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These inline references, if available, are useful for

training medical image analysis systems.

We introduce MEDICAT, a dataset of medical

figures, captions, subfigures/subcaptions, and in-

line references that enables the study of these fig-

ures in context.Our dataset includes compound fig-

ures (75% of figures) with manual annotations of

subfigures and subcaptions (7507 subcaptions for

2069 compound figures). Using MEDICAT, we

introduce the task of subfigure-subcaption align-

ment, a challenging task due to high variation in

how subfigures are referenced. We provide a strong

baseline model based on a pre-trained transformer

that obtains an F1 score of 0.674, relative to an

estimated inter-annotator agreement of 0.89. MED-

ICAT is also richer than previous datasets in that

it includes inline references for 74% of figures in

the dataset. We show that training on references

in addition to captions improves performance on

the task of matching images with their associated

descriptions. By providing this rich set of relation-

ships between figures and text in papers, our dataset

enables the study of scientific figures in context.

2 The MEDICAT Dataset

We extract figures and captions from open access

papers in PubMed Central using the results of

Siegel et al. (2018). To add inline references, we

match extracted figures to corresponding figures

in the publicly-available S2ORC corpus (Lo et al.,

2020), then extract inline references for these fig-

ures from the S2ORC full text (see Appendix A for

details). We exclude figures found in ROCO (Pelka

et al., 2018) to create a disjoint dataset, though we

identify and release inline references for ROCO

figures.

Medical image filters We define medical images

as those that visualize the interior of the body for

clinical or research purposes. This includes images

generated by radiology, histology, and other visual

scoping procedures. To identify medical images,

we first use a set of keywords describing medical

imaging techniques (such as MRI or ultrasound –

see Appendix B) to match across the caption and

reference text, discarding images where a keyword

does not appear. After filtering by keyword, some

images are still non-medical, e.g., some are natural

images of medical imaging equipment, or graphs

showing image-derived measurements. To remove

non-medical images, we apply an image classifier

(ResNet-101 (He et al.) pretrained on ImageNet

Dataset Statistics MEDICAT

Number of papers 131,410
Number of figures 217,060
Avg. figures per paper 1.7
Avg. inline refs. per figure 1.4
Avg. caption length (tokens) 74.2
Pct. with reference text 74%
Avg. reference length (tokens) 67.3
Avg. Jaccard similarity btwn cap. and ref. 23%
Pct. medical figures* 93%
Pct. with subfigures* 75%

Table 1: Dataset statistics. Items marked with * are es-

timated on a sample of 2327 figures by four annotators.

(Deng et al., 2009)) similar to Ionescu et al. (2018).

The classifier is trained on the DocFigure dataset

(Jobin et al., 2019), which contains 33K figures

from scientific articles annotated to 28 classes like

“Medical” or “Natural” images . We keep an image

if “Medical” is in the top K = 4 labels predicted

by the classifier (precision: 96%, recall: 67%).2

Dataset statistics Table 1 provides statistics on

MEDICAT. We note that the images in MEDICAT

are diverse; through manual assessment of 200 im-

ages, we estimate that the dataset contains primar-

ily radiology images (72%), along with histology

images (13%), scope procedures (3%), and other

types of medical images (7%).

Manual Annotations We collect bounding

boxes for subfigures and annotations of correspond-

ing subcaptions for 2069 figures, resulting in 7507

subfigure-subcaption pairs. These annotations were

collected in two phases. In the first phase, five anno-

tators (with various degrees of biomedical training,

ranging from none to graduate level, though no an-

notators are medical doctors) marked subfigures in

each figure and wrote single-span subcaptions for

each subfigure when possible. To compute inter-

annotator agreement, three annotators annotated

the same set of 100 figures. An agreement score

is calculated by taking every ordered pair among

these three annotators, treating one as gold and one

as predictor, and computing the metric described in

§3. An average is computed over all pairs, giving

an agreement score of 0.828. In the second phase,

two of these annotators reviewed the existing anno-

tations and revised subcaptions (and in some cases,

subfigures) with the option of having multi-span

2
K is tuned via manually annotating a set of 200 randomly

selected images from the keyword-filtered results, which is
also used to compute the provided precision and recall.
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subcaptions. The inter-annotator agreement in the

second phase, computed on 100 figures, is 0.89.3

3 Subfigure and Subcaption Alignment

A major challenge of scientific figure understand-

ing is the prevalence of compound figures (around

75% in MEDICAT are compound). As discussed

in Section 1, matching subfigures with their cor-

responding subcaptions can be useful for image

retrieval. A potential use case is seen in Wang

et al. (2020), who use a subfigure-subcaption align-

ment model to extract relationships for a COVID-

19 knowledge graph. Though compound figure

segmentation is studied by De Herrera et al. (2016),

they only assign to each subfigure a label describ-

ing image modality/type, ignoring other informa-

tion in subcaptions. You et al. (2011) build a dataset

and system to detect subfigure labels (e.g. A/B/C)

but ignore other ways in which subfigures are refer-

enced in captions (e.g. spatial position), and their

dataset is small (515 figures).

