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ABSTRACT

Entity matching (EM) is a challenging problem studied by differ-

ent communities for over half a century. Algorithmic fairness has

also become a timely topic to address machine bias and its soci-

etal impacts. Despite extensive research on these two topics, little

attention has been paid to the fairness of entity matching.

Towards addressing this gap, we perform an extensive experi-

mental evaluation of a variety of EM techniques in this paper. We

generated two social datasets from publicly available datasets for

the purpose of auditing EM through the lens of fairness. Our find-

ings underscore potential unfairness under two common conditions

in real-world societies: (i) when some demographic groups are over-

represented, and (ii) when names are more similar in some groups

compared to others. Among our many findings, it is noteworthy

to mention that while various fairness definitions are valuable for

different settings, due to EM’s class imbalance nature, measures

such as positive predictive value parity and true positive rate parity

are, in general, more capable of revealing EM unfairness.
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1 INTRODUCTION

Entity matching (EM) seeks to match pairs of entity records from

(the same or different) data sources that refer to the same real-world

entity. EM is very useful in many applications domains, including

(a) healthcare, where matching of patient records from different

healthcare facilities (e.g., emergency rooms, hospitals, etc.) can

be used to determine if they refer to the same real-world person;

(b) airline security, where airline passenger records are matched
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against no-fly list records to identify people who should be pre-

vented from boarding flights or should undergo additional screen-

ing; (c) e-commerce, where product records from different retailers’

websites can be matched to identify popular products and fraudu-

lent knockoffs; and so on.

EM is a challenging problem that has been extensively investi-

gated for over half a century by different communities, e.g., statis-

tics, databases (DB), natural language processing (NLP), and ma-

chine learning (ML), resulting in a variety of techniques proposed

in the literature for addressing this problem. These challenges arise

because entities in autonomous data sources can be represented

in a variety of ways (e.g., highly structured records versus textual

descriptions), using different conventions (e.g., the many ways in

which person names and postal addresses are represented), data

quality issues (e.g., misspellings, missing values), and so on. A

consequence is that, despite significant advances in recent years

(especially with recent neural techniques like Ditto [36]), EM tech-

niques still result in both false positives (non-matching record pairs

that are declared as matches) and false negatives (matching record

pairs that are declared as non-matches). These errors can have seri-

ous consequences in practice, as seen in the following examples.

Example 1: (No-fly list) Consider the airline security application,

which aims to identify passengers that are likely to be dangerous

(e.g. terrorists) for screening and potentially preventing them from

boarding the flights. Using a dataset of criminal records called the

no-fly list, passenger names (and other information) are matched

against the no-fly list for this purpose. False positives in airline

security can lead to significantly inconveniencing passengers. On

the other hand, false negatives can result in known terrorists being

permitted to board flights with undesirable consequences. Due to

historical biases, the no-fly list datasets could over-represent some

minority groups in comparison to society’s population distribution.

This, as we shall evaluate in our experiments, can result in higher

false positive rates for those demographic groups. Another potential

issue is that some demographic groups have more similar names.

Hence, passengers from those groups may have a higher chance of

having the same or similar information to those of known terrorists,

which in turn will cause higher false positive rates for them. □

In Example 1, getting (falsely) matched is harmful. We next show

an example where not getting matched can be harmful.

Example 2: (High-value customers list) Upselling to potentially

high-value customers is critical for many businesses such as the

fashion industry, airlines, and tourism. Suppose business𝐴 acquires



a list 𝐿 of names of high-value customers from other businesses.

Business𝐴 uses EM techniques to match its own customers against

list 𝐿 and sends exclusive offers to upsell to the matching cases in

order to prioritize them. Unlike the previous example, in this case,

over-representation in the high-value customer’s list 𝐿 is beneficial.

However, unlike the no-fly list, the privileged group(s) are likely

to be over-represented and minority groups under-represented in

the list 𝐿. As a result, a lower (true and false) positive match rate

is expected for minority groups and they end up receiving fewer

exclusive offers, resulting in biased advertising [4, 9, 40]. □

When such disparities (e.g., false positives) occur in a systematic

way for some demographic (sub-)groups, thereby disadvantaging

them over others, concerns about the fairness of EM techniques

arise. While the fairness of ML models has been the topic of much

recent work in the literature [12, 23, 25, 25, 28, 34, 61, 62, 64], not

much attention has been paid to the fairness of EM techniques.

In this paper, we seek to address this gap in the literature and

perform an extensive experimental evaluation and analysis of a

variety of EM techniques on a range of datasets through the fair-

ness lens. Traditionally, blocking may precede matching to reduce

the space of possible matching candidates from quadratic to sub-

quadratic, e.g., linear. A rich body of research focuses on blocking

algorithms [19, 35, 46, 47]. In this paper, our goal is to audit off-

the-shelf entity matching systems used in practice. As such, our

evaluation and analysis are performed on end-to-end matching

systems which may include their own built-in blocking algorithms.

Summary of Contributions: In summary, we make the following

technical contributions in this paper:

• Given the pairwise nature of EM, we propose the use of single

fairness and pairwise fairness to evaluate entity matchers. We

adopt 11 popular fairness measures from the literature for this

task and analyze their suitability for EM.

• We select a suite of 13 EM techniques (including 1 declarative

rule-based technique, 7 non-neural ML techniques, and 5 neural

ML techniques) and 6 benchmark datasets (including 2 structured

datasets, 2 textual datasets, and 2 dirty datasets) that have been

used in prior work on entity matching for fairness evaluation.

Using publicly available individual-level data, we also created

and used two semi-synthetic matching social datasets for fairness

evaluation. These datasets are shared publicly as benchmarks

for auditing the fairness of matchers.

• We evaluated all combinations of EM techniques, datasets, and

fairness measures and analyzed the outcomes. We classified

the results into four cases based on whether an (EM technique,

dataset, or fairness measure) yielded (i) accurate or inaccurate

matching results, and (ii) fair or unfair matching results.

Some of our findings in this study are as follows:

ś Our results on social data confirm matching unfairness when

(i) there are higher similarities among records of a certain

group, (ii) the representation of demographic groups in data

is biased.

ś Our results underscore that responsible EM requires train-

ing data that is representative of different possibilities from

various (demographic) groups.

ś While different fairness measures are valuable for different

settings, due to the class-imbalance property of EM, measures

such as positive predictive value parity and true positive rate

parity are more capable of revealing EM unfairness.

ś Significantly relying on proxy attributes such as name, can

cause unfairness in non-neural models. On the other hand, re-

lying on pre-trained language models and embeddings, or not

fully considering the dataset structure can cause unfairness

in neural matchers.

We use our findings and lessons learned to put together a set of

rules of thumb for responsible entity matching (Table 8).

2 RELATED WORK

Fairness in entity resolution (ER) has briefly been studied in the

literature. In [24], a constraint-based formulation for fairness is

proposed to mitigate bias in ER tasks by ensuring that all (sub-

)groups have the same opportunity to be resolved. Furthermore,

[38] proposes a (sub-)group-based training for different ethnicities

in order to increase both accuracy and fairness in SVM-based ER

which is consistent with our suggestion to use ensemble learning

for EM. Finally, in a parallel work [43], the authors propose an AUC-

based fairness definition for EM and ER tasks and try to resolve the

bias issues through a data augmentation solution. To the best of our

knowledge, we are the first to comprehensively audit off-the-shelf

entity matching models for fairness and propose proper measures,

datasets, and comparison angles fitting the problem settings given

the inherent differences with typical machine learning tasks.

