:')

Check for
Updates

Secure and Reliable Network Updates

JAMES LEMBKE, Purdue University, Milwaukee School of Engineering

SRIVATSAN RAVI, University of Southern California

PIERRE-LOUIS ROMAN, Universita della Svizzera italiana

PATRICK EUGSTER, Universita della Svizzera italiana, TU Darmstadt, Purdue University

Software-defined wide area networking (SD-WAN) enables dynamic network policy control over a large dis-
tributed network via network updates. To be practical, network updates must be consistent (i.e., free of tran-
sient errors caused by updates to multiple switches), secure (i.e., only be executed when sent from valid
controllers), and reliable (i.e., function despite the presence of faulty or malicious members in the control
plane), while imposing only minimal overhead on controllers and switches.

We present SERENE: a protocol for secure and reliable network updates for SD-WAN environments. In
short: Consistency is provided through the combination of an update scheduler and a distributed transactional
protocol. Security is preserved by authenticating network events and updates, the latter with an adaptive
threshold cryptographic scheme. Reliability is provided by replicating the control plane and making it resilient
to a dynamic adversary by using a distributed ledger as a controller failure detector. We ensure practicality by
providing a mechanism for scalability through the definition of independent network domains and exploiting
the parallelism of network updates both within and across domains. We formally define SERENE’s protocol
and prove its safety with regards to event-linearizability. Extensive experiments show that SERENE imposes
minimal switch burden and scales to large networks running multiple network applications all requiring
concurrent network updates, imposing at worst a 16% overhead on short-lived flow completion and negligible
overhead on anticipated normal workloads.

CCS Concepts: « Networks — Network policy; Network security; « Security and privacy — Dis-
tributed systems security;

Additional Key Words and Phrases: Software defined networking, fault tolerance

ACM Reference format:

James Lembke, Srivatsan Ravi, Pierre-Louis Roman, and Patrick Eugster. 2022. Secure and Reliable Network
Updates. ACM Trans. Priv. Sec. 26, 1, Article 8 (November 2022), 41 pages.

https://doi.org/10.1145/3556542

Srivatsan Ravi’s work is based on research sponsored by DARPA under agreement number W911NF19C0058. Patrick
Eugster’s work was supported by ERC Consolidator grant #617805 (LiveSoft), DFG Center #1053 (MAKI), SNSF grants
#200021_192121 (FORWARD) and #200021_197353 (BASIS), and NSF grant #1618923. The views, opinions, and/or findings
expressed are those of the author(s) and should not be interpreted as representing the official views of funding agencies.
Authors’ addresses: J. Lembke, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, Milwaukee School of Engi-
neering, 1025 N Broadway, Milwaukee, WI 53202; email: lembkej@purdue.edu; S. Ravi, University of Southern California,
3551 Trousdale Pkwy Los Angeles, CA 90089; email: srivatsr@usc.edu; P.-L. Roman, Universita della Svizzera italiana, Via
Giuseppe Buffi 13, 6900 Lugano, Switzerland; email: romanp@usi.ch; P. Eugster, Universita della Svizzera italiana, Via
Giuseppe Buffi 13, 6900 Lugano, Switzerland, TU Darmstadt Karolinenpl. 5, 64289 Darmstadt, Germany, Purdue University,
610 Purdue Mall, West Lafayette, IN 47907; email: eugstp@usi.ch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

2471-2566/2022/11-ART8 $15.00

https://doi.org/10.1145/3556542

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

https://orcid.org/0000-0002-1503-7215
https://orcid.org/0000-0002-2965-3940
https://orcid.org/0000-0001-5741-1490
https://orcid.org/0000-0003-3864-9078
https://doi.org/10.1145/3556542
mailto:permissions@acm.org
https://doi.org/10.1145/3556542
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3556542&domain=pdf&date_stamp=2022-11-09

8:2 J. Lembke et al.

1 INTRODUCTION

The advent of software-defined wide area networking (SD-WAN) has brought the concurrent
network update problem [1] to the forefront. In short, SD-WANSs are wide area networks (WANSs)
covering multiple sites of an organization managed using software-defined networking (SDN)
concepts [2]—chiefly the separation of (1). the data plane, in which packets are forwarded towards
their destinations by switches based on forwarding rules installed at those switches, from (2). the
control plane, which is responsible for setting up said forwarding rules across switches from a con-
ceptually centralized perspective. The challenge is thus to construct a control plane for SD-WAN
capable of covering several large geographically separated networks. Building a single consoli-
dated control plane across WANs agnostic of the different underlying domains (e.g., constituting
autonomous systems or based on some locality in the physical topology) can optimize the process-
ing of consistent updates [3-6]. Yet, it is likely to be ineffective and scale poorly in practice due to
the high communication cost of synchronization, besides requiring strong trust between the do-
mains. Inversely, managing domains independently, each with a separate control plane, can help
perform updates in parallel (e.g., when updates only affect single domains), and can ensure that
failures (e.g., misconfigurations, crashes, malicious tampering) in one domain do not affect oth-
ers. However, this does not provide support for updates affecting multiple domains in a consistent
manner.

Requirements. A viable SD-WAN control plane should reconcile all the following requirements:

Consistency: First and foremost, updates can occur concurrently, yet—whether affecting indi-
vidual domains (intra-domain routes) or multiple domains (inter-domain routes)—these should
meet the sequential specification of the shared network application. That is, they should not
create inconsistencies leading to network loops, link congestion, or packet drops.

Security: Messages—whether sent by the data plane due to some networking event or sent by the
control plane to update a switch in response to some event or change in network policy—should
only be considered from valid sources and when not tampered with by a third party.

Reliability: The control plane should be able to perform updates in the face of high rates of fail-
ures including crashes of controllers and compromised controllers; in particular failures should
be detected and should not spread from one domain to another.

Practicality: Last but not least, a solution should be practical. In particular, performance should
support real-life deployments that scale to as many switches as possible across multiple do-
mains, while imposing minimal overhead on switches and (thus) sustaining high update rates.
In that light, a solution should support the replacement of failed controllers to ensure 24X7
deployment.

State-of-the-art. Several approaches have tackled the problem of making the control plane tol-
erate failures, yet these approaches either solely handle crash failures [7-9], or handle potentially
malicious behaviors [10, 11] without control plane authentication for the data plane, thus not fully
shielding the data plane against masquerading malicious controllers. In addition, most of these
approaches consider only single-domain setups.

Protocols for Byzantine fault tolerance (BFT) [12], a failure model subsuming crash failures,
provide safety and liveness guarantees [13, 14] up to a given threshold of faulty or malicious par-
ticipants, most often growing linearly with regards to the number of participants. Most work here
similarly considers single domain setups, putting little emphasis on handling failures to quickly
yet permanently retain trustworthiness and support cooperation across domains throughout suc-
cessive failures. Yet while application-specific solutions exist for performance-aware routing [15]

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:3

or optimal scheduling for network updates [16], we are not aware of any practical system provid-
ing a generic protocol to securely enforce arbitrary application network updates across a faulty
and asynchronous distributed network environment. Crucially, from the point of view of practi-
cal adoption, existing work introducing distributed resiliency techniques to address the network
update problem treat both switches and controllers as equal participants in the protocol despite
important differences, thus inducing prohibitive overhead on the switching fabric [11, 17].

Contributions. We present SERENE, a comprehensive protocol for secure and reliable network
updates in SD-WAN environments. SERENE ensures network update consistency amidst a dy-
namic control plane prone to malicious or faulty members, all the while exploiting parallelism in
network updates for practicality with minimal switch instrumentation. SERENE ensures consis-
tency via an update scheduler to enforce resilient ordering of dependent network updates. Security
and reliability are ensured via a Byzantine fault-tolerant consensus protocol with an adaptable
threshold-based authentication of updates leveraging distributed key generation [18]. SERENE is
able to detect a wide range of controller failures (e.g., benign crashes, muteness failures [19], cre-
ation of malicious updates) thanks to a distributed ledger enabling network provenance [20]. To
deal with the detected failures, SERENE supports dynamic membership within the control plane,
allowing controllers to join a live control plane to replace and offset faulty controllers. Our mecha-
nism for control plane membership changes allows for a varying membership size for the control
plane while allowing a live adaptation of the threshold used in update authentication. In addition,
we propose an alteration to SERENE that slightly sacrifices network update setup time to reduce
switches’ computation load.

The evaluation shows that our SERENE implementation, built off the Ryu controller frame-
work [21] and compatible with any controller application, performs with nominal overhead in
data center-sized topologies and improves performance when expanded to large network setups,
e.g., multiple data centers. Furthermore, our SERENE implementation is extensible to allow the use
of any update scheduler (e.g., Contra [15], Dionysus [16]) whose update policies can be specified
in Ryu.

In summary, this article makes the following contributions. We present

(1) an intuitive view of SERENE’s protocol for secure and reliable network updates across multi-
ple domains, while preserving consistency and practicality, that supports dynamic member-
ship in each domain’s control plane including detection and removal of faulty or malicious
controllers through the use of a per-domain distributed ledger;

(2) an algorithmic formalization of SERENE’s protocol, proofs that these achieve consistent net-
works in the sense of event-linearizability [22], and a security analysis of the protocol;

(3) SERENE’s implementation on top of the Ryu runtime, using open-source components such
as the BFT-SMaRt [14] and Pairing Based Cryptography [23] libraries;

(4) an integration of SERENE into the OpenFlow discovery protocol (OFDP) [24] for secure
data plane (topology) discovery, and evaluate it over the Abilene network [25];

(5) an evaluation of SERENE in single and multiple domains, demonstrating its practicality.

SERENE supersedes our consistent secure practical controller (Cicero) work [26], which had sev-
eral limitations compared to SERENE. In short, SERENE integrates a distributed ledger to better
handle compromised controllers, and the present report further includes formalization and proofs
of correctness (event-linearizability) along with a security analysis, and provides secure topology
discovery through an integration with OpenFlow discovery protocol (OFDP). All technical addi-
tions are empirically evaluated.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:4 J. Lembke et al.

Roadmap. Section 2 presents motivating examples for secure and consistent network updates
and discusses the need for a comprehensive solution. Section 3 presents the main components of
SERENE. Section 4 presents the SERENE protocol that puts the components together. Section 5
presents the formal properties of SERENE including pseudocode for algorithms, proofs of correct-
ness, and a security analysis. Section 6 describes our SERENE implementation. Section 7 presents
a secure topology discovery protocol using OFDP. Section 8 presents the performance evaluation
of SERENE in a multi-data center deployment. Section 9 presents conclusions.

2 BACKGROUND

From a high level, network traffic is shaped by policies set by network administrators. Based on an
unbounded number of motivating factors (e.g., demand for network resources, application band-
width requirements, firewall rules, and other network tenant requirements), it is impossible to be
100% certain of what drives network policies. For a network switch in a data plane, policies are
represented by forwarding rules that describe the store and forward behavior of network pack-
ets. An individual switch has no understanding of a policy or how it affects the entire network.
In an SD-WAN environment, a control plane of one or more controllers enforces policies set by
the network administrator by translating policies into flow table entries installed on switches. As
network traffic arrives or as network policies change, updates to switch flow tables are needed
through network updates. Furthermore, the topology of the network may be dynamic as physical
cabling is changed and/or failures happen in switch or fabric hardware. These topology changes
may also result in network updates.

2.1 Definitions

A network policy consists of a high-level description of intent for network traffic. In other words, it
consists of desired packet handling behavior (e.g., shortest path routing, firewall rules). A network
flowis an active transfer of packets in the data plane identified by its source, target, and bandwidth
requirements. A route indicates the specific path that a network flow takes within the network;
multiple possible routes may exist for a network flow. Forwarding rules instruct a data plane switch
on how to forward received packets in a flow. The data plane state consists of all forwarding rules
currently in use by all data plane switches. The control plane is thus responsible for maintaining
forwarding rules in the data plane state for all routes such that they comply with network policies
at all times, even during a change to the data plane state.

2.2 Challenges

In this section we outline several motivating examples that show not only the need for consistent
network updates performed in a secure and reliable manner but also the need for practicality for
policy specification and scalability for deployment in large networks.

Consistency. Asynchrony in network updates can cause transient side effects that can signifi-
cantly affect switch resources such as overall network availability and/or violation of established
network policies. Since data plane switches do not coordinate themselves to ensure update con-
sistency, updates sent to switches in parallel may be applied in any order. While the OpenFlow
message layer, arguably the most widely used southbound application programming interface
(API) for network updates, has proposed bundled updates [27] to provide transaction style updates
to switches, it only supports these updates for a single switch. It does not address inconsistencies
that can occur due to updates that span multiple switches. Additionally, OpenFlow scheduled bun-
dles require synchronized clocks among switches to enforce the time at which bundles are applied
but even the slightest clock skew may provoke transient network behavior.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:5

Table 1. Examples of Network Changes with their Desired Behaviors, Potential Problems, and
Consistency Preconditions

Example Network change Desired behavior Potential problems Update consistency

preconditions
C i A f existi
Figure 1 Firewall rule changes Policy enforcement lzrsr;por;)g::: or f-“:: :\r;a(l)l reli{llessmg

Network hardware Loop and black Aware of existing

Figure 2 maintenance hole freedom Packet loss flows
Figure 3 Bandwidth load Loop, black hole and Over-provisioning of Aware of existing
balancing congestion freedom link resources bandwidth usage

S4 ijs3 S5 S4 ijs_; S5 S4 S])(S_; S5
S &2 =) - =
! RS /
. B
1
1
1

.8
. 3N A \
o 7 ~ 7
& e &—e & —e
1

(b) SZ N S

1 (C) 2
Fig. 1. (a) Depiction of the flows fi in green and f; in yellow. Unused network links are dashed. (b) The
network is intended to be modified by an update, which respects the firewall rule in which no traffic should
flow from sp to s3. The modification is made to send f; and f; both through sy to ss. Updates are required
at s1 and sy to modify the flows, (c) but s1 applies the update before s which breaks the firewall rule.

1 \

@

1 , S

I N
! ¢ = S =

= @ & e

Sy @) 2 1 (b) 2 i © p)

Fig. 2. (a) Depiction of the flows fi in green and f; in yellow. (b) The link s4—ss fails and the network is
planned to be modified by an update to bypass this failure, but (c) s3 applies the update before s, which
creates an unintended network loop.

Table 1 summarizes several circumstances as well as potential problems that can arise if update
consistency is not provided. For each example, certain preconditions may also be needed by the
controller for ensuring update consistency. For instance, even a simple network policy change may
have unintended consequences when network updates are not consistent (cf. Figure 1). The process
of changing data plane state must also be free of transient effects caused by updates to multiple
data plane switches: loop and black hole freedom ensures no network loops or unintended drops of
network packets (cf. Figure 2), and congestion freedom ensures no over-provisioning of bandwidth
to network links (cf. Figure 3).

Security. When considering a control plane prone to faulty controllers, enforcing a consistent
ordering of network updates is not sufficient, those updates must only be applied when received
from authenticated controllers. Additionally, since a malicious controller masquerading as a switch

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:6 J. Lembke et al.

s . s s s s K
L /5 s > =4 5/5 é é 5
1 1 ~ s’ 7
HRANGT 5/5/' ' N ‘\5/5 05" |

7 7

05, 10/5 55 D 5/5 5/5 2 o5
! 5/}' PANGE ' 05,7 85 ~0/5 05,7 S, V\5/5 '
' «fl 1 e AN 7 |
1 (a) 2 1 (b) 2 1 (C) 2

Fig. 3. (a) Depiction of the flows fi in green and f3 in yellow, (b) that are planned to be modified by an
update alleviating s3, (c) but the update is applied by s1 before it is applied by s which causes an unintended
over-provisioning of the s4—ss link.

can report incorrect links and switch states to the control plane [28], messages sent by switches
must also be authenticated.

