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Abstract

Answering complex questions that require mak-
ing latent decisions is a challenging task, es-
pecially when limited supervision is available.
Recent works leverage the capabilities of large
language models (LMs) to perform complex
question answering in a few-shot setting by
demonstrating how to output intermediate ra-
tionalizations while solving the complex ques-
tion in a single pass. We introduce “Succes-
sive Prompting”, where we iteratively break
down a complex task into a simple task, solve
it, and then repeat the process until we get the
final solution. Successive prompting decou-
ples the supervision for decomposing complex
questions from the supervision for answering
simple questions, allowing us to (1) have multi-
ple opportunities to query in-context examples
at each reasoning step (2) learn question de-
composition separately from question answer-
ing, including using synthetic data, and (3) use
bespoke (fine-tuned) components for reason-
ing steps where a large LM does not perform
well. The intermediate supervision is typically
manually written, which can be expensive to
collect. We introduce a way to generate a syn-
thetic dataset which can be used to bootstrap a
model’s ability to decompose and answer inter-
mediate questions. Our best model (with suc-
cessive prompting) achieves an improvement
of ~5% absolute F1 on a few-shot version of
the DROP dataset when compared with a state-
of-the-art model with the same supervision.

1 Introduction

Compositional reading comprehension datasets
like HotpotQA (Yang et al., 2018) and DROP (Dua
et al., 2019) have inspired a range of model archi-
tectures that learn to answer complex questions
with weak supervision from the final answer. One
recent direction is to leverage large language mod-
els (LMs) to solve compositional tasks with very
few examples by generating latent reasoning steps
before answering the question (Wei et al., 2022;

Who kicked the longest
field goal in the first half?

Q: What are all the field goals

in first half?
A: 12-yard, 42-yard
and 33-yard

Q: What is the largest value in:
12-yard, 42-yard and 33-yard?
A: 42-yard

Q: Who kicked the 42-yard field
goal?
A: Matt Bryant

There are no more questions left
to ask. The final answer is Matt
Bryant

Figure 1: Example decomposition used by Successive
Prompting’s question decomposition and question an-
swering stage on a DROP example. The model iterates
between predicting a simple question to ask and answer-
ing the simple question.

Nye et al., 2021; Karpas et al., 2022). Given a
complex question, this approach first finds nearest-
neighbor training examples from a dataset of (ques-
tion, reasoning, answer) triples and then concate-
nates them to create an input for the LM. A large
LM is then prompted with this input to generate
the intermediate reasoning steps needed, while an-
swering the complex question in a single pass.

While promising, this approach discards many of
the benefits of prior approaches to this task (Khot
et al., 2021; Karpas et al., 2022) by coupling the
supervision for question decomposition to the su-
pervision for performing the intermediate steps.
Moreover, its non-modular nature does not allow
using alternate symbolic reasoning engines in cases
where they perform better than LMs. Additionally,
the model gets exposed to only a single set of in-
context examples, selected based on their proximity
to the complex question, which may not contain
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optimal supervision for the intermediate steps that
need to be taken.

We propose “Successive Prompting”, where we
iteratively decompose the complex question into
the next simple question to answer, answer it, and
then repeat until the complex question is answered
(Figure 1). Each of these steps is performed with
separate a query to the LM. Since the decomposi-
tion and answering steps are performed separately,
we can decouple the supervision of each step, pro-
viding two primary benefits. First, when perform-
ing in-context learning, we get multiple opportuni-
ties to select different in-context examples, which
can be tailored to the particular decomposition or
answering step being performed, instead of select-
ing a single set of examples based only on the com-
plex question. Second, when fine-tuning (with or
without in-context examples (Chen et al., 2022)),
we can provide training examples for each step
independently, so the model only has to learn to
perform one step at a time.

This decoupling additionally allows us to judi-
ciously inject synthetic data into the learning pro-
cess, e.g., to help the model answer a particular
kind of simple question that it could not previously
answer, or a new reasoning composition it did not
know how to decompose. Because the steps are
separate, we can isolate model failures and develop
synthetic approaches to fill in the gaps. It also al-
lows us to replace the LM with other, purpose-built
components to perform symbolic reasoning when
appropriate (Khot et al., 2021; Segal et al., 2020;
Jin et al., 2021).

We demonstrate the utility of successive prompt-
ing using a few-shot variant of the DROP
dataset (Dua et al., 2019), selecting 300 examples
for training (either fine-tuning or in-context exam-
ple selection). These 300 examples are manually
annotated with simple QA pairs as decompositions.
We find that performance of all models is quite low
in this few-shot setting, so we develop a synthetic
data generator that produces complex questions
with their decompositions from semi-structured
Wikipedia tables (Yoran et al., 2021). This syn-
thetic data provides not just complex question su-
pervision, but also supervision for the intermediate
steps. We augment this data with the 300 (complex)
training examples and their decompositions from
DROP. In this few-shot setting, our best perform-
ing successive prompting model shows a ~5% im-
provement in F1 when compared to state-of-the-art

model on DROP. The code and data are available
at https://github.com/dDua/succesive_prompting

2 Decomposing Complex Questions

The goal of compositional question answering is to
answer a complex question ¢ in the context of a pas-
sage p (together denoted as x) by reasoning through
latent sequential decisions z = z1, 22, ..., Zs to reach
the final answer, y. Many models have been pro-
posed to accomplish this with varying amounts
of supervision and interpretability. In prompting
methods like Chain-of-Thought (CoT, Wei et al.,
2022) the latent steps are supervised, interpretable
sentences; in other models these latent steps might
be a program (Gupta et al., 2020; Chen et al., 2020)
or even just the (unsupervised) hidden states in the
model (Segal et al., 2020; Andor et al., 2019)

We focus on models that take in-context exam-
ples and produce a discrete, language-encoded z,
with CoT being the primary exemplar. We write
the general form for CoT, given an input x, a lan-
guage model encoder L and N in-context examples
obtained from querying an index J—each contain-
ing a triplet of passage with complex question (x"),
latent steps (z") and final answer (y")—as follows:

vz L(x{ (" y"2") | n € [1,N]}).