3 FAIRNESS EVALUATION FRAMEWORK

3.1 Background

Given two sets of records 𝐴 and 𝐵, the EM problem is to identify

all correspondences between record pairs in 𝐴 × 𝐵 that correspond

to the same real-world entity. A correspondence 𝑐 = (𝑒𝑖 , 𝑒 𝑗 , 𝑠) inter-

relates two records 𝑒𝑖 and 𝑒 𝑗 with a confidence value 𝑠 ∈ [0, 1] that

indicates the similarity of 𝑒𝑖 and 𝑒 𝑗 or the confidence of a matcher

about 𝑒𝑖 and 𝑒 𝑗 referring to the same entity [33]. To decide whether

the record pair of 𝑐 = (𝑒𝑖 , 𝑒 𝑗 , 𝑠) is a match or non-match, matchers

often apply a threshold on 𝑠 [11, 60]. We decouple the choice of

a threshold from the outcome of the matching and consider the

outcome of an EM task as pairs of matching and non-matching

records. Formally, we consider the following EM problem:

Definition 1 (Entity Matching Problem). Consider two sets

of records𝐴 and 𝐵. For every pair of records (𝑒𝑖 , 𝑒 𝑗 ) ∈ 𝐴×𝐵, let 𝑦𝑖 𝑗 be

the ground-truth label indicating if 𝑒𝑖 and 𝑒 𝑗 refer to the same entity.

Given all pairs (𝑒𝑖 , 𝑒 𝑗 ) ∈ 𝐴 × 𝐵, the EM problem is to predict 𝑦𝑖 𝑗 with

a label ℎ𝑖 𝑗 . That is, ℎ𝑖 𝑗 refers to the decision of the matcher about the

label of 𝑒𝑖 and 𝑒 𝑗 (match or non-match).

In a fairness-sensitive setting, records are accompanied by

sensitive attributes (e.g. gender, country, race, etc.). Let A =

{𝐴1, . . . , 𝐴𝑛} be the sensitive attributes, 𝑑𝑜𝑚(𝐴𝑖 ) be the domain

of 𝐴𝑖 , and G = {𝑔1, . . . , 𝑔𝑚} be the set of all groups of interest,

i.e. G =

⋃︁

𝐴𝑖 ∈A 𝑑𝑜𝑚(𝐴𝑖 ). The mapping 𝐿(𝑒𝑖 ) relates a record to

its associated groups 𝐺𝑖 ⊆ G. In other words, 𝐺𝑖 is the group

that 𝑒𝑖 belongs to. Given two sets of records 𝐴 and 𝐵 and the set

[(𝑒𝑖 , 𝑒 𝑗 ,𝐺𝑖 ,𝐺 𝑗 , ℎ𝑖 𝑗 , 𝑦𝑖 𝑗 )]∀(𝑒𝑖 ,𝑒 𝑗 ) ∈𝐴×𝐵 , wewould like to audit the fair-

ness of a matcher with respect to groups.



3.2 Single and Pairwise Lens

3.2.1 Group Selection. The first step in auditing an entity matcher

for fairness is identifying meaningful (sub-)groups in sensitive at-

tributes. An input dataset to a matcherM includes record ids, the

value ((sub-)group) of each record for sensitive attributes, the deci-

sions ofM, as well as true labels for the record pairs. Depending

on the type, cardinality, and the number of sensitive attributes,

multiple fairness cases may happen that are presented in Table 1.

The space of groups for a single attribute with binary or multiple

values is the domain of the corresponding attribute. In multiple-

attribute settings, we can define intersectional subgroups, as the

cartesian product of group values. More details about intersectional

subgroups are provided in the technical report [50].

3.2.2 Single and Pairwise Fairness Evaluation. Given the pairwise

nature of EM tasks, there are two ways to audit entity matchers:

• Single Fairness: The performance of amatcher is evaluated for one

group 𝑠 against either record in a pair. Given a correspondence

𝑐 = (𝑒𝑖 , 𝑒 𝑗 , ℎ,𝑦) and a group 𝑠 of interest, 𝑐 is legitimate, if either

𝑒𝑖 or 𝑒 𝑗 belong to group 𝑠 .

• Pairwise Fairness: The performance of a matcher is evaluated

for a pair of groups 𝑠, 𝑠′ against both records in a pair. Given a

correspondence 𝑐 = (𝑒𝑖 , 𝑒 𝑗 , ℎ,𝑦) and a pair of groups (𝑠, 𝑠′) of

interest, 𝑐 is legitimate, if 𝑒𝑖 belongs to 𝑠 and 𝑒 𝑗 belongs to 𝑠
′, or

vice versa. From an encoding perspective, we concatenate the

encodings of groups 𝑠 and 𝑠′ into a vector 𝑐 and the encodings

(explained in the technical report [50]) of 𝑒𝑖 and 𝑒 𝑗 into a vector 𝑒

and validates vector 𝑒 belongs to 𝑐 with both directions of ⟨𝑠, 𝑠′⟩

and ⟨𝑠′, 𝑠⟩.

We consider the EM task to be symmetric in single and pairwise

fairness definitions. We remark that these definitions can be ex-

tended to ordered single and ordered pairwise fairness where the

groups are defined on left or right records. In this paper, we focus

on non-directional single and pairwise fairness.

3.3 Correctness

The correctness of a matcher measures how well its matching pre-

dictions conform with the ground-truth. Given a test dataset with

correspondences of 𝑡 = (𝑒𝑖 , 𝑒 𝑗 , ℎ,𝑦), where ℎ is a binary variable

indicating the result of EM (match or non-match) for records with

encodings 𝑒𝑖 and 𝑒 𝑗 , and𝑦 is a binary variable indicating the ground-

truth for matching, we profile predictions of ℎ using the numbers

of true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN), respectively. Unlike a classification task, in the

confusion matrix of a matching task, the result is counted both for

the group(s) of 𝑒𝑖 and the group(s) of 𝑒 𝑗 . For further explanations,

please refer to the technical report [50].

3.4 Fairness Measures

Similar to many of the existing works on algorithmic fairness and re-

sponsible data science [5, 15, 16, 25, 28, 42, 52, 54], we use the terms

bias and unfairness interchangeably to refer to when a matcher is

not fair. At a high level, fairness definitions can be viewed from

three perspectives: group, subgroup, and individual fairness [12].

The most granular notion of fairness is individual fairness that

requires similar outcomes for similar individuals [23]. The more

popular perspective of fairness, (sub)group fairness, requires simi-

lar treatment for different (sub)groups. A model/algorithm satisfies

some fairness constraints if it has equal or similar performance

(according to some fairness measure) on different (sub)groups. The

focus of this paper is on (sub)group fairness. Most of the group fair-

ness measures belong to one of the following four categories [6, 12].

(1) Independence requires independence of analysis outcome from

demographic groups. (2) Separation requires independence of the

outcome from demographic groups conditioned on the target vari-

able. (3) Sufficiency requires independence of the target variable

from demographic groups conditioned on the outcome. (4) Cau-

sation requires that in a counterfactual world, the decision would

not change had the individual belonged to a different demographic

group. We do not consider Causal fairness in our audit. In Table 2,

we present our suite of fairness measures, adapted from the notions

of fairness in classification [12], for auditing an entity matcher M

for a set G of (sub)groups.

3.5 Selecting Fairness Measures for EM
Depending on the context of an EM task at hand, proper fairness

measures should be employed. Besides, a major difference between

EM and regular classification tasks is that the input to EM tasks

is a pair of records. Due to its pairwise matching nature, class

imbalance is a distinguishing property of EM, compared to regular

classification tasks. To better explain this, let us consider a toy

example, where two data sources 𝐷 and 𝐷′ contain exactly the

same set of 𝑛 records. Each pair of records 𝑒 ∈ 𝐷 and 𝑒′ ∈ 𝐷′ is

passed as an input to an entity matcher. In this setting, only 𝑛 of

the 𝑛2 pairs are matches, and the others are non-matches. In other

words, the probability a random pair is a match is as low as 1
𝑛 . Class

imbalance is also a challenge in some of classification problems

but the degree of imbalance is often constant while in EM tasks,

it is as high as 𝑂 (𝑛). Indeed, blocking techniques [46] can help in

reducing the extreme class imbalance. Even after blocking, a high

class imbalance is expected for EM tasks.

