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Abstract

Understanding the relationship between fig-
ures and text is key to scientific document un-
derstanding. Medical figures in particular are
quite complex, often consisting of several sub-
figures (75% of figures in our dataset), with de-
tailed text describing their content. Previous
work studying figures in scientific papers fo-
cused on classifying figure content rather than
understanding how images relate to the text.
To address challenges in figure retrieval and
figure-to-text alignment, we introduce MED-
ICAT, a dataset of medical images in con-
text. MEDICAT consists of 217K images
from 131K open access biomedical papers,
and includes captions, inline references for
74% of figures, and manually annotated sub-
figures and subcaptions for a subset of fig-
ures. Using MEDICAT, we introduce the
task of subfigure to subcaption alignment in
compound figures and demonstrate the util-
ity of inline references in image-text match-
ing. Our data and code can be accessed at
https://github.com/allenai/medicat.

1 Introduction

Scientific document understanding necessitates the
analysis of various components of scientific papers,
including recognizing relationships between the
text, figures, and references of papers. In the medi-
cal domain, connections between the text and fig-
ures in a paper are useful to enable the retrieval of
figures via textual queries and to produce systems
that are capable of analyzing and understanding
medical images.

Modern academic search engines are able to ex-
tract figures and associated captions from papers,
so that queries can be matched against captions to
retrieve relevant images. However, scientific fig-
ures often contain subfigures (40% of figures in
PubMed (De Herrera et al., 2016)), and for a given

1| Figure 1: (a) Right renal angiomyo-
lipoma (gross specimen postexci-
sion). (b) High-resolution computed
tomography chest images of Case
1 showing multiple variable sized
cysts uniformly scattered in both
lungs.

(d) High-
resolution computed tomog y
image of C 2 showing bilateral

lung cysts

———| Example corresponding inline reference:
= & "CT thorax revealed multiple variable sized thin-walled cysts scat-

——| tered throughout the lung parenchyma bilaterally [ Figure 1d ].”

Figure 1: Example of color-coded subfigures and cor-
responding subcaptions (fop), with an example inline
reference from the full text. Figure and text adapted
from Dhungana et al. (2018).!

query, only some of these may be relevant. Con-
sider a user searching “lung cyst CT”; ideally, the
user would be shown just parts (b) and (d) from
Figure 1. But selecting relevant subfigures requires
finding and aligning subcaptions with subfigures,
and current systems lack this ability. Existing large-
scale datasets (Pelka et al., 2018; Ionescu et al.,
2018) explicitly exclude compound figures, while
datasets with subfigure annotations (De Herrera
et al., 2016; You et al., 2011) do not provide an-
notations for aligning subfigures with subcaptions,
and therefore cannot support subfigure retrieval.
Images and textual descriptions in medical pa-
pers are also useful for developing systems for au-
tomated medical image analysis. Previous work
(Ionescu et al., 2018; Pelka et al., 2019) has used
such data for tasks such as captioning and concept
tagging, but the textual descriptions used in their
work are limited to captions. Important details
about figures are also often available in the main
body of a paper, as in Figure 1, where an inline
reference provides additional context that the CT is
of the thorax and that the cysts seen are thin-walled.

"https://creativecommons.org/licenses/by-nc-sa/4.0/
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These inline references, if available, are useful for
training medical image analysis systems.

We introduce MEDICAT, a dataset of medical
figures, captions, subfigures/subcaptions, and in-
line references that enables the study of these fig-
ures in context.Our dataset includes compound fig-
ures (75% of figures) with manual annotations of
subfigures and subcaptions (7507 subcaptions for
2069 compound figures). Using MEDICAT, we
introduce the task of subfigure-subcaption align-
ment, a challenging task due to high variation in
how subfigures are referenced. We provide a strong
baseline model based on a pre-trained transformer
that obtains an F1 score of 0.674, relative to an
estimated inter-annotator agreement of 0.89. MED-
ICAT is also richer than previous datasets in that
it includes inline references for 74% of figures in
the dataset. We show that training on references
in addition to captions improves performance on
the task of matching images with their associated
descriptions. By providing this rich set of relation-
ships between figures and text in papers, our dataset
enables the study of scientific figures in context.