2.1 Successive prompting

In successive prompting, we represent each la-
tent step as a pair of simple question and answer,
Zr = (qx, ar) (see Figure 1 for example QA pairs)
unlike CoT which represents each latent step as a
declarative sentence. Moreover, CoT queries the
index 7 for in-context examples and prompts the
language model L for generating output only once.
However, in successive prompting, we separate z
into multiple question and answering steps, which
gives us many opportunities to prompt L, with po-
tentially different in-context examples that are more
tailored to the simple question at each step. It also
enables us to re-encode the context given the in-
termediate state z;, which can be useful in certain
questions that need long chain referencing (e.g., the
sort-count example in Figure 3). We can write a
general form for successive prompting as follows:

¢ = L(x{("q) InellN})
ai FL(P’qla{(PT"IT’aTHmG [I’M]})
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q { How many yards longer was Barth's second field goal over first?

"How many yards longer was
Mike Nugent's longest field goal?
goal than his shortest?" n
Next question to answer is “!
ql{ QWhat was Mike Nugents
shortest field goal yards? a2

{ For answering the question

"How many yards longer was g {

QD
8

man ards
Barth's second field goal V.8

over his first one?"

Next question to answer is
Q: is 39-yard
What was Barth's
second field goal?

’a Question: What was Connell's
1 second field goal? Answer: 12-
~ yard

2 Question: What was the second
g‘“ field goal of the game? Answer:

23-yard

For answering the question For answering the question "How many
"] yards was the difference between
{ Schaub's longest ans shortest field
We already know answer to question _n n
"How long was Schaub's shortest field 8
goal yards?" is 12-yard n
Next question to answer is Q: How many qs
yards was Schaub's longest field goal?
For answering the question "How
longer was Barth's T
second field goal over his first one?"
We already_know answer to question
"What was Barth's second field goal?"

Next question to answer is Q:

How many yards was
Barth's first field goal?

Question: How many yards was
Nugent's first field goal? Answer:

Question: How many yards was the
Schabb's first field goal? Answer:

longer was Mike Nugent's longest field goal

n For answering the question "How many yards
x
than his shortest?"

We already know answer to question "What is
zl 4 1 Fhe difference between 12-yard and 19-yard?"
is 7-yard
Next question to answer is Q: There
{ are no more questions left to ask. The
final answer is 7
For answering the question "How
many yards was Barth's second field
goald over his first one?"
We already know answer to question
"What was Barth's second field goal?"
is 39-yard

1 we already know answer to question:
"How many yards was Barth's first
field goal? is 28-yard
We already_know answer to question:
"What is the difference between 39-
yard and 28-yard?" is 11-yard

Next question to answer is Q:

21 Rg—

s { There are no more questions left

'y to ask. The final answer is 11
é :: 28-yarfi 30-yard .
< Question: What was Barth's Question: How many yards was k=s
- . ; a ']
second field goal? Answer: Barth's first field goal? Answer:
39-yard } ai 28-yard } a
\

k=1 k=2

Figure 2: A demonstration of successive prompting with in-context learning. The selected examples for supervision
and complex question to be answered pre-pended with the context paragraph (omitted to simplify illustration) are
encoded by the model to generate question and answer at QD and QA stage respectively. During fine-tuning, only
training supervision is used in an i.i.d manner for learning QD and QA models.

0 < L(xq,a.{ (. q}.dl.q43) In€[1,N1})
ay =L (p.q2.{ (pL' g2 all) Im € [1,M] )

v =Lz {(@.y.2) nell,N]})

There are three kinds of model outputs in this gen-
eral form: intermediate questions gy, intermediate
answers ay, and the final answer y. We refer to
the first kind of output as question decomposition
(QD) and the second kind as question answering
(QA). We treat final answer prediction as a special
case of question decomposition, where the model
decides that no more decomposition is necessary
and outputs a final answer, so we iteratively alter-
nate between question decomposition and question
answering until the model terminates.

2.2 Training paradigm

We have so far described successive prompting in
a setting where only in-context examples are given,
so no model training is performed. However, suc-
cessive prompting can also be used in conjuction
with model fine-tuning, where each intermediate
output is treated as a training example for L. In this

section, we first describe how in-context examples
are selected at every step, followed by detailing
how these examples are used for model fine-tuning.

In-context Learning During in-context learning,
a small number of training examples are provided
directly in the prompt that is given to a large LM,
before the test input. These examples are selected
from an index based on their similarity with the test
input. For successive prompting, we create two in-
dices: I p, for looking-up relevant demonstrations
for QD, and 74, for looking-up relevant demon-
strations for QA. The index J p contains partially
decomposed chains at each step k, demonstrating
the next question g to be produced for every com-
plex question in the training data. The index 14
contains all the simple QA pairs in the training data
from all the complex questions.