Guide for Practitioners: Let us consider the fairness measures in

Table 2.Whichmeasures to choose depends on the downstream task

and the problem context. Therefore, practitioners should choose

measures depending on the importance of TPs (true match), FPs,

FNs, and TNs in the problem context. For example, among the

fairness measures, statistical parity does not consider the ground-

truth labels and requires equal match ratios from different groups,

independent of whether they really are a match or not. As a result,

this measure does not seem reasonable for deduplication tasks

using EM. On the other hand, it may be useful to ensure equal

representation of different groups when using EM for joining tables.

When the input to the EM task is imbalanced and most of the

pairs are non-matches, some measures are more capable of reveal-

ing the unfairness of matchers. First, note that even a matcher that

marks all pairs as non-matches has high accuracy in this setting.

Subsequently, accuracy parity may not reveal the unfairness. Simi-

larly, measures such as FPRP and TNRPmay fail to reveal unfairness

in detecting true matches. In these settings, the fairness measure

for successfully discovering these events is Positive Predictive

Value Parity (PPVP). Another important measure in this context

is True Positive Rate Parity (TPRP), a.k.a Equal Opportunity,

which focuses on correct match predictions among the (rare) true



Table 1: Fairness types based on the number and cardinality of sensitive attributes.

Type Description Example

Single Attribute w/ Binary Values Each record belongs to one of attribute: gender={male, female}

two groups in the attribute domain. group(e) = {female}

Single attribute w/ multiple Each record belongs to exactly attribute: gender={male, female, transgender, non-binary, other}

exclusive values one group in the attribute domain. group(e) = {non-binary}

Single setwise attribute Each record belongs to a subset of attribute: genre={Pop, Rock, Jazz}

values in the attribute domain. group(e) ={Pop, Rock}

Multiple attributes Groups could be either one or attributes: genre and gender

a combination of the three cases above. group(e) = {male-Pop, male-Rock, male-Jazz}

Table 2: Fairness measures. ℎ(𝑒, 𝑒′) is the output of a matcherM (match (‘M’) or non-match (‘N’)) and 𝑦 is the ground-truth.

Name Description Equation (∀𝑔𝑖 ∈ G)

Accuracy Parity (AP) requires the independence of matchers’s accuracy from groups 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = 𝑦 |𝑔𝑖 ) ≃ 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = 𝑦)

Statistical Parity (SP) requires the independence of the matcher from groups 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’ | 𝑔𝑖 ) ≃ 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’)

1True Positive Rate a.k.a Equal Opportunity; in the group of true matches 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’ |𝑔𝑖 , 𝑦 = ‘𝑀 ’) ≃ 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’ |𝑦 = ‘𝑀 ’)

Parity (TPRP) requires the independence of match predictions from groups

False Positive Rate in the group of true non-matches, requires 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’ |𝑔𝑖 , 𝑦 = ‘𝑁 ’) ≃ 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’ |𝑦 = ‘𝑁 ’)

Parity (FPRP) the independence of match predictions from groups

1False Negative Rate in the group of true matches, requires 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑁 ’ |𝑔𝑖 , 𝑦 = ‘𝑀 ’) ≃ 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑁 ’ |𝑦 = ‘𝑀 ’)

Parity (FNRP) the independence of non-match predictions from groups

True Negative Rate in the group of true non-matches, requires 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑁 ’ |𝑔𝑖 , 𝑦 = ‘𝑁 ’) ≃ 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑁 ’ |𝑦 = ‘𝑁 ’)

Parity (TNRP) the independence of non-match predictions from groups

1Equalized Odds (EO) in both groups of true matches and true non-matches 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’ |𝑔𝑖 , 𝑦 = ‘𝑀 ’) ≃ 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’ |𝑦 = ‘𝑀 ’)

requires the independence of match predictions from groups 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’ |𝑔𝑖 , 𝑦 = ‘𝑁 ’) ≃ 𝑃𝑟 (ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’ |𝑦 = ‘𝑁 ’)

1Positive Predictive among the pairs predicted as match 𝑃𝑟 (𝑦 = ‘𝑀 ’ |ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’, 𝑔𝑖 ) ≃ 𝑃𝑟 (𝑦 = ‘𝑀 ’ |ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’)

Value Parity (PPVP) requires the independence of true matches from groups

1Negative Predictive among the pairs predicted as non-match, requires 𝑃𝑟 (𝑦 = ‘𝑁 ’ |ℎ (𝑒, 𝑒′ ) = ‘𝑁 ’, 𝑔𝑖 ) ≃ 𝑃𝑟 (𝑦 = ‘𝑁 ’ |ℎ (𝑒, 𝑒′ ) = ‘𝑁 ’)

Value Parity (NPVP) the independence of true non-matches from groups

1False Discovery Rate among the pairs predicted as match, requires 𝑃𝑟 (𝑦 = ‘𝑁 ’ |𝑔𝑖 , ℎ (𝑒, 𝑒
′ ) = ‘𝑀 ’) ≃ 𝑃𝑟 (𝑦 = ‘𝑁 ’ |ℎ (𝑒, 𝑒′ ) = ‘𝑀 ’)

Parity (FDRP) the independence of true non-matches from groups

1False Omission Rate among the pairs predicted as non-match, requires 𝑃𝑟 (𝑦 = ‘𝑀 ’ |𝑔𝑖 , ℎ (𝑒, 𝑒
′ ) = ‘𝑁 ’) ≃ 𝑃𝑟 (𝑦 = ‘𝑀 ’ |ℎ (𝑒, 𝑒′ ) = ‘𝑁 ’)

Parity (FORP) the independence of true matches from groups

matches. These recommendations are consistent with our compre-

hensive experiments on several data sets, in ğ 5, where PPVP and

TPRP were the two measures that could reveal the unfairness of

the matchers.

We also note that some of the measures cannot be applied in pair-

wise fairness scenarios where conceptually, the equality of groups

restricts matching results. In some scenarios, two records with dif-

ferent groups can never be considered match in the ground-truth.

For instance, in a matching task defined between DBLP and ACM

publications, two records with different venues (after standard-

ization) are never a true match. More concretely, when pairwise

fairness is evaluated on non-overlapping groups, TPs and FNs are

always zero; hence, measures based on TPs and FNs become inap-

plicable.

1This measure is only meaningful for (a) single fairness and (b) pairwise fairness cases
when groups are overlapping.

3.6 Measuring Unfairness

Consider a fairness notion and a group𝑔𝑖 ∈ G. In a perfect situation,

the matcher should satisfy the parity (equality) between two prob-

abilities in the following form: ∀𝑔𝑖 ∈ G, 𝑃𝑟 (𝛼 | 𝛽,𝑔𝑖 ) = 𝑃𝑟 (𝛼 | 𝛽),

where 𝛼 and 𝛽 are specified by the fairness measure. For example,

for Positive Predictive Parity, 𝛼 is 𝑦 = ‘𝑀’ and 𝛽 is ℎ(𝑒, 𝑒′) = ‘𝑀’.

On the other hand, due to the trade-offs [31] between different

fairness notions and the impossibilities theorems [18], it is often

not possible to satisfy complete parity on all fairness measures. As

a result, the objective is to make sure that disparity (also known as

unfairness) is less than a given threshold for a matcher to be fair.

Given a fairness notion and a group 𝑔𝑖 ∈ G, one way to compute

disparity is to use subtraction [13], as follows.

𝐹
(𝑠 )

𝛼,𝛽
(𝑔𝑖 ) = max

(︂

0 , 𝑃𝑟 (𝛼 | 𝛽) − 𝑃𝑟 (𝛼 | 𝛽,𝑔𝑖 )
)︂

(1)

For example, for accuracy parity (𝛼 is ℎ(𝑒, 𝑒′) = 𝑦 and 𝛽 is null),

the disparity can be computed as follows.

𝐹
(𝑠 )

AP
(𝑔𝑖 ) = max

(︂

0 , 𝑃𝑟 (ℎ(𝑒, 𝑒′) = 𝑦) − 𝑃𝑟 (ℎ(𝑒, 𝑒′) = 𝑦 | 𝑔𝑖 )
)︂

(2)



Alternatively, given a fairness notion and a group 𝑔𝑖 ∈ G, the

disparity can be computed using division [25] , as follows.