OpenFlow enables endpoint authentication through transport layer security (TLS) for both
controllers and switches. However, it has no mechanism to support a dynamic control plane such
as group authentication, e.g., to verify that an update has been emitted by any member of the
control plane, or distributed key generation to adapt the key of the group as the membership of
the control plane changes.

Reliability. An authenticated controller that is faulty or compromised is still able to affect the
data plane state. Beyond security, a system for network updates must therefore remain correct
in the midst of failures and be able to detect when failures happen. A comprehensive solution
for secure and reliable network updates must be able to tolerate arbitrary and dynamic controller
faults.

A faulty or malicious controller may corrupt or cause loss of network data, violate firewall
rules, or even leak network data to a malicious party. While solutions for reliable controllers have
been proposed, they either focus on resiliency (e.g., intrusion detection, intrusion prevention) for
a singleton controller [29, 30] or provide resiliency only in the presence of crash failures [7-9, 31].
Single controller solutions, proven to be single points of failure [32-36], must be avoided.

Many of the existing limitations when considering a faulty control plane arise from shortcom-
ings in the southbound APl itself. For example, OpenFlow has a mechanism for the control plane to
inject arbitrary packets into the data plane (PACKET_OUT [37]). Using this, a malicious controller
can perform a denial of service attack against the data plane or to corrupt existing flows [38].

Practicality. The usefulness of a system is often evaluated on factors such as ease of use, per-
formance, and efficiency. Network policy specifications must not only be straightforward but also
flexible enough to allow arbitrary network policies. Several solutions for policy specification have
been proposed [39-41], but these are either control plane implementation specific, or do not en-
sure update consistency or security. A practical system must allow a network administrator the
flexibility to use any solution desired while ensuring consistency, security, and reliability.

Furthermore, a system for managing changes to the data plane state must scale to a wide network
infrastructure consisting of multiple data centers with potentially thousands of switches [42, 43].
Existing work [16] shows that applying updates on commodity switches can require seconds to
complete. For data center workloads where flows start and complete in under a second [44], ap-
plying updates quickly is vital to guarantee adequate network response time when changing data
plane state. However, responsiveness becomes even harder to ensure if updates are to be applied
in a consistent manner. In a naive approach to enforcing consistency, updates would be applied
sequentially (e.g., by updating s;, s1, s3, s4 in that order in Figure 1), increasing response time. Yet,

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:7

Table 2. Comparison of Network Management Solutions Considering Different Features Related to
Consistency [Cons], Security [Sec], Reliability [Rel], and Practicality [Prac]

. S\ JEENRY P
KO o e;%\“‘ PR
© o " 0"0‘ b © ‘a\‘eo (ﬁ 0,00 * &eﬁo‘o © 60&\& &eﬁ“%
\SQ&D Q}\&’ \qub' C“bs Q,‘fl;b’ ﬂo ‘wé’b R &Q
l l l l l l l l
System/approach [Cons] [Sec] [Sec] [Rel] [Rel] [Prac] [Prac] [Prac]
Singleton controller Common [21, 45-47]
Singleton controller w/TLS v Common [21, 45-47]
ONOS [7] v v Deployed [48, 49]
ONOS [7] w/TLS v v v Deployed [48-51]
Ravana [9] v Experimental Ryu extension
Botelho et al. [52] v Experimental
MORPH [11] v v v Experimental
RoSCo [22] v v v v v Experimental Ryu extension
NES [53] v Theoretical specification
Dionysus [16] v Experimental
ez-Segway [54] v Experimental Ryu extension
Optimal Order Updates [55] v Theoretical specification
SERENE (this work) v v v v v v v/ Experimental Ryu extension

updates that do not depend on any others, (i.e., causally concurrent updates) may be applied in
parallel (e.g., updates to s3 and s4 in Figure 1). Identifying causally concurrent updates to apply in
parallel and improve response times is a challenge.

Finally, the data plane’s runtime load for updates must be low to ensure as many resources as
possible are used for the network’s core purpose; the transmission of network data.

2.3 Related Work

While the following solutions present methods for solving significant problems that arise in
SD-WAN deployments, none however provide the desirable guarantees of consistent network up-
dates in the midst of controller faults while remaining practical. Table 2 highlights the shortcom-
ings of these solutions that make them impractical in a realistic deployment.

Consistency. Additionally, there have been several works published in the realm of consistent
network updates. McClurg et al. [53] proposed network event structures (NES) to model con-
straints on network updates. Jin et al. [16] propose Dionysus, a method for consistent updates
using dependence graphs with a performance optimization through dynamic scheduling. Nguyen
et al. [54] propose ez-Segway, a method providing consistent network updates through decentral-
ization, pushing certain functionalities away from the centralized controller and into the switches
themselves. Header space analysis [56] and Minesweeper [57] both provide a mechanism for en-
suring consistency of network updates through formalism, however, do not provide a means to
ensure that those updates are applied securely. Cerny et al. [55] show that in some situations it
may not be possible to ensure consistent network updates in all cases. As such, it may be desirable
to wait until the packets for a particular flow are “drained” from the network prior to applying
switch updates. They define this behavior as packet-waits and provide an at-worst polynomial
runtime called optimal order updates which provides a mechanism for detecting such situations.

Security. While adding TLS for OpenFlow [58] may seem trivial, it requires overcoming addi-
tional complexities inherent in the protocol. For example, TLS uses certificates to authenticate par-
ticipants and encryption to ensure data confidentiality, but does not protect against a malicious

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

req:cons
req:sec
req:rel
req:prac
req:cons
req:sec
req:sec
req:rel
req:rel
req:prac
req:prac
req:prac

8:8 J. Lembke et al.

controller. Such a controller with a valid certificate has the ability to maliciously install a faulty
data plane state, e.g., crafting the undesired situations mentioned in Figure 1(a)—(c). Besides, as dis-
tributed control plane membership changes, individual controller and switch certificates must be
redistributed to all participants. Solutions to address a malicious controller exist [29, 30], but focus
on protection in a single controller environment and do not address a replicated control plane.

Li et al. [10] proposed a method of devising a Byzantine fault tolerance (BFT) control plane
by assigning switches to multiple controllers that participate in BFT agreement. However, this
work focuses significantly on the problem of “controller assignment in fault-tolerant SDN
(CAFTS)” with little discussion on how BFT is used to ensure protection from faults. MORPH [11]
expands the solution of controller assignment in fault-tolerant SDN (CAFTS) with a dynamic reas-
signer which allows for changes to the switch/controller assignment. Neither method fully protects
against malicious updates sent to the data plane; assuming that controllers participate in a BFT pro-
tocol for state machine replication is not enough to ensure the security of such updates. Without
control plane authentication, a malicious controller can make arbitrary updates to a data plane
switch. Note also that despite partitioning switches among controllers, MORPH, just like other
related approaches, does not support multiple update domains. DiffProv [59] and NetSight [60]
both provide a mechanism for network anomaly detection, but do not prevent inconsistencies.

Reliability. The area of fault-tolerant network updates has been explored in many facets.
ONOS [7] and ONIX [8] provide a redundant control plane through a distributed data store, how-
ever, their primary focus is on tolerance of crash failures. Botelho et al. [52] also make use of a
replicated data store, following a crash-recovery model, for maintaining a consistent network state
among a replicated control plane built upon Floodlight [61]. Ravana [9], another protocol that only
tolerates crashes, differs slightly in its use of a distributed event queue rather than a distributed
data store. While Botelho et al. and Ravana ensure event ordering and prevent duplicate process-
ing of events, they do not provide a mechanism for authenticating updates sent to the data plane.
RoSCo [22] makes use of a BFT protocol to ensure event-linearizability, but does not support a
dynamic control plane and requires extensive key management for controller authentication.

Zhou et al. [20] propose a protocol for secure network provenance to provide forensic capabili-
ties for network policies in an environment consisting of malicious nodes. However, their protocol
requires the instrumentation of switch nodes to participate in the protocol and does not provide
fault detection. In addition, it requires a network operator to check the provenance graph for
anomalies. DistBlockNet [62] presents a protocol for blockchain-based network policy manage-
ment in an Internet of things application, however, requires that each switch authenticates each
update with a “verifying controller”. While updates are verified against a distributed blockchain
(i.e., a distributed ledger), DistBlockNet does not prevent a malicious controller from modifying
the blockchain itself.

3 SERENE OVERVIEW

In this section, we detail our system threat model and describe the mechanisms SERENE employs to
ensure consistency, security, and reliability while being efficient enough for practical deployment
in a production data center. Descriptions contained in this section makes use of several symbols
for conciseness. A summary of these symbols is provided in Table 3.

3.1 System and Threat Model

System model. The data plane is considered to consist of a set of switches s; connected by links
encompassing multiple domains of operation. We consider the control plane to consist in a dynamic
set of distributed controllers c;. The current state of the switches, or more specifically the data

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:9

Table 3. Basic SERENE Notation

Symbol Definition

pkt Network packet

s Switch process

spk Switch public key

ssk Switch secret key

tpk Threshold public key

e Network event

c Controller process

cpk Controller public key

csk Controller secret key

css Controller secret share

C Controller communication object
C Control plane communication group
q Minimum quorum size

Ca Aggregator controller

7 Network state

U Network update

u Switch update

r Flow table rule

D Switch update dependence set

plane state (essentially a set of flow table rules for switches) is referred to also as the network
state 7 for brevity. A change in data plane state generally involves a network update U consisting
of a set of switch updates {uy}. A switch update u; (which is uniquely identifiable) may have a
set of attributes associated with it, abbreviated as a tuple of the form (s, r¢, Di). The first two
indicate that switch update uj consists of rule ri to be applied to switch sx. Where needed/used,
the dependence set Dy indicates a set of switch updates that must be applied before uy, and is thus
essentially used to capture dependencies between switch updates as elaborated on shortly below.
As for any (tuple of) attributes associated with an object, we assume that attributes of a given
switch update can be accessed by dereferencing it—e.g., for a switch update uy above, ug.r denotes
its rule (i.e., r¢), or uy.D its dependence set (Dy).

Switches and controllers communicate by sending and receiving messages on an asynchronous
network in which links between switches, controllers, and/or switches and controllers may fail.
Messages may take an arbitrary amount of time to reach switches and controllers.

Threat model. We consider a failure/threat model where a controller may fail or become mali-
cious at any time. Such a controller may eavesdrop on the communication between switches in the
data plane, between other controllers in the control plane, and/or between switches and controllers.
We also consider that a faulty/malicious controller can modify the contents of any message sent
between controllers and/or between controllers and switches. For example, such a controller may
send any arbitrary update to a switch, send an arbitrary event to another controller, or prevent an
event and/or update from being received by a controller and/or switch.

While a controller may fail or become malicious we assume that switches always remain cor-
rect. Protection of the data plane is the topic of ongoing research [63] through analysis of flow
behavior [64], authentication [65], and intrusion detection [66]. In addition, host endpoints can
protect data packets through existing secure transport protocols such as TLS. The topic of uti-
lizing software-defined networking (SDN) as a means of protecting against malicious hosts, (i.e.,

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:10 J. Lembke et al.

L) — - B

=T i

Fig. 4. The update scheduler determines that there are no dependencies between the updates for the green
(dashed) set of switches and the updates for the red (dotted) set.

utilizing distributed denial of service (DDoS) [67-69] or man-in-the-middle [70]) attacks is sub-
ject to ongoing research. We also assume that a faulty/malicious controller can only view but not
modify the contents of data sent between switches. Furthermore, in relation to the cryptographic
mechanisms employed by our solution, we assume their implementation is sound, that private
keys remain private and that with the exception of negligible probability an adversary cannot sign
a message for a member where the private key is not known.

3.2 Consistency

Consistent network updates are accomplished by pairing an update scheduler that establishes the
order in which updates should be performed, and a blocking update application scheme that relies
on switch acknowledgments.

Update scheduler. An update scheduler determines a schedule that enforces the sequential spec-
ification of registered network policies by denoting a set U of switch updates including their re-
spective dependencies D as defined above. That is, for any given switch update u = (s, r, D) part
of a network update U, D refers to the set of switch updates that must be applied before u can be
applied to s.

Figure 1 depicts an example that requires a set of updates for switches sy, sz, s3, and s4. To en-
sure update consistency, an update scheduler would require the update at s, to be applied first and,
only then, the remaining updates can be performed in any order. Figure 4 depicts another exam-
ple where a set of network updates require modifications to the switches highlighted with green
dashes and red dots. While the updates within these two sets of switches may require ordering,
modifications across sets involve a disjoint set of switches and can be performed in any order.

Update schedulers have been extensively discussed [16, 55, 71, 72]. We employ a simple update
scheduler implemented using any of these approaches. We discuss in Section 3.5 how SERENE
exploits it to perform updates to switches in parallel while still preserving consistency.

In addition, we assume controller applications are deterministic. As a result, when policies allow
for multiple rules that may result in differing routes, all controllers must use the same heuristic for
choosing rules to update. For example, if a policy requires that data plane traffic be routed using
the shortest path yet there exists multiple shortest paths in the network, all controllers would
deterministically choose the same route resulting in the same set of required updates to switches.
Existing solutions that focus on crash-only tolerance follow a similar assumption [7-9, 31].

Switch acknowledgments. While the update scheduler determines dependencies between up-
dates, it does not handle execution. To ensure consistent execution, controllers expect to receive
update acknowledgments from switches every time they apply an update. For every switch update
u = (s,r, D) with dependence set D proposed by the update scheduler, a controller only sends the
update u to the data plane once it receives the acknowledgments for every update in D.

3.3 Security

At their core, secure network updates require switches to apply updates only from a trusted con-
troller. SERENE fulfills this requirement by authenticating both events, which may induce updates,

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:11

and updates themselves such that only those emitted by control plane members are considered
by switches. SERENE further eases the deployment of a dynamic control plane by ensuring that
switches only need to store a single public key for the control plane, handed out when a switch is
setup.

Event source PKI—event authentication. A change in data plane state is assumed to be invoked as
the direct result of some event, whether it is the result of a switch detecting an unroutable packet
(e.g., mismatch in flow table rules), a change in network policy, a failure of network hardware,
or some other factor. Events received by the control plane require validation to ensure that they
originated from a reliable source and that they have not been tampered with during transit. To this
end, SERENE makes use of a public key infrastructure (PKI) system where each event source is
assigned a public/private key pair. Event sources sign each event they generate with their private
key; controllers verify the signature of each event they receive against their respective public
key.