In the QD stage, the index 1 p is queried with the
complex test question, g and current step number, k,
to select demonstrations regarding how to generate
the next question for the held-out example. In the
QA stage, the index 74 is queried with the simple
question gy generated during QD to select relevant
simple QA pairs. Figure 2 shows a demonstration
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of how in-context learning is executed step-by-step
in each stage until QD outputs the special phrase
“There are no more questions left to ask”, along
with a final answer.

Successive prompting allows the QA stage to ac-
cess simple questions derived from complex ques-
tions that would not have been retrieved by Chain-
of-Thought prompting because on the surface they
are not similar to the held-out complex question,
even though they share similar sub-questions.

Model Fine-tuning For model fine-tuning, we
use TS5 (Raffel et al., 2020) based sequence-to-
sequence models. Such models are typically
trained with control codes in a multi-task set-
ting (Ma et al., 2021; Rajagopal et al., 2022) to
switch between QD and QA tasks with shared
model parameters. We adapt and extend the control
codes introduced by text modular networks (TMNSs,
Khot et al., 2021) for training with our synthetic
data. TMNs are limited in terms of the operations
they can handle as they do not go beyond first or-
der reasoning. We use synthetically generated data,
which allows us to deal with higher-order reasoning
questions in DROP. Because we are fine-tuning the
model, we can use special tokens to denote ques-
tion decomposition and other separators, instead of
the natural language prompts shown in Figure 2,
though the content is the same. The specific tokens
used for each step are listed in Appendix A.

Specialized Modules Successive prompting also
allows us to use specialized sub-modules for solv-
ing different QA tasks because we no longer per-
form QD and QA in an end-to-end manner. Solv-
ing arithmetic operations like counting, difference,
sorting, etc., can be challenging for language mod-
els. As a result, we follow Khot et al. (2021) and
construct a simple mathematical sub-module for
QA which parses the generated simple question
for symbolic operation type and its arguments and
then executes them in a deterministic way. If the
generated simple question cannot be parsed as a
mathematical operation, we apply the language
model to solve it.

3 Synthetic Dataset

Any method that prompts LMs to produce interme-
diate reasoning steps to answer complex questions
needs some amount of supervision for those rea-
soning steps. This kind of annotation can be expen-
sive to collect and often requires expert knowledge.

Round Date Opponent Venue Attendance
R2 1st Leg 26 Sep 1990 Walsall A 5,666
QFR 23 Oct 1990 Liverpool H 18,246
SF Ist Leg 24 Feb 1991 Sheffield Wed. H 14,074
SF 2nd Leg 27 Feb 1991 Oxford United A 34,669
QFR 23 Jan 1991 Portsmouth A 33,861

Table 1: Example table from Wikipedia where rows
become sentences and columns are used for question
generation (used as context for Figure 3).

Prior work has typically relied on a small handful
of manually-written example decompositions. We
find that such small collections lead to very poor
performance on a dataset as varied as DROP, even
for large models.

To mitigate these data issues, we propose a way
to synthetically generate complex questions and
their decompositions using semi-structured data
which is easy to parse. We show that we can boot-
strap model learning with this out-of-domain, syn-
thetically generated data so it can adapt better when
fine-tuned with limited in-domain supervision.

Generation Process: Inspired by Yoran et al.
(2021), we use semi-structured data from tables
in English Wikipedia which are available in plenty.
We employ curated templates to convert the rows
in the tables into paragraphs. We use single column
headers to create first order simple questions and a
combination of columns for higher order complex
questions. We synthesize data for 10 simple opera-
tions: COUNT, TOP (k), BOTTOM(k), FILTER, SUMN,
COMPARISON, DIFFERENCE, NEGATION, GATHER,
and INTERSECTION.

We generate higher order combinations of first-
order operations, wherever possible. Figure 3
shows examples of higher order combinations of
the atomic operation COUNT with a few other simple
operations using Table 1 as context. The complete
list of all decompositions is provided in Appendix
A. Depending on the model, we use either sym-
bolic or natural language version of the arithmetic
operations. If we are using an LM to perform arith-
metic operations, we output natural language; if we
are using a separate symbolic reasoning engine, we
output symbolic operations. We generate approxi-
mately 141K total complex questions which result
in 525K examples for QD and 257K examples for
QA. See Appendix A for more dataset statistics.
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Reasoning

Complex Question and Decomposition (Question [Natural Language or Symbolic], Answer)

Count How many opponents were there?

e Q: What are all the opponents?

Ans: Walsall; Liverpool; Sheffield Wed.; Oxford United; Portsmouth
e Q: count(Walsall; Portsmouth; Sheffield Wed.; Oxford United; Portsmouth) Ans: 5

— Q: How many items are in the list: Walsall, Liverpool, Sheffield Wed. and

Oxford United, Portsmouth?

Higher order decompositions

Sort-Count

Q:top(1,2:3) Ans: 3

Which venue had the most number of opponents?

Q: What are all the venues? Ans: A; H

Q: What are opponents when venue was A? Ans: Walsall; Oxford United; Portsmouth
Q: count(Walsall; Oxford United; Portsmouth) Ans: 3

Q: What are opponents when venue was H? Ans: Liverpool; Sheffield Wed.

