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ABSTRACT: Determining sample similarity underlies many foundational principles in analytical chemistry. For example, calibra-

tion models are unsuitable to predict outliers. Calibration transfer methods assume a moderate degree of sample and measurement 

dissimilarities between a calibration set and target prediction samples. Classification approaches link target sample similarities to 

groups of similar class samples. Although similarity is ubiquitous in analytical chemistry and everyday life, quantifying sample 

similarity is without a straightforward solution, especially when target domain samples are unlabeled and the only known features 

are measurables such as spectra (the focus of this paper). The process proposed to assess sample similarity integrates spectral simi-

larity information with contextual considerations between source analyte contents, model, and analyte predictions. This hybrid ap-

proach named physicochemical responsive integrated similarity measure (PRISM) amplifies hidden-but-essential physicochemical 

properties encoded within respective spectra. PRISM is tested on four near-infrared (NIR) datasets for four diverse application areas 

to show efficacy. These applications are assessment of prediction reliability and model updating for model generalizability, outlier 

detection, and basic matrix matching evaluation. Discussion is provided on adapting PRISM to classification problems. Results indi-

cate that PRISM collects large amounts of similarity information and effectively integrates it to produce a quantitative similarity 

evaluation between a target sample and a source domain. The approach is also useful for biological samples with additional physio-

chemical variations. While PRISM is dynamically tested on NIR data, parts of PRISM were previously applied to other data types 

and PRISM should be applicable to other measurement systems perturbed by matrix effects. 

Essential to analytical chemistry (and other disciplines) is the 

ability to characterize the similarity between samples. For ex-

ample, a key issue is ascertaining if a model formed for a certain 

analyte using a source calibration (training) set, e.g., a partial 

least squares (PLS) model, can be used to predict target domain 

samples for the same analyte. In other words, are any target 

samples outliers to the source domain samples? Unfortunately, 

the answer depends on how similarity is defined and an abun-

dance of similarity measures exist.1-8 Specifically, each similar-

ity measure is typically used independently to provide its re-

spective partial view of the intricate underlying similarity struc-

ture between samples. Additionally, many measures necessitate 

optimization5-7 that can be impractical when using computers 

for automated decision-making capabilities such as outlier de-

tection.9 Thus, despite the intuitive nature defining similarity by 

object (sample) closeness relative to the degree of agreement 

between respective features, it is difficult to remediate this en-

trenched human similarity notion with its mathematical realiza-

tion. Some theorists believe that it is unclear to state object “A 

is similar to object B” and it is only significant to state “A is 

similar to B with respect to C.”2,3 In other words, A is only sim-

ilar to B qualified to the measurable merit(s) used.  

The focus of this paper is determining spectral similarity and 

a comprehensive autonomous similarity measure should be ap-

plicable to all spectroscopic situations requiring similarity as-

sessment. A common ensemble process to ascertain an overall 

similarity between two sample spectra is to combine the Euclid-

ean distance (magnitude difference) with the cosine of angle 

(shape difference).10 This binary approach requires optimizing 

a weighting scheme balancing the two measures. An alternative 

approach combines Mahalanobis distance and Q-residual as 

used in the popular soft independent modelling by class analogy 

(SIMCA) classification algorithm.8 Both SIMCA measures de-

pend on a principal component analysis (PCA) of the source 

domain spectra and it is debatable as to how to optimize the 

number of PCs.11,12 Another approach assesses similarity by 

comparing respective dataset covariance shapes, magnitudes, 

and centroid locations to distinguish structure differences.6,7 

However, influencing each similarity merit is that certain 

sample properties are not always strongly responding in spectra 

and hence, large changes in the prediction property of interest, 

e.g., analyte amount, may go unnoticed in spectra. Equally, 

small sample-wise changes in less important sample frame-

works could impact spectral structure and the similarity value. 

These sample-wise matrix effects stem from the degree of inter- 

and intra-molecular interactions between sample species that 

further depend on the nature and strengths of respective associ-

ations relative to species amounts.13,14 Other sample and meas-

urement conditions, e.g., pH, temperature and instrument are 

also considered part of the full matrix effects in this paper. Sam-

ple and measurement conditions (except instrument) are 

grouped under the term physicochemical causes of matrix ef-

fects. In biological systems, physiochemical effects based on 

additional interactions between physiological and chemical pro-

cesses are part of the matrix effects. Thus, while a dual spectral 

similarity view, e.g., SIMCA, is an improvement over a singular 

perspective, a more complete measure is needed. 
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Developed in this paper is a new similarity measure named 

physicochemical responsive integrated similarity measure 

(PRISM) composed of many similarity measures. These se-

lected similarity measures (and other others can be included) 

are fused to form the PRISM value. The proposed integrated 

PRISM unites multiple similarity assessments to assess comple-

mentary information achieving a thorough view of sample ma-

trix similarity. This approach reduces the effects of contradic-

tory results (local anomalies) and increases the reliability of the 

PRISM value. Physicochemical is used to name PRISM be-

cause such effects typically dominate spectral differences but it 

is understood that PRISM evaluates other sources of matrix ef-

fect differences. Presented in the Supporting Information (SI) is 

a mathematical framework illustrating the underlying sample 

matrix effects and why spectra visually appearing similar are 

not necessarily similar. Unique to PRISM is that it focuses on 

using spectra as measurable abstractions of the underlying or-

ders of matrix effect differences between source and target do-

mains. Analogous to the sorting of electromagnetic frequencies 

by a conventional prism, PRISM discriminates source-target 

sample combinations according to their PRISM value. 