Task Motivated by this problem, we propose the

task of subfigure to subcaption alignment. Given a

possibly compound figure and its caption, the task

entails identifying (1) each subfigure and (2) the

corresponding subcaption for each subfigure. We

define a subfigure’s subcaption to be the set of to-

kens in the caption that reference/describe the sub-

figure but do not describe all subfigures.4 This task

is challenging because subfigures are referenced

in a variety of ways in our dataset, e.g., described

in pairs or groups, referenced by spatial position

(e.g. upper left or second column), or in multiple

subcaption spans within the same caption. Figure 2

displays a challenging example.

Model For subfigure detection, we use the Faster

R-CNN object detector (Ren et al., 2015) with a

ResNet-50 (He et al.) backbone pre-trained on

ImageNet (Deng et al., 2009). For figures without

subfigure annotations, we set the gold annotation

as a single bounding box over the entire figure.

We propose and implement two models for sub-

caption extraction and alignment. In both models,

a CRF is applied to the output of a BERT encoder

(Huang et al., 2015; Devlin et al.). This model

3For the annotator agreement calculation in the second
phase, annotators were provided the subfigures annotated in
the first phase but were not provided any subcaptions written
in the first phase.

4We also typically exclude scale/measurement informa-
tion.

Figure 2: Subfigure to subcaption alignment is chal-

lenging for this figure because the subfigures are refer-

enced by spatial position in the right-to-left order. Cor-

responding subfigures and subcaptions are indicated by

color. Figure and caption adapted from Ohkura et al.

(2015).5

is used frequently for named entity recognition

(NER), and we use it here to extract spans from

the caption.6 The first model (Text-only CRF) seg-

ments the caption into subcaptions with only the

caption as input, then heuristically aligns the sub-

captions to detected subfigures. To train this model,

we iterate over gold subcaptions and extract for

each subcaption the longest sub-span that does not

overlap with spans extracted for previous subcap-

tions. After extracting subcaptions, we heuristi-

cally match subcaptions with subfigures as follows.

We sort subcaptions by the order in which they

occur in the caption. We sort subfigures first by

vertical position (row), then by horizontal position

(column).7 We pair each subfigure with the cor-

responding subcaption in this sorted order. If the

number of predicted subfigures exceeds the number

of predicted subcaptions, we use the last predicted

subcaption for all remaining subfigures.

In the second approach (Text+Box Embedding

CRF), the model takes as input a subfigure bound-

ing box, which is projected to a box embedding and

concatenated with the token encodings produced

by BERT. The tag probabilities for each token are

predicted by a multi-layer perceptron over these

concatenated encodings. Since this model predicts

subcaptions separately for each subfigure, it is capa-

ble of extracting multi-span subcaptions, in contrast

to the first model.

Evaluation We find for each gold subfig-

ure G the predicted subfigure P that maxi-

mizes IOU(G,P ), where IOU(·, ·) denotes the

intersection-over-union between two regions (Ever-

ingham et al.). If the IOU is less than the threshold

6In NER, the model must also predict the type of each
span; here we treat each span as having the same type.

7Two subfigures are in the same row if the vertical coordi-
nates of their top left corners differ by < 50 pixels.
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Model Validation
F1

Test
F1

Oracles + alignment heuristic 88.0 90.8
Oracles (single-span) + alignment
heuristic

78.1 75.5

Gold subfigure oracle

Text-only CRF w/o pretrained weights 47.8 43.3
Text-only CRF w/ pretrained weights 71.0 66.9
Text+Box Embedding CRF 74.1 71.9

Using predicted subfigures

Text-only CRF w/o pretrained weights 44.7 40.3
Text-only CRF w/ pretrained weights 66.4 61.3
Text+Box Embedding CRF 69.9 67.5

Table 2: Results for subfigure-subcaption alignment.

Oracles + alignment heuristic uses gold subfigures and

gold subcaptions with the alignment heuristic. Ora-

cles (single-span) + alignment heuristic uses gold non-

overlapping single-span subcaptions extracted as in the

training of the SciBERT CRF model.