Q: count(Liverpool; Sheffield Wed.)

Ans: 2

— Q: What is the largest value in: 2 and 3?
e Q: Which venue has 3 opponents? Ans: A

Comparison-Count

count(QFR; SF 1st Leg) Ans: 2

Which round had more venues: SF 1st Leg or QFR??

Q: What are the rounds when venue was A? Ans: R2 Ist Left; SF 2nd Leg; QFR
count(R2 1st Left; SF 2nd Leg; QFR) Ans: 3

Q: What are the rounds when venue was H? Ans: QFR; SF Ist Leg

if_then(1 > 2; SF Ist Leg; QFR) Ans: QFR

— Q:If 1 > 2 then answer is SF 1st Leg else it is QFR

Figure 3: Examples of COUNT operation and some of its higher order combinations, with natural language and
symbolic decompositions of the complex question. Underneath the first instance of a symbolic operation we show
its corresponding natural language version. See Table 1 for the original table used to generate context and questions.

4 Experiments and Results

The DROP dataset contains a variety of reason-
ing compositions which are not uniformly dis-
tributed. In order to get a fair representation of
DROP examples, we first embed the examples us-
ing a sentence embedding method trained on the
QQP dataset (Reimers and Gurevych, 2019). We
then use cosine similarity to get the top-50 nearest
neighbor questions for each training example. The
connection graph between each training question
to its neighbors is then used to obtain 300 ques-
tions that cover the majority of the training data,
via the vertex cover algorithm. We manually an-
notate these 300 examples with decomposed QA
pairs in the same format as our synthetic data (Fig-
ure 3). For synthetic examples, since we know
the reasoning types, we uniformly sample example
demonstration from each reasoning type.

4.1 In-context Learning

Setup We use faiss' index with the QQP-based
sentence embedding (Reimers and Gurevych, 2019)
for indexing all the questions. We use GPT-J (6B)>
which is the largest freely available model we could

"https://ai.facebook.com/tools/faiss/
’https://github.com/EleutherAl

Syn-Only DROP-Only Syn+

DROP
Standard 22.7 23.8 24.9
CoT 25.3 26.2 27.6
Succ.(w/o calc.) 27.2 29.3 29.9
Succ.(w/ calc.) 28.8 30.8 31.9

Table 2: F1 Performance of in-context prompting on the
DROP dev set with and without in-domain annotations.

use with prompts containing 6 in-context examples.

Results In Table 2, we compare performance
of language models without any prompting (Stan-
dard), with chain-of-thought prompting (CoT) and
successive prompting. We observe that succes-
sive prompting performs better than CoT by 3.5%
when only synthetic data is available, and 4.3%
better with synthetic data and 300 annotations from
DROP. The best successive prompting version on
the dev set (Synthetic+DROP) has a test set per-
formance of 30.6% F1. We also perform an abla-
tion where the symbolic calculator is replaced by
language model and observe that the performance
drops by 1.5% F1. This further shows that modular
approach is better over a single model that tries to
solve all the tasks.
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4.2 Model Fine-tuning

Setup We employ a shared question decompo-
sition (QD) and answering model (QA) based on
T5-large version of UnifiedQA (Khashabi et al.,
2020), trained in a multi-task manner. We use the
format described in Appendix A for prompting Uni-
fiedQA. For symbolic questions, we use a simple
calculator that parses the operator and arguments
in the generated question and executes the discrete
operator on the detected arguments.

To deter the model from learning incorrect steps,
we use contrastive estimation (Smith and Eisner,
2005). In particular, we first train the model for two
epochs with cross-entropy loss while generating the
output sequence (simple question or answer). Then
we continue training by adding an auxiliary loss
term which increases the likelihood of the inter-
mediate sub-question that would produce a correct
sub-answer at the cost of one that does not (Dua
et al., 2021). We sample up to 3 negative samples
at each step. We use HuggingFace transformers> to
train our models, with a learning rate of Se-5 and
maximum input length of 768.

Due to variance in the types of context tables
present in Wikipedia, the synthetic dataset distri-
bution is not uniform across different reasoning
types. To have a balanced representation of ques-
tions pertaining to different reasoning types, we
employ dynamic sampling (Gottumukkala et al.,
2020), where at the beginning of each epoch we
select 80,000 instances from across all reasoning
types in proportion to the drop in their current per-
formance with respect to previous epoch on held-
out synthetic data. For the first epoch we sample
in proportion to original the size of each reasoning
type. During inference, we use beam search with
size 5 to generate decompositions, switching be-
tween QD and QA stages until QD reaches end of
decomposition (“EOQ”) or maximum number of
steps which we set as 10.

Baseline models We compare against a num-
ber of different baselines, both symbolic and non-
symbolic. As non-symbolic baselines, we use
UnifiedQA (Khashabi et al., 2020), which is pre-
trained on a number of existing question answering
datasets, and PReasM (Yoran et al., 2021), which
is pre-trained on synthetically generated composi-
tional QA pairs. We also include a baseline with
symbolic components, TASE (Segal et al., 2020).

*https://github.com/huggingface/
transformers

This model (and others like it (Jin et al., 2021;
Andor et al., 2019)) are capable of performing a
combination of continuous and discrete operations,
which is essential for DROP. TASE does not require
expressing decomposition in a specific grammar
and can work with natural language. We chose this
model as it is close to state of the art on the full
DROP dataset and has publicly available code.