𝐹
(𝑑 )

𝛼,𝛽
(𝑔𝑖 ) = max

(︂

0 , 1 −
𝑃𝑟 (𝛼 | 𝛽, 𝑔𝑖 )

𝑃𝑟 (𝛼 | 𝛽)

)︂

(3)

Guide for Practitioners: When evaluating the unfairness of a

matcher, the objective is to determine whether unfairness is less

than a given threshold. For example, the 20% rule [25] suggests

the threshold as 0.2. Note that if the accuracy for the group 𝑔𝑖
is higher than the average accuracy of the matcher, it is not con-

sidered as unfairness. Also, note that Equation 1 considers the

higher the probability, the better. Depending on fairness measures

(and application), the direction may be as the lower the proba-

bility, the better. For example, for FNRP, a lower probability of a

false negative is preferred. For such cases, one should consider

𝑃𝑟 (ℎ(𝑒, 𝑒′) = 𝑦 | 𝑔𝑖 ) − 𝑃𝑟 (ℎ(𝑒, 𝑒′) = 𝑦). As a result, for false nega-

tive rate (𝛼 is ℎ(𝑒, 𝑒′) = ‘𝑁 ’ and 𝛽 is 𝑦 = ‘𝑀’) the disparity can be

computed as

𝐹
(𝑠 )

FNRP
(𝑔𝑖 ) = max

(︂

0 , 𝑃𝑟 (ℎ(𝑒, 𝑒′) = 0 | 𝑦 = ‘𝑀’, 𝑔𝑖 )

− 𝑃𝑟 (ℎ(𝑒, 𝑒′) = 0 | 𝑦 = ‘𝑀’)
)︂ (4)

Similar to Equation 1, Equation 3 also considers the higher the

probabilities the better. For the cases (such as FNRP or FDRP) where

the lower probabilities are better, one should swap the numerator

and the denominator in the equation. Therefore, for false discovery

rate (𝛼 is 𝑦 = 0 and 𝛽 is ℎ(𝑥) = 1) the disparity can be computed as

𝐹
(𝑑 )

FDRP
(𝑔𝑖 ) = max

(︂

0 , 1 −
𝑃𝑟 (𝑦 = ‘𝑁 ’ | ℎ(𝑒, 𝑒′) = ‘𝑀’)

𝑃𝑟 (𝑦 = ‘𝑁 ’ | ℎ(𝑒, 𝑒′) = ‘𝑀’, 𝑔𝑖 )

)︂

Our proposal in this paper is agnostic to the choice of operation

for computing the disparities. Still, in our experiments, without any

preference, we use subtraction to compute the disparities.

4 ENTITY MATCHING APPROACHES

The existing techniques for EM fall into one of the following three

categories: 1) declarative rule-based, 2) ML-based, and 3) crowd-

sourcing-based approaches. The last class of techniques relies on

crowd-worker knowledge for EM tasks and we do not include

them in our analysis. From each of the remaining categories, we

select a few important matchers to be assessed for fairness. The

specifications of the evaluated matchers are presented in Table 3.

4.1 Rule-based Matchers

Rule-based approaches perform EM based on the conjunc-

tion/disjunction of a few logical predicates, each specifying a match-

ing condition. Each matching condition consists of a similarity mea-

sure (e.g., Hamming, cosine, Levenshtein, Jaccard, etc.) computed

between record pair columns, a comparison operator (e.g., <, =, >),

and a threshold value specifying the similarity value. Rule-based

matchers are scalable to large settings and provide results that are

explainable. However, they highly depend on human experts with

relevant domain knowledge to assist with rule specification. For

more information on rule specification in EM, we would like to

direct the reader to [44, 45, 53, 56].

4.2 ML-based Matchers

A crucial part of rule-based matching that affects the overall correct-

ness of the task is the selection and configuration of the rules used

for comparison. This task is difficult and laborious even for domain

experts. ML-based supervised EM approaches reduce the associated

manual labor by benefiting from the training data at hand. They

significantly reduce the rule discovery efforts by extracting fitting

parameters (e.g., model weights) from the data. However, preparing

the training data itself imposes an additional cost. Furthermore,

such techniques are computationally expensive (demanding a block-

ing phase to reduce the search space) [33] and are less explainable on

account of using black-box classification methods [10, 57]. Depend-

ing on the employed classification technique, ML-based matchers

belong to one of the non-neural or neural categories.

4.2.1 Non-neural Matchers. This category of matchers uses tra-

ditional ML algorithms such as decision tree, SVM, etc., to decide

whether or not a pair of records is a match. Since the number of

meaningful insights that can be extracted from data and fed as fea-

tures to the learning algorithm are limited to word-level similarity

metrics and TF-IDF scores, non-neural matchers may not perform

well for cases where datasets are less structured, and column values

are more in a textual format consisting of long spans of text.

4.2.2 Neural Matchers. Deep learning techniques have recently

shown promising results in NLP applications. Due to the growing

demand for matching textual data instances, it only makes sense

to adopt such techniques where the other approaches usually fall

short. Deep learning methods transform text into numerical values

using character/word embeddings often through pre-trained em-

bedding models such as word2vec [39], GloVe [48], fastText [14].

Due to the sequential nature of text, to better capture the semantics

of the data, sequence models such as RNN and its variants (e.g.,

LSTM, GRU, etc.), where prior sequences of inputs can affect the

current input and output, are utilized [11]. Further improvement

mechanisms such as attention [55], pre-trained language models

[21], domain knowledge injection, data augmentation, summariza-

tion, etc., deliver further insights into the models to make better

matching decisions. The superiority of neural matchers for textual

and dirty data sets has been pointed out in the existing research

[41]. However, there are associated challenges, such as high com-

putation costs and large training data requirements, making them

not suitable for every EM scenario.

5 EVALUATION AND ANALYSIS
5.1 Evaluation Plan

To evaluate the matchers for fairness, we investigate the perfor-

mance of matchers in terms of single and pairwise fairness for all

valid groups in the datasets w.r.t. a variety of fairness definitions. To

present a side-by-side comparison and visualization, we aggregate

the results based on the dataset and the type of fairness (i.e., single

and pairwise). Next, we look into some of the identified discrimi-

nated groups from different settings and investigate the reasoning

behind the unfair behavior of matchers.

5.1.1 Experimental Settings. We conducted the experiments on a

3.5 GHz Intel Core i9 processor, 128 GB memory, running Ubuntu.

The evaluation framework was implemented in Python. We ac-

cessed the source code of the entity matchers either through the

authors’ public GitHub or by directly contacting the authors.

5.1.2 Social Datasets. The concept of fairness holds significant

societal implications and carries more significance when studied

on the individual records. Unfortunately, public access to such data,



Table 3: List of EM approaches evaluated for fairness

Name Type Description

BooleanRuleMatcher [32] Rule-based Conjunction of rules defined using a similarity measure, a comparison operator, and a threshold value

between the record pair columns, part of Magellan framework

Dedupe [27] Non-neural Uses regularized logistic regression for agglomerative hierarchical clustering of records

DTMatcher [32] Non-neural Uses decision tree classifier for matching, part of Magellan framework

SVMMatcher [32] Non-neural Uses SVM classifier for matching, part of Magellan framework

RFMatcher [32] Non-neural Uses random forest classifier for matching, part of Magellan framework

LogRegMatcher [32] Non-neural Uses logistic regression classifier for matching, part of Magellan framework

LinRegMatcher [32] Non-neural Uses linear regression classifier for matching, part of Magellan framework

NBMatcher [32] Non-neural Uses naive bayes classifier for matching, part of Magellan framework

DeepMatcher [41] Neural Provides a variety of deep learning approaches such as aggregation-based, RNN-based, attention-based and,

hybrid (RNN+attention) to learn latent semantic features for a pair of records

Ditto [36] Neural Deep learning approach utilizing pre-trained transformer-based language models and optimizing

performance using domain knowledge injection, text summarization, and data augmentation techniques

GNEM [17] Neural One-to-set neural framework (unlike remaining pairwise solutions) benefiting from graph neural networks

HierMatcher [26] Neural Deep learning approach based on RNN, attribute-aware attention mechanism and cross attribute

token alignment, built on top of DeepMatcher framework

MCAN [63] Neural Deep learning approach based on RNN and multi-context attention mechanisms such as self-attention,

pair-attention, global-attention, and gating mechanism, built on top of DeepMatcher framework

Table 4: Overview of the datasets used in our analysis

Name Repository Domain Type Train Test % Pos. # Attr. Sens. Attr. Sens. Attr. Type

FacultyMatch Population Structured 271108 1084432 0.21% 2 country Single attr. w/ binary values

NoFlyCompas Population Structured 20122 75459 0.63% 3 race Single attr. w/ binary values

iTunes-Amazon Magellan Music Structured 321 109 24.7% 8 genre Single setwise attr.