0.5, the model obtains a score of 0 for G. If the IOU

exceeds 0.5, the model’s score for G is equal to the

F1 between the set of tokens in the gold subcaption

for G and the set of tokens in the predicted sub-

caption for P ignoring non-alphanumeric tokens.

Gold subfigures without subcaptions are excluded

from evaluation. The overall score is defined as

the average over the scores of all gold subfigures.

We also report mean average precision (mAP) for

subfigure detection based on the COCO (Lin et al.,

2014) evaluation.

Experiment results We split our data into train

(65%), validation (15%), and test (20%) sets ran-

domly.8 For subfigure detection, we obtain a mAP

score of 79.3 on the test set. For subcaption extrac-

tion, we use SciBERT (Beltagy et al., 2019) tok-

enization because compared to the vanilla BERT

vocabulary, the SciBERT vocabulary includes more

of the words in the captions, resulting in a smaller

number of wordpieces when using SciBERT tok-

enization. We also experiment with initializing the

BERT encoder with SciBERT pre-trained weights.

See Appendix C for further details such as hyper-

parameter tuning.

Table 2 shows results for our baseline models

on the subfigure-subcaption alignment task. We

report results with a gold subfigure oracle to sepa-

rate the error caused by subfigure detection from

that caused by subcaption extraction. Initializa-

tion with SciBERT pre-trained weights improves

8All examples used for computing the annotator agreement
score in the second annotation phase are placed in the test set.

performance considerably, consistent with previ-

ous results on various biomedical NLP tasks. The

maximum achievable performance with the align-

ment heuristic (using gold subcaptions and gold

subfigures) is also given, indicating that alignment

accounts for a large portion of the error. The oracle

performance with single-span subcaptions (of the

kind that can be predicted by the CRF model with

the heuristic) is far below the unconstrained oracle

performance, showing that a substantial number of

subfigures require multi-span subcaptions. Finally,

the box embedding model consistently outperforms

the models using single-spans and the alignment

heuristic..

Error Analysis To understand the sources of er-

ror in the Text+Box Embedding CRF with subfig-

ure oracle, we analyze 50 subfigures in the vali-

dation set for which the system obtains F1 < 0.5.

Most errors fall into these categories (not mutually

exclusive): (a) predicted subcaption describes a dif-

ferent subfigure (46%), (b) predicted subcaption is

empty (22%), (c) missing words in the predicted

subcaption (14%), and (d) annotation errors (6%).

Type (a) errors indicate that alignment (as opposed

to subfigure/subcaption segmentation) is a major

source of error.

4 Image-text matching

To demonstrate the utility of inline references in

MEDICAT, we conduct experiments in image-text

matching (Hodosh et al.), a task that has been stud-

ied extensively in the domain of natural images.

Given a piece of text, the system’s goal is to return

the matching image from a database. Like image

captioning, this task assesses the model’s ability to

align the image and text modalities, but the match-

ing task avoids the issue of evaluating generated

text (Hodosh et al.).

In the context of medical figures and captions

from papers, we attempt to retrieve a corresponding

figure given its caption. Since our dataset provides

more than one textual description of each image

via inline references, we analyze the benefit of

using references as additional training data, and

demonstrate improvements over models trained on

captions only. At test time, only captions are used

to enable a fair comparison of the models. We use a

model similar to Chen et al. (2020) with a different

token type embedding for inline references.
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Model R@1 R@5 R@10 R@20

Captions 7.60.59 261.6 411.6 581.3

Caps + Refs 9.40.38 301.2 441.7 601.2

Table 3: Results for image-text matching. Results show

mean percent accuracy with error in subscript over n =
5 random seeds. The error is the standard error σ/

√
n,

where σ is the standard deviation over random seeds.

Linking with ROCO ROCO is a dataset of

non-compound radiology figures and captions ex-

tracted from literature (Pelka et al., 2018).9 The

ROCO dataset consists of around 82K figures

(train/validation/test splits: 65K, 8175, 8177 re-

spectively). We identify papers associated with fig-

ures in the ROCO dataset and extract the associated

inline references, and release these as part of MED-

ICAT. We find inline references for approximately

25K figures in the ROCO dataset (approximately

21K in train and 4K each in validation and test

splits).