Results In Table 3, we use the DROP dev set
to compare the performance of different symbolic
and non-symbolic models in three settings: (1)
using no training data from DROP (0-shot), (2)
using only question-answer supervision from the
300 DROP examples, and (3) using both question-
answer supervision and the decompositions for the
300 DROP examples. In each of these settings, we
can train the model with or without the synthetic
data that we generated.

We observe that our out-of-domain synthetic
data universally improves model performance, and
the improvement is most pronounced in TASE,
nearing a 20% absolute improvement. Without syn-
thetic data, PReasM is the best performing baseline,
but TASE overtakes PReasM when synthetic data
is available. Additionally, and unsurprisingly, in-
creasing the amount of supervision from 0-shot to
complex QA pairs to decompositions universally
improves model performance.

Finally, our method, which is a fine-tuned suc-
cessive prompting model combined with a sym-
bolic reasoning engine, achieves the best perfor-
mance, giving an improvement of 5.4 F1 over the
state-of-the-art model with similar supervision, i.e.
TASE+Synthetic w/ decomp. We follow the stan-
dard practice of using test set for only our final best
performing model (SP w/ decomp). We observe
that our best model with a test set performance of
50.2 F1 is better than the state-of-the-art model
with similar supervision (45.1 F1) by 5.1% F1.

Overall, methods that learn to decompose com-
plex questions into simple QA pairs adapt well to
complex questions in new domain with little (SP
w/ decomp: 51.3 F1) to no in-domain supervision
for decomposition (SP 0-shot: 49.8). If we have
limited complex QA supervision (without any de-
compositions), un-interpretable symbolic models
result in the best performance (TASE + Synthetic
w/o decomp: 44.1). This is because of two reasons.
First, such models can capture domain specific an-
swer priors which may result it decent held-out per-
formance (Dua et al., 2020; Agrawal et al., 2018).
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0-shot w/odecomp w/decomp

Non-symbolic

UnifiedQA 24.5 26.7 27.2

+ Synthetic 26.6 30.3 32.6
PReasM 24.9 34.6 37.5

+ Synthetic 30.2 36.2 38.1
Symbolic

TASE - 26.1 27.6

+ Synthetic 27.3 44.1 45.9
Succ. Prompting  49.8 - 513

Table 3: F1 Performance of various model architectures
on DROP dev-set pre-trained on synthetic data and fur-
ther fine-tuned with 300 DROP examples.

QA: In-Context

30.8
314

QA: Fine-tuning

40.3
51.3

QD: In-Context
QD: Fine-tuning

Table 4: F1 with QD and QA modules from incontext
learning and fine-tuning with only DROP annotations

Second, depending on the context, sometimes it
may not be straight-forward to decompose the com-
plex questions into QA pairs.

4.3 In-context vs Fine-Tuning

To understand the gap in performance between suc-
cessive prompting with in-context learning and fine-
tuning, we perform ablations across in-context and
fine-tuned version of QD and QA modules. We
observe that in-context learning is unable to do
well on answering simple questions that result in
a list of answers—which is especially important
for DROP as symbolic aggregations are generally
applied on a list of answers. On using a fine-tuned
QA model we see an improvement of ~10% in
F1 with an in-context QD model. Moreover, since
the final answer performance is dependent on how
well the QA model performs, using a better QD
model (fine-tuned) does not help the overall perfor-
mance much unless the QA model can handle the
decompositions produced by the QD model.

4.4 Qualitative Examples

To evaluate the correctness of decomposed QA
pairs, we manually analyze a subset of predictions
on the dev set with in-context (DROP-only) learn-
ing and model fine tuning (few shot). We do this
by randomly sampling 50 correct predictions to
determine how often the incorrect decompositions
result in correct answer. We observe that QD stage
has an accuracy of 88% for in-context and 96%
for fine-tuned model. The incorrect decomposi-

tions are mainly because the decomposed question
is identical to the original question. For instance,
"Who made the longest field goal?" can sometimes
be answered correctly without decomposing the
question if the passage contains a single field goal
mention.

We also sample 50 incorrect predictions to as-
certain the reason for incorrect predictions in both
in-context and fine-tune setup. We observe that the
final predictions are incorrect due to three main cat-
egories of errors: incorrect QA model prediction,
incorrect next question prediction (QD) and out-
of-scope reasoning type. The QA model outputs
incorrect answers to simple question 40% and 22%
of the times for in-context and fine-tuned respec-
tively. The second class of errors, due to incorrect
decomposition, occur 30% of the times for both
in-context and fine-tuned. The final class of errors,
due to compositional questions that are not covered
by synthetically generated annotations, occur 28%
(in-context) and 46% (fine-tune) of the times.

In Figure 4, we show a few examples of cor-
rect and incorrect predictions and point out the
strengths and weaknesses of successive prompt-
ing. The main strength of successive prompting is
that, by breaking down the question, we are able
to get improved supervision for QA. As a result, it
is able to correctly identify the goals kicked in the
first half while answering the question “How many
field goals did both teams kick in the first half?",
unlike CoT that returns goals for the entire game.

One of the limitations of in-context learning,
when compared with fine-tuning (irrespective of
the type of prompting), is that examples are cho-
sen based on the question alone, overlooking the
context. For instance, DROP has questions like
“How many people were not Germans, in terms of
percentage?” where we first need to answer “How
many people were Germans, in terms of percent-
age?" and then perform a negation operation (i.e,
subtract from 100). The word “not" influences the
example lookup to choose decomposition that in-
volves a negation even when the question being
answered requires a different operation.