2 The MEDICAT Dataset

We extract figures and captions from open access
papers in PubMed Central using the results of
Siegel et al. (2018). To add inline references, we
match extracted figures to corresponding figures
in the publicly-available S20RC corpus (Lo et al.,
2020), then extract inline references for these fig-
ures from the S20RC full text (see Appendix A for
details). We exclude figures found in ROCO (Pelka
et al., 2018) to create a disjoint dataset, though we
identify and release inline references for ROCO
figures.

Medical image filters We define medical images
as those that visualize the interior of the body for
clinical or research purposes. This includes images
generated by radiology, histology, and other visual
scoping procedures. To identify medical images,
we first use a set of keywords describing medical
imaging techniques (such as MRI or ultrasound —
see Appendix B) to match across the caption and
reference text, discarding images where a keyword
does not appear. After filtering by keyword, some
images are still non-medical, e.g., some are natural
images of medical imaging equipment, or graphs
showing image-derived measurements. To remove
non-medical images, we apply an image classifier
(ResNet-101 (He et al.) pretrained on ImageNet

Dataset Statistics MEDICAT
Number of papers 131,410
Number of figures 217,060
Avg. figures per paper 1.7
Avg. inline refs. per figure 1.4
Avg. caption length (tokens) 74.2
Pct. with reference text 74%
Avg. reference length (tokens) 67.3
Avg. Jaccard similarity btwn cap. and ref. 23%
Pct. medical figures* 93%
Pct. with subfigures* 75%

Table 1: Dataset statistics. Items marked with * are es-
timated on a sample of 2327 figures by four annotators.

(Deng et al., 2009)) similar to Ionescu et al. (2018).
The classifier is trained on the DocFigure dataset
(Jobin et al., 2019), which contains 33K figures
from scientific articles annotated to 28 classes like
“Medical” or “Natural” images . We keep an image
if “Medical” is in the top K = 4 labels predicted
by the classifier (precision: 96%, recall: 67%).>

Dataset statistics Table 1 provides statistics on
MEDICAT. We note that the images in MEDICAT
are diverse; through manual assessment of 200 im-
ages, we estimate that the dataset contains primar-
ily radiology images (72%), along with histology
images (13%), scope procedures (3%), and other
types of medical images (7%).

Manual Annotations We collect bounding
boxes for subfigures and annotations of correspond-
ing subcaptions for 2069 figures, resulting in 7507
subfigure-subcaption pairs. These annotations were
collected in two phases. In the first phase, five anno-
tators (with various degrees of biomedical training,
ranging from none to graduate level, though no an-
notators are medical doctors) marked subfigures in
each figure and wrote single-span subcaptions for
each subfigure when possible. To compute inter-
annotator agreement, three annotators annotated
the same set of 100 figures. An agreement score
is calculated by taking every ordered pair among
these three annotators, treating one as gold and one
as predictor, and computing the metric described in
§3. An average is computed over all pairs, giving
an agreement score of 0.828. In the second phase,
two of these annotators reviewed the existing anno-
tations and revised subcaptions (and in some cases,
subfigures) with the option of having multi-span

’K is tuned via manually annotating a set of 200 randomly
selected images from the keyword-filtered results, which is
also used to compute the provided precision and recall.
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subcaptions. The inter-annotator agreement in the
second phase, computed on 100 figures, is 0.89.

3 Subfigure and Subcaption Alignment

A major challenge of scientific figure understand-
ing is the prevalence of compound figures (around
75% in MEDICAT are compound). As discussed
in Section 1, matching subfigures with their cor-
responding subcaptions can be useful for image
retrieval. A potential use case is seen in Wang
et al. (2020), who use a subfigure-subcaption align-
ment model to extract relationships for a COVID-
19 knowledge graph. Though compound figure
segmentation is studied by De Herrera et al. (2016),
they only assign to each subfigure a label describ-
ing image modality/type, ignoring other informa-
tion in subcaptions. You et al. (2011) build a dataset
and system to detect subfigure labels (e.g. A/B/C)
but ignore other ways in which subfigures are refer-
enced in captions (e.g. spatial position), and their
dataset is small (515 figures).