Model Our model follows Chen et al. (2020)

with a few modifications. We tokenize the in-

put text and pass the token embeddings through

a BERT encoder (Devlin et al.). The BERT en-

coder is initialized with SciBERT weights, and we

use SciBERT uncased tokenization (Beltagy et al.,

2019). Pre-trained weights improve performance

on the image-text matching task considerably. We

insert the visual representations, projected into the

hidden state dimensionality, as extra hidden states

in the middle of the encoder (layer 6). In contrast to

Chen et al. (2020), we do not use an object detector

to find regions of interest in the image, since ob-

jects tend to be sparse in medical images. Instead,

the visual representation is obtained by an affine

transformation of the feature vector produced for

the entire image by a ResNet-50 network pretrained

on ImageNet.10 The other noteworthy difference

in our model is that we use different token type em-

beddings for inline references and captions, since

inline references are different in style and content

from captions. During training, for each piece of

text, the model is given the correct image as well

as two other images (negative images) sampled uni-

formly at random from all images. The training

objective is choosing the correct one of these three

9The ROCO dataset can be accessed at
https://github.com/razorx89/roco-dataset.

10We also add another embedding to this image representa-
tion (similar to the position embedding for tokens).

images. The validation accuracy is measured on the

same task, except 20 negative images are sampled

for each piece of text. Details on hyperparameter

tuning and training are provided in Appendix D.

Experiment results Experiments are performed

on ROCO using the provided train/validation/test

splits (Pelka et al., 2018) (Table 3). We present

results on 2000 randomly sampled test set im-

age/caption pairs due to the time complexity of

evaluation. As in previous work, we use the Re-

call@K metric, which gives the proportion of ex-

amples for which the system’s rank of the correct

image is in the top K. Training with references im-

proves upon training with captions alone. Since

we were only able to extract associated inline refer-

ences for 33% (21K) of the training images, we ex-

pect a greater improvement if references were avail-

able for more figures. As documented in Appendix

D, the minimum and maximum performance over

random seeds are also higher when training with

both captions and references than when training

with captions only.

5 Discussion

MEDICAT allows medical figures to be studied in

the context of their source papers by providing links

between subfigures and subcaptions and between

figures and inline references. We propose the task

of subfigure-subcaption alignment and provide a

strong baseline model, and we demonstrate the

utility of inline references for image-text matching.

MEDICAT can also benefit other medical vision-

language tasks (e.g. captioning, VQA). Pre-

training techniques that have worked well for these

problems in the general domain by using large num-

bers of aligned text and images (Zhou et al., 2020)

can leverage the aligned data in MEDICAT. The

techniques we use to construct MEDICAT can also

be extended beyond “medical images” to study the

relationships between figures and text in scientific

documents from other domains.
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For the SciBERT+Box Embedding model, at test

time, we compute a probability for each span by

adding the model’s computed probabilities of the

start and end tokens of the span. Then we select the

span with the highest probability among all valid

spans, where a valid span has an end token that

does not precede the start token.

For all models we train with early stopping,

where training is stopped when validation perfor-

mance has not improved in the last five epochs.

For subfigure detection models, we use the Adam

optimizer (Kingma and Ba, 2014), and we use a

batch size of 10. We tune the learning rate and

no other hyperparameters. The method used for

hyperparameter search is random search. The learn-

ing rate is sampled from a log-uniform distribution

over (1e−5, 1e−3). We perform 10 trials for hy-

perparameter search and choose the model with the

highest mAP score on the validation data, which

has a learning rate of ≈ 2.22e−4. The number of

parameters in this model is 41.4M parameters.

For subcaption extraction models, we use the

BERT Adam optimizer (Devlin et al.), and we use

a batch size of 8. We tune the following hyper-

parameters: learning rate, weight decay (not ap-

plied to bias parameters or LayerNorm parameters),

and dropout rate. Our method for hyperparame-

ter search is random search, where learning rate

is sampled from a log-uniform distribution over

(5e−6, 1e−4), weight decay is sampled uniformly

from (0, 1), and dropout is sampled uniformly from

(0, 0.5). For each model, we perform 30 trials for

hyperparameter search. For the CRF Tagger mod-

els, the validation metric is the span F1 (precision

is the proportion of predicted spans that occur in

the gold subcaptions, and recall is the proportion

of gold spans that occur in the predictions). For

the box embedding model, the validation metric is

the word F1 between the predicted subcaption for

the given box and the gold subcaption for that box.

These validation metrics were used to select hy-

perparameter choices and were used also for early

stopping as described above. The hyperparameter

settings that yielded the best performance for each

model are given below. The number of parameters

for each model is also provided.