A limitation of successive prompting is that it
is sometimes challenging to decompose a ques-
tion, especially when it involves implicit reasoning
from the passage. For instance, for “Which port
did the Korean immigrants leave first Chemulpo
or Veracruz?”, it is difficult to explicitly define a
comparison style decomposition from the sentence,
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Example Chain-of-Thought Successive (In-context) Successive (Fine-Tuning)
e What are all the touchdown
passes? A: 22-yard, eight-
yard
The touchdown passes ar¢ | e What is the largest value in: |e What are all the touchdown
22-yard and f:lght-yard. Out 22-yard, eight-yard? A: 22- passes? A: 22-yard, eight-
Who threw the of 22 and eight-yard, tht.: yard yard .
longest touchdown passis | Who threw the 22-yard |e max(22:eight) A: 22
longest touchdown .
pass? 22. Peyton manning threw touchdown pass? A: Peyton |e Who threw the 22-yard
the 22-yard touchdown pass. Manning. touchdown pass? A: Pey-

The answer is Peyton
Manning. Answer (V)

There are no more questions
left to ask. The final answer
is Peyton Manning. Answer
)

ton Manning. Answer (V')

In which two
quarters did Stephen
Gostkowski only
kick one field goal?

Count-Argmax type

decompositions were not

The first quarter is the only
quarter when Stephen
gostowski kick only one
field goals. The count
becomes 1. The second
quarter is the only quarter
when Stephen gostoswki

Which quarter did Gostowski
score? A: first, second and
fourth

What are the field goals that
Gostowski scored? A: 38, 24
and 21

There are no more question

What are all the field goals
when player was Stephen
gostowski? A: 38-yard, 24
and 21-yard

What were the quarters
when 38-yard field goal
was made? A: second An-

cove;re;i1 ;?a;);r;t:letic only kick tW(? field goals..... ?eft to ask. The final answer swer (X)
The answer is first quarter. is 38 and 24. Answer (X)
Answer (X)
e What are the field goals both
teams kicked in the first half?
_ A: 20, 24 and 53 . What are all the ﬁelld gloals.
H The field goals in the game . . in the first half? A: 20; 24
oW many field are 20. 24. 53. 30 and 40, | ® How many items are in the 53 T
g?als. did both teams The ’cou;lt b;,comes 7. list 20, 24 and 537 A: 3 e count(20; 24; 53) A: 3 An-
kick in the first half? o There are no more questions T ’

Answer (X)

left to ask. The final answer
is 3. Answer (V')

swer (V)

How many of the
personnel were not
civil servants?

The personnel are 1,513.
Since 1,513 is less than
3,183. The answer is not
civil servants. Answer(X)

Q: How many of the person-
nel were not civil servants?
A: 1,176

Q: What is the difference be-
tween 100 and 11767 A:
1111

There are no more questions
left to ask. The final answer
is 1111. Answer (X)

Q: How many personnel
were there? A: 2,234

Q: How many of the per-
sonnel were civil servants?
A: 1,176

Q: diff(2234;
1058 Answer (V')

1176) A:

Q: Which port did
the Korean
immigrants leave
first Chemulpo or
Veracruz? Passage:
In 1905, Korean
immigrants departed
from the port of
Chemulpo.. After
which they took a
train to Veracruz. In
the Veracruz port,
another boat was
taken to the port of
Progreso.

The Korean immigrants left
Chemulpo. The answer is
Chemulpo. Reasoning (X)

Answer (v)

Q: In what year did the
Korean immigrants leave
Chemulpo? A: 1905

Q: Which port did the Ko-
rean immigrants leave first
Chemulpo or Veracruz? A:
Chemulpo

Q: If Chemulpo is greater
than Veracruz, answer is
Chemulpo else it is Veracruz
A: Chemulpo. Reasoning (X)
Answer (V)

Q: When did Korean immi-
grants leave Chemulpo? A:
1905

Q: When did Korean immi-
grants leave Veracruz? A:
1905

Q: if_then(1905 < 1905;
Chemulpo; Veracruz) A:
Veracruz. Answer (X)

Figure 4: Generated decompositions depicting strength and weaknesses of Successive Prompting.
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“After which they took a train to Veracruz”.

5 Related Work

Prompting methods Prompting was introduced
as a way to test the reasoning capabilities of large
language models (Brown et al., 2020). In follow-
up works (Schick, 2022; Chowdhery et al., 2022;
Marasovié et al., 2021) prompting techniques have
been used as a mechanism to supervise the model
decision with few demonstrations as a conditioning
context to guide its predictions on an unseen exam-
ple. Works like Chain-of-Thought reasoning (Wei
et al., 2022; Zelikman et al., 2022) especially focus
on compositional questions where they provide a
chain of reasoning as demonstrations. In concur-
rent work, Least-to-Most prompting (Zhou et al.,
2022) takes a similar view as ours to break down
the problem into sub-problems. However, in Suc-
cessive Prompting the question decomposition and
answering stages are interleaved, unlike Least-to-
Most where the problem is first reduced into sub-
problem and then executed in a sequence. In our
method, the next question prediction has access to
previously answered sub-questions, which is use-
ful in questions that need long chain referencing.
Other contemporaneous works (Press et al., 2022;
Khot et al., 2022) use very large language mod-
els (more than twice the size we used) and show
better few-shot generalization. Works like Perez
et al. (2021) have shown the importance of hav-
ing the right in-context examples for downstream
performance leading to works that learn to retrieve
relevant in-context examples (Rubin et al., 2021).