Task Motivated by this problem, we propose the
task of subfigure to subcaption alignment. Given a
possibly compound figure and its caption, the task
entails identifying (1) each subfigure and (2) the
corresponding subcaption for each subfigure. We
define a subfigure’s subcaption to be the set of to-
kens in the caption that reference/describe the sub-
figure but do not describe all subfigures.* This task
is challenging because subfigures are referenced
in a variety of ways in our dataset, e.g., described
in pairs or groups, referenced by spatial position
(e.g. upper left or second column), or in multiple
subcaption spans within the same caption. Figure 2
displays a challenging example.

Model For subfigure detection, we use the Faster
R-CNN object detector (Ren et al., 2015) with a
ResNet-50 (He et al.) backbone pre-trained on
ImageNet (Deng et al., 2009). For figures without
subfigure annotations, we set the gold annotation
as a single bounding box over the entire figure.
We propose and implement two models for sub-
caption extraction and alignment. In both models,
a CRF is applied to the output of a BERT encoder
(Huang et al., 2015; Devlin et al.). This model

3For the annotator agreement calculation in the second
phase, annotators were provided the subfigures annotated in
the first phase but were not provided any subcaptions written
in the first phase.

*We also typically exclude scale/measurement informa-
tion.

The tumor (approximately 40mm in diameter) was hypovascular on enhanced computed
tomography scan (right), indicated low intensity on T1-weighted MRI (center), and high

intensity on T2-weighted or diffusion MRI (left). Dynamic study revealed peripheral
enhancement on a late phase. The tumor located close to the inferior vena cava. MRI =
magnetic resonance imaging.

Figure 2: Subfigure to subcaption alignment is chal-
lenging for this figure because the subfigures are refer-
enced by spatial position in the right-to-left order. Cor-
responding subfigures and subcaptions are indicated by
color. Figure and caption adapted from Ohkura et al.
(2015).°

is used frequently for named entity recognition
(NER), and we use it here to extract spans from
the caption.® The first model (Text-only CRF) seg-
ments the caption into subcaptions with only the
caption as input, then heuristically aligns the sub-
captions to detected subfigures. To train this model,
we iterate over gold subcaptions and extract for
each subcaption the longest sub-span that does not
overlap with spans extracted for previous subcap-
tions. After extracting subcaptions, we heuristi-
cally match subcaptions with subfigures as follows.
We sort subcaptions by the order in which they
occur in the caption. We sort subfigures first by
vertical position (row), then by horizontal position
(column).” We pair each subfigure with the cor-
responding subcaption in this sorted order. If the
number of predicted subfigures exceeds the number
of predicted subcaptions, we use the last predicted
subcaption for all remaining subfigures.

In the second approach (Text+Box Embedding
CRF), the model takes as input a subfigure bound-
ing box, which is projected to a box embedding and
concatenated with the token encodings produced
by BERT. The tag probabilities for each token are
predicted by a multi-layer perceptron over these
concatenated encodings. Since this model predicts
subcaptions separately for each subfigure, it is capa-
ble of extracting multi-span subcaptions, in contrast
to the first model.

Evaluation We find for each gold subfig-
ure G the predicted subfigure P that maxi-
mizes IOU(G, P), where IOU(-,-) denotes the
intersection-over-union between two regions (Ever-
ingham et al.). If the IOU is less than the threshold

®In NER, the model must also predict the type of each
span; here we treat each span as having the same type.

"Two subfigures are in the same row if the vertical coordi-
nates of their top left corners differ by < 50 pixels.
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Model Validation Test
F1 F1

Oracles + alignment heuristic 88.0 90.8

Oracles (single-span) + alignment 78.1 75.5

heuristic

Gold subfigure oracle

Text-only CRF wio pretrained weights 47.8 43.3

Text-only CRF w/ pretrained weights 71.0 66.9

Text+Box Embedding CRF 74.1 71.9

Using predicted subfigures

Text—only CRF wio pretrained weights 44.7 40.3

Text-only CRF pretrained weights 66.4 61.3

Text+Box Embedding CRF 69.9 67.5

Table 2: Results for subfigure-subcaption alignment.
Oracles + alignment heuristic uses gold subfigures and
gold subcaptions with the alignment heuristic. Ora-
cles (single-span) + alignment heuristic uses gold non-
overlapping single-span subcaptions extracted as in the
training of the SciBERT CRF model.

