Z score, it is data set
independent and interpretable Z score thresholds can be set. The
PRISM Z score can be considered a similarity ranking relative
to the mean source domain matrix effect. Samples with PRISM
Z scores within 1o of the source Z score mean 0 can be consid-
ered similar to the source (calibration set) and predictable, i.e.,
prediction accuracy is essentially guaranteed by the source
model and the sample is not considered an outlier to the source
sample set. As sample PRISM Z scores deviate further from 0,
these samples are more likely less similar to the source domain
and hence, predicted with less reliability. A PRISM Z score
around -3 yields moderate potential inaccuracy and a PRISM Z
score beyond -5 indicates a high likelihood of inaccurate pre-
dictions.

Related to assessing the level of difference between source
and target domains for model generalizability is assessing when
model updating is needed. In multiple datasets it was shown that
SPT degrades when the target sample PRISM Z scores indicate
greater dissimilarity, but LMC with only a few target reference
values is consistently accurate throughout the PRISM Z score
range. NARE is shown to be a strong updating method if the
analyte distributions are equivalent. Otherwise, inaccurate pre-
dictions are likely. The following guidelines naturally arise
from these observations. If the PRISM Z score is less negative
than -2 (within 20 of 0), then LMC and NARE are often equiv-
alent to SPT and SPT would be favored because of its interpret-
ability. If the PRISM Z score is more negative than -2 and target
samples are expected to have an equivalent analyte distribution
as the source samples, then NARE can be used for accurate tar-
get sample analyte predictions. Otherwise, if the analyte distri-
butions are not matched, then LMC can be used.

The only parameter requiring optimization with PRISM is the
number of PLS LVs. By using the U-curve approach, PRISM is
essentially an autonomous similarity measure. It is data set in-
variant and adaptable to adding and/or removing similarity
measures to the user’s preference. Because PRISM holistically
characterizes similarity from an abundance of similarity per-
spectives, there does not appear to be a need to identify an op-
timal weighting scheme for each measure. Thus, the user of
PRISM needs no advanced chemometrics knowledge.
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