It has been stated that similarity measures should be directly 

related to the property of interest with the association ascer-

tained by using information about processes responsible for the 

property.3 However, this information is rarely known for the 

target domain. In particular, for quantitative analysis, many 

properties may be available for the calibration set, but only 

measured target spectra are known. Compounding proper spec-

tral similarity assessment for quantitative analysis purposes is, 

as previously noted, the amount of analyte and other matrix ef-

fecting species. Only evaluating spectral similarity may not be 

enough for quantitative analysis. To overcome this barrier, 

PRISM uses sample matrix effects to strengthen key spectral 

features by emphasizing analyte content dissimilarities between 

source and target domain samples using a source calibration 

model to direct the similarity characterization.15 Presented in 

the SI is a mathematical framework realizing this goal. 

Because PRISM can be used to assess similarity for both clas-

sification and quantitative analysis, similarity is henceforth 

grouped into spectral contributions denoted by PRISMX and 

those guided by quantitative source models, and consequently, 

source analyte values, termed PRISMy. In this framework, 

measurements from the PRISMX measures are complementary 

to the PRISMy measures. Other work has found it useful to com-

bine complementary information by balancing the exploration 

of the chemical space with exploitation of the prediction 

model.16,17 If classification is the situation, then only PRISMX 

is applicable. 

The underlying fundamental analytical chemistry question 

being addressed in this paper is how to determine if source do-

main-based models (calibration or classifier) are generalizable 

to target domain samples. PRISM is applied to four crucial an-

alytical chemistry areas using near-infrared (NIR) spectra to 

demonstrate its versatility. These applications involve quantita-

tive analysis using PLS models to assess prediction reliability, 

calibration transfer complexity for model generalizability, out-

lier detection, and matrix matching assessment. The importance 

of these four fundamental areas is described next.  Classifica-

tion is another important area of analytical chemistry and is a 

facsimile to outlier detection and matrix matching. Some brief 

comments on adapting PRISM for classification are provided at 

the end of Results and Discussion. While PRISM is robustly 

tested on NIR data, it is applicable to other measurement sys-

tems affected by matrix effects. This attribute is also discussed 

at the end of the Results and Discussion. 

PRISM APPLICATIONS 

Because the paper focus is towards quantitative analysis, a 

brief overview of multivariate calibration and prediction is pro-

vided in the SI if the reader is not familiar.  

Prediction Reliability. The calibration set applicability do-

main (AD), a term commonly used in quantitative structure ac-

tivity relationship (QSAR) modeling, identifies where target 

samples are accurately predicted with confidence by the source 

model.18-26 In order for new target samples from the deployment 

domain to best fit into the AD, target samples must be independ-

ent and identically distributed (iid) matched to the source cali-

bration set matrix effects. The similarity measure used to define 

AD sets the perspective to determine the source model general-

izability to the target domain. An effective similarity criterion 

should be consistent with the axiom that target sample similar-

ity is correlated to prediction accuracy23,24 and hence PRISM 

values should be correlated with prediction error. However, it 

is impractical to expect the correlation to be strongly linear 

since prediction error is not inherently exactly related to simi-

larity. In particular, a target sample dissimilar to a calibration 

set can be accurately predicted, but it should not be the case that 

a target sample deemed similar be poorly predicted. 

In the presented prediction reliability application, we strive 

to assess whether minor, moderate, or substantial prediction er-

rors are expected for target samples relative to the source do-

main calibration set. This evaluation is performed by comparing 

target sample PRISM values against the source predicting target 

(SPT) prediction errors ( ˆ−y y ) and analyzing the correlation 

over all the datasets. 

Related to the AD, it has been found that prediction error does 

not depend on the machine-learning method, but on the similar-

ity to the training samples.23-25 Target samples with the highest 

similarity and most neighbors were best predicted especially 

with a narrow training set compared to a diverse set.22 Thus, if 

the target domain is well matched to the source domain, then all 

calibration (machine-learning) methods essentially predict with 

equal accuracy. The effect of domain sample size on AD was 

recently studied. In this case, the goal was to assess “hard over-

lap” versus “soft overlap” scoring mechanisms to ascertain if a 

machine learning algorithm is actually maintaining superior 

performance.26 Such studies were not performed with PRISM. 

Model Update. If a target sample is deemed a nonmember of 

the AD, recourse is available by calibration transfer using trans-

fer learning methods.27,28 These techniques adapt the calibration 

model to account for the novel target domain conditions, either 

by spectral preprocessing or direct model adaptation by model 

updating.29,30 Model updating reorients the model in direction 

and magnitude to accurately predict source and target samples. 