0.5, the model obtains a score of 0 for GG. If the IOU
exceeds 0.5, the model’s score for G is equal to the
F1 between the set of tokens in the gold subcaption
for G and the set of tokens in the predicted sub-
caption for P ignoring non-alphanumeric tokens.
Gold subfigures without subcaptions are excluded
from evaluation. The overall score is defined as
the average over the scores of all gold subfigures.
We also report mean average precision (mAP) for
subfigure detection based on the COCO (Lin et al.,
2014) evaluation.

Experiment results We split our data into train
(65%), validation (15%), and test (20%) sets ran-
domly.® For subfigure detection, we obtain a mAP
score of 79.3 on the test set. For subcaption extrac-
tion, we use SciBERT (Beltagy et al., 2019) tok-
enization because compared to the vanilla BERT
vocabulary, the SciBERT vocabulary includes more
of the words in the captions, resulting in a smaller
number of wordpieces when using SciBERT tok-
enization. We also experiment with initializing the
BERT encoder with SciBERT pre-trained weights.
See Appendix C for further details such as hyper-
parameter tuning.

Table 2 shows results for our baseline models
on the subfigure-subcaption alignment task. We
report results with a gold subfigure oracle to sepa-
rate the error caused by subfigure detection from
that caused by subcaption extraction. Initializa-
tion with SciBERT pre-trained weights improves

8 All examples used for computing the annotator agreement
score in the second annotation phase are placed in the test set.

performance considerably, consistent with previ-
ous results on various biomedical NLP tasks. The
maximum achievable performance with the align-
ment heuristic (using gold subcaptions and gold
subfigures) is also given, indicating that alignment
accounts for a large portion of the error. The oracle
performance with single-span subcaptions (of the
kind that can be predicted by the CRF model with
the heuristic) is far below the unconstrained oracle
performance, showing that a substantial number of
subfigures require multi-span subcaptions. Finally,
the box embedding model consistently outperforms
the models using single-spans and the alignment
heuristic..

Error Analysis To understand the sources of er-
ror in the Text+Box Embedding CRF with subfig-
ure oracle, we analyze 50 subfigures in the vali-
dation set for which the system obtains F1 < 0.5.
Most errors fall into these categories (not mutually
exclusive): (a) predicted subcaption describes a dif-
ferent subfigure (46%), (b) predicted subcaption is
empty (22%), (¢) missing words in the predicted
subcaption (14%), and (d) annotation errors (6%).
Type (a) errors indicate that alignment (as opposed
to subfigure/subcaption segmentation) is a major
source of error.

4 Image-text matching

To demonstrate the utility of inline references in
MEDICAT, we conduct experiments in image-text
matching (Hodosh et al.), a task that has been stud-
ied extensively in the domain of natural images.
Given a piece of text, the system’s goal is to return
the matching image from a database. Like image
captioning, this task assesses the model’s ability to
align the image and text modalities, but the match-
ing task avoids the issue of evaluating generated
text (Hodosh et al.).

In the context of medical figures and captions
from papers, we attempt to retrieve a corresponding
figure given its caption. Since our dataset provides
more than one textual description of each image
via inline references, we analyze the benefit of
using references as additional training data, and
demonstrate improvements over models trained on
captions only. At test time, only captions are used
to enable a fair comparison of the models. We use a
model similar to Chen et al. (2020) with a different
token type embedding for inline references.
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Model R@1 R@5 R@10 R@20
Captions 7.60.59 2616 4116 581.3
Caps + Refs 9.4¢ 38 301 .2 444 7 601 .2

Table 3: Results for image-text matching. Results show
mean percent accuracy with error in subscript over n =
5 random seeds. The error is the standard error o /+/n,
where o is the standard deviation over random seeds.