Controller threshold key—update authentication. Each controller signs the updates they emit so
switches can verify the origin of the updates they receive. The strawman approach consists of
controllers being assigned different pairs of public/private keys for signing updates. However, the
managing all the public keys on all the switches rapidly becomes cumbersome as controllers may
be added to and/or removed from the control plane. Moreover, the limited physical resources of
switches must be preserved (cf. Section 3.5)

To this end, we employ a system based on threshold cryptography [73, 74]. In a (¢, n)-threshold
signature scheme, a single public/private key pair is generated for the entire control plane. The pub-
lic key is distributed to each switch and each controller obtains a share of the associated private key
used for signing updates thanks to Shamir secret sharing [75]. To verify an update, the signature
shares received from controllers are combined with an aggregation function to create a signature
that is verified against the single public key. The aggregated signature can only be validated if
correctly signed by at least ¢ out of n controllers, thus any t — 1 controllers, with the exception of
negligible probability, cannot on their own construct a signature that can be verified against the
control plane public key. The choice of t impacts SERENE’s reliability as presented in Section 3.4.

Controller DKG—dynamic unique controller key. Using threshold cryptography and secret shar-
ing for update verification establishes a method for secure updates in a dynamic distributed control
plane. However, distribution of private key shares when controller group membership changes cre-
ates a significant complication: no single controller should ever have knowledge of a private key
share other than its own. Verifiable secret sharing (VSS) [76] is a method in which a designated
dealer distributes shares of a secret to all participating members. Verifiable secret sharing (VSS)
differs from standard secret sharing in that clients can construct a valid share even if the dealer is
malicious. These shares can be used in a (¢, n)-threshold signature scheme to create message sig-
natures that are only validated if at least t members correctly sign the message with their shared
secret. Naively, one could employ such a system to distribute private key shares to controllers
when the control plane membership changes. However, requiring the setup and maintenance of
such a system is impractical as the VSS dealer is a single point of failure for confidentiality.

We instead employ a system based on distributed key generation (DKG) [77] that expands
on the concept of VSS to an environment where there is no trusted dealer. In short, each controller
acts as a sub-dealer, creating and distributing private key sub-shares to each other controller. The
sub-shares are then aggregated to create the private key share for the controller. Distributed key
generation (DKG) uses homomorphic commitments to ensure that the corresponding public key
for the group is known by all controllers, but except for negligible probability, no one controller

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:12 J. Lembke et al.

can create a signature that is successfully validated by the public key. Once generated, this public
key must be shared to all switches, which is done when switches are setup. Future instances of
DKG ensure that new shares can be generated for the control plane as group membership changes
without changing the public key.

3.4 Reliability

While an update from a controller can be easily validated using signatures, trust in a single con-
troller is not enough when considering malicious faults (e.g., a compromised controller can sign
malicious messages with a valid signature). SERENE increases the reliability of the control plane by
supporting a dynamic distributed control plane where all controllers monitor each other to detect
and remove failed members. SERENE uses event agreement between controllers as well as update
agreement verifiable by the data plane to ensure correct behavior of the control plane, assuming a
quorum majority of correct controllers at all times. By detecting and removing failed controllers,
SERENE remains reliable in the face of a dynamic adversary. SERENE can detect failures ranging
from simple crashes thanks to heartbeats, to more complex and pernicious failures thanks to a
distributed ledger.

Atomic broadcast—event agreement. Once an event is signed, the event source sends it to all
known controllers in the control plane. A controller, upon receiving an event and verifying its sig-
nature, proposes agreement on the event with all other controllers through an established agree-
ment protocol to ensure a total order of processed events. Upon deciding on the event ordering
with other controllers in the control plane, each controller independently responds to the event
with network update(s). A switch only applies an update once received from a quorum of trusted
controllers. We use an atomic broadcast [78] (i.e., consensus) to ensure each controller has a consis-
tent view of the data plane state. Controllers use a public key infrastructure (PKI) system to validate
messages sent with the atomic broadcast. We employ a dynamic control plane membership pro-
tocol to ensure flexibility of the control plane. The current communication group of controllers is
indicated as C = {Cy, ..., C;} of controller communication objects. Each C = {(c, cpk, id) contains
the controller process, its public key for message validation, and the controller process identifier
within the communication group.

Threshold signatures—update agreement. Controllers do not need to explicitly agree on an update
using the atomic broadcast since they already agree on the events and their order. Rather, it is
sufficient for switches to only apply updates with valid signatures (i.e., from controllers) that are
emitted from a quorum of verified controllers. As explained in Section 3.3, SERENE uses a (t, n)-
threshold signature scheme for controller authentication. We set ¢ to the controller quorum size
necessary to apply an update, i.e., t = 2X I_"T_lj +1, and represent this quorum size as q for brevity.
Note that to tolerate a single failure, there must be at least 4 members in the control plane (i.e.,
n =3f +1with f > 1). Thus, we assume SERENE never runs on control planes with n < 4.

Heartbeats—crash detection. SERENE uses a failure detector (FD) that relies on heartbeat mes-
sages to detect controller crashes (due e.g., to power loss). Heartbeats are periodically broadcast
within the control plane; a controller is suspected of failure when other controllers do not receive
its heartbeats for a given amount of time. Because of this upper bound in detection time, the FD
provides strong completeness and weak accuracy for crashes (i.e., the detector outputs no false
negatives but may output false positives [79]). Weak accuracy implies that a suspected controller
may be prematurely removed from the control plane (e.g., if a controller is too slow), which only af-
fects the system’s liveness. Since SERENE supports a dynamic control plane, prematurely removed
controllers may be re-added later (cf. Section 4.3).

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:13

Distributed ledger—beyond crash detection. Faulty controllers may issue incorrect updates, or no
update at all, as a response to an event they received. Such incorrect behaviors are undetected by
the heartbeat FD since it can only suspect slow or crashed controllers of failure. To complement
the heartbeat FD, SERENE includes a distributed ledger per domain to detect a wider range of
controller misbehavior which may affect the safety (e.g., inconsistent updates, invalid updates) or
the liveness (e.g., muteness failures [19]) of the system. In essence, controllers hold each other
accountable [80, 81] by storing in the ledger, to further audit, the (1) events received and (2) events
decided by the control plane, as well as (3) every update issued by a controller to the data plane
and the matching (4) update acknowledgments by switches. Events are stored in the ledger twice—
first when they are received by controllers, then upon decision by the atomic broadcast—to detect
those that are rejected. Following the event decision, the corresponding update(s) are also recorded,
using a scheme we describe further, alongside their acknowledgments from the data plane to detect
irregularities such as updates signed by a minority of controllers (more examples in Section 4.4).

A strawman design would entirely rely on an external (permissioned) ledger [82-84] to record
events and updates. However, these ledgers require a round of consensus for each recorded item
to ensure controllers store the same view of the ledger. As we show further, the cost incurred by
these extra rounds of consensus is unnecessary and we can design a more efficient, thus practi-
cal, solution. Instead of using an external ledger, we propose to tightly couple the workings of
SERENE’s distributed ledger with SERENE’s core protocol for network updates as described in the
following.

In SERENE, recording an event e in the ledger is performed locally by each controller once the
atomic broadcast of e, used for consistency, completes. Hence, recording events comes at no addi-
tional communication cost. Since controllers can equivocate [81, 85], recording updates requires
extra steps and must involve the data plane. Faulty controllers may selectively omit messages or
lie to preserve an appearance of correct behavior by, for instance, issuing deceitful updates to
the data plane yet advertising correct ones to the control plane. As such, updates must only be
recorded if they have been sent to the data plane. To that end, SERENE leverages the assumed
correctness of switches by making them echo the signed updates they receive back to the control
plane. Upon reception of an echoed update, each controller directly records it in its local ledger,
thus avoiding the cost of consensus of an external ledger. As long as the control plane contains at
least one correct member that received an event, incorrect updates for that event are ensured to be
recorded. Recorded updates can then be audited, either automatically (cf. Section 4.4) or manually
by network administrators, and controllers emitting incorrect updates can be detected.

3.5 Practicality

Amidst consistency and security, for a solution to be feasible in a real data center deployment it
must also be practical. SERENE provides an effective solution by exploiting intra- and inter-domain
update parallelism and enabling efficient signature aggregation to alleviate switches runtimes.

Update parallelism—intra-domain parallelism. Using an update scheduler (cf. Section 3.2) allows
SERENE to exploit parallelism in switch updates. Given a set of switch updates and their corre-
sponding update dependencies determined by the update scheduler, two updates u; and u; can be
applied in parallel if their dependencies D; and D; are disjoint, i.e., D; N D; = 0.

Update domains—inter-domain parallelism. SERENE employs an atomic broadcast (cf. Sec-
tion 3.4) to ensure a consistent ordering of events processed by the control plane. The respon-
siveness of such agreement protocols unfortunately greatly deteriorates as the size of the control
plane increases, hence creating a tradeoff between fault tolerance and performance. Additionally,
in large networks such as a collection of data centers, this responsiveness is further impacted by

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:14 J. Lembke et al.

45,5, c c A4 5,5, Control
B 855, B 835, Plane

Data
Plane

Domain 4 Domain B

Fig.5. Depiction of a two-domain network where an event generated by switch s; and sent to its local domain
control plane. The control plane then uses global domain policies to determine that network updates involve
domains A and B. A’s control plane forwards the event to B’s and both domains update their local switches
to set flow tables rules.

having a geographically dispersed control plane. This distribution is initially set to minimize la-
tency between local control and data planes but ultimately increases latency within the global
control plane.

As such, SERENE allows the division of network resources into domains, each as its own sep-
arate instance of the protocol functioning on disjoint control and data planes, e.g., separate IP
subnetworks. Domains may rely on separate update schedulers, agreement within communica-
tion groups, and control plane public keys. The goal of this division is to enable data plane events
that involve updates to switches fully contained within the same domain to be processed indepen-
dently of other such events in other domains, i.e., in parallel. Events that require updates span-
ning multiple domains must however be handled in a consistent manner by the control plane as
a whole.

SERENE avoids the need for inter-domain agreement through assumptions on setup and global
domain policies. First, we assume operators of different domains trust each other, e.g., domains are
sub-domains of the same institution. Doing so prevents conflicting policies from being set across
domains, and prevents unexpected events from being forwarded across domains. Domain isolation
thus offers the security that a, potentially faulty, domain’s control plane cannot update another
domain’s data plane, but it may affect flows with a remote origin crossing the data plane it is
responsible for. Second, we assume the global domain policies are agreed upon before network
deployment and set manually by system administrators. This provides the advantage that each do-
main’s control plane is able to determine which domains require updates based on a received event
without collaboration with other domains. A controller receiving an event that involves updates
to multiple domains merely forwards the event to the control plane of each affected domain. This
does mean that any update to a global domain policy requires manual updates to all controllers in
the affected domains.

For example, consider the flow outlined in Figure 5 where an event generated by switch s; in
domain A needs a route to s4 to be established. Using the global domain policies, the controller in
A that receives the event determines that it requires updates to both domain A and B, and forwards
the event to the control plane of domain B. Both domains process the event in parallel and update
the switches within their domain accordingly, setting the flow table rules of switches to establish
a flow from s; to sy.

This brings out some unique challenges, specifically in relation to membership changes in the
control plane of each domain. As we will detail with the SERENE protocol in Section 4, events—be
it those that originate from the data plane for link events or from the control plane for membership
changes—are not processed sequentially by the control plane. If an event sent across a domain is
received by a controller participating in a membership change, this event must be queued and

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:15

processed after the completion of the membership change operation. In our implementation of
SERENE described in Section 6, we use the BFT-SMaRt [14] library to ensure that events received
while processing other operations are properly queued and not dropped.

While SERENE allows for division of the network into domains, for SERENE to inter-operate
between domains, each must remain in control of the network administrator. Doing so requires
no need for negotiation between network service providers or autonomous systems (ASs). This
assumption simplifies our requirements for cross-domain routing policies as they can be set glob-
ally as viewed by the network administrator. Negotiation of policies between physical sites and
multiple network administrators for policies is assumed to be possible due to the fact that multiple
administrators of networks across multiple domains are within the same company/organization.
In other words, we assume that administration and communication between domains is trusted.
This avoids gaps in the network where data plane traffic may be handled by an untrusted third
party and avoids the need for network tunneling between third party providers. Rules for cross do-
main policies can be set on a global level due to centralized control by the network administration
team.

In addition, the setup of new domains requires planning by system administrators to establish
the global domain policies appropriately. We assume that this is handled offline by system admin-
istrators and set in the control plane before domain deployment.

Update signature aggregation. To verify an update, the signature shares from each controller
must be collected and aggregated prior to verification against the threshold public key. Putting this
responsibility on switches can put an unnecessary load on their hardware. SERENE thus presents
two approaches for signature aggregation: (1) switch aggregation in which each individual switch
is responsible for collecting and aggregating update signatures, and (2) controller aggregation in
which a single designated “aggregator” controller, C4, collects and aggregates signatures.

Each approach comes with its own tradeoffs. While switch aggregation requires additional re-
sources and instrumentation on switches for storing and aggregating signatures, controller ag-
gregation increases latency since switches must wait for the aggregator to collect and aggregate
responses. Furthermore, controller aggregation must be able to handle the detection of a failed or
malicious aggregator. Our evaluation in Section 8 further quantifies the tradeoffs of each approach.

4 SERENE PROTOCOL

In this section, we show how the components depicted in Section 3 form a protocol with (1) con-
sistent, secure and reliable network updates, (2) signature aggregation, (3) dynamic membership,
and (4) failure detection. We further comment on the guarantees of the protocol in Section 5.

4.1 Core Update Protocol

The SERENE protocol is composed of two independent routines: switch runtime and controller
runtime. The controller runtime can further be broken down into the handling of events within
and across multiple domains.

Switch protocol. Figure 6 depicts the update processes for a switch when it receives either a
packet from the data plane (Figure 6(a)) or an update from the control plane (Figure 6(b)).

Under normal operation, a switch uses the flow table rules enforcing network policies to store
and forward packets in the data plane. Upon receiving a packet that does not match any rule, a
switch create, signs, and sends an event indicating the mismatch to all controllers of its domain.

Upon receiving a network update from the control plane, the switch immediately signs it and
echoes it back to the control plane so controllers can record all updates in the distributed ledger.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:16 J. Lembke et al.

Switch receives
signed update from
controller

Store
update
signature

Multicast
signed

Multicast signed

NO update to all ACK to all

I contr;)IIers controllers

Quérumkof ~) Update contains Generate

’ updates —><NO~<__ aggregated and sign
Multicast “received? - ~ signature,? y ACK

Switch receives
incoming packet

signed
event to all

>
YES
controllers ¥

Apply
update

Forward < Id d o~ YES
packet Entry in switoh Generate signature < vaeupdale s | g
according to [YES<C_ E%ml?az\{sgd’ _—>NO sghares) sygnature{?’ -
flow table S ~ new event ~
rule NO
(a) Switch forwarding process. (b) Switch update process.

Fig. 6. Flow charts describing the processes of a switch (a) handling incoming packets on the data plane and
(b) handling updates received from the control plane.

The switch then stores the received message, containing an update and a controller signature, until
the switch receives a quorum majority of identical updates from control plane members. Once
enough messages are received, using the threshold signature aggregation function, the switch
aggregates the signatures for the update and verifies the resulting signature against the public key
for the control plane. The update is then either applied or ignored, depending on the validity of
the signature. Finally, the switch sends a signed acknowledgment to all members of the domain
control plane to alert them of the network update application.

Controller protocol. Figure 7 depicts the process for a controller when it receives an event
(Figure 7(a)) or when the agreement is reached on the ordering of events (Figure 7(d)).

Under normal operations controllers for a domain of switches are idle waiting to receive signed
events. Upon receiving an event, the source of the event is verified and the event is either broadcast
to all members of the domain’s control plane or ignored if the event was previously processed or
the event source cannot be verified.