Dblp-Acm Magellan Publications Structured 7417 2473 17.9% 4 venue Single attr. w/ multiple exclusive values

Dblp-Scholar Magellan Publications Dirty 225 100 19% 10 entry type Single attr. w/ multiple exclusive values

Cricket Magellan Sports Dirty 2277 1013 96.5% 20 batting style Single attr. w/ binary values

Shoes WDC Products Textual 24111 10717 10.3% 1 company Single attr. w/ multiple exclusive values

Cameras WDC Products Textual 5476 2434 17.2% 1 company Single attr. w/ multiple exclusive values

especially demographic information, is restricted owing to privacy

concerns. Therefore, we construct semi-synthetic datasets based on

two publicly available real-world datasets CSRankings and Com-

pas [2]. We selected these datasets based on our airline security

example discussed in the introduction. Particularly, we want to eval-

uate the fairness of the matchers under two conditions: (a) when

two demographic groups have different degrees of similarities in their

names, and (b) when there is an over-representation of some groups

in the data. CSRankings2 is a global ranking system that evaluates

computer science departments based on the scholarly research ac-

tivities of their faculty members from universities across the world.

CSRankings dataset is publicly available [3]. For each faculty, in

addition to their names, the dataset contains other information such

as affiliation country. Having observed various name similarities

between different geographical regions, we found this dataset as a

good candidate for evaluating (a). Compas, on the other hand, is

a public dataset of criminal records that has been widely used in

Fair ML research. In addition to names and other information, the

2csrankings.org

dataset contains demographic information for each individual. The

dataset over-represents Black/African-Americans, which makes

it a good candidate for evaluating (b).

To create our first EM dataset FacultyMatch based on CSRank-

ings, we do the following steps3: Using fullName and country for

matching, we focus on two groups of faculties working in Germany

de and China cn. Next, we perform a Cartesian product on the

sample and label each pair as a match if left and right records have

identical scholarIDs. Finally, we perturb the values of fullName

column for the right-side records which involve randomly adding,

removing, or replacing a random character in the cell.

Following our motivating example in the introduction, we create

NoFlyCompas, a no-fly list scenario based on Compas: First, using

firstName, lastName, and race for matching, we focus on indi-

viduals that are either Caucasian or Black/African-American.

We next create the no-fly list by taking a uniform sample

from Compas comprising of 48% Caucasian records and 52%

Black/African-American (the distribution of the two groups in

3Semi-synthetic data generators are available for public access in [29].



the Compas dataset). Then, in accordance with the racial distribu-

tion of the U.S. population, as reported by the Census Bureau Data

[1], we create a passenger table by taking a sample from Compas

that includes 80% Caucasian and 20% Black/African-American

individuals. Next, we perform a Cartesian product on the two ta-

bles and label each pair as a match if left and right records have

identical personIDs. Similar to the process for FacultyMatch,

the right records (that correspond to the no-fly list table) undergo

perturbation in the firstName and lastName columns.

5.1.3 Complementary Datasets. Data in the context of EM tasks

usually fall into one of the following categories:

• Structured: In this category of datasets, attribute values are

atomic, meaning that they cannot be broken into multiple values.

Furthermore, there are no missing values in the data.

• Dirty: This category of datasets is similar to structured datasets;

however, they include far too many random missing values in

their columns. Therefore an attribute value may appear for a

record while it does not exist for another one.

• Textual: Textual datasets are made of a single attribute per record

containing a textual description.

For the completeness of our experiments, we select several

datasets from each category on which we evaluate the matchers.

The complementary datasets are chosen from WDC [49] and Mag-

ellan [41] repositories which are the standard benchmark corpora

used in EM literature. Aside from the dataset type, we carefully

handpicked the datasets w.r.t. domain, sensitive attribute type, and

ground-truth class balance to cover a variety of possible settings.

For the textual datasets Shoes and Cameras, we extract the manu-

facturer of the corresponding product from the description as the

sensitive attribute. Table 4 shows the details of the selected datasets.

5.1.4 Entity Matchers. To cover the breadth of existing methods in

our experiments, we picked 13 EM tools from each of the discussed

approaches (1 rule-based, 7 non-neural, and 5 neural). The selection

criteria included the public availability and error-free execution

of the source codes. To ensure the satisfactory performance of the

entity matchers, we took the following steps:

BooleanRuleMatcher. We used the automatic feature generation

tool provided in the Magellan library to extract features based on

the similarity of the columns in the input table w.r.t. multiple dis-

tance measures. Next, we handpick some of the generated features

based on which we declare matching conditions. For each attribute,

the generator creates multiple features based on different distance

measures. Depending on the attribute involved in the generated

features, we either use the exact match of the attribute values (for

attributes with short and atomic values, e.g., year) or choose one of

the distance-based features (e.g. cosine similarity between left and

right attribute values) with a similarity threshold of greater than

0.5 (for attributes with longer values, e.g., paper title).4

Non-neural Matchers. For all non-neural matchers except for

Dedupe, we used the automatic feature generation tool in the Mag-

ellan library. Next, all of the generated features are fed to the models

for training. Dedupe’s active learning component requires manual

labeling of difficult record pairs, which is an uphill task. To bypass

this step, we converted the training data into Dedupe’s generated

4Details on the specified rules for each dataset are provided in the GitHub repository.

cache file format and utilized the entire training samples to keep the

experiment consistent with the other matchers. Finally, Dedupe did

not scale for FacultyMatch, NoFlyCompas, Shoes and Cameras.

Neural Matchers. We tuned the hyper-parameters of all the

matchers according to their results on the validation set. For Deep-

Matcher, HierMatcher, and Mcan we trained the models for 10

epochs with a batch size of 16 and used fastText [14] pre-trained

word embeddings. We used the hybrid model of DeepMatcher

that reportedly performs better than the other models. For Hier-

Matcher, we used the attribute-aware attention mechanism. For

Mcan, we utilized self-attention, pair-attention, global-attention,

and gating mechanisms that reportedly would achieve the best

results. For Gnem, we trained the GCN models for 10 epochs with

a batch size of 2 and 768 nodes at each layer. For Ditto, we trained

the models for 40 epochs with a batch size of 64 while using the

DistilBERT language model and optimizations such as data augmen-

tation, sequence summarization, and domain knowledge injection.

For all datasets except Cricket, we declare a pair of records

as a łmatchž if the similarity between the two is greater than 0.5.

Our choice of threshold value has a probabilistic interpretation

of having a higher likelihood of being a match rather than being

non-match. In other words, we follow a randomized rounding logic,

where non-integer values in range (0, 1) are rounded to the closer

integer. Moreover, we empirically observed that a reasonably high

accuracy occurs among all the matchers with a threshold over 0.5,

as shown in ğ 5.3.4. For the Cricket dataset, however, due to the

high similarity of all pairs, we had to choose a higher similarity

threshold of 0.9 because otherwise, all of the models would predict

all pairs as łmatchž, which would affect the models’ correctness.

As for the fairness threshold, we follow EEOC’s 80% rule [20], that

only 20% disparity is tolerated.