Linking with ROCO ROCO is a dataset of
non-compound radiology figures and captions ex-
tracted from literature (Pelka et al., 2018).° The
ROCO dataset consists of around 82K figures
(train/validation/test splits: 65K, 8175, 8177 re-
spectively). We identify papers associated with fig-
ures in the ROCO dataset and extract the associated
inline references, and release these as part of MED-
ICAT. We find inline references for approximately
25K figures in the ROCO dataset (approximately
21K in train and 4K each in validation and test
splits).

Model Our model follows Chen et al. (2020)
with a few modifications. We tokenize the in-
put text and pass the token embeddings through
a BERT encoder (Devlin et al.). The BERT en-
coder is initialized with SciBERT weights, and we
use SciBERT uncased tokenization (Beltagy et al.,
2019). Pre-trained weights improve performance
on the image-text matching task considerably. We
insert the visual representations, projected into the
hidden state dimensionality, as extra hidden states
in the middle of the encoder (layer 6). In contrast to
Chen et al. (2020), we do not use an object detector
to find regions of interest in the image, since ob-
jects tend to be sparse in medical images. Instead,
the visual representation is obtained by an affine
transformation of the feature vector produced for
the entire image by a ResNet-50 network pretrained
on ImageNet.'® The other noteworthy difference
in our model is that we use different token type em-
beddings for inline references and captions, since
inline references are different in style and content
from captions. During training, for each piece of
text, the model is given the correct image as well
as two other images (negative images) sampled uni-
formly at random from all images. The training
objective is choosing the correct one of these three

°The ROCO dataset can be
https://github.com/razorx89/roco-dataset.

10We also add another embedding to this image representa-
tion (similar to the position embedding for tokens).

accessed at

images. The validation accuracy is measured on the
same task, except 20 negative images are sampled
for each piece of text. Details on hyperparameter
tuning and training are provided in Appendix D.

Experiment results Experiments are performed
on ROCO using the provided train/validation/test
splits (Pelka et al., 2018) (Table 3). We present
results on 2000 randomly sampled test set im-
age/caption pairs due to the time complexity of
evaluation. As in previous work, we use the Re-
call@K metric, which gives the proportion of ex-
amples for which the system’s rank of the correct
image is in the top K. Training with references im-
proves upon training with captions alone. Since
we were only able to extract associated inline refer-
ences for 33% (21K) of the training images, we ex-
pect a greater improvement if references were avail-
able for more figures. As documented in Appendix
D, the minimum and maximum performance over
random seeds are also higher when training with
both captions and references than when training
with captions only.

5 Discussion

MEDICAT allows medical figures to be studied in
the context of their source papers by providing links
between subfigures and subcaptions and between
figures and inline references. We propose the task
of subfigure-subcaption alignment and provide a
strong baseline model, and we demonstrate the
utility of inline references for image-text matching.

MEDICAT can also benefit other medical vision-
language tasks (e.g. captioning, VQA). Pre-
training techniques that have worked well for these
problems in the general domain by using large num-
bers of aligned text and images (Zhou et al., 2020)
can leverage the aligned data in MEDICAT. The
techniques we use to construct MEDICAT can also
be extended beyond “medical images” to study the
relationships between figures and text in scientific
documents from other domains.
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A Inline reference extraction

We define each inline reference as the sentence
from the full text of the paper that makes reference
to a figure object (see Figure 3). We extract in-
line references from the S20RC dataset, a publicly
available dataset of 8M+ full text papers (Lo et al.,
2020). References to figure or table objects in the
full text of S20RC are annotated, and we lever-
age this feature to extract inline references and link
them to figures.

We begin with the set of figures and captions ex-
tracted from open access papers in anonymized.
We then identify corresponding papers in S20RC
using paper identifiers such as DOI or PMC ID.
We extract all figure captions and inline references
from S20RC for these corresponding papers, us-
ing scispaCy (Neumann et al., 2019) to identify
sentence boundaries for inline references.

Both the anonymized and S20RC corpuses
have figure captions, while only anonymized
contains images and only the S20RC corpus con-
tains inline references. To identify inline refer-
ences, anonymized and S20RC data must be
matched based on figure caption. Captions are
matched based on extracted figure index (e.g. Fig-
ure 1 or Fig. 2) and token Jaccard overlap between
caption text. When the figure index is available
in both caption extractions and are the same, this
designates a match. When figure index is not avail-
able, captions are matched if the token Jaccard
between them is greater than 0.8. Once the two
datasets are aligned in this fashion, we append the
S20RC reference for each figure to the correspond-
ing figure extraction from anonymi zed to create
MEDICAT.