CRF Tagger without SciBERT-pretrained

Weights Learning rate: 2.47e−5, Weight decay:

0.574, Dropout: 0.499, Number of parameters:

109.9M

CRF Tagger with SciBERT-pretrained Weights

Learning rate: 2.60e−5, Weight decay: 0.770,

Dropout: 0.182, Number of parameters: 109.9M

SciBERT with Box Embedding Learning rate:

1.34e−5, Weight decay: 0.699, Dropout: 0.404,

Number of parameters: 221.1M

Computing infrastructure Experiments are per-

formed (1) on systems running Google Kubernetes

Engine (container OS) that each have 16 CPUs,

104 GB of main memory, and 1 P100 GPU (16

GB memory), and (2) on a system running Ubuntu

18.04 that has 64 CPUs, 512 GB of main memory,

and 8 RTX 8000 GPUs (48 GB memory). Only 1

GPU was used in each experiment.

Running Time The following running times

were obtained on the second type of system de-

scribed above, each using a single RTX 8000 GPU.

For each subcaption extraction, we give the time

for predicting subcaptions on our validation set of

312 figures with a batch size of 1. These estimates

include the time for loading data. For SciBERT

with Box Embedding, recall that the model is run

separately for each subfigure.

CRF Tagger without SciBERT-pretrained Weights:

13 seconds

CRF Tagger with SciBERT-pretrained Weights: 13

seconds

CRF Tagger with Box Embedding: 51 seconds

The average prediction time for the subfigure

detection model with a batch size of 1 is 77 seconds

for our validation set of 316 figures.

For the final set of experiments, approximately

79.4 GPU hours were used for training the subfig-

ure and subcaption models. Note that this amount

includes hyperparameter tuning for the final set of

experiments but does not include previous experi-

ments that were done (e.g. during model develop-

ment).

D Image-text Matching model

Here, we provide further experimental details for

the image-text matching experiments. We use the

Adam optimizer (Kingma and Ba, 2014), with a

batch size of 16. We fix the learning rate to be

1e−5 and the dropout rate to be 0.1. Hyperpa-

rameter tuning was used to select the layer to in-

sert the visual representation using data from the

ImageCLEF-2019 VQA task (Ben Abacha et al.,

2019). The tuning strategy is random search over
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Model R@1 R@5 R@10 R@20

Captionsmax 9.4 31 46 61
Captions+Refsmax 10 32 47 63

Captionsmin 5.8 21 35 53
Captions+Refsmin 8.3 25 38 57

Table 4: Results for image-text matching. The max re-

sults provide the percent accuracy of the best model

from the 5 training runs (each using different random

seeds). Similarly, the min results provide the percent

accuracy of the worst model from the 5 training runs.

50 trials, where the layer number is sampled uni-

formly over the integers between 0 and 11 (inclu-

sive). Some manual tuning was done as well (about

30 trials). (In these tuning experiments, other hy-

perparameters (e.g. dropout) were varied as well,

but these experiments did not determine the val-

ues of any hyperparameter other than the visual

insert layer number.) The validation metric used to

choose among the hyperparameter choices in these

trials was accuracy on the VQA task.

Models are trained with early stopping, where

training is stopped if the validation accuracy does

not improve within five epochs. We use the same

set of random seeds for both the model trained with

captions only and the model trained with captions

and references. Table 4 shows the results of the best

and worst performing models of each of the two

types (captions and captions & references) over the

five random seeds.

We use SciBERT (Beltagy et al., 2019) initial-

ization in all of our models. We find that it yields

better results on the image-text matching task in

comparison to random initialization.

The model has 159.6M parameters (for both the

version trained on captions and that which is trained

on captions+references, since the model architec-

ture is the same). However, note that the model that

is trained only on captions only makes use of one

of the token type embeddings. (Each token type

embedding has 768 parameters.)

Computing Infrastructure Experiments were

run on a system running Ubuntu 18.04 that has

64 CPUs, 512 GB of main memory, and 8 RTX

8000 GPUs (48 GB memory). 1 GPU was used in

each experiment.

Running Time The average amount of time re-

quired to obtain predictions on the test set of 2000

instances is 122.1 minutes (including data loading

time).

Training in the final set of 10 experiments for

which we report results in this paper took approx-

imately 343.7 GPU-hours. Note that this amount

does not include other experiments done during the

project (e.g. during model development).

E Annotation instructions

Please see the PDF in Supplementary

Materials Data for the instructions and ex-

amples that were provided to annotators for the

first round of subfigure-subcaption annotations.