5.2 Results for Social Cases

5.2.1 NoFlyCompas. We begin our experiments by evaluating

matchers’ fairness on our NoFlyCompas dataset. Recall that NoFly-

Compas dataset is the matching between the no-fly list and the

passengers list, where the two lists have different distributions of

the demographic groups. In particular, while in the U.S. population

(passenger list) the White population (75%) is significantly higher

than the Black (13%), in the no-fly list Blacks are over-represented

and the White and Black ratios are almost the same. It is common

for a no-fly list to suffer from sampling bias. Table 5 includes the

breakdown of experiment results. All the non-neural matchers had

a perfect prediction performance, meaning that the TPR, FDR, and

disparity values were 1.00, 0.00, and 0.00 respectively.

Due to the disjoint nature of the binary-sensitive attribute race

in our comparison, single and pairwise fairness results are identical

and therefore we only report the single fairness results. The first

observation is the superiority of non-neural matchers over neural

matchers for this task, both on fairness and the overall performance.

The higher performance of these models for structured datasets

has previously been reported in [41], where the majority of non-

neural matchers performed on par with or outperform the neural

matchers. Next, by looking into the neural matchers in Table 5, we

see a significant disparity against African-American group. More

specifically, in terms of FDR the African-American to Caucasian



Table 5: NoFlyCompas results.All non-neural matchers had a

perfect prediction performance, with no FP or FN for any of

the groups. Unfair matchers in bold.

TPR Disparity FDR Disparity

Matcher Afr. Cauc. sub div Afr. Cauc. sub div

DeepMatcher 0.89 0.86 -0.03 -0.03 0.20 0.18 0.02 0.11

Ditto 0.76 0.82 0.06 0.08 0.31 0.22 0.09 0.41

GNEM 0.84 0.84 0.00 0.00 0.17 0.09 0.08 0.88

HierMatcher 0.72 0.74 0.02 0.10 0.22 0.16 0.06 0.38

MCAN 0.54 0.57 0.03 0.05 0.19 0.05 0.14 2.8

ratio is between 1.11 to 3.8 (280% larger) across different match-

ers. This translates to a significantly higher chance of preventing

an African-American person to board a flight or enter a country

compared to a Caucasian person.

To better illustrate the root cause behind the disparity, let us high-

light the following case that is falsely labeled as łmatchž by Ditto:

(left record) firstName: James lastName: Brown race:

African-American

(right record) firstName: Samanthai lastName: Browne race:

African-American

Some names are more common within certain demographic groups

than others. For example, last names that are very common among

black people include Brown, Jackson, Williams, Johnson, etc. Since

the no-fly list in our NoFlyCompas dataset over-represents the

Black group, for an individual in this group there is a higher chance

of getting falsely labeled as a match.

5.2.2 FacultyMatch. Consider the FacultyMatch dataset de-

scribed in ğ 5.1.2. There are 2,061 Chinese cn faculty members in

this dataset compared to 1,595 German de ones. Therefore, when

we create the EM dataset by performing the Cartesian product, the

group of Chinese faculty members has the larger population in the

dataset. To increase the population gap even wider, we remove 80%

of the non-match pairs that have a German faculty member either

on the right side or the left side. As a result, the number of Chinese

pairs becomes more than 6 times the number of German pairs in the

final sample ensuring proper representation. Next, using a variety

of matchers, we conduct the matching task on the data and audit

the matchers for fairness. Table 6 includes the breakdown of ex-

periment results. Overall, non-neural matchers outperform neural

matchers in terms of model performance and fairness. Within the

neural matchers we observe between 9% to 22%more prone to make

an erroneous positive prediction (match) for the cn group. Further

investigating the false-positives, we observed that those mostly

include names that are very similar in the English transcription. An

example of such cases (FP by Ditto) is brought in the following:

(left record) fullName: Qingming Huang country: cn

(right record) fullName: Qing-Hu Huang country: cn

Furthermore, the models make somewhere between 44% to 75%

more mistakes in terms of false-negative predictions for the cn

group. Due to the higher degree of similarities in Chinese names,

models in general become more sensitive to minor differences and

tend to mismatch. An example of such cases is the following:

(left record) fullName: LinLin Shen country: cn

(right record) fullName: Linlin phen country: cn

Table 6: FacultyMatch results. Unfair matchers in bold.

TPR Disparity PPV Disparity

Matcher cn de sub div cn de sub div

DeepMatcher 0.48 0.72 0.23 0.50 0.79 0.87 0.08 0.11

Ditto 0.59 0.85 0.26 0.44 0.77 0.94 0.17 0.22

GNEM 0.78 0.90 0.12 0.15 0.83 0.92 0.08 0.11

HierMatcher 0.47 0.78 0.31 0.66 0.78 0.89 0.11 0.14

MCAN 0.40 0.70 0.30 0.75 0.86 0.94 0.08 0.09

DTMatcher 0.95 0.90 -0.05 -0.05 0.89 0.98 0.09 0.10

LinRegMatcher 0.33 0.23 -0.09 -0.43 0.44 0.96 0.52 1.18

LogRegMatcher 0.95 0.88 -0.07 -0.08 0.93 1.0 0.07 0.07

NbMatcher 0.99 0.99 0.00 0.00 0.03 0.58 0.55 18.3

RfMatcher 0.96 0.89 -0.06 -0.08 0.98 0.99 0.01 0.01

SvmMatcher 0.95 0.87 -0.07 -0.09 0.94 0.99 0.05 0.05

More extensive results on the overall performance of the match-

ers across social datasets are provided in [50].

5.3 Comprehensive Results

This section provides a comprehensive evaluation of the matchers’

fairness and correctness using the benchmark datasets.

Summary of result: In summary, our results confirm the higher

accuracy (ğ 5.3.1) and fairness (ğ 5.3.3) of neural matchers for textual

and dirty data (Figure 9), and non-neural matchers for structured

data (Figures 4 and 5). While heavily relying on problematic proxies

hurts the fairness of non-neural matchers, not fully considering the

dataset structure and heavily relying on semantic similarities and

(biased) pretrained models hurts the fairness of neural matchers.

TPRP and PPVP were more capable of revealing matching unfair-

ness (ğ 5.3.2). Finally, we observed a higher fairness sensitivity of

neural matchers on matching thresholds (ğ 5.3.4).

5.3.1 Correctness. Due to space limitations, here we present a

summary of our correctness results. More extensive results on the

overall performance of the matchers across the datasets, fairness

and accuracy synergies, and detailed discussions can be found in the

technical report [50]. In summary, alignedwith [41], throughout our

extensive experiments, we observed that neural matchers are more

accurate than non-neural matchers on textual and dirty data. Modern

neural matchers draw on external knowledge by incorporating

language models, which helps a matcher to learn the relevance

of records despite the lack of structure and syntactic similarity in

text records. This result is consistent with what is reported by the

state-of-art matchers. On the other hand, our results corroborate

that non-neural matchers are more accurate than neural matchers on

structured data. Various combinations of correctness and fairness

exist in EM as some matchers have low accuracy and F-1 score,

while no unfairness issue is observed. This can be explained by

the low accuracy of these matchers for all groups across the board

which makes the disparity a low value.

5For the evaluation of ML-based matchers, we used random train/test splits from the
datasets published by Magellan [32]. To be consistent, all matchers are evaluated in
a standard framework against the same datasets. We acknowledge that these results
may not exactly match the accuracy results reported by matchers’ papers.
6Across all plots, Equalized Odds (EO) is the union of FPRP and TPRP rows. A matcher
that is appears either in row 3 or row 4 of any column is unfair from EO perspective.
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5.3.2 Fairness: Measure Types. Figures 2 to 9 show our fairness

evaluation results for all matchers across the benchmark datasets.