B Medical image filter keywords

A set of keyword filters are used as a first pass for
identifying medical images. Because of the large
size of the initial anonymi zed figure extraction
dataset, which contains many millions of images,

it is impractical to run the medical image classi-
fier on all extracted figures. Keyword filters act to
select medical images with lower precision but ad-
equate recall, to then be input to the medical image
classifier.

In conference with a medical doctor, common
terms describing medical images are identified as
keywords. Figures whose captions and references
match against a keyword (case-insensitive) are kept.
The full set of keywords used is provided below:

MRI fMRI CT

CAT PET PET-MRI

MEG EEG ultrasound
X-ray Xray nuclear
imaging tracer isotope

scan positron EKG
spectroscopy  radiograph
tomography endoscope
endoscopy  colonoscopy
elastography  ultrasonic
ultrasonography  echocardiogram
endomicroscopy  pancreatoscopy
cholangioscopy enteroscopy
retroscopy  chromoendoscopy
sigmoidoscopy  cholangiography
pancreatography
cholangio-pancreatography
esophagogastroduodenoscopy

C Subfigure-subcaption alignment model

In this section, we give further experimental details
for the subfigure-subcaption alignment task. When
using predicted subfigure detections to align with
the predicted subcaptions, we choose a confidence
threshold of 0.7 for the Faster-RCNN predictions.

- : Inline
~EEEoS reference
Image
Figure 1
% igl:
e Caption
Extracted
figure Processed PDF

Figure 3: Extracted figures from anonymized are
aligned with the S20RC parse of the paper PDF to link
caption text (red) and inline references (blue) to each
image. Example figure from Dhungana et al. (2018)
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For the SciBERT+Box Embedding model, at test
time, we compute a probability for each span by
adding the model’s computed probabilities of the
start and end tokens of the span. Then we select the
span with the highest probability among all valid
spans, where a valid span has an end token that
does not precede the start token.

For all models we train with early stopping,
where training is stopped when validation perfor-
mance has not improved in the last five epochs.
For subfigure detection models, we use the Adam
optimizer (Kingma and Ba, 2014), and we use a
batch size of 10. We tune the learning rate and
no other hyperparameters. The method used for
hyperparameter search is random search. The learn-
ing rate is sampled from a log-uniform distribution
over (le—5,1e—3). We perform 10 trials for hy-
perparameter search and choose the model with the
highest mAP score on the validation data, which
has a learning rate of ~ 2.22e—4. The number of
parameters in this model is 41.4M parameters.

For subcaption extraction models, we use the
BERT Adam optimizer (Devlin et al.), and we use
a batch size of 8. We tune the following hyper-
parameters: learning rate, weight decay (not ap-
plied to bias parameters or LayerNorm parameters),
and dropout rate. Our method for hyperparame-
ter search is random search, where learning rate
is sampled from a log-uniform distribution over
(5e—6, le—4), weight decay is sampled uniformly
from (0, 1), and dropout is sampled uniformly from
(0,0.5). For each model, we perform 30 trials for
hyperparameter search. For the CRF Tagger mod-
els, the validation metric is the span F1 (precision
is the proportion of predicted spans that occur in
the gold subcaptions, and recall is the proportion
of gold spans that occur in the predictions). For
the box embedding model, the validation metric is
the word F1 between the predicted subcaption for
the given box and the gold subcaption for that box.
These validation metrics were used to select hy-
perparameter choices and were used also for early
stopping as described above. The hyperparameter
settings that yielded the best performance for each
model are given below. The number of parameters
for each model is also provided.