In terms of eq. S5 in the SI, model updating attempts to alter the 

model b̂  such that the non-analyte part of u matched to source 

and target sample matrix effect differences s goes to zero. Many 

model updating algorithms exist ranging from expensive 
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requiring some target domain sample analyte reference val-

ues,11,32 to cheap requiring no target sample reference val-

ues.29,31,32 

The model updating application assesses updating difficulty 

relative to model generalizability, an assessment problem that 

to date, lacks any potential solution.28 The model updating 

methods local mean centering (LMC)32 and null augmented re-

gression eigenvalue (NARE)29,32 are used to evaluate PRISM 

and the reader is referred to the respective references for details 

on the methods. The primary difference is that LMC requires a 

few target reference samples and NARE does not. It is expected 

that LMC with target reference values will handle a greater de-

gree of PRISM dissimilarity between source and target do-

mains. Because model updating updates from a source calibra-

tion set to a collection of target samples, not just one target sam-

ple, then for this work, mean PRISM values between source and 

target datasets are compared to mean analyte prediction accu-

racy for LMC and NARE processes across the random data 

splits. Ranges for the number of PLS LVs and respective LMC 

and NARE weighting parameters generate thousands of models 

necessitating model selection for final prediction (see Experi-

mental for dataset dependent LV and weight ranges). The au-

tonomous model diversity and prediction similarity (MDPS) 

approach29,30 is used to select models and the corresponding val-

idation errors, reported as root mean square error (RMSEV), 

and R2 statistics are reported. Also presented are LMC and 

NARE first quartiles of all generated models to characterize the 

efficacy of LMC and NARE relative to PRISM values. 

Outlier Detection. The third application is outlier detection33 

where it is determined if a target sample is within the source 

AD. Outlier detection is analogous to rigorous one-class classi-

fication34 but classification was not studied. To evaluate the out-

lier detection ability of PRISM, a sample is removed from a cal-

ibration set to act as a target sample and PRISM compares this 

target sample to each available source calibration set. The pro-

cess is repeated until every calibration sample has been tested 

as a target sample. Two methods determining accuracy are eval-

uated: checking whether target samples are identified as outliers 

to calibration sets other than the source set of origin and if 

PRISM-deemed outliers have degraded prediction errors com-

pared to errors obtained using the calibration set of origin. This 

type of outlier detection should not be associated with outlier 

‘cleaning’ of a sample set. In that situation, analyte reference 

values are known and outlier detection measures such as stu-

dentized residuals can be used. A process similar to PRISM was 

developed and applied for this case33 and PRISM could be 

slightly modified to work with this analytical chemistry prob-

lem as well. Shown in the SI is an outlier detection example. 

Matrix Match. This application situation occurs when mul-

tiple source calibration sets are present and a target sample must 

be classified (matrix matched) into the most similar set before 

prediction.7 This classification-then-regression protocol, some-

times termed bucket of models, is especially suitable when a 

source set is naturally grouped into subsets with constrained in-

tra-group matrix effect variances. To evaluate PRISM for this 

matrix matching task, samples are removed from calibration 

sets to act as target samples and PRISM compares these target 

samples to all source sets determining which set they are most 

similar to. Two methods for determining accuracy are evalu-

ated: checking whether target samples are matched back to the 

sets of origin and if prediction accuracies for the PRISM-

selected similar sets correspond to the lowest sample prediction 

errors. Although these two assessment methods often produce 

equivalent results, depending on the degree of intra- and inter-

matrix variances, the selected set with the most accurate predic-

tion may not be sample origin set. This setup is analogous to 

multi-class classification.35 

PRISM 

This work assumes that a sample spectrum is a linear sum of 

its component parts where the primary parts are chemical con-

stituents, amounts, and respective pure spectra. Perturbing these 

pure spectra are sample matrix effects. Described in the SI is 

the mathematical framework. Basic concerns with all similarity 

assessments are which similarity merit to use, PC optimization 

protocol if pertinent, and the integration method for multiple 

similarity measures. These items for PRISM are now discussed. 

Overview. PRISM is a consensus method and like all con-

sensus approaches, similarity measures fused to form PRISM 

should accurately characterize the situation more times than 

not. Thus, an extensive analysis was performed to identify ef-

fective similarity measures to assure proper consensus assess-

ments. This analysis resulted in 13 spectral measures for 

PRISMX and 10 model-based measures for PRISMy. Similarity 

equations are presented in the SI. Other measures can be sup-

plemented by the user to the selected measures.  

Five of the 13 PRISMX measures are PCA based. A novel 

aspect of PRISM is that unlike SIMCA and other PC based 

methods, the number of PCs is not optimized. Recent work has 

shown strong accuracy is obtainable by using non-optimized 

windows of PCs integrated to form a consensus perspective.33,35-

38 As noted in these references, PC windows reduce the chance 

of anomalous similarity value for a particular target sample, i.e., 

less likely to obtain false positives or negatives. 

PLS is the calibration modeling method for analyte predic-

tion. Because the 10 PRISMy measures are not as robust to dif-

ferent numbers of PLS latent variables (LVs) as the PRISMX 

measures are to PCs, LV optimization is required. Latent varia-

ble selection is well studied and many methods to select an op-

timal model exist such as cross-validation, U-curve, or model 

diversity and prediction similarity.30,39 The U-curve is used here 

for its speed, bias/variance balanced decision, self-directing, 

and it has been thoroughly documented to work well.39-43 To 

form a U-curve in the PRISMy algorithm, 100 random splits of 

the source data is used with 80% of the samples going to the 

calibration set and 20% for the validation set. Respective mean 

RMSEC, RMSECV, model 2-norm, and jaggedness values are 

range-scaled and summed to form a final mean U-curve. The 

number of LVs selected resides at the U-curve minimum.  