Non-symbolic methods Most non-symbolic
methods are sequence-to-sequence models trained
on a large amount of question answering
data (Khashabi et al., 2020; Yoran et al., 2021).

Symbolic methods Neural module networks like
approaches parse complex questions into a pre-
specified grammar and learn neural components to
handle symbolic mathematical operations (Gupta
et al., 2020; Chen et al., 2020; Nye et al., 2021)
which are recursively executed. State-of-the-art
models on DROP, however, use a combination of
BERT-based contextual models along with a cal-
culator that performs discrete operations (Andor
et al., 2019; Segal et al., 2020; Hu et al., 2019).
Works like Text Modular networks (Khot et al.,
2021) and MRKL (Karpas et al., 2022) are clos-
est to our work. However, they are limited in the

terms of types of simple questions they can answer
(single-span only) and the complexity of reasoning
they can do (single-order only). TMNs, addition-
ally, use a classifier that scores the generated chains
module and filters out incorrect question decom-
positions, while we use contrastive estimation to
learn a better question decomposer and as a result
do not need a chain scorer.

6 Conclusion

We present a way to successively decompose com-
plex questions into simple QA pairs, which al-
lows for modular QD and QA systems that can be
trained and queried independently. When perform-
ing in-context learning, we showed that successive
prompting yields an improvement of 4.6 F1 over
chain-of-thought prompting. When replacing just
the in-context QA module with a fine-tuned one,
which is adept at handling list type questions, we
further improve the overall performance by 9.5 F1.
We believe that modular systems that decompose
and delegate tasks to the most appropriate model,
whether that is a large LM or a tailored component,
are more effective at solving complex tasks than
trying to have a large LM solve the entire task on
its own. Successive prompting shows one way this
decomposition and delegation can be done.
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Limitations

We propose a way to decompose complex ques-
tions into interpretable simple QA pairs as latent
steps that get successively asked and answered by
large pretrained models. The notion of performing
complex tasks by iteratively finding and then filling
information needs is very general, but we have only
shown the applicability of one specific version of
this idea in one specific setting. There are many
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potential challenges in applying successive prompt-
ing more broadly. The biggest is that it requires at
least some decomposition data, which may be hard
or even impossible to obtain. Some complex ques-
tions are not easily decomposed, and some domains
can be very challenging to write synthetic data gen-
erators for. We were able to generate synthetic data
that covered most of the reasoning types in DROP,
but other kinds of complex questions would not
be covered by our generator (e.g., questions that
require commonsense or causal reasoning).

There is also significant difficulty in choosing a
level of granularity for decomposition. If a large
pretrained model can directly answer a question as
complex as “What was Barth’s second field goal?”,
we should let the model answer the question instead
of trying to decompose it further. The right gran-
ularity for the decomposition thus depends on the
capabilities of the underlying model, and those ca-
pabilities are rapidly changing as newer and larger
pretrained models are released. There is the possi-
bility that newer model iterations will not need any
decomposition to answer the complex questions
covered by our synthetic data generator, making
that generator obsolete. However, it seems unlikely
that pretrained models will be able to handle all
complex scenarios in the near future, so the ideas
of successive prompting and generating synthetic
data to bridge reasoning gaps should still be appli-
cable even when our particular application of them
becomes obsolete.

This method also increases the computational
requirements for answering complex questions, as
instead of making one query to a large LM, suc-
cessive prompting makes many queries to answer
a single question.

Ethics Statement

This work focuses on improving complex ques-
tion answering with limited data. It uses existing
training data and conventional methods of testing
model performance. This work does not deal with
any social impacts or biases in natural language
processing systems.
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A Appendix

A.1 Control codes for Model Fine-tuning

To generate a simple question given complex ques-
tion and previously generated latent steps, we ap-
pend the input with control code “QS:”
{xX"} OI: q’l’ A: a’l’ --- QI: qz_l A: a
QS:

To answer the simple question we prompt the
model again with only the simple question this time
and control code “A:” to generate answer, a;

{p"} QS: q A:

We alternate between the two stages till we reach
the end of decomposition marker “EOQ"

n
k-1

(X"} QI: q'f A a'l’ <o QI: g% A: df
QS: EOQ

A.2 Synthetic Dataset Statistics
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Reasoning Number of Examples
Filter 9634
Count 11019
Comparison 12239
Difference 15433
Negation 2020
Intersection 9089
Sum 18754
Sort 10663
Sort-Filter 5827
Difference-Sort 13872
Sum-Sort 3212
Count-Filter 7382
Gather-Count 1506
Sum-Count 4138
Difference-Count 4216
Sort-Count 6328
Comparison-Count 5998
Total 141,330

Table 5: Synthetic dataset statistics



Round Date Opponent Venue Attendance
R2 1st Leg 26 September 1990 Walsall A 5,666
R22nd Leg 10 October 1990 Portsmouth H 10,037
QFR 23 October 1990 Liverpool H 18,246

SF 1st Leg 24 February 1991 Sheffield Wednesday H 14,074
SF2nd Leg 27 February 1991 Oxford United A 34,669
QFR 23 January 1991 Walsall A 33,861

(a) Example wikitable where rows become sentences and columns are used for question generation

Reasoning

Complex Question

Decomposition (Question, Answer)

Filter

What are the opponents
when date was later than
21 January 1991 and atten-
dance was less than 200007?