Upon delivery of a broadcast event, each member of the control plane records the event in their
local ledger and independently determines the necessary network updates and dependency sets
in response to the event using the established network policies and the update scheduler. Net-
work updates are signed with the controller’s private key share. Network updates for disjoint
dependency sets are processed in parallel with network updates having no dependencies being
immediately sent to the corresponding switch(es). As verified acknowledgments for applied up-
dates are received, these updates are removed from dependency sets and additional updates with
empty dependency sets are sent, in parallel, to switch(es). Since switches are assumed to be non-
faulty, these received acknowledgments ensure forward progress in event processing despite loops
in the protocol flow. In parallel, every signed update echoed by a switch is recorded in the ledger
as depicted in Figure 7(b).

Inter-domain updates. If, thanks to the global domain policies, a controller determines that an
event affects multiple domains, it forwards the event to a controller in each affected domain. The
receiving controllers broadcast the event to all other controllers of their respective domains as with
any validated event. To select a valid recipient, each controller maintains a set of active controllers
in each other domain. This list is updated every time a controller is added or removed to/from any
other domain’s control plane (cf. Section 4.3). Furthermore, to prevent never-ending dissemination

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:17

Drop event 1 Process
(J NO Controller
Gontroller Egé:t% receives delivery Record tha everi,
= eventin determine
receives signed < validatedm> Gy o ledger| |updates and
event ~eriginator? S depedencies
YES
Send .
Propose ent require: All updates
event to all e YES-\/up%ates to multisﬁ» YES—'\procgssed?/

affected

ins?
controllers s \d@ 15 \/f
NO NO vEs-

validated e
. witch?
(a) Controller receive event process.

ﬂ/dt)m>
vEs< Update with a

\dep\endencies met?

Controller R P
receives signed ui)?art(:)t;e NO Controller
twork updats 4 i
nem;r sv%ﬁcﬁ v the ledger /\ N S receives
YES-<Using aggrega@ AV(\:Iz’i(Itffor Ag%nfed
rom rom
(b) Controller receive echoed update process. \/ awitch awitch

(d) Controller update process.

rec;\c/)g;r?i"rre\};ou Cizes
from ledger ('fdgetf e Send Aggregator
timer SVIglIoNs signed controller receives
update to signed update from

switch controller

“ '// .\\\\\,
|_NO-——Inconsistency

~ Qund?/ — I
— Aggregate P S Store
Propose YES s?gna?ure ves<uorum of UP,? ales . No»| update
removal of SiEms received? - signature

incorrect

controller
(e) Aggregator controller process.

(c) Controller ledger parsing process.

Fig. 7. Flow charts for controller’s processes (a) handling incoming events, (b) handling echoed updates sent
from the data plane, (c) detecting ledger inconsistencies, (d) handling updates to be sent to the data plane,
and (e) aggregating updates from other controllers.

of the event, a forwarded event is tagged as such to indicate it should not be further forwarded to
other domains and only be processed locally.

4.2 Controller Aggregation

The SERENE protocol outlined in Section 4.1 specifically focuses on switches aggregating signa-
tures. Optionally, controller aggregation may be used in which a controller is assigned to be the
aggregator for both receiving events from switches and collecting (to aggregate) signed updates.

Aggregation process. The process for controller aggregation is depicted in Figure 7(e). Con-
trollers, instead of sending signed updates to switches, send them to the designated aggregator.
The aggregator collects signed switch updates, aggregates the signatures once a quorum has been
received, and sends the update along with the aggregated signature to their respective switch. A
switch receiving aggregated signatures merely verifies the update’s signature against the public
key of the control plane and either applies or ignores the update. At any time, a controller may
become faulty, including the aggregator. As such, switches must broadcast signed events to all
controllers even when controller aggregation is used.

Aggregator selection. All controllers for a domain maintain a representation of the control plane
communication group containing each controller’s identifier, public key, and any information
needed for communication (e.g., IP address, port). As new controllers are added (cf. Section 4.3),

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:18 J. Lembke et al.

Controller
receives decide
for membership
change

Perform

Controller Propose new
chosen as l controller
bootstra| — I

rap add to group _—~ Adding .
K “~new controller2—
(a) Controller bootstrapping.

NO
New controller Perform
e e distributed Remove P
from bootstra key controller P iy i membership
P generation = > event to

“proposed change?""

other

(b) New controller process. ~~ domains

NO

L

(c) Controller membership consensus.

Fig. 8. Flow charts for controller membership change: (a) and (b) show the processes for the bootstrap
controller and the joining controller respectively, and (c) shows the controller process when a membership
change consensus is reached.

they are given the next highest unused identifier. Identifiers are never reused, even when con-
trollers leave the group. At any given time, the aggregator can be determined as the controller
with the lowest identifier. Since all controllers in the domain have the same view of the communi-
cation group, this provides stability in the selection. Once an aggregator is determined, the control
plane members inform switches by sending a signed message.

4.3 Control Plane Membership Changes

The process for a domain’s control plane membership change is depicted in Figure 8. Due to the
potential change in quorum size, both add and remove operations require the distribution of new
private key shares.

General process. The SERENE protocol ensures that no events are processed until after the mem-
bership change has been completed, which prevents control plane members from having to keep
old and new shares concurrently. A phase value records the current iteration of membership
change. The phase value is incremented with each controller addition or removal. To ensure con-
sistency in the control plane state, controllers are added and removed sequentially. Each step in the
control plane modification increments the phase. Events broadcast to all domain controllers are
tagged with the current phase. Thanks to the atomic broadcast, controllers queue events received
during a change in control plane membership and only broadcast and treat them after the phase

has changed.

Controller addition. The procedure to add a controller to the control plane is as follows: (i) public
keys for event originators and existing control plane members are distributed to the new controller
alongside its identifier; (ii) the new controller is added to the control plane communication group
though consensus proposed by the bootstrap controller; (iii) DKG is executed to distribute sig-
nature shares to the new controller group reflecting the new quorum size and ensuring that the
threshold public key remains the same; (iv) the data plane state and both local network policies
from the control plane and global domain policies are sent to the new controller.

SERENE uses a trusted bootstrap controller to manage additions to the control plane. It is the
only control plane member that can initiate consensus rounds to add new controllers.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:19

The final step requires updating all other domains to indicate the new controller as a valid recip-
ient of forwarded events. Here, the bootstrap controller generates and signs an event containing
the new controller’s communication information and forwards this to a member of each other
domain. Each receiving domain, in parallel, processes the event as any other network event (e.g.,
atomically broadcasts the event to all members of the local domain). However, instead of send-
ing network updates, a controller handles this event by updating its view of the sender’s control
plane.

Controller removal. The procedure to remove a controller ¢ from the control plane is as follows:
(i) ¢ is removed from the control plane communication group; (ii) DKG is executed to distribute
signature shares to the controller group reflecting the new quorum size and ensuring that the
threshold public key remains the same; (iii) switches are (potentially) assigned a new aggregator.

Removing the controller from the communication group is performed via a round of consensus
proposed by a member that detects that the member should be removed.

The final step requires updating all other domains to indicate the removed controller is no longer
a valid recipient of forwarded events. When adding a controller, an event is sent to a controller
of each other domain. The event is in turn processed in parallel by each domain’s control plane
where each controller updates its view of the sender’s control plane.

Overhead. The overhead of membership change involves an instance of atomic broadcast, for
the control plane to agree on the membership change event, and an instance of DKG to distrib-
ute new key shares to the new control plane communication group. Our implementation uses
BFT-SMaRt [14] for group member management which is based off established literature [86, 87].
While a faulty/malicious bootstrap controller sends repeated membership change messages, addi-
tional policies such as blacklists can be used to prevent repeated leaving/rejoining.

4.4 Controller Failure Detection

A controller suspected of failure, either by the heartbeat FD or after auditing the distributed ledger,
is removed from the control plane as described in Section 4.3. Failures can optionally be reported to
network administrators to help find the root cause of the failure. Thanks to the ledger, reports can
contain the type of failure detected and all relevant information (e.g., events, update signatures).

The heartbeat FD functions in a straightforward manner: controllers set timeouts for heartbeat
messages and a crash is detected when its associated timeout is reached. As for the distributed
ledger, it is periodically audited by all controllers following the failure detection policies that
express suspicious controller behaviors (cf. Figure 7(c)). Examples of such suspicious behaviors
includes:

(1) When an incorrect event is received, i.e., the ledger contains a record for a received event
but not a matching record for the decided event once the atomic broadcast is completed.

(2) muteness failure [19]: when a controller broadcasts heartbeats but does not send updates,
i.e., the ledger contains no update signed by this controller;

(3) when less than a quorum number of controllers send an update, i.e., the ledger contains
between 1 and t — 1 signatures from the (¢, n)-threshold key for an update;

(4) when a controller does not sign some updates or does so in the wrong order, i.e., the ledger
is missing some update signatures or contains a signed update before its dependencies.

The audit proper is performed on a snapshot of the ledger rather than on the ledger itself to
avoid considering recent events and updates that may still be under deployment as this could lead
to false positives in the detection. Once the detection policies have been executed on a snapshot, a
new snapshot is taken and all the audited content may be discarded to reduce the storage footprint.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:20 J. Lembke et al.

Table 4. Algorithm and Proof Notation Table 5. Algorithm Message Types
Symbol Definition Symbol Definition
Switch-specific notation EV Event
R Map record of previously received updates UPD Switch update
T Map of recorded switch update signature ACK Acknowledgment
shares BOOT Bootstrap new control plane mem-
ber

Controller-specific notation

ADD Add control plane member

H Map history of previously received events and
P yOorp Y LEAVE Leave the control plane
their corresponding network updates

. REM Remove control plane member

P Sequence of pending network updates
SETCA Change aggregator controller
A Map record of aggregated updates - -
. ECH Echo of received switch update

ph Current phase of controller membership A
. . . EVR Ledger entry of event received
id Controller identifier

EVD Ledger entry of event decided

Distributed ledger notation
ACK Set of received acknowledgments

L Local version of the distributed ledger

LS Ledger snapshot used for the detection

tr Failure detection interval

N Map of network updates sent by each
controller

5 SERENE PROTOCOL FORMALIZATION

In this section, we present the pseudocode for SERENE and prove it provides event-linearizability
[22]: the execution of SERENE is indistinguishable from the correct sequential execution of a single
controller enforcing network updates. We further analyze the security of SERENE.

5.1 Algorithms

The pseudocode for SERENE’s switch runtime is shown in Algorithm 1. The algorithm describes
the handling of received packets and the transmission of events to the control plane. It also de-
scribes the details of processing switch updates, quorum authentication, and finally the sending of
acknowledgments. For the purposes of the distributed ledger, switch updates must be echoed back
to the control plane which is indicated through the sending of echo messages in the algorithm.

The controller implementation consists of multiple algorithms. Algorithm 2 describes the con-
troller runtime for receiving events, event agreement, and sending of switch updates. Additional
functional description needed for controller aggregation is presented in Algorithm 3. Control plane
membership change is shown in Algorithm 4. The algorithm describes the necessary use of agree-
ment needed for adding and removing a member from the control plane communication group
as well as generating new secret key shares using DKG. Finally, Algorithm 5 presents the con-
troller functionality used for recording entries into the distributed ledger. At a periodic interval,
controller processes use the entries recorded in the ledger to detect failures following established
policies. This failure detection is presented in Algorithm 6. The failure detection policies presented
in Section 4.4 are implemented in Algorithm 6.

In addition to the notation summarized in Table 3, the algorithms make use of several additional
symbols summarized in Table 4 while a summary of message types is presented in Table 5. Note
that we use @ to denote concatenation to a sequence of an element or another sequence. Analo-
gously we use © for removing from a sequence an element or a set of elements, in any position.
Similarly, we use € to assert whether an element is contained in a sequence in any position.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:21

ALGORITHM 1: For switch s; with public key spk;, secret key ssk;, and control plane threshold
public key tpk.

1: C > Current control plane group
2:Cae 1L > Current aggregator g4: procedure handleAggMsg(Cj, u, sig)
3: R[] > Record of received switch updates 5. if _verifySig(u, sig, tpk) then
4 T«] . > Received update signature sha‘res 2: R[Cj] — R[C;]U {u}
5.q—2x|f]+1 > Quorum size o7, handleRule(u)
6: upo'n _receive(pkt) on incoming link do 28: procedure handleNonAggMsg(C;, u, sig)
7: if no flow table match then .
g dEvent(pk? 29: T[u] « T[u] U {sig}
' sendEvent(pk?) 30: if [T[u]| > q then
% elsef d pkt along d) 31: siga « _aggSig(T[u])
10: orward pict along data plane 32: if _verifySig(u, siga, tpk) then
11: upon _receive(UPD||u||sig) from controller 33: for each sig; € T[u] do
cj|Cj={cj,...)€C do 34: R[Cy] « R[C;]U {u}
12: ssig; — _sign(ullsigllc;, sski) 35: handleRule(u)
13: fi h (c;,...) eCd
) or each {¢;) . ° . 36: procedure sendEvent(pkt)
14: _send(ECH||u||sig||cjIssig;) to ¢;
. 37: e «— _generateEventData(pkt)
15: if u.s # s; then return 38: sig — _sign(e, sski)
16: if u € R[C/] then return > Skip prior updates 3g. for each (¢j,...)eCdo
17: if _verifySig(u, sig, tpk) Au.r = SETCA||C; then 40: _send(EV|le||sig) to c;
18: Ca=C . 41: procedure handleRule(u)
19: else > u.r is a network update 49: apply(ie.r)
20: if C4 # L then 43: ;l;’Fi_Y s}gn(u sskji)
. . 7 ° - 4 z
2L handleAggMsg(C;, u, sig) 44: for each (cj,...) € Cdo
22 else 45: send(ACK]||u||sig) to c;j
23: handleNonAggMsg(C;, u, sig) ' - g)roc

5.2 Interfaces

The algorithms use the following application interfaces where functions are prefixed with _

Rule installation: _apply(r), applies rule r to the switch runtime.

Signature creation: _sign(msg, sk), a function to sign a message (msg) with given key (sk).

Signature verification: _verifySig(msg, sig, pk), a function to verify a signature (sig) for the
given message (msg) using the public key (pk).

Signature aggregation: _aggSig({sigi, . ..}), a function to aggregate the signature shares.

Event generation: _generateEventData(pkt) = e, creates the necessary event data to be sent to
the controller given packet data pkt.

Controller application invocation: _handleEvent(r,), returns the network state 7’ to be ap-
plied in “response” to an event e in state 7.

Update scheduler: _scheduleUpdates(ry,), returns U, a network update (i.e., a set of switch
updates) to transition the data plane state from state 7 to 7.

Update domain: _updateDomain(e), a function that uses the update scheduler and the global
domain policies to determine the update domain for an input event.

Reliable unicast: _send(msg), used to send message msg to a single target. Once a message is
received, the callback _receive(msg) is invoked on the target.

Agreement: _propose({ci, ...}, msg), used by a set of controllers {c, ...}, to initiate an instance
of consensus, by proposing message msg. Once consensus has been reached, controllers re-
ceive the outcome through the callback _decide({c, ...}, msg).