Algorithm. To obtain the similarity between a target domain 

sample and a source domain sample set, PRISM uses differ-

ences (Δ) in similarity measures between target samples and 

each source sample one at a time across all similarity measures. 

Comparing to each source sample allows PRISM to maximize 

capturing similarity information embedded in the source do-

main covariance structure relative to target domain samples. 

Differences have been used in other studies to expand and better 

detail the sought information for other purposes.15,44-47 
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As an example, let the Mahalanobis distance (MD) be the 

spectral similarity measure symbolized by f and x1 and x2 re-

spectively designate spectra for a sample in the source domain 

D and a target sample. The corresponding MDs are denoted f1 

and f2. The similarity difference used in PRISMX is then Δf  = 

(f1 – f2). Specifically, source domain spectra XD form the source 

covariance space. The usual MD assess the distance from the 

centroid of XD to x1 and x2, but instead, Δf uses the difference 

between the MDs of x2 and x1 relative to XD. Contained in the 

SI is a detailed mathematical description of Δf. All similarity 

measures are generalized to this Δf form in the SI. 

The view of sample-wise difference is that if x2 is similar to  

XD, then it should appropriately respond when probed with sim-

ilarity measurements. By design, source sample x1 is similar to 

XD and hence, acts as a similarity benchmark value for compar-

ison with x2. If x2 and x1 are similar to XD by a small Δf, then x2 

is likely matched to XD. The greater Δf is, the more likely x2 is 

not similar x1 and hence, not similar to XD. 

The Δf value can be positive or negative. Two approaches are 

taken when averaging Δf values to form composite similarity 

values. One is referred to as signed where the signs are kept in 

the averaging and the others is unsigned, where absolute values 

of Δf  are averaged. By using signed and unsigned Δfs, the 

PRISMX and PRISMy measures are correspondingly expanded 

from 13 to 26 and 10 to 18 values. Signed and unsigned equa-

tions are further discussed in the SI. 

The collection of sample-wise Δf similarity perspectives pro-

vide comprehensive PRISMX and PRISMy similarity views. For 

example, a single target sample compared to a source domain 

set of 80 samples generates 16,320 sample-wise Δf similarity 

measures for the target sample. Reported in the SI is this exam-

ple showing the calculation. However, these target sample 

measurements are not useful unless normalized to a reference 

similarity value to remove dataset dependency. An effective 

normalization process is to standardize to the similarity vari-

ance (structure) of the source domain set. This standardization 

is performed by sequentially removing each source sample and 

treating it as a pseudo-target sample to obtain the corresponding 

sample-wise PRISMX and PRISMy Δf similarity values. Thus, 

it is important to note that x2 can be one of two samples. One is 

a target domain sample as described earlier and the other is a 

source domain sample removed to act as a pseudo-target sam-

ple. For this second situation, D is now D1 indicating one source 

domain sample has been removed and the source sample used 

for x1 are sequentially the remaining D1 samples not being used 

as the pseudo-target x2. Continuing with the 80 sample source 

example, 16,116 Δf values for each pseudo-target source sam-

ple are obtained.  In totality, 1,305,600 Δf similarity measures 

are evaluated to determine the final target sample PRISM value. 

The Δf values for a target sample (over 1.3 million for the 

example) need to be distilled into a single number to quantify 

the overall PRISM similarity of that target sample to the source 

domain. For each pseudo-target sample, the average of the sam-

ple-wise PC Δf values is taken over the PC windows of each PC 

based similarity measurement producing one mean Δf value for 

each PC based method. Equally, respective average sample-

wise Δf values are obtained for each of the other similarity 

measures. The pseudo-target sample now has 26 PRISMX and 

18 PRISMy mean measures. The process is repeated for each 

source sample acting as a pseudo-target sample and then for the 

actual target sample. Values are assembled into corresponding 

PRISMX and PRISMy similarity arrays of respective sizes 26 x 
m+1 and 18 x m+1 where m is the number of source domain 

samples and the +1 for the target sample. Similarity measures 

(each row) are normalized to unit length to remove magnitude 

discrepancies between similarity measures. 

The sum of ranking differences (SRD)48 process with the 

SRD rank target set to ‘max’ is used separately on the PRISMX 

and PRISMy arrays to combine all of the respective similarity 

measures forming two similarity values for each source sample 

and the target sample labled sX and sy. SRD is used due to its 

effective fusion mechanism capable of detecting similarity dis-

crepancies. Alternatively, a sum fusion rule or other fusion pro-

cess could be used to produce similar results. The sX and sy sim-

ilarity values for the source samples are then Z scored charac-

terizing the source similarity distribution providing final 

PRISMX and PRISMy Z scores for each source sample. Using 

the source Z distribution mean and standard deviation, the target 

sample is Z scored to form its PRISMX and PRISMy values. 