CRF Tagger without SciBERT-pretrained
Weights Learning rate: 2.47e—>5, Weight decay:
0.574, Dropout: 0.499, Number of parameters:
109.9M

CRF Tagger with SciBERT-pretrained Weights
Learning rate: 2.60e—5, Weight decay: 0.770,
Dropout: 0.182, Number of parameters: 109.9M

SciBERT with Box Embedding Learning rate:
1.34e—5, Weight decay: 0.699, Dropout: 0.404,
Number of parameters: 221.1M

Computing infrastructure Experiments are per-
formed (1) on systems running Google Kubernetes
Engine (container OS) that each have 16 CPUs,
104 GB of main memory, and 1 P100 GPU (16
GB memory), and (2) on a system running Ubuntu
18.04 that has 64 CPUs, 512 GB of main memory,
and 8 RTX 8000 GPUs (48 GB memory). Only 1
GPU was used in each experiment.

Running Time The following running times
were obtained on the second type of system de-
scribed above, each using a single RTX 8000 GPU.
For each subcaption extraction, we give the time
for predicting subcaptions on our validation set of
312 figures with a batch size of 1. These estimates
include the time for loading data. For SciBERT
with Box Embedding, recall that the model is run
separately for each subfigure.

CRF Tagger without SciBERT-pretrained Weights:
13 seconds

CRF Tagger with SciBERT-pretrained Weights: 13
seconds

CRF Tagger with Box Embedding: 51 seconds

The average prediction time for the subfigure
detection model with a batch size of 1 is 77 seconds
for our validation set of 316 figures.

For the final set of experiments, approximately
79.4 GPU hours were used for training the subfig-
ure and subcaption models. Note that this amount
includes hyperparameter tuning for the final set of
experiments but does not include previous experi-
ments that were done (e.g. during model develop-
ment).

D Image-text Matching model

Here, we provide further experimental details for
the image-text matching experiments. We use the
Adam optimizer (Kingma and Ba, 2014), with a
batch size of 16. We fix the learning rate to be
le—5 and the dropout rate to be 0.1. Hyperpa-
rameter tuning was used to select the layer to in-
sert the visual representation using data from the
ImageCLEF-2019 VQA task (Ben Abacha et al.,
2019). The tuning strategy is random search over
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Model R@1 R@5 R@10 R@20
Captions,max 9.4 31 46 61
Captions+Refs;qz 10 32 47 63
CaptionsS,in, 5.8 21 35 53
Captions+Refs . in 8.3 25 38 57

Table 4: Results for image-text matching. The max re-
sults provide the percent accuracy of the best model
from the 5 training runs (each using different random
seeds). Similarly, the min results provide the percent
accuracy of the worst model from the 5 training runs.

50 trials, where the layer number is sampled uni-
formly over the integers between 0 and 11 (inclu-
sive). Some manual tuning was done as well (about
30 trials). (In these tuning experiments, other hy-
perparameters (e.g. dropout) were varied as well,
but these experiments did not determine the val-
ues of any hyperparameter other than the visual
insert layer number.) The validation metric used to
choose among the hyperparameter choices in these
trials was accuracy on the VQA task.

Models are trained with early stopping, where
training is stopped if the validation accuracy does
not improve within five epochs. We use the same
set of random seeds for both the model trained with
captions only and the model trained with captions
and references. Table 4 shows the results of the best
and worst performing models of each of the two
types (captions and captions & references) over the
five random seeds.

We use SciBERT (Beltagy et al., 2019) initial-
ization in all of our models. We find that it yields
better results on the image-text matching task in
comparison to random initialization.

The model has 159.6M parameters (for both the
version trained on captions and that which is trained
on captions+references, since the model architec-
ture is the same). However, note that the model that
is trained only on captions only makes use of one
of the token type embeddings. (Each token type
embedding has 768 parameters.)

Computing Infrastructure Experiments were
run on a system running Ubuntu 18.04 that has
64 CPUs, 512 GB of main memory, and 8 RTX
8000 GPUs (48 GB memory). 1 GPU was used in
each experiment.

Running Time The average amount of time re-
quired to obtain predictions on the test set of 2000
instances is 122.1 minutes (including data loading
time).

Training in the final set of 10 experiments for
which we report results in this paper took approx-
imately 343.7 GPU-hours. Note that this amount
does not include other experiments done during the
project (e.g. during model development).

E Annotation instructions

Please see the PDF in Supplementary
Materials Data for the instructions and ex-
amples that were provided to annotators for the
first round of subfigure-subcaption annotations.
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