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:22

J. Lembke et al.

ALGORITHM 2: For controller ¢; with public key cpk;, secret key csk;, and secret share css;

1:
2 Ca « {ck, cpky, idy) € C | idy < id;

3 {Spkl, .. }

C > Current control plane group

V{cj, cpkj, idj) € C > Current aggregator
T > Current data plane state
> Public key for each switch
H <[] » History of events and their network updates

P]

> Pending network updates

: upon _receive(EV||e||sig) from switch s; do

if _verifySig(e, sig, spk;) A e ¢ H then
_propose({cg | {ck,...) € C}, EV]le]ls;)
Cq < _updateDomain(e)
if Cg # 0 then
csig « _sign(ells;, csk;)
for each (cg, ...) € Cq do
_send(EV|le|ls;llcsig) to cx

> Update domain for e

: upon _receive(EV||e||s||sig) from controller

leCj:<Cj,...>€Cd0

if (e, ...) € H thenreturn » Skip known events
pk — cpky | ¢; = ciV{ck, cpkg, idy) € C)

if recordEventRev(e, s, sig, pk) then > cf. Line 115
_propose({c; | {cy, ...) € C}L EV]lells)

: upon _decide(. . ., EV]e]|s) do

if (e, ...) € H then return

recordEventDcd(e, s)
e < _handleEvent(z, e)

> Skip known events
> cf. Line 122

24:
25:
26:
27:
28:

41:

47:

U « _scheduleUpdates(r,)

T Tle

H < H® (e, U) > Append (e, U) to H
P—PoU > Append U to P
checkSendUpdates()

: upon _receive(ACK||uy |[sig) from switch s; do

if _verifySig(ug, sig, spkj) then
recordUpdateAck(uy) > cf. Line 124
foreachu; €eU; |[P=U; &... ® Up do
u;.D —up.D\ {ug}
checkSendUpdates()

procedure checkSendUpdates()
U—U |P=U®...0Up
for each u € U do
if u.D = (then
sendSwitchUpdate(u)
U—U\{u}
if U = 0 then

P—PoU > Remove U from P

procedure sendSwitchUpdate(u)
sig « _sign(u, css;)
if C4 # L then
_send(UPD|lu||sig) to ck | Ca = (ks - -)
else
_send(UPD||u||sig) to u.s

ALGORITHM 3: For controller ¢; with public key cpk;, secret key csk;, and secret share css; -
extends Algorithm 2 for the purpose of controller aggregation.

49:
50:
51:

52:
53:
54:
55:
56:

A]
T« 1]
q(—ZXL"TﬂJ+1

> Received update signature shares
> Quorum size
procedure setAggregator(C)
for each switch s; do
u « (s;, SETCA||C, 0)
sig « _sign(u, css;)
_send(UPD||ul|sig)tocx | C = (ck, .- .)

58:
59:
60:
61:
62:
63:

> Previously aggregated updates 57: upon _receive(UPD||u||sig) from controller

Cj |Cj= (Cj,...)GCdO
if u € A[C/] then return
Tlu] « T[u]U {sig}
if |T[u]| = q then

siga < _aggSig(T[u])
if _verifySig(u, siga, tpk) then
_send(UPD||ul|siga) to u.s

> Skip prior updates

Distributed key generation (DKG): _DKGStart(C, ph, sh), performs DKG using the communi-
cation group C in phase ph. The input share is sh which ensures that the threshold key
remains the same. All participation controllers receive the outcome of DKG through the call-
back _DKGComplete(sh) which receives as input share sh, a new share for each participating
node, that collectively verifies to the threshold public key. If a member of the communication
group does not have an existing share, it does not participate in the initial rounds of DKG,
however, it will still receive a share through the callback _DKGComplete(sh). DKG main-
tains a phase value to ensure that previous protocol messages are ignored once an instance
of the protocol completes. Controllers keep track of the current phase an input this to each
instance of the protocol initiated by _DKGStart(C, ph, sh).

Heartbeat failure detector: _detectHBFailure(c) invoked as a callback when controller c is sus-
pected of failure by the heartbeat FD executed on the detecting controller.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:23

ALGORITHM 4: For controller ¢; with public key cpk;, secret key csk;, and secret share css; -
extends Algorithm 3 (and Algorithm 2) for the purpose of membership changes.

64: {cpkj, ...} > Public key for each controller until C is set 83: g —2X% L"T_lj +1

65: ph «— 0 > Current key distribution phase 84: _DKGStart(C, ph, css;)

66: nza —[Cl+1 > Next available node I 85: procedure leave() = cf. Line 126 to remove failed ones
67: upon new controller start do 86: sig « _sign(LEAVE||c;, csk;)

68: wait until _receive(BOOT||Cy, [lid|lphn [ICyllsig) 87: _propose({ck | (ck, - ..} € C}, LEAVE|c;|Isig)

from bootstrap controller c;

. : eoq . : 88: upon _decide(. . ., LEAVE||cj||sig) do
69: if _verifySig(C,, |lid||phn ||Cy, sig, cpk;) then pon _ J
~verifySig(Cnllidlphn lICr. sig. cpky) 89: if _verifySig(LEAVE||c}, sig, cpk;) then

70: njq « id

71 Ca—C 90: decidedToRemove(c;)

72: C—Cn 91: procedure decidedToRemove(c;)

73: ph — phn 92: Cg « (cj, cpkj, id;) € C

74: _DKGStart(C, ph, css;) 93: C e« C\ {Cr}

75: upon addController(cj, cpk;) do = Bootstrap addition 94: g 2x |2t +1)

76: _propose({ck | (ck, .-.) € C}, ADDlljllcpk;) 9% i Ca={(cj...) then > New aggregator
96: Ca « (cg, cpky, idy) € C | idy < id;

77: upon _decide(. . ., ADD||¢j|lcpk;) do Y{cy, cpky, id;) € C

78: C «— CU {{cj, cpkj, nja)} 97: setAggregator(Ca)

79: Mid < Mid +1 98: _DKGStart(C, ph, css;)

80: if ¢; is bootstrap controller then

81: sig « _sign(Clln;qllph||Ca, csk;) 99: upon _DKGComplete(sh) do

82: _send(BOOT||ClIn;qllphlICallsig) to c; 100: css; < sh

101: ph —ph+1

ALGORITHM 5: For controller ¢; with public key cpk;, secret key csk;, and secret share css; -
extends Algorithm 4 for the purpose of detecting failures. Annex procedures are in Algorithm 6.

102: ACK « 0 » Acknowledgments received from switches 122: procedure recordEventDcd(e, s)

103: L «[] > Local version of the distributed ledger 123: L L®(EVD,e,s)

104: LS « [] » Ledger snapshot: used to ignore recent events
and updates still under deployment

105: tr > Ledger parsing period

106: upon _detectHBFailure(c;) do

107: handleFailure(c;)

124: procedure recordUpdateAck(u)
125: ACK «— ACK U {u}

126: procedure handleFailure(c;)
127: _propose({ck | {ck, ...) € C}, REM|[c})

128: upon _decide(. . ., REM||c;) do

108: upon _receive(ECH||u||si ci|lssi
pon (llullsigr lickllssign) 129: decidedToRemove(c;)

from switch s; do

109: if _verifySig(u||sigx ||ck, ssig;, spk;) then 130: task executed every t1,

110: if u.s = s; then 131: if LS # [] then

111: L «— L & (UPD, u, sigg, cr) 132: > Ensure proposals in LS are with their decisions

112: detectMissingDeps(u, cx) = cf. Line 184 133: collectMissingEventDecisions() > cf. Line 145

113: else 134: > Ensure updates in LS are with their signatures

114: handleFailure(cg) 135: collectMissingSignatureShares() > cf. Line 151
136: > Failure detection policies from Section 4.4

115: function recordEventRcv(e, s, sigj, cpk;)

116: if _verifySig(e|s, sig;, cpk;) then 137: detectRejectedEver‘nts() > Lf Line 156
117: Le—L®(EVR e, s, cj) 138: detectMutenessFailures() > cf. Line 160
118: return true 139: detectMinoritySigners() > cf. Line 164
119: else 140: detectMissingUpdates() > cf. Line 170
120: handleFailure(c;) 141: LS < L

121: return false 142: L[]

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:24 J. Lembke et al.

Table 6. Summary of Proof Notation

Symbol Definition

& Execution of a network update

H Execution history

<g <g¢r Total order in & or in H

i <g mj Precedence of network states in &
Q Sequential history

ALGORITHM 6: For controller ¢; with public key cpk;, secret key csk;, and secret share css; —
extends Algorithm 5 to describe annex procedures including those for failure detection procedures.

143: N« [] » Current network update for each controller 165: for each unique u | u = u,
144: N;g, < [-1, ..., —=1] » Current network update index V(UPD, uy, sigj, cj) € LS do
processed by each controller 166: (SIG, Cs1G) « {{sigr, cx) | u=um
145: procedure collectMissingEventDecisions() . V(UPD, up,, sigk, cx) € LS}
146: for each (EVR, e, si, ¢j) € LS do 167 if |SIG| < q then
147: if 3(EVD, en, 5;) € L | en = € A s = s; then 168 for each ¢; € Cs1G do
148: A — (EVD, ey, s;) 169: handleFailure(c;)
149: LS —LS®A > Append A 1o LS 170: procedure detectMissingUpdates()
150: LeLeA > Remove A from L 171 for each (cj, ...) € C do
151: procedure collectMissingSignatureShares() 172: for 'each (UPD, u, sigy, c1) € LS | ¢j = ¢ df’
152: for each (UPD, u, sig;, ¢;) € LS do 173: if Nlcj] = 0 A Njgxlcj] = -1 then » Init
153: A — {(UPD, up, sigg, cx) | u = up 174: Nlcj] « Uk | 3(e, Ux) € HAu € Uy
V(UPD, up, sigg, ck) € L} 175: Niaxlej] <k
154: LS« LS®A 176: if u € Nlcj]V Nigxlcj] = —1 then
155: L—LoA 177: handleFailure(c;)
178: break loop

156: procedure detectRejectedEvents()

179: else
157: for each (EVR, e, si, ¢j) € LS do)
158: if B(EVD, en, s;) € LS | en, = eAsg = s; then 180: N[c]] < Nlgj]\ {u}
159: handleFailure(c;) 181: if Nl¢;] = 0 then
J 182: Niaxlcj] &« Nigxlej]+1

160: procedure detectMutenessFailures() 183: Nlcj] « H[N;gx[c;]1.U
161: for each (cj, ...) € Cdo) L
162: if 2(UPD, cp) € LS | ¢ = cx then 184: procedure detectMissingDeps(u, cg)
163: handleFailure(c;) 185: D« u;.D|3e,{up...}) eEHAu=u

' J 186: if 3u’ € D | u’ ¢ ACK then
164: procedure detectMinoritySigners() 187: handleFailure(cy)

5.3 Computational Model and Consistency Definitions

Here we present the computation model of SERENE, proofs of correctness, and discuss robustness
of the SERENE protocol. In addition to the notation presented in Table 3, the proofs and discussion
make use of symbols shown in Table 6. We consider a full communication model in which each
controller process may send messages to, and receive messages from, any other controller process
or any switch. Switches communicate with each other solely for sending data plane traffic.

Recall the notion of a network state which intuitively specifies the state of the flow tables in data
plane switches for forwarding packets across the network. A network state 7 specifies the state
(of flow tables) of each switch in the data plane. An event is initiated by a switch or a controller
and results in a network update U to apply the network state of the flow tables of some subset of
switches. A network update consists of a set of switch updates.

Recall that a switch update is the modification of the flow table for a switch with the given rule. A
step of a network update is a switch update u of U or a primitive (e.g., message send/receive, atomic
actions on process memory state) performed during U along with its response. A configuration of

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:25

a network update specifies the state of each switch and the state of each controller process. The
initial configuration is the configuration in which all switches have their initial flow table entries
and all controllers are in their initial states. An execution fragment is a (finite or infinite) sequence
of steps where, starting from the initial configuration, each step is issued according to the network
update, and each response of a primitive matches the state resulting from all preceding steps.

Two executions &; and &; are indistinguishable to a set of control processes and switches if each
of them take identical steps in &; and &;. We use the notation & - & to refer to an execution in
which the execution fragment & extends &. A state 7; precedes another state 7 in an execution &,
denoted 7; <g ;, if the network update for 7; occurs before the network update of 77; in &. If none
of the two states ; and 7; precede the other, we say that 7; and 7; are concurrent. An execution
without concurrent states is a sequential execution. A network state is complete in an execution
& if the invocation event is followed (possibly non-contiguously) in & by a completed network
update; otherwise, it is incomplete. Execution of & is complete if every state in & is complete. A
high-level history Hg of an execution & is the subsequence of & consisting of the network state
event invocations and network updates.

Definition 5.1 (Event-linearizability of Network Updates). An execution & is event-linearizable
[22] if there exists a sequential high-level history Q equivalent to some completion of Hg such
that (1) <4y, C< (state precedence is respected) and (2) Hg respects the sequential specification
of states in Q. A network update is event-linearizable if every execution & of the network updates
is event-linearizable.

5.4 Event-linearizability of the SERENE Protocol

THEOREM 5.2. Every execution of the SERENE protocol provides event-linearizable network
updates.

Proor. The proof proceeds by iteration on the epochs associated with changes in the con-
troller membership. Specifically, each epoch in an execution & is characterized by a static set
C={{c1,.-.),...,{ci,...)} of controllers. In the following, we present the event linearizability of
the SERENE protocol without using any controller aggregation.

Event linearizability for an execution in the first epoch. The application of a network state ;
in an execution & begins with an event invocation by a switch s; € S (Line 8 of Algorithm 1)
followed by a network update performed by the procedure handleRule in Line 35 of Algorithm 1.
All steps performed by the state machines described by the pseudocode within these lines denote
the lifetime of ;. Specifically, the lifetime of ; in an execution & starts with the invocation of the
procedure sendEvent (Line 8 of Algorithm 1) which sends a signed event to a controller to initiate
the network update protocol. The proof proceeds by assigning a serialization point for a state which
identifies the step in the execution in which the state takes effect. First, we obtain a completion of
& by removing every incomplete state from &. Henceforth, we only consider complete executions.

Let H denote the high-level history of & constructed as follows: firstly, we derive linearization
points of procedures performed in &. The linearization point of any procedure op is associated
with a message step performed between the lifetime of op. A linearization H of & is obtained by
associating the last event performed within op as the linearization point. We then derive H as the
subsequence of & consisting of the network state event invocations and network updates. Let <g
denote a total order on steps performed in & and <, denotes a total order on steps in the complete
history H. We then define the serialization point of a state 7;; this is associated with an execution
step or the linearization point of an operation performed within the execution of ;. Specifically,
a complete sequential history Q is obtained by associating serialization points to states in H as

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:26 J. Lembke et al.

follows: for every complete network update in &, the serialization point is assigned to the last
event of the loop in Line 35 of Algorithm 1.

CramM 1. For any two states mr; and j in &, if m; <gq 7j, then m; <s ;.

Proor. The proof immediately follows from the fact that the serialization point for a state x;
(and respectively 7;) is assigned to a step within the lifetime of 7; (and respectively 7;).]

Let QX be the prefix of Q consisting of the first k complete operations. We associate each Q¥
with a set 7% of states that were successfully completed in Q¥. We show by induction on k that the
sequence of state transitions in QF is consistent with the sequential state specification. The base
case k = 1 is trivial: only one state is sequentially executed.

Cratm 2. QF*1 is consistent with the sequential specification of network updates.