These two values for the target sample are the final spectral and 

model perspectives of target similarity to the source domain. As 

such, they are not independent similarity merits but rather com-

plementary measures of the same hypothesis. Under this frame-

work, the two Z scores can be combined for one PRISM value 

using Stouffer’s Z score method computed by 

( )X yPRISM 2 PRISM PRISM 2 = +
 

        (1) 

that is similar to Fisher’s method of combining p-values.49 The 

process is repeated for each target domain sample. Detailed in 

the SI are the specific steps for a target sample.  

The large number of target sample similarity measures have 

now been combined and standardized to the source distribution 

such that they are interpretable as a Z score distance relative to 

the source domain. Because the SRD ranking target is ‘max’, 

each target sample will almost always have lower Z scores than 

the source domain samples and therefore the target PRISM Z 

score will often be negative. For example, a target PRISM Z 

score of -5 indicates a very high degree of dissimilarity between 

the target sample and the source domain, whereas a PRISM Z 

score of -1 is most likely within the source distribution. 

It may be possible to alter the stages just described to provide 

additional benefits to PRISM. For example, changing the fusion 

rule or training a machine learning algorithm to weight each 

similarity measure according to its importance to overall sample 

similarity. The number of possible changes is too large to study 

for the purpose of this work.  

EXPERIMENTAL 

Datasets. Corn. This dataset is used to evaluate PRISM for 

all four applications. Corn contains 80 cornmeal samples meas-

ured on three near-infrared (NIR) instruments (m5, mp5, and 

mp6) from 1100-2500 nm at 2 nm intervals with reference val-

ues moisture, oil, protein, and starch.50 For prediction reliabil-

ity, outlier detection, and matrix matching, the same sample is 

removed from each instrument leaving 79 for the instrument-

based source domains. The process is repeated until each sam-

ple has been removed. For model updating, 100 random splits 

are used and mean results are reported. To avoid the same sam-

ples being selected for both the source and target instrument 

sample sets, then for each instrument updating situation per 
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random split, 40 source instrument samples are selected for the 

calibration set and theses samples are removed from target in-

strument consideration; 5 target instrument labeled samples 

from the remining 40 target samples are used for LMC; and 15 

unlabeled target samples from the remaining 35 target samples 

for NARE. These 15 samples are used for model updating pre-

diction by LMC and NARE. 

Temperature. The temperature dataset is used to evaluate 

PRISM for prediction reliability and matrix matching. Sixteen 

mixtures containing known amounts of ethanol, water, and 2-

propanol were measured on a NIR instrument from 590-1091 

nm at 1‐nm intervals at 30o, 40o, 50o, 60o, and 70o C.51 The 

PRISM scores are evaluated by removing a sample from each 

temperature dataset and characterizing its spectrum at one tem-

perature against each of the other five temperatures. The pro-

cess is repeated until each sample has been removed and as-

sessed by PRISM. This data set is also used to substantiate the 

PRISM matrix matching mathematics described in the SI for a 

spectral situation with known primary matrix effects perturbing 

the PLS model orthogonality. 

Melamine. This dataset is used to evaluate PRISM for model 

updating. Melamine-formaldehyde samples were measured for 

their polymerization turbidity temperature point (the analyte) 

indicating polymer length. Temperature values were converted 

to Kelvin making positive values. Four different batch polymer-

ization recipes were measured (562, 568, 861, and 862)31,52 and 

turbidity point values for all four recipes are bimodal. For this 

study, each recipe was split into two calibration sets: one with 

analyte turbidity temperatures from 267-283K and the other 

from 293-316K denoted ‘low’ and ‘high’, respectively. Tabu-

lated in Table S3 of the SI are mean temperatures and standard 

deviations for these eight calibrations sets that form 64 updating 

settings. Updating situations are labeled by whether the matrix 

effects and/or analyte amounts are different between the source 

and target set. The first grouping is termed calibration if target 

samples are from the same source recipe with an equivalent an-

alyte range. The second category, domain adaptation, involves 

the same analyte range but different recipes. If the same recipe 

but a different analyte range is used, then this case is labeled 

easy transfer learning. The last group, hard transfer learning, 

simultaneously deals with different recipes and analyte ranges. 

The original dataset includes 8,127 samples with two NIR 

spectral ranges from 5458-62542 cm-1 and 65957-69752 cm-1 

unequally divided between recipe and analyte categories. To 

create equal division of samples and improve computational 

time, each of the eight source sets (recipe/low or high) were re-

duced once to 100 randomly selected samples for respective 

source sets. Similar to the corn dataset, 100 random splits are 

used and mean results are reported. For each updating situation 

per random split, 70 samples are selected from the 100 source 

domain samples for the calibration set and theses samples are 

removed from target domain consideration when the target do-

main is same as the source set; 5 labeled target domain samples 

from the remaining 30 source samples or from the 100-target 

domain set and are used for LMC; and 20 unlabeled target sam-

ples from the remaining 25 source samples or 95 target samples 

for NARE. These 25 samples are used for model updating pre-

diction by LMC and NARE. 