Q: What are the opponents when date was
later than 21 January 19917 A: Sheffiedl
Wednesday; Oxford United; Walsall

Q: Out of Sheffield Wednesday, Oxford
United and Walsall, which opponents have
attendance less than 20000? A: Sheffield
Wednesday

Count

How many opponents were
there?

Q: What are all the opponents? A: Walsall;
Portsmouth; Liverpool; Sheffield Wednes-
day; Oxford United

Q: count(Walsall; Portsmouth; Liverpool;
Sheffield Wednesday; Oxford United) A: 5

Comparison

What round had a higher at-
tendance: SF 2nd Leg or
QFR?

Q: What was the attendance when round was
SF 2nd Leg? A: 34,669

Q: What was the attendance when round was
QFR? A: 33,861

if_then(34,669 > 33,861; SF 2nd Leg; QFR)
A: SF 2nd Leg

Difference

What is the difference be-
tween attendances when
the opponent was Oxford
United and Portsmouth?

Q: What was the attendance when opponent
was Oxford United? A: 34,669

Q: What was the attendance when opponent
was Portsmouth? A: 10,037

diff(34669; 10037) A: 24632

— Q: What is the difference between
34669 and 246327

Sum

What were the total at-
tendances when opponents
were Walsall and Oxford
United?

Q: What was the attendance when opponent
was Walsall? A: 5,666; 33,861

Q: What was the attendance when opponent
was Oxford United? A: 34,669

sum(5666; 33861; 34669) A: 74196

Sort

Which opponent had the
second highest attendance?

Q: What are all the attendances? A: 5,666;
10,037; 14,074; 34,669; 33,861

Q: top(2, 5,666;10,037;14,074;34,669;33,861
A: 33,861

What was the opponent when attendance was
33,8617 A: Walsall

(b) Single order decompositions
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Reasoning Complex Question

Decomposition (Question, Answer)

Higher-order combinations with SORT

Sort- Which opponent had the e QQ: What are all the attendances after 1 January
Filter third lowest attendance af- 19917 A: 14,074, 34,669; 33,861
ter 1 January 19917 Q: bottom(3, 14,074;34,669;33,861 A: 14,074
What was the opponent when attendance was
14,074 A: Sheffield Wednesday
Difference- What is the difference be- Q: What are all the attendances? A:
Sort tween the second highest at- 5,666;14,074;18,246;14,074;34,669;33,861
tendance and lowest atten- Q: top(2, 5,666; 14,074; 18,246; 14,074;
dance? 34,669; 33,861 A: 33861
Q: bottom(1, 5,666; 14,074; 18,246; 14,074,
34,669; 33,861) A:5666
— Q: What is the smallest value in: 33861
and 56667?
diff(33861;5666) A: 28195
Sum-Sort What was the total of high- Q: What are all the attendances? A: 5,660;
est attendance and third low- 14,074;18,246;14,074;34,669;33,861
est attendance? Q: top(l, 5,666; 14,074; 18,246; 14,074
34,669; 33,861 A: 34669
Q: bottom(3, 5,666; 14,074, 18,246; 14,074,
34,669; 33,861 A:18246
e sum(33861;5666) A: 52915
— Q: What is the sum of 33861 and 56667
(Additional) Higher-order combinations with COUNT
Count- How many rounds had e Q: What rounds had venue as A? A: R2 1st Left;
Filter venue as A and attendance SF 2nd Leg; QFR
greater than 300007? e Q: Out of rounds R2 1st Left, SF 2nd Leg and
QFR, which had attendance greater than 300007
A: SF 2nd Leg; QFR
e QQ: count(SF 2nd Leg; QFR) A: 2
Gather- How many opponents were o Q: What are the opponents when venue was A?
Count there for each of venue: A A: Walsall; Oxford United

and H?

e Q: count(Portsmouth;

e Q: count(Walsall; Oxford United) A: 2
e : What are the opponents when venue was H?

A: Portsmouth; Liverpool; Sheffield Wednesday
United
Liverpool; Sheffield

Wednesday United) A: 3

e Q: gather(2;3) A: 2 and 3

(c) Higher order decompositions

Figure 5: Examples of decompositions with wikitables
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Reasoning Complex Question Decomposition (Question, Answer)
Additional Higher-order combinations with COUNT
Sum- What are the total number e QQ: What are the opponents when venue was A?

Count of opponents when venue A: Walsall; Oxford United
were A and H? e Q: count(Walsall; Oxford United) A: 2
e Q: What are the opponents when venue was H?
A: Portsmouth; Liverpool; Sheffield Wednesday
United
e Q: count(Portsmouth; Liverpool; Sheffield
Wednesday United) A: 3
e Q:sum(2:;3) A:5
Difference- What is the difference be- e Q: What are the venues when round was SF st
Count tween number of rounds Leg? Ans: H

when venue was A and H?

e Q:count(A)A: 1

e What are the venues when round was QFR? A:
H;A

e Q: count(H;A) A: 2

e diff(3;2) Ans: 1

(d) Higher order decompositions

Figure 5: Examples of decompositions with wikitables
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