Proor. Let [Uy,...,U,] be the sequence of network updates where for all i € {1,...,n}, U;
is the network update for 7;. Recall that each network update consists of {uy,...,un,}: a set of
switch updates. Suppose by contradiction that Q¥*! does not respect the sequential specification.
The only nontrivial case to consider is that there exist two concurrent updates 7; and 7; in Slan
such that Q¥*! is not consistent with the sequential specification.

Note that if 7; precedes m; according to the sequential specification, there does not exist
i < j < ksuchthat 1; <gp m; <o mk. Suppose by contradiction that such a 7; exists. Recall
that every controller agrees on the output of the sequence of events in Line 9 of Algorithm 2. Con-
sequently, the only reason for such a 7; to exist is if the last switch update of U; precedes the
first switch update of Uy. But this is not possible because by the assignment of serialization points,
the outcome of _propose enforces the execution of 3 immediately after 7; and any other 7; will
have to wait for the acknowledgment from successful completion of switch updates in 73 before
starting its own switch updates. We now show that the state of the data plane as constructed in
QK+ is consistent with the sequential specification. Specifically, we show that given any two net-
work updates U; <g Uj, the individual switch updates within each are not interleaved. Since every
switch update performed in U; (and respectively U;) is applied only if it has been received from a
quorum of trusted controllers, we only consider the case where a switch update associated with
Uj is executed prior to the last switch update performed in U;. However, as described in Line 41
of Algorithm 2, the switch updates for U; is not sent until acknowledgments for all updates in U;
have been received.]

The conjunction of Claims 1 and 2 together establishes that & is event linearizable.

Extending the proof to arbitrary executions. To complete the proof, we show that the execution
& - & is event linearizable, where C and C are not necessarily related by containment (here C and
C are the set of controllers in & and &). A phase value records the current iteration of membership
change and uniquely defines the controller membership set and is incremented with each con-
troller addition or removal. Each phase change is initiated by the membership change proposal:
addController in Algorithm 4 and handleFailure in Algorithm 5. Observe that both membership
changes and event proposals are processed using the same agreement protocol. By the nature of
this protocol, only a single instance of agreement can be performed at a time. As such, no events
are processed until after the membership change has been completed which prevents control plane
members from having to keep old and new signature shares concurrently. Concurrent events re-
ceived from the data plane are queued and not executed until after the instance of agreement has
been completed, in which case, the execution fragment extending the phase 1 execution extends
a well-defined data plane state as proved in Claim 2.]

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:27

5.5 Security Analysis of the SERENE Protocol

We argue why even forward progress of SERENE is not affected by faulty/malicious controllers
with respect to our threat model (Section 3.1).

We remark that Theorem 5.2 holds even if the faulty/malicious controller may eavesdrop on
the communication between switches in the data plane, controllers in the control plane, and/or
between switches and controllers. Note that eavesdropping allows a malicious controller to gain
knowledge of network data, therefore, allowing an adversary the ability to record events and/or
updates. However, in SERENE, it is assumed that events and updates do not need to be kept con-
fidential. The risk of such an assumption merely allows for an adversary to modify and/or replay
the transmission of the message. Consequently, we can consider the possibility of the following
threats and explain how SERENE mitigates them.

Adversarial events: A faulty/malicious controller may modify or create a network event, however,
a valid event is signed with the source’s secret key. The public keys for valid event sources
are distributed to all controllers. Therefore, except for negligible probability, valid events
cannot be created by any process other than verified sources. Furthermore, event sources in
our threat model remain correct and therefore never create and sign incorrect events.

Adversarial switch updates: A faulty/malicious controller may send any arbitrary update to a
switch, however, the update must be verified against the control plane threshold public key.
Utilizing the guarantees of DKG, except for negligible probability, valid updates cannot be
created by any process other than a quorum of controllers. Existing research has shown that
attacks exist in an attempt to force malicious updates to be applied at the controller applica-
tion level [88]. However, for those attacks to be effective against the guarantees of DKG used
by SERENE, the attack must be performed by a quorum majority of controller processes. If
a switch receives an update signed by less than a majority of controllers, the verification of
the update signature fails and the update is discarded.

Duplicated events: A faulty/malicious controller may resend any previously sent event, however,
all events are given a unique identifier and duplicate events are ignored by the control plane.

Duplicated switch updates: A faulty/malicious controller may resend any previously sent update,
however, all updates are given a unique identifier and duplicate updates, even those with
valid signatures from an aggregator controller, are ignored by the data plane.

Adversarial/duplicated switch updates—cross-domain: While switch updates are given a unique
identifier, this identifier is unique to the domain. A faulty/malicious controller may observe
and replay any update to a switch from another domain. However, the control plane for each
domain is given a unique threshold public key. Except for negligible probability, any update
sent from another domain is never validated nor applied by a switch.

6 SERENE IMPLEMENTATION

This section outlines the implementation of SERENE. As Figure 9 shows, SERENE is implemented
as a middleware between the controller application, containing network policies, and the data
plane switches, storing and forwarding network traffic based on established flow table rules.

6.1 Control Plane Components

The controller platform is extended with a Java layer for SERENE, which processes the received
events (e.g., signature verification, broadcast) and updates sent to the data plane (e.g., signing with
secret share, ordering updates, and handling acknowledgments). Another process in the Java layer
handles signature aggregation to be sent to the data plane when controller aggregation is used. A
controller is made up of the following nine components:

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:28 J. Lembke et al.

4 7\
Update Engine
4 N
Update Con_lroll_er E%I?n?i:\ Open
Scheduler | | Application Policies vSwitch
_ Runtime
Signature Module Signature Verification Module
B Private Ke
Threshold Signature Share g Signature Threshold
Signatures Aggregation Distribution Aggregation Public Key
T—l"glaurrtgeoa%e:;%r Broadcast | |Southbound Southr?ound
- Interface
Ledger Library Interface
J - J
TLS i 10penFlow iOpenFlow
(a) SERENE controller runtime. (b) SERENE switch runtime.

Fig. 9. Depiction of the SERENE runtime components on controllers and switches.

Controller application: Network policies are set based on the controller application. While
SERENE is designed as a separate layer to support any controller application, our implemen-
tation uses the Ryu [21] runtime and establishes flow rules based on shortest path routing.

Global domain policies: SERENE requires global domain policies for determining network up-
dates for flows that cross domains. The implementation is specific to the controller applica-
tion. Our implementation uses global policies based on the shortest path between domains.

Update scheduler: To ensure update consistency, the SERENE runtime depends on the existence
of an update scheduler used to determine dependencies between network updates. The up-
date scheduler used for the evaluation assigns dependencies for network updates based on
the reverse of a network flow’s path. For example, consider a network flow that traverses
three switches (s; — s, — s3). Establishing this flow requires updating all of these switches.
The update scheduler assigns dependencies for these updates such that (1) all updates are
applied to s3 before any updates to s, can be applied, and that (2) all updates are applied to
sz before any updates to s; can be applied. This ensures downstream rules for the flow are
set before any network data is allowed to traverse the network.

Broadcast library: SERENE utilizes atomic broadcast to distribute events among the members
of the control plane communication group. The broadcast library strictly follows atomic
broadcast’s specifications and guarantees [78], by using the BFT-SMaRt library [14].

Threshold signatures: Data plane switches authenticate updates with threshold signatures that
can only be verified when a quorum of signatures is formed. Our implementation makes use
of BLS signatures [89] implemented in the Pairing Based Cryptography library [23].

Private key share distribution: The distribution of private shares for controllers—so they can
sign switch updates—is performed using the DKG library [18].

Southbound interface: We extend the OpenFlow message protocol with new message types for
signed messages, and add unique identifiers to messages to prevent duplicate processing of
events and updates. We also utilize TLS with OpenFlow to ensure integrity and confidential-
ity of communication between the data plane and the control plane.

Signature aggregation: SERENE supports switch and controller aggregation. For the latter,
switches are assigned the aggregator with OpenFlow “master/slave role request” mes-
sages [90].

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:29

Failure detector: We use periodic heartbeat messages to detect crash failures, they are sent using
the broadcast library. The distributed ledger implements Algorithms 5 and 6.

6.2 Data Plane Components

The SERENE switch platform is an extension to Open vSwitch (OVS) to perform signature aggre-
gation and verification of updates both thanks to the threshold public key component. The signa-
ture aggregation modules stores signed updates in a hash map provided within the Open vSwitch
(OVS) implementation. The management of received rules and signatures consists of 600 lines
of code (LOC). The threshold public key component consists of a #300 LOC-extension to OVS
that utilizes the pairing based cryptography (PBC) library [23] for the creation and verification
of signatures. OVS uses a single function for handling events from the control plane. The SERENE
extension injects code into this function to redirect received events to the signature verification
module.

Additionally, changes are made for switches to either send events only to the aggregator con-
troller if there is one, or multicast events to all the members of the control plane. As a further
consistency mechanism, acknowledgments are sent to the control plane once updates are applied.

As is clear in Figure 9, the switch runtime is considerably simpler than the controller runtime. We
specifically designed SERENE to minimize the resource consumption (both memory and storage of
executable size) impact on switches because of their low capabilities. Our implementation, being
an extension of OVS, may function on any switch with the ability to run this software package.

7 SECURE TOPOLOGY DISCOVERY

In many cases, to make accurate network policy decisions, it is essential to have a correct method
for discovering the data plane state. This is useful to a network controller to determine optimal pro-
visioning of network resources to flows as well as to discover link and/or switch failures. However,
there are a number of attack vectors in the OFDP as discussed by Azzouni et al. [28]. To prevent
these attacks, we implemented a secure topology discovery layer with SERENE. While our com-
putation model assumes switches themselves are not malicious, controllers could masquerade as
switches and send erroneous information to the control plane. Without protection, such informa-
tion may corrupt the control plane’s view of the data plane state.

7.1 Discovery Process

Topology discovery is twofold: switch discovery, as part of OpenFlow connection setup, uses pairs
of “feature request” and “feature response” messages while link discovery uses OFDP [24], based
on the link layer discovery protocol (LLDP) [91].

The algorithm for OFDP secured with SERENE is described in Algorithm 7. Highlighted portions
indicate where OFDP integrates with SERENE to utilize the security mechanisms of the protocol.
The algorithm makes use of the following functions to build network messages.

Create link layer discovery protocol (LLDP) message: _createLLDPMsg(port), a function to
create an LLDP frame with the given source port as described by the protocol [91].

Create output action: _OUTPUT(port), instruct a switch to take the action to send a packet
through the specified port.

Retrieve OpenFlow message type: _type(msg), a function to retrieve the OpenFlow message
type from a given message.

Create packet out message: _createPktOut(action, data), a function to create an OpenFlow
PacketOut message with the given action and payload data.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:30 J. Lembke et al.

ALGORITHM 7: OFDP [24] and interaction with SERENE (highlighted) controller ¢; with public
key cpki, csk;, and secret share css;.

1: tg > Discovery interval ~ 17: rule « _createFlowMod(match, action)
2 M0 > Map of switches to sets of ports ~ 18: sendSwitchUpdate((s;, rule, 0))
3: (V,E) « (0,0) > Connectivity graph G Line 43 of Algorithm 2
4: task executed every t4 19: upon _receive(FeatureResponse, P) from switch s; do
5: for each s; | M[s;] # 0 do 20: for each port € P do
6: for each port € M([s;] do 21: M[s;] « M([s;] U {port}
7 action « _OUTPUT(port) 22: V«— VU {port.hw_addr}
8: data «— _createLLDPMsg(port) 23: E «— EU {(sj,port.hw_addr, L)}
9: rule « _createPktOut(action, data) 24: E — E U {(port.hw_addr,sj, L)}
10: sendSwitchUpdate((s;, rule, 0))

Line 43 of Algorithm 2 25: upon _receive(Packetln, msg) from switch s; do
26: if _type(msg) # LLDP then return

27: (Ssres portsyc) « switchForPort(msg.src)
28: (Sdst portgsy) « switchForPort(msg.dst)
29: E — E U {(Ssre, Sdst> POrtsrc.port_id)}

11: upon _receive new connection from switch s; do
12: VeVu {Sj }
13: rule « _createFeatureRequest()
14: sendSwitchUpdate((s;, rule, 0))
Line 43 of Algorithm 2 30: function switchForPort(p)
15: match « LLDP 31: return (s;, port) |
16: action < CONTROLLER port € M[s;] A port.hw_addr = p

Create flow modify message: _createFlowMod(match, action), a function to create an Open-
Flow FlowMod message with the given flow table match data and action.

Create feature request message: _createFeatureRequest(), a function to create an OpenFlow
FeatureRequest message.

Formally, the discovered topology is maintained by the controller as a graph G = (V, E), where
Vis the set of vertices (switches and hosts), and E is the set of edges consisting of a set of 3-tuples
(s,t,p) where s is the source, t is the target, and p is the port identifier on the source for which
traffic must be sent in order to reach ¢. A source s or target t may be a switch (datapath) identifier
or a port hardware address. If p is the special value L then the source and the target are the same.
This would be the case when the source is a switch identifier and the target is a port hardware
address for a port in the same switch.

7.2 Switch and Link Discovery

As part of an OpenFlow connection setup, when a switch connects to a controller, the controller
sends a FeatureRequest message to the switch. The switch responds with a FeatureResponse con-
taining its switch (datapath) identifier, and a list of physical ports. Each physical port entry contains
the port identifier and corresponding port hardware address. Switch discovery establishes entries
in V. An entry is created for each switch identifier and each port hardware address. Once a switch
is discovered, a controller sets a flow table entry instructing the switch to forward all received
LLDP frames to the controller as Packetln events.

At regular intervals, for all discovered switches, the controller sends PacketOut messages con-
taining LLDP frames as payload to be sent to each switch port. When the switch on the other end
of the link receives the LLDP frame, using the forwarding rule set during switch discovery, it en-
capsulates the LLDP frame in a PacketIn event and forwards it to the controller. The LLDP frame
contains the port hardware address for the sending switch while the PacketOut event contains the
port identifier and hardware address for the receiving switch. Using this information the controller
creates an entry in E for the discovered link endpoints.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:31

Uplinks to
_-="{ Spine LN RO
N

¥ Switch

Edge
Switches

Top of
& Rack
Switches

Fig. 10. Depiction of a pod in a Facebook data center [95] spanning racks and two switch layers.

8 SERENE EVALUATION

We here show how the strong guarantees for consistent, secure, and reliable updates in SERENE
can be achieved with little overhead in practical networked environments. We show how aggrega-
tion and multi-domain parallelism reduce that cost. Lastly, we evaluate SERENE secure OFDP.

8.1 Experimental Methodology

We evaluate SERENE against existing update frameworks in typical business-like environments.
As such, we compare a centralized controller, a crash-only tolerant update protocol where com-
munication within the control plane is performed using a crash-tolerant broadcast with no update
authentication on switches, and the SERENE update protocol on a single-domain setup with and
without aggregation on controllers (cf. Section 8.2) and on a multi-domain setup (cf. Section 8.3).

Setting. We executed the implementation detailed in Section 6 on a network simulated atop
compute nodes from the DeterLab test framework [92, 93] connected via a 1 Gb test network. Nodes
ran Ubuntu 18.04.1 LTS with kernel 4.15.0-43, two Intel® Xeon® E5-2420 processors at 2.2 GHz,
24 GB of RAM and a SATA attached 256 GB SSD. Controllers had their own node, switches and
hosts were node-sharing OpenVz [94] instances.