Mango. This dataset is used to evaluate PRISM for model 

updating. The dataset consists of 11,691 NIR spectra measured 

from 742-990 nm of mango samples with corresponding dry 

matter amount. The mangos originate from Australia during the 

2015-2018 growing seasons and vary in region, cultivar, ripe-

ness, and NIR sensor temperature.53 The 11,691 samples were 

downsized to a 10,243 training set and this set was used to select 

source samples from. The target dataset consists of 501 mango 

samples originating from Brazil in the 2020 growing season 

made up of two cultivars included in the source collection and 

varying ripeness. Spectra were recorded from 684-990 nm on a 

different instrument than the source.54 Source wavelengths were 

trimmed to match the target. For computational efficiency, the 

source and target were sorted reduced to every 50th sample for 

the source set, totaling 205 samples, and every third sample for 

the target set, totaling 167 samples. No effort was made to 

equally represent source and target domain variances such as 

cultivar, ripeness, etc. Similar to the corn and melamine da-

tasets, 100 random splits are used and mean results are reported. 

For each prediction situation per random split, 150 samples are 

selected from the 205 Australia source domain samples for the 

calibration set and theses samples are removed from target do-

main consideration when the target domain is Australia; 10 la-

beled target domain samples from the remaining 55 Australia 

samples or 167 Brazil samples are used for LMC; and 30 unla-

beled target samples from the remaining 45 Australia samples 

or 157 Brazil samples for NARE. These 30 samples are used for 

model updating prediction by LMC and NARE. The target an-

alyte distribution has a small shift from the source. Shown in 

the SI is Fig. S11 with the two distributions overlayed.  

LMC and NARE Tuning Parameter Ranges. Initially, the 

weight value range is 1000 times the singular value range of the 

source dataset incremented in the one’s place. The initial LV 

range is from 1 LV to sufficiently overdetermined, e.g., 99% 

rule. Before model selection by MDPS, weight and LV values 

are dynamically resized per dataset to remove model quality 

zones of convergence.29,30  

Software. Algorithms were developed by the authors using 

MATLAB 2022a and the Parallel Computing Toolbox. The 

PRISM algorithm can be downloaded.55 Access to the Parallel 

Computing Toolbox reduces computational time but is not nec-

essary to run the code. 

RESULTS and DISCUSSION 

Underlying all the results in this paper is the assumption that 

samples similar to a source set will be predicted accurately by 

that set, and dissimilar samples will be predicted poorly. Be-

cause prediction reliability, outlier detection, and matrix match-

ing are related, just different goals, outlier detection and matrix 

matching results are shown and discussed in the SI. Also shown 

in the SI are enlargements of all the Figures. 

   Prediction Reliability. Plotted in Fig. 1 are the source pre-

dicting target (SPT) prediction errors ( ˆ−y y ) against PRISM 

values for are all 9 corn dataset combinations across the four 

analytes making 36 situations. The left plot shows all samples 

acting as targets and the corresponding 36 mean PRISM values 

are presented on the right. The general trend over all the scenar-

ios is prediction error increasing with more negative PRISM Z 

scores for greater dissimilarity. The relationship is more linear 

relative to each analyte. The slope of an analyte specific line 
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characterizes the sensitivity of the prediction error to matrix ef-

fects, i.e., how much error to expect per unit change in PRISM. 

Recalling that more negative PRISM Z scores indicate a 

greater degree of dissimilarity from the source set, Fig. 1 shows 

those samples and sets identified as similar by PRISM are pre-

dicted well. Likewise, samples identified dissimilar are typi-

cally predicted poorly. As expected, when calibration samples 

and target samples are measured on the same instrument, Z 

scores are closest to 0 and all samples are accurately predicted.  

Interestingly, two primary instrument comparison groups ap-

pear. The grouping on the left in both Fig. 1 plots involves in-

strument m5 as the source or target instrument respectively 

compared to instrument mp5 or mp6 indicating m5 is dissimilar 

to these instruments. Conversely, when instruments mp5 or 

mp6 are compared to each other, PRISM Z scores specify these 

instruments as similar. PRISM shows that these instruments can 

predict samples measured on the other instrument. 

Of the four analytes, oil is well predicted regardless of the Z 

score value. Noticeable is that four of the oil comparison situa-

tions involving instrument m5 as the source or target are still 

predicted well even though greater Z score values indicate un-

reliable predictions are expected. It is difficult to ascertain ex-

actly why but a possible reason is that respective instrument 

source models are naturally orthogonal to the oil matrix effect 

differences. Provided in the SI is further discussion including 

Fig. S14 inferring model orthogonality as a reasonable explana-

tion. Even though these samples are predicted accurately with 

the larger Z scores, the usual solution would be to update the 

model to the new target instrument. The Model Update section 

shows that oil is still accurately predicted. 

Displayed in Fig. 2 are respective PRISMX and PRISMy val-

ues combined to form the PRISM values in Fig. 1. Revealed is 

that PRISMy is responsible for the two groupings observed in 

Fig. 1. The PRISMy values produce the differentiation because 

PRISMy is designed to detect minor variations that can affect 

predictive accuracy but do not largely affect spectral shape. 

Fig. 1. SPT prediction errors against PRISM Z scores for the 36 

corn situations color coded to 9 dataset combinations with data 

point shapes representing the analyte. Shown are all samples (left) 

and mean PRISM Z scores (right).  