In each plot, the x-axis shows the groups (single or pairwise), while

the fairness measures are provided in the y-axis. The correspond-

ing marker of a matcher is placed in a specific cell, if that matcher

is unfair for the group shown in the cell’s column based on the

measure in its row. In the majority of our experiments, PPVP

and TPRP were the measures that discover unfairness the most

across all datasets and matchers. Nevertheless, it is not the case

that one measure fits all settings. When data has match/non-match

negative imbalance, i.e., the number of matching pairs is much

higher than non-matching pairs in the ground-truth, NPVP and

FPRP are the most appropriate measures. This is because while the

majority of pairs are positive instances, the failure of a matcher in

identifying non-matches makes it unfair to certain groups. Con-

sider the Cricket dataset that contains a larger number of pairs

of matching cricket batters than non-matching batters. As shown

in Figure 7, NPVP allows us to detect the unfairness of a matcher

such as LogRegMatcher to left-handed batters due to the large

number of FNs generated by this matcher. SP does not consider the

ground-truth labels and requires the independence of the matching

prediction from the groups. In other words, SP requires equal match

ratios from different groups, independent of whether they really are



Figure 9: Cameras: Single Fairness

a match or not. Then, when the ground-truth has (non-)match im-

balance for a group, that is, the ratio of matched pairs to unmatched

ones, is low, the SP measure falsely identifies a matcher as unfair

for that group. An example of this phenomenon can be observed

in Figure 4, for French-Pop group in the iTunes-Amazon dataset,

where SP unfairness is indeed due to the fact that the ground-truth

only contains TNs.

Some measures can be explained by others. For example, let us

consider the AP unfairness of Gnem on iTunes-Amazon for the

group of country genres, including Country, Cont. Country, and

Honky Tonk, reported in Figure 4. This matcher has low accuracy

for this group of genres because it identifies a small number of true

matches (i.e., has a low number of TPs, thus, suffers from TPRP).

Instead, the matchers falsely identify many pairs as non-match (i.e.,

have a high number of FPs, thus, suffer from NPVP). Similarly, we

observe thatHierMatcher demonstrates AP unfairness on iTunes-

Amazon for the group of country genres because it incurs a large

number of FPs, thus, suffers from FPRP unfairness.

Single unfairness can potentially propagate to pairwise fairness. In

Figure 7 and 8, we observe that the unfairness of LogRegMatcher

for the single Left Handed group incurs its unfairness for the pair-

wise Left Handed-Left Handed groups because most likely only a

left-handed batter can be matched with another left-handed batter.
5.3.3 Fairness: Matcher Types. Neural Matchers: Neural match-

ers demonstrate more unfairness on structured datasets than

non-neural matchers, as shown in Figures 4 and 5. One reason

is that matchers such as Ditto merge the content of different

attributes as a single block and use token similarity as a signal

for matching. However, for structured data, this technique may

lose the important information specified by the structure. In

particular, in the following example from Dblp-Acm dataset,

the two records have similar titles and are predicted as match

despite the fact that they are (i) written by different authors, (ii)

published in different venues, and (iii) published in different years.

(left record) title: lineage tracing for general data warehouse

transformations; author: jennifer widom , yingwei cui; venue:

VLDBJ; year: 2003

(right record) title: data extraction and transformation for

the data warehouse; author: case squire; venue: SIGMOD; year:

1995

One of the reasons Ditto was unfair for VLDBJ is that, similar to

the following example, it is common to publish extended versions

of previously published papers in this venue. As a result, after

merging different attributes as a block of text for each record,

similar titles and authors may cause enough similarity between the

two phrases that the Ditto mistakenly predicts them as a match.

(left record) title: efficient schemes for managing

multiversionxml documents; author: shu-yao chien , carlo

zaniolo , vassilis j. tsotras; venue: VLDBJ; year: 2002

(right record) title: efficient management of multiversion

documents by object referencing; author: shu-yao chien ,

vassilis j. tsotras , carlo zaniolo; venue: VLDB; year: 2001

External bias could be injected into neural matchers through the

use of language models and word embeddings. For example, Hier-

matcher uses language models and word embeddings to compare

the attribute similarities of records. As a result, it may mistakenly

match articles with similar titles. Below is an FP example for Hier-

Matcher. Both articles are published in the same year. But they

appear in different venues and are written by different authors.

Still, language models find sufficient similarity between titles to

persuade the matcher to label the records as a match. Perhaps this

is because of the similarity of words like łefficientž and łeffectivež

in the embedding space.

(left record) title: efficient and cost-effective techniques

for browsing and indexing large video databases; author:

kien a. hua , jung-hwan oh; venue: SIGMOD; year: 2000

(right record) title: effective timestamping in databases;

author: kristian torp , christian s. jensen , richard thomas

snodgrass; venue: VLDBJ; year: 2000

Another example we bring is from iTunes-Amazon dataset.

The following pair records is an FP by Ditto. First, both songs

are by Kenny Chesney. But more importantly, using a pre-trained

language model, Likes Me and Loves Me are considered (almost)

identical. As a result, the model mistakenly labeled the left and

right songs as a match. Interestingly, such cases happen to be more

frequent in genres such Country, resulting in FPRP unfairness for

those groups, as shown in Figure 4.

(left record) song: Tequila Loves Me; artist: K. Chesney

(right record) song: Likes Me; artist: K. Chesney

Our fourth example is from the Cameras dataset, where cam-

era records are matched based on their descriptions. A successful

matcher on a dataset that includes descriptions in many languages

requires extensive coverage of language models on various lan-

guages. For example,Mcan returns the following pair of records

as an FN, although the model and the brand match, and Prijzen is



the Dutch translation of word Prices. We suspect that this is due to

the poor coverage of word embeddings on the Dutch language.

(left record) title: Sony Cyber-shot RX100@en RX100 Prices

- CNET@en

(right record) tile: Sony Cyber-shot RX100 Zwart - Prijzen

@NL Tweakers@NL

One model does not fit all. In iTunes-Amazon dataset, an inter-

esting observation is that neural matchers perform poorly for the

class of country (because a neural matcher creates a curvy decision

boundary for all groups and fails for easy groups), while non-neural

matchers perform poorly for the class of rap (because non-neural

matchers make simple decision boundaries which may not work

for a difficult group such as the class of rap genres).

For setwise attributes, matchers demonstrate similar unfair behav-

ior on groups with overlapping semantics. In practice, we observe

that, in single setwise sensitive attributes, different sets of groups

highly overlap. This is sometimes due to the existence of a semantic

hierarchy of groups. For example, in the iTunes-Amazon dataset,

Honky Tonk and Cont. Country are subclasses of Country in the se-

mantic taxonomy of Wikipedia. As a result, we observe similar

behavior of matchers across these groups. For instance, Figure 4

shows extensive unfair behavior of neural matchers on country

music groups: Honky Tonk, Cont. Country, and Country. Following

the same trend, non-neural matchers perform poorly on groups

Hip-hop/Rap and Rap and Rap & Hip-Hop, suggesting these matchers

are unfair to rap and hip-hop singers.

Non-neural Matchers: The non-neural matchers universally

failed for the textual datasets (Camera and Shoes), with F-1 mea-

sures as low as zero in several cases. This underscores that these

matchers are not fit for unstructured data. Still, in some settings,

these matchers were both inaccurate and unfair for different groups,

as shown in Figure 9. Note that a matcher being fair in these cases

simply means that it equally failed for all groups, not that it is a

good choice. On the other hand, non-neural matchers performed

well for the structured datasets. Still, similar to the neural matchers,

all of them showed unfairness in multiple cases. Further investigat-

ing this unfairness, we realized that by minimizing the overall error,

these models put high weights on attributes that often indicate a

match. In other words, overall, those attributes are good proxies for

the ground-truth labels. However, when it comes to certain groups,

they may not be as good proxies, causing the model to underper-

form for those groups. For example, consider SvmMatcher for the

Dblp-Acm dataset, which was unfair for SIGMOD Rec. and VLDBJ.

First, we realized that both these groups frequently publish reports

or editorial articles with the same title but different years and au-

thors. Being trained to perform for all groups, the SvmMatcher

model assigned a high weight to the title, assuming that different

articles have different titles. Therefore, for examples like the one

below, it matched them, although different authors wrote those in

different years. This caused a higher ratio of false match detection

(FP) compared to the other groups resulting in PPVP unfairness.