Topology. We simulated the Facebook data center topology [95] where data centers are divided
into server pods (as depicted in Figure 10) consisting of 40 racks of compute servers. Each rack
contains a top-of-rack switch connecting all servers in the rack. Each top-of-rack switch is con-
nected to four edge switches that provide high speed bandwidth and redundancy between racks.
Edge switches connect multiple pods to spine switches (unshown in Figure 10) linked to the up-
stream network. Rack hosts and the top-of-rack switches were simulated using OpenVz images
on a single physical node. Edge and spine switches were each collectively simulated on their own
physical node. One physical node for each switch type.

For larger evaluations on multiple data centers, we combined the upstream spine switches for
the data center server pods together through backbone switches using topologies documented by
the Internet Topology Zoo [96], specifically Abilene and Deutsche Telekom. In our evaluation, we
set the latency network links between data centers to be five times that of links within a data
center.

Workloads. To evaluate flow completion rates, we ran Hadoop MapReduce and web server traffic
workloads with parameters as described in [44] over the given topology and measured their flow
completion times according to the shortest path routing policy used by the controller application.
We used 5,000 flows per framework following a Poisson distribution using average packet sizes
and total flow sizes for inter-rack, intra-data center, and inter-data center defined for each work-
load. Table 7 summarizes the average sizes for packets and flows for each workload. Our tested

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:32 J. Lembke et al.

Table 7. Parameters of the Hadoop MapReduce and Web Server Traffic Workloads [44]

Workload Flow locality Avg packet size (B) Avg flow size (kB) Flow arrival rate (flow/s)

87% intra-rack 100
H 2
adoop 13% inter-rack >0 0.5 500

Web server 0% intra-rack 175 1 500
12% inter-rack

workloads focus on flow creation from data plane requests. While SERENE supports a dynamic
control plane, the requests for establishing new flows outweighs the overhead from churn in the
control plane.

To evaluate data plane state discovery, we used topology discovery workload based on
OFDP [24].

Creating routes. Unless explicitly stated otherwise, rules in flow tables are reused for multiple
flows. Flow tables in switches initially contain no forwarding rules. As flows enter the network,
events for unroutable packets are generated by switches and sent to the control plane. Controllers
respond with network updates sent to switches to establish rules for the flows. As flows complete,
these rules remain in switch flow tables and are reused by later flows matching them. As reported
in [44] for Hadoop workloads 99.8% of traffic originating from Hadoop nodes is destined for other
Hadoop nodes in the cluster. Reusing rules requires fewer overall events. Switches do not need to
contact the control plane for each new flow.

8.2 Single-domain Evaluation

In the following, we used a single server pod topology with a control plane made up of four con-
trollers that toleratel failure and results in a quorum size of 3. This evaluated control plane size is
similar to evaluations of related work [9, 22, 52].

Flow completion time. Figure 11(a) and (b) show flow completion times for the Hadoop and web
server workloads, respectively. Setting up a flow takes ~2.9 ms on average for a centralized con-
troller and ~4.3 ms for a crash fault-tolerant replicated control plane. SERENE is slower due to the
extra messaging and therefore takes ~8.3 ms without and ~11.6 ms with controller aggregation
for flow setup. However, flow rules are reused for future arriving flows since they are not removed
from switches once established. Therefore, after initial flow setup, SERENE’s overhead is negligi-
ble. Note that flows are only really transmitted once connections are set up at the application level.
This is typical for TCP/IP, used here, also in SDN scenarios. If applications started to transmit-
ting immediately, many packets would be dropped almost inevitably until paths are established,
regardless of SERENE’s overheads. However, we have never observed any failure in connection
establishment caused by the increased setup time, despite relying on default parameters only.

Unamortized flow creation. To further investigate the overhead of SERENE, we ran the Hadoop
workload using a setup/teardown approach. In this approach, no flow rules for routes are initially
set in the data plane. Each flow is managed by a pair of events to inform the control plane to
set the route for the flow before it starts, and clear the flow rules for the route once the flow is
completed, hence preventing overhead amortization. Each event results in appropriate network
updates. The setup/teardown approach is applicable in hosted networks such as those utilizing
subscription-based services.

The average flow completion times are depicted in Figure 11(c). For Hadoop flows, lasting
~33.6 ms on average, SERENE has an overhead of 16% with switch aggregation and 29% with con-
troller aggregation over the centralized approach. Setup times are constant regardless of overall

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:33

Centralized —@— Crash Tolerant SERENE —#&—
SERENE Agg SERENE w/ Echo —&— SERENE Agg w/ Echo —<—
! T T ! T T T T 1
o b .
- o
08— s : — 0.8— & : —
woosl B - [06k -
a ¥ a
Ooaf- B : . © o4l .
PRI - 02— & -
= K
P <l N A N R B B P N R A B
207 30 40 50 60 70 80 90 207 30 4050 60 70 80 90
Flow Completion Time (ms) Flow Completion Time (ms)
(a) Hadoop flow completion. (b) Web server flow completion.
! \ T 1 100
g
0.8 — '«g goé
N
0.6/ - =
E 5 60
O g4l — E 4()‘
&)
02— . — ? 20 -
0. 6(1 1 1 1 1 1 S 0 B Al Bt il
20 30 40 50 60 70 80 90 5 10 15 20 25 30
Flow Completion Time (ms) ‘Workload Duration (s)
(c) Hadoop flow completion unamortized. (d) Switch CPU utilization.

Fig. 11. SERENE performance on a single-domain network comparing a centralized solution to a control
plane, made of 4 controller replicas, that uses either a crash-tolerant update protocol, SERENE without/with
controller aggregation. (a) and (b) depict the cumulative distribution function (CDF) of Hadoop and
web server flow completion times, respectively. (c) depicts the CDF of Hadoop flow completion times when
routes are removed upon flow completion. (d) depicts the CPU utilization of OVS during a Hadoop workload
without/with echoed updates in SERENE.

flow duration. Since these setup times are the same for all flows, SERENE’s overhead with these
short-lived flows would be shadowed by the total flow execution time for longer running flows.

Switch resource usage and verification rate. To reduce switches’ CPU utilization, update signa-
tures can be aggregated on the control plane at the cost of increased latency (cf. Figure 11(c)).
Figure 11(d) depicts OVS CPU utilization on switches for the Hadoop workload. While SERENE
signature verification increases CPU utilization on switches, controller aggregation halves switch
CPU usage. Having switches aggregating signatures themselves did not result in an increased la-
tency in the processing of updates. Similarly, having switches echoing updates back to the control
plane for the purpose of recording them in the ledger (cf. Section 3.4) only incurred a minimal
CPU utilization overhead. To further test switch load we measured the rate at which switches
can verify message signatures. In our environment, a single switch is able to process on average
~1,163 message signatures per second. This value is well within acceptable limits considering our
characteristic workloads have a flow arrival rate of 500 flows per second on average (cf. Table 7).

8.3 Multi-domain Evaluation

As discussed in Section 3.5, SERENE provides a means to logically divide the data plane into sepa-
rate network domains each with its own separate control plane. Events generated within a domain
requiring updates solely to the data plane contained in the domain, i.e., local events, can be pro-
cessed independently of other domains’ local events. As we will show shortly, this separation can
reduce the load on the control plane(s) and improve scalability. This separation is particularly

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:34 J. Lembke et al.

T T T T T 1 Y Y
8 — ! — 100f——0—0—0—0—0—0—0—0
29 i | _| Single Domain —@—
g Lol MD Hadoop —&— _|
; 6 — . : — g MD Webserver
ES— — 60 |- P i ;
Ha n | 14
2 540 -
,g 3e Centalized [7 <
8.2 Crash Tolerant — IS
=) SERENE —A— 20 =
L= SERENE Agg -
oLl [H R M Y I ol
1 4 5 6 7 8 9 10 I 2 3 4 5 6 7.8 9 10
Control Plane Size Number of Domains
(a) Network update time in one domain de- (b) Events handled per control plane with
pending on the control plan size. MD in a pod.
! \ T ! \
08 B 08 -
(0.6 | - (2,06 -
a a ¢
Coal- - Coa b -
SERENE SD -4~ p
SERENE Agg SD g Centralized —@—
02— SERENEMD —A— | 021 = SERENEMD —4— |
SERENE Agg MD — t‘ ‘ | SERENEAggMD —
N2 .
% 507 40 50 60 70 80 90 %% %30 a0 50 60 70 80 9%
Flow Completion Time (ms) Flow Completion Time (ms)
(c) Hadoop flow completion with single (SD) (d) Web server flow completion with multiple
vs. multiple (MD) pods/domains. data centers/domains (MD).

Fig. 12. SERENE performance for multi-domain networks. (a) depicts the average time to apply switch rules
in a domain for a varying sized control plane. (b) depicts the comparison of events processed by each con-
troller in a pod configured as single vs. multi-domain. (c) depicts the CDF of Hadoop flow completion times
for both single and multiple domains. The single domain is made of 12 controller replicas while the multi-
domain consists of three domains each with four controller replicas (i.e., 12 controllers in total). (d) depicts
the CDF of web server flow completion times for a larger multi-data centers topology.

useful in the face of large networks that share the same large control plane for simplicity. We first
evaluate the cost of various control plane sizes to display the benefit for multiple domains.

Control plane size. While increasing the control plane membership size allows for more con-
trollers to be faulty, providing additional robustness, it also results in additional messaging for
broadcasting events as well as an increased latency, both of which increase the overhead of up-
dates. To examine this overhead we performed a series of updates with control plane sizes varying
up to 10 members.

The results in Figure 12(a) depict the average time to perform a switch update for an event de-
pending on the size of the control plane. A control plane size of one represents an unprotected
centralized control plane. As expected, increasing the control plane size with SERENE increases
update time due to the extra messaging needed for broadcast and verification of aggregated signa-
tures. The crash-tolerant update approach is less impacted by the size of the control plane since
switches do not authenticate updates; the additional overhead is merely due to extra messaging.

With SERENE, the overhead for a single switch update can be significant for a large control
plane, e.g., 2.5 that of a centralized approach when using 10 controllers to support three failures.
However, in a data center environment, such a large control plane might be excessive as failures
are typically short-lived and failed controllers are quickly replaced with new correct ones. For
instance, tolerating 2 concurrent failures is enough to achieve 99.999% of up-time [97]. Further,
splitting the network into disjoint domains may help reduce the overhead inherent to a growing
control plane.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

Secure and Reliable Network Updates 8:35

| A
-
q
wl 3i £]
[] T
06— @ 4 -
=) [}
Cosl- o -
L Centralized —@—
02l ¢ Crash Tolerant |
- SERENE —A—
L SERENE Agg
0 I | I t
1.2 1.4 1.6 1.8 2 22
Topology Discovery Time (s)
(a) Abilene topology. (b) Topology discovery time.

Fig. 13. Network depiction and results for SERENE secure topology discovery. (a) depicts the connectivity
of the Abilene network topology. (b) depicts the time for the control plane to discover the network topology
using a centralized, crash tolerant, and SERENE based control plane.

Event locality. We next investigated how increasing the number of domains within a single pod
affects event processing. Due to the locality of flows as reported by Facebook [44], only 5.8% of the
Hadoop workload and 31.6% of the web server workload required processing by multiple domains.

Figure 12(b) shows the percentage of total events (for the whole data center) that must be pro-
cessed by each control plane. For a single network domain, all events must naturally be processed
by the single control plane. As the number of domains increases, the number of events processed
by each domain’s control plane is greatly reduced, however with diminishing returns. While this
evaluation shows the gains achievable using multiple domains for one pod, it is more practical to
increase the size of the network by adding more pods. To that end, we next evaluated the impact
of event locality by increasing the number of pods in the data center with one domain per pod.

Multi-domain flow completion time. We executed the Hadoop workload using 2two server pods,
each set into its own domain with a third domain (containing 4 redundant switches) used to in-
terconnect them. Each domain’s control plane consisted of four controller replicas resulting in
12 replicas for the entire network. We compared this setup to the same network topology with a
single domain and a control plane of 12 replicas.

Figure 12(c) shows flow completion time using SERENE in the single and multi-domain (MD)
setup, with and without controller aggregation. Thanks to their locality, most events are processed
in parallel when using multiple domains, thus greatly reducing flow completion time compared to
a single domain. While flows crossing domains incur an additional overhead, an efficient domain
architecture can reduce their number.

Multiple data centers. Our final multi-domain evaluation involved pods located in multiple data
centers following Deutsche Telekom’s topology as documented by the Internet Topology Zoo [96].
Each data center consisted of four pods interconnected via the spine and edge switches as described
in the Facebook data center topology [95]. Each pod was set as its own domain for SERENE, while
a single controller was used for the entire network (all data centers) for the centralized approach.
We evaluated the completion time of web server flows taking into account their locality as re-
ported by Facebook [44]: 15.7% traverse pods within the same data center and 15.9% traverse data
centers.

The results depicted in Figure 12(d) show that the centralized controller suffers from the in-
creased latency for the establishment of flows across data centers. However, SERENE does not
suffer from this increased latency thanks to domain parallelism and hence performs better than
the centralized approach, unlike the single-domain setup, while being much more secure. These
results exhibit the benefits of parallelism even under the web server workload (with 15.7% + 15.9%
crossing flows) that has far fewer local events than the Hadoop one (3.3% + 2.5%).

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

8:36 J. Lembke et al.

8.4 Topology Discovery Evaluation

Here we evaluated the time to discover all switches and links using SERENE secure OFDP as de-
scribed in Section 7 for the Abilene topology depicted in Figure 13(a). This topology represents the
backbone created by the Internet2 community in the U.S. [25]. The results are shown in Figure 13(b).
SERENE exhibits an average discovery time of 1.45 seconds and 1.48 seconds when controller ag-
gregation is used compared to a discovery time of 1.3 seconds for a centralized controller. This
results in an overhead of 11.5%, and 13.8% with controller aggregation. The overhead has a di-
rect result in the control plane’s response to changes in topology (e.g., link and/or switch failures).
Given that topology discovery is an ongoing process executed within an established time unit, this
overhead is tolerable.

9 CONCLUSIONS

We present SERENE, a practical construction for secure and reliable network updates that ensures
consistency, thanks to an update scheduler that reduces ordering constraints by exploiting update
parallelism through dependency analysis, and scalability to large networks through update do-
mains. Threshold cryptography and distributed key generation allows for verification of updates
by the data plane and flexibility in control plane membership, while minimizing switch instrumen-
tation. SERENE’s control plane is resilient to a dynamic adversary by employing a failure detector
that combines heartbeats to detect controller crashes and a distributed ledger to detect (potentially
transient and malicious) failures based on the outputs of controllers (e.g., muteness failures [19]).
We provide an algorithmic formalization of SERENE and prove its safety with regards to event-
linearizability. We further present how SERENE integrates with OpenFlow discovery protocol to
propose a novel secure data plane topology discovery protocol. We show that SERENE can provide
consistency, security, and reliability with minimal overhead to flow completion time through ex-
tensive analysis using a functional Facebook data center topology with characteristic workloads.
Additional optimizations using controller aggregation reduce the load on data plane switches.

In future work, we plan to alleviate the assumption that switches remain correct and investi-
gate protection mechanisms against policy-related faults from the data plane. We also plan to in-
vestigate dynamic policies across multiple domains as well as domains distributed across multiple
autonomous systems (ASs).