Presented in Fig. 3 are SPT prediction errors against PRISM 

values for all 25 temperature dataset combinations across the 

three analytes making 75 situations. Trends regarding the cor-

relation of predicted error to PRISM are similar to that as the 

corn data in Fig. 1. Prediction errors increase as PRISM Z 

scores become more negative with greater temperature differ-

ence disclosing greater dissimilarity between source and target 

samples. Again, PRISM Z scores effectively indicate at approx-

imately -1 predictions are assuredly accurate compared to an-

ticipating when prediction errors will begin to degrade. This  

PRISM Z score is where calibration and prediction at the same 

temperature transitions to mild temperature matrix effect shifts. 

These temperature results are similar to those previously ob-

tained56 using SRD rankings in an outlier detection set-up.33  

Fig. 2. SPT prediction error against PRISMX and PRISMy Z scores 

for the corn data as in Fig. 1. 

Summarizing, PRISM Z scores identify when analyte predic-

tions are highly likely to be accurate versus when predictions 

are more unlikely to be accurate. In this framework, PRISM can 

be thought as determining if a new sample is an outlier to the 

calibration set. Lastly, it is worth mentioning again that related 

to the AD, it has been found that prediction error does not de-

pend on the machine-learning method, but on the similarity of 

the target domain to the calibration source samples.21-14 Specif-

ically, if the prediction reliability is deemed satisfactory, say by 

PLS as used in this study, then all calibration (machine-learn-

ing) methods will essentially predict with equal accuracy.  

Fig. 3. SPT prediction errors against PRISM Z scores for the 75 

temperature situations colored to the 25 dataset comparisons with 

data point shapes symbolizing analytes. Shown are all samples 

(top) and mean PRISM Z scores (bottom).  

Model Update. The corn dataset is often used for model up-

dating. Plotted in Fig. 4 are results for no model updating 

(source predicting target (SPT)), LMC, and NARE for all four 

analytes and the nine possible combinations of source and target 

instrument updating. Shown for each situation are mean results 

across the 100 random data splits for the MDPS29,30 selected 

models. First quartile results for all models formed are pre-

sented in the SI. The SPT results in Fig. 4 and SI are as expected 

where prediction errors degrade as the source and target 



 

 

7 

domains become more dissimilar indicated by the more nega-

tive PRISM Z scores. As in Figs. 1 and 2, oil is again the excep-

tion. The best SPT results are generally when the source and 

target domains are the same instrument. The SPT R2 values also 

degrade as the source and target domains become less similar. 

However, NARE and LMC trends differ for most of the ana-

lytes. At more negative PRISM Z scores, NARE does not per-

form as well as LMC that updates with only a few labeled sam-

ples. This observation persists with the first quartile results in 

the SI. Since LMC consistently produces accurate results com-

pared to NARE, it is generally recommended. However, since 

the collection of reference values from the target domain can be 

unreasonable for some applications, NARE can be similarly ef-

fective when the analyte domains are matched. Lastly, models 

selected by MDPS generally provide similar prediction errors 

as the first quartile (see SI), indicating that MDPS continues to 

select acceptable models when dataset similarity decreases. 

Fig. 4. Mean corn RMSEV and R2 values against PRISM Z scores 

for the 9 updating situations using model updating by LMC and 

NARE and no updating with SPT. All models selected by MDPS. 

As noted earlier, the analyte distributions between source and 

target domains need to be matched for NARE to be successful. 

In corn, this is always the case, but the melamine dataset was 

reconfigured to construct unmatched analyte distributions with 

no analyte overlap between the high and low domains. Plotted 

in Fig. 5 are the results for these contrived model updating sit-

uations described in the Experimental section. The prominent 

observation is that LMC is able to maintain low prediction er-

rors for all for situations including the instances where the ana-

lyte distributions are not matched (easy and hard transfer learn-

ing). Similar to the corn dataset, the best SPT results are gener-

ally when the source and target domains are the same (the cali-

bration situation). When the analyte distributions are matched 

for domain adaptation cases, NARE performs just as well as 

LMC. However, when the analyte distributions are mismatched 

as with the hard and easy transfer situations, then NARE often 

underperforms LMC and SPT independent of Z scores. The par-

ticular matrix effect difference in NARE hard and easy transfer 

causes the models to be orthogonal not only to the matrix effect 

differences, but also the net analyte difference between the two 

sets and effectively eliminates any possibility for model extrap-

olations. Thus, NARE is highly effective relative to Z scores if 

source and target domains have equivalent analyte distributions 

as in the calibration and domain adaptation situations. First 

quartile results in the SI substantiate the results in Fig. 5.  

Mango model updating results presented in Fig. S13 of the SI 

corroborate NARE’s difficulty observed in Fig. 5 due to the 

source and target (Australia and Brazil) analyte distribution 

mismatch shown in Fig. S11. The LMC results are accurate re-

gardless. The PRISM Z scores plotted in Fig. S12 agree with 

other datasets where greater negative PRISM Z scores indicate 

am upper-bound on prediction reliability. 

Fig. 5. Mean melamine RMSEV and R2 values against PRISM Z 

scores for the 64 updating situations using model updating by LMC 

and NARE and no updating with SPT. Data point shapes indicate 

the model updating categories calibration, domain adaptation, easy 

transfer learning, and hard transfer learning defined in the Mela-

mine section of the Experimental section. All models are selected 

by MDPS. 