(left record) title: guest editorial; author: alon y. halevy;

venue: VLDBJ; year: 2002

(right record) title: guest editorial ; author: vijay atluri

, anupam joshi , yelena yesha; venue: VLDBJ; year: 2003

Besides, in Figure 3 the unfairness due to the high FP for SIGMOD

Rec. and VLDBJ, caused pairwise unfairness for these two groups

Figure 10: The effect of matching threshold on fairness

(TPRP) and accuracy (TPR) of the matchers on iTunes-

Amazon dataset. Cell color specifies the unfairness and the

cell value indicates the accuracy.

as well. Note that this issue is not necessarily limited to the non-

neural matchers. For example, [22] also reports that an RNN-based

matcher heavily relied on the łtimež attribute when matching songs

in the iTunes-Amazon dataset. Lack of proper coverage [7, 8, 51]

from some groups is the reason the models do not get well-trained

for those. For example, in the Dblp-Acm case, the training data did

not include enough non-match cases with (almost) identical titles

to reduce the correlation of the title with the ground-truth label.

5.3.4 Matching Threshold vs. Fairness and Accuracy. In this experi-

ment, we study the sensitivity of the models’ fairness to the match-

ing threshold. Based on our previous results, we only focus on the

two measures of TPRP and PPVP. Figure 10 shows the number of

discriminated groups with respect to TPRP (as the color code) and

the overall TPR values (written in every cell) for different threshold

values on the iTunes-Amazon dataset. The complementary results

on other datasets are provided in [50]. It is evident in Figure 10 that

neural matchers are more sensitive to the choice of thresholds. For

example, while Ditto is completely fair at threshold 0.6, with a

small increase in the matching threshold (to 0.65) it becomes unfair

for 7 groups. To further investigate this empirical observation over

various datasets and both TPRP and PPVP, we define the thresh-

old sensitivity of each matcher on a dataset as the ℓ2 distance on

the number of groups a matcher is being unfair for between the

adjacent matching thresholds. The results are provided in Table

7. Larger values indicate more sensitivity to the matching thresh-

old. Aligned with our observation in Figure 10, the table shows

higher sensitivity (less robustness) for the neural matchers. Some

of the non-neural matchers have high sensitivity values for Cam-

eras dataset. However, the model accuracy was universally bad

for non-neural matchers on this dataset and regardless of fairness

those matchers are not reliable.

6 LESSONS AND DISCUSSION

Some of the lessons learned in this study include:

(i) Call for action to collect EM benchmarks on societal applica-

tions: Perhaps the most challenging burden when auditing EM

techniques from the fairness perspective is lack of proper bench-

mark datasets. Although the EM community already has some



Table 7: Sensitivity of fairness measures w.r.t. varying match-

ing threshold. Cells with gray values show low-accuracymod-

els that did not perform well regardless of fairness. Values

highlighted in orange and red show moderate and high de-

grees of sensitivity.
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Dblp-Acm 0 0 0 0 0 0 0 2 0 0 0
Dblp-Scholar 0 0 0 0 0 1 2.4 2 0 2.2 2.4
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iTunes-Amazon 0 0 0 0 2 0 1.7 5.2 0 2 1.4
Cameras 1 0 5.8 4.5 4.6 3.7 3.4 2.4 1.7 4.6 3.6
Dblp-Acm 0 0 0 0 0 2.6 0 0 0 0 0
Dblp-Scholar 0 0 1 1 1 1.4 1 1.4 0 2.4 1

benchmarks [32, 58], a thorough audit of existing and future EM

techniques requires benchmark entity-matching data for societal

applications. In this paper, we took the first steps by creating and

publishing two semi-synthetic social datasets using publicly avail-

able real datasets.NoFlyCompas and FacultyMatch are generated

for auditing the fairness of EM techniques when some groups are

over-represented in data and when two demographic groups have

different degrees of similarity in their names.

(ii) Over-representation and name similarity in social data: Group

over-representation and higher similarity degrees for specific

groups are common in social data. Experiment results on our social

datasets confirm the general unfairness of entity matchers under

these conditions. Interestingly, under the group over-representation,

we observed the superiority of non-neural matchers in terms of

model performance and accuracy. Over-representation in general

can increase the chance of finding similar non-matches for an en-

tity, which can be falsely labeled as a match. Likewise, when names

in one group are more similar, there is a higher chance of mis-

takenly labeling non-matching tuples from that group as a match.

Considering more (unbiased) attributes can help in such situations.

(iii) Unbiased and representative training data: Responsible training

of EM techniques requires access to unbiased data with proper cov-

erage of different groups and possible cases. Insufficient coverage of

different groups can bias the models in favor of some of the groups,

making the model unfair. In particular, given the class imbalance

nature of EM tasks, it is important to ensure enough representatives

from different groups in both (match/unmatch) classes.

(iv) Proper fairness measures for EM: Different fairness definitions

are valuable for different settings. Still, due to its pairwise matching

nature, class imbalance, with most of the records being non-match,

is a distinguishing property of EM. In this setting, positive predictive

value parity and true positive rate parity a.k.a. equal opportunity is

more capable of revealing the matchers’ unfairness. Finally, some

of the unfairness of a matcher, such as AP, could be explained using

other measures, such as TPRP.

(v) Proper matching techniques for different settings: Different match-

ing techniques perform differently for different dataset types. At a

high level, non-neural matchers fail for textual datasets while per-

formingwell for structured data. Lack of proper coverage in training

Table 8: Rules of Thumb for Responsible Entity Matching.

Rules of Thumb
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ś Non-neural matchers are preferred
ś Obtain attributes with min correlation with sensitive attributes
ś Minimize Representation bias in training data
ś Make sure the model is not putting high weights on only a few attributes

T
ex

tu
a
l&

d
ir
ty

d
a
ta
se
ts

ś Neural matchers are preferred
ś Obtain additional (unbiased) features
ś Use unbiased pretrained models
ś Minimize Representation bias in training data
ś Considering their sensitivity, try out different matching thresholds
and select the most fair/accurate one

Fairness measure: TPRP and PPVP are usually preferred (see ğ 3.5 and ğ 5.3.2)
Use an ensemble of matchers (for single sensitive attributes with exclusive
values): construct a set of matchers; for each group use the matcher with best
performance on it (using separate test sets for each group)

data can bias these models to significantly rely on attributes (such

as name) that are highly correlated with the ground-truth label but

may bias their performance for the minority groups. Neural match-

ers, on the other hand, generally perform well for different dataset

types. Still, (a) using pre-trained language models and embeddings,

(b) relying less on the structure of data caused these matchers to

be unfair for different settings. The fairness of neural matchers is

more sensitive to the choice of the similarity threshold, as small

changes in the threshold value can significantly change their fair-

ness. Therefore, it is important to identify the right threshold to

find the most fair/accurate one.

(vi) Ensemble learning for fair EM: We observed that, in a fixed

dataset, some groups needed matchers with more complex decision

boundaries, while others required matchers with simpler decision

boundaries. As a result, adapting either of the neural/non-neural

matchers would show unfairness for some groups. This observation

underscores the need for techniques such as ensemble learning to

consider a range of matchers with different properties to assure

similar performance across different groups. Specifically, for cases

with a single sensitive attribute with exclusive values, we recom-

mend to train a set of matchers, for each group identify the one that

performs the best, and use it for that group. This helps to maximize

the performance for the under-performing groups. Note that this

is different from the ensemble-learning-based approaches, since

their goal is to improve the overall EM accuracy [37], not reduc-

ing unfairness. For instance, Jurek et al. apply ensemble learning

based on feature selection [30], while Yu et al. create an ensemble of

models based on different similarity metric schemes [59]. We leave

designing ensemble EM techniques for fairness as future work.

Rule of Thumb: Following our findings and the lessons learned

in this study, we would like to conclude the paper by Table 8,

which provides some actionable insights and rules of thumb for

responsible entity matching.
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