From the results presented in Figs. 5, S12 and S13 it presently 

seems infeasible for PRISM to consistently identify when the 

analyte distributions are not matched. An alternative interpreta-

tion of PRISM Z scores is that analyte and matrix effect simi-

larities are simultaneously expressed. That is, any given PRISM 

Z score is degenerate as to whether it only conveys analyte in-

formation, only matrix effect content, or partially both facets. If 

target sample analyte amounts were approximately known, then 

these values could be decoupled, but with entirely unlabeled tar-

get data, this task is difficult if not impossible for the easy and 

hard transfer cases. Nevertheless, even without a prior infor-

mation, PRISM, as studied here, weakly correlates to prediction 

error for the hard and easy transfer situations and is more cor-

related in the calibration and domain adaptation circumstances. 

   Other Data Types and PRISM as a Classification Method. 

The dynamics of PRISM has been demonstrated with NIR data. 

Detailed in this section are other data types previously used with 

several PRISMX and PRISMy measures. The section concludes 

discussing PRISM for one- and multi-class classification.  

   Many PRISMX measures have been used for food and bever-

age characterization. These include using mid-infrared, NIR, 

UV, and VIS full spectra and thermogravimetric data for beer 

product authentication,35 ICP-MS for authenticating fava beans 

from Santorini,57 mid-infrared to detect adulteration of straw-

berry puree with other fruits,36 contamination of clams with 

heavy metals,57 authentication of meat as either turkey or 

chicken,57 and microplastic identification.58 A collection of 13 

chemical measurements were used to classify three wine culti-

vars frown in Italy.35 Lastly, PRISMX measures were applied to 
restore defaced serial numbers using lock-in infrared thermog-

raphy.37,38 The original PRISMy measures were recently devel-

oped and applied to NMR data for matrix matching samples to 

particular calibration sets.15 Because PRISMX and PRISMy sim-

ilarity measures successfully served their purposes with numer-

ous other data types and matrix effects dominate most measure-

ments, it is reasonable to assume that PRISM will work the 

same with these and other data types as it did with NIR data.  

   Outlier detection and matrix matching described in the SI are 

respectively analogues to one- and multi-class classification. 

Outlier detection and one-class classification both seek to 



 

 

8 

identify whether a sample belongs to one particular group or 

not. Matrix matching and multi-class classification both iden-

tify which source set a target sample is most similar to. The 

PRISM Z score can be easily altered to become one- and multi-

class classification algorithms, since the only change is that the 

PRISMy measures are not used. The PRISMX in the classifica-

tion context would likely be especially useful due to the inter-

pretability of the Z scores and ease of thresholding for rigorous 

one-class modeling (without any non-class samples to opti-

mize). 

CONCLUSIONS 

Composite PRISM Z scores balance two complementary per-

spectives, PRISMX and PRISMy, to fully characterize the simi-

larity of two domains. The PRISMX view focuses on exploring 

spectral matrix effected domain differences and PRISMy probes 

the domain differences using a model vector directing the com-

parison towards analyte differences. Presented in the SI is a the-

oretical framework to understand PRISM. 

Because PRISM is based on a statistical Z score, it is data set 

independent and interpretable Z score thresholds can be set. The 

PRISM Z score can be considered a similarity ranking relative 

to the mean source domain matrix effect. Samples with PRISM 

Z scores within 1σ of the source Z score mean 0 can be consid-

ered similar to the source (calibration set) and predictable, i.e., 

prediction accuracy is essentially guaranteed by the source 

model and the sample is not considered an outlier to the source 

sample set. As sample PRISM Z scores deviate further from 0, 

these samples are more likely less similar to the source domain 

and hence, predicted with less reliability. A PRISM Z score 

around -3 yields moderate potential inaccuracy and a PRISM Z 

score beyond -5 indicates a high likelihood of inaccurate pre-

dictions.  

Related to assessing the level of difference between source 

and target domains for model generalizability is assessing when 

model updating is needed. In multiple datasets it was shown that 

SPT degrades when the target sample PRISM Z scores indicate 

greater dissimilarity, but LMC with only a few target reference 

values is consistently accurate throughout the PRISM Z score 

range. NARE is shown to be a strong updating method if the 

analyte distributions are equivalent. Otherwise, inaccurate pre-

dictions are likely. The following guidelines naturally arise 

from these observations. If the PRISM Z score is less negative 

than -2 (within 2σ of 0), then LMC and NARE are often equiv-

alent to SPT and SPT would be favored because of its interpret-

ability. If the PRISM Z score is more negative than -2 and target 

samples are expected to have an equivalent analyte distribution 

as the source samples, then NARE can be used for accurate tar-

get sample analyte predictions. Otherwise, if the analyte distri-

butions are not matched, then LMC can be used. 

The only parameter requiring optimization with PRISM is the 

number of PLS LVs. By using the U-curve approach, PRISM is 

essentially an autonomous similarity measure. It is data set in-

variant and adaptable to adding and/or removing similarity 

measures to the user’s preference. Because PRISM holistically 

characterizes similarity from an abundance of similarity per-

spectives, there does not appear to be a need to identify an op-

timal weighting scheme for each measure. Thus, the user of 

PRISM needs no advanced chemometrics knowledge.  
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