REFERENCES

[1] Ratul Mahajan and Roger Wattenhofer. 2013. On consistent updates in software defined networks. In Proceedings of
the 12th ACM Workshop on Hot Topics in Networks. 7 pages. DOI : http://dx.doi.org/10.1145/2535771.2535791

[2] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri, and Roger Wattenhofer.
2013. Achieving high utilization with software-driven WAN. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM. 15-26. DOI : http://dx.doi.org/10.1145/2486001.2486012

[3] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. 2012. Abstractions for network
update. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication. 323-334. DOI : http://dx.doi.org/10.1145/2342356.2342427

[4] Sebastian Brandt, Klaus-Tycho Foerster, and Roger Wattenhofer. 2017. Augmenting flows for the consistent migration
of multi-commodity single-destination flows in SDNs. Pervasive and Mobile Computing 36 (2017), 134-150. DOI : http://
dx.doi.org/10.1016/j.pmc;j.2016.09.012 Special Issue on Pervasive Social Computing.

[5] Long Luo, Hongfang Yu, Shouxi Luo, and Mingui Zhang. 2015. Fast lossless traffic migration for SDN updates. In
Proceedings of the 2015 IEEE International Conference on Communications. 5803-5808. DOI : http://dx.doi.org/10.1109/
ICC.2015.7249247

[6] Klaus-Tycho Foerster and Roger Wattenhofer. 2016. The power of two in consistent network updates: Hard loop
freedom, easy flow migration. In Proceedings of the 25th International Conference on Computer Communication and
Networks. 1-9. DOI : http://dx.doi.org/10.1109/ICCCN.2016.7568583

[7] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob Lantz, Brian
O’Connor, Pavlin Radoslavov, William Snow, and Guru Parulkar. 2014. ONOS: Towards an open, distributed SDN OS.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

http://dx.doi.org/10.1145/2535771.2535791
http://dx.doi.org/10.1145/2486001.2486012
http://dx.doi.org/10.1145/2342356.2342427
http://dx.doi.org/10.1016/j.pmcj.2016.09.012
http://dx.doi.org/10.1109/ICC.2015.7249247
http://dx.doi.org/10.1109/ICCCN.2016.7568583

Secure and Reliable Network Updates 8:37

[16

(17

[18

[19

[23

[24

—

—

—_ =

= =

In Proceedings of the 3rd Workshop on Hot Topics in Software Defined Networking. 1-6. DOI : http://dx.doi.org/10.1145/
2620728.2620744

Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,
Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker. 2010. Onix: A distributed control platform for
large-scale production networks. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation. 351-364.

Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. 2015. Ravana: Controller fault-tolerance in
software-defined networking. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research. 12 pages. DOI : http://dx.doi.org/10.1145/2774993.2774996

He Li, Peng Li, Song Guo, and Amiya Nayak. 2014. Byzantine-resilient secure software-defined networks with multiple
controllers in cloud. IEEE Transactions on Cloud Computing 2, 4 (2014), 436—447. DOI : http://dx.doi.org/10.1109/TCC.
2014.2355227

Ermin Sakic, Nemanja Deric, and Wolfgang Kellerer. 2018. MORPH: An adaptive framework for efficient and byzantine
fault-tolerant SDN control plane. IEEE Journal on Selected Areas in Communications 36, 10 (2018), 2158-2174. DOI:
http://dx.doi.org/10.1109/JSAC.2018.2869938

Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The byzantine generals problem. ACM Transactions on
Programming Languages and Systems 4, 3 (1982), 382-401. DOI : http://dx.doi.org/10.1145/357172.357176

Miguel Castro and Barbara Liskov. 1999. Practical byzantine fault tolerance. In Proceedings of the 3rd Symposium on
Operating Systems Design and Implementation. 173-186.

Alysson Bessani, Jodo Sousa, and Eduardo E. P. Alchieri. 2014. State machine replication for the masses with
BFT-SMaRt. In Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.
355-362. DOI : http://dx.doi.org/10.1109/DSN.2014.43

Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and David Walker. 2020. Contra: A programmable sys-
tem for performance-aware routing. In Proceedings of the 17th USENLX Symposium on Networked Systems Design and
Implementation. 701-721.

Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Jennifer Rexford, and
Roger Wattenhofer. 2014. Dynamic scheduling of network updates. In Proceedings of the 2014 Conference of the ACM
Special Interest Group on Data Communication. 539-550. DOI : http://dx.doi.org/10.1145/2619239.2626307

Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert Soulé. 2015. NetPaxos: Consensus at
network speed. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research. 7 pages.
DOT : http://dx.doi.org/10.1145/2774993.2774999

Aniket Kate. ([n. d.]). Distributed Key Generator. Retrieved 7 Dec., 2020 from https://crysp.uwaterloo.ca/software/
DKG/.

Assia Doudou, Benoit Garbinato, Rachid Guerraoui, and André Schiper. 1999. Muteness failure detectors: Specification
and implementation. In Proceedings of the 3rd European Dependable Computing Conference on Dependable Computing.
71-87. DOI : http://dx.doi.org/10.1007/3-540-48254-7_7

Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo, and Micah Sherr. 2011. Secure net-
work provenance. In Proceedings of the 23rd ACM Symposium on Operating Systems Principles. 295-310. DOI : http://
dx.doi.org/10.1145/2043556.2043584

([n. d.]). Ryu SDN Framework. Retrieved 7 Dec., 2020 from http://osrg.github.io/ryu.

James Lembke, Srivatsan Ravi, Patrick Eugster, and Stefan Schmid. 2020. RoSCo: Robust updates for software-defined
networks. IEEE Journal on Selected Areas in Communications 38, 7 (2020), 1352-1365. DOI : http://dx.doi.org/10.1109/
JSAC.2020.2986959

Ben Lynn. ([n. d.]). The Pairing Based Cryptography Library. Retrieved 7 Dec., 2020 from https://crypto.stanford.edu/
pbec/.

([n. d.]). OpenFlow Discovery Protocol. Retrieved 7 Dec., 2020 from https://groups.geni.net/geni/wiki/OpenFlow
DiscoveryProtocol.

Internet2 Community. Retrieved 20 Feb., 2021 https://internet2.edu.

James Lembke, Srivatsan Ravi, Pierre-Louis Roman, and Patrick Eugster. 2020. Consistent and secure network updates
made practical. In Proceedings of the 21st International Middleware Conference. 149-162. DOI : http://dx.doi.org/10.1145/
3423211.3425694

Open Networking Foundation. 2015. OpenFlow Switch Specification. v1.5.1.

Abdelhadi Azzouni, Raouf Boutaba, Nguyen Thi Mai Trang, and Guy Pujolle. 2018. sOFTDP: Secure and efficient open-
flow topology discovery protocol. In Proceedings of the 2018 IEEE/IFIP Network Operations and Management Symposium.
1-7.DOI : http://dx.doi.org/10.1109/NOMS.2018.8406229

Balakrishnan Chandrasekaran and Theophilus Benson. 2014. Tolerating SDN application failures with LegoSDN. In
Proceedings of the 13th ACM Workshop on Hot Topics in Networks. 1-7. DOI : http://dx.doi.org/10.1145/2670518.2673880

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

http://dx.doi.org/10.1145/2620728.2620744
http://dx.doi.org/10.1145/2774993.2774996
http://dx.doi.org/10.1109/TCC.2014.2355227
http://dx.doi.org/10.1109/JSAC.2018.2869938
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1109/DSN.2014.43
http://dx.doi.org/10.1145/2619239.2626307
http://dx.doi.org/10.1145/2774993.2774999
https://crysp.uwaterloo.ca/software/DKG/
http://dx.doi.org/10.1007/3-540-48254-7_7
http://dx.doi.org/10.1145/2043556.2043584
http://osrg.github.io/ryu
http://dx.doi.org/10.1109/JSAC.2020.2986959
https://crypto.stanford.edu/pbc/
https://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol
https://internet2.edu
http://dx.doi.org/10.1145/3423211.3425694
http://dx.doi.org/10.1109/NOMS.2018.8406229
http://dx.doi.org/10.1145/2670518.2673880

8:38 J. Lembke et al.

[30] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung, Phillip Porras, Vinod Yegneswaran,
Jiseong Noh, and Brent Byunghoon Kang. 2014. Rosemary: A robust, secure, and high-performance network operating
system. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. 78-89. DOIL :
http://dx.doi.org/10.1145/2660267.2660353

[31] Soheil Hassas Yeganeh and Yashar Ganjali. 2016. Beehive: Simple distributed programming in software-defined net-
works. In Proceedings of the Symposium on SDN Research. 1-12. DOI : http://dx.doi.org/10.1145/2890955.2890958

[32] Mark Dargin. ([n. d.]). Secure your SDN controller. Retrieved 1 Jan., 2021 from https://www.networkworld.com/article/
3245173/secure-your-sdn-controller.html.

[33] Scott Hogg. ([n. d.]). SDN Security Attack Vectors and SDN Hardening. Retrieved 1 Jan., 2021 from https://www.
networkworld.com/article/2840273/sdn-security-attack-vectors-and-sdn-hardening.html.

[34] Diego Asturias. ([n. d.]). 9 Types of Software Defined Network attacks and how to protect from them. Retrieved 1 Jan.,
2021 from https://www.routerfreak.com/9-types-software-defined-network-attacks-protect/.

[35] Michael Brooks and Baijian Yang. 2015. A man-in-the-middle attack against opendaylight SDN controller. In Proceed-
ings of the 4th Annual ACM Conference on Research in Information Technology. 45-49. DOI : http://dx.doi.org/10.1145/
2808062.2808073

[36] Jeremy M. Dover. 2013. A denial of service attack against the open floodlight SDN controller. Dover Networks LCC,
Edgewater, MD (2013). Retrieved 1 Jan., 2021 http://dovernetworks.com/wp- content/uploads/2013/12/OpenFloodlight-
12302013.pdf.

[37] ([n. d.]). OpenFlow PacketOut. Retrieved 7 Dec., 2020 from http://flowgrammable.org/sdn/openflow/message-layer/
packetout/.

[38] Seungsoo Lee, Changhoon Yoon, and Seungwon Shin. 2016. The smaller, the shrewder: A simple malicious application
can kill an entire SDN environment. In Proceedings of the 2016 ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization. 23-28. DOI : http://dx.doi.org/10.1145/2876019.2876024

[39] ([n. d.]). Policy Framework for ONOS. Retrieved 7 May, 2020 from https://wiki.onosproject.org/display/ONOS/
POLICY+FRAMEWORK+FOR+ONOS.

[40] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,
Amin Vahdat, George Varghese, and David Walker. 2014. P4: Programming protocol-independent packet processors.
SIGCOMM Computer Communication Review 44, 3 (2014), 87-95. DOI : http://dx.doi.org/10.1145/2656877.2656890

[41] ([n. d.]). OpenDaylight Group Based Policy. Retrieved 1 Jan., 2021 from https://docs.opendaylight.org/en/stable-
fluorine/user-guide/group-based-policy-user-guide html.

[42] Murat Karakus and Arjan Durresi. 2017. A survey: Control plane scalability issues and approaches in software-defined
networking (SDN). Computer Networks 112 (2017), 279-293. DOI : http://dx.doi.org/0.1016/j.comnet.2016.11.017

[43] Peter Thai and Jaudelice C. de Oliveira. 2013. Decoupling policy from routing with software defined interdomain
management: Interdomain routing for SDN-based networks. In Proceedings of the 2013 22nd International Conference
on Computer Communication and Networks. 1-6. DOI : http://dx.doi.org/10.1109/ICCCN.2013.6614121

[44] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. 2015. Inside the social network’s (data-
center) network. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. 123-137.
DOI: http://dx.doi.org/10.1145/2785956.2787472

[45] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado, Nick McKeown, and Scott Shenker. 2008.
NOX: Towards an operating system for networks. SSIGCOMM Computer Communication Review 38, 3 (2008), 105-110.
DOI: http://dx.doi.org/10.1145/1384609.1384625

[46] ([n. d.]). Cisco Open SDN Controller. Retrieved 7 May, 2020 from http://www.cisco.com/c/en/us/products/cloud-
systems-management/opensdn-controller/index.html.

[47] ([n. d.]). OpenDaylight. Retrieved 1 April, 2020 from https://www.opendaylight.org.

[48] ([n. d.]). Central Office Re-architected as a Datacenter (CORD). Retrieved 1 April, 2020 from https://opencord.org/.

[49] ([n. d.]). Packet-Optical. Retrieved 1 April, 2020 from https://wiki.onosproject.org/display/ONOS/Packet+Optical+
Convergence.

[50] ([n. d.]). Configuring TLS for inter-controller communication. Retrieved 1 April, 2020 from https://wiki.onosproject.
org/display/ONOS/Configuring+TLS+for+inter-controller+communication.

[51] ([n. d.]). Configuring OVS connection using SSL/TLS with self-signed certificates. Retrieved 1 April, 2020 from https:
//wiki.onosproject.org/pages/viewpage.action?pageld=6358090.

[52] Fabio Botelho, Tulio A. Ribeiro, Paulo Ferreira, Fernando M. V. Ramos, and Alysson Bessani. 2016. Design and im-
plementation of a consistent data store for a distributed SDN control plane. In Proceedings of the 2016 12th European
Dependable Computing Conference. 169—-180. DOI : http://dx.doi.org/10.1109/EDCC.2016.12

[53] Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerny. 2016. Event-driven network programming. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation. 369-385.
DOI: http://dx.doi.org/10.1145/2908080.2908097

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

http://dx.doi.org/10.1145/2660267.2660353
http://dx.doi.org/10.1145/2890955.2890958
https://www.networkworld.com/article/3245173/secure-your-sdn-controller.html
https://www.networkworld.com/article/2840273/sdn-security-attack-vectors-and-sdn-hardening.html
https://www.routerfreak.com/9-types-software-defined-network-attacks-protect/
http://dx.doi.org/10.1145/2808062.2808073
http://dovernetworks.com/wp-content/uploads/2013/12/OpenFloodlight-12302013.pdf
http://flowgrammable.org/sdn/openflow/message-layer/packetout/
http://dx.doi.org/10.1145/2876019.2876024
https://wiki.onosproject.org/display/ONOS/POLICY+FRAMEWORK+FOR+ONOS
http://dx.doi.org/10.1145/2656877.2656890
https://docs.opendaylight.org/en/stable-fluorine/user-guide/group-based-policy-user-guide.html
http://dx.doi.org/0.1016/j.comnet.2016.11.017
http://dx.doi.org/10.1109/ICCCN.2013.6614121
http://dx.doi.org/10.1145/2785956.2787472
http://dx.doi.org/10.1145/1384609.1384625
http://www.cisco.com/c/en/us/products/cloud-systems-management/opensdn-controller/index.html
https://www.opendaylight.org
https://opencord.org/
https://wiki.onosproject.org/display/ONOS/Packet+Optical+Convergence
https://wiki.onosproject.org/display/ONOS/Configuring+TLS+for+inter-controller+communication
https://wiki.onosproject.org/pages/viewpage.action?pageId=6358090
http://dx.doi.org/10.1109/EDCC.2016.12
http://dx.doi.org/10.1145/2908080.2908097

Secure and Reliable Network Updates 8:39

[54]

[55]

[56]

(57]

(58]

[59]

(60

—

[61

—

[62

—

(63

=

[64]

(65

=

(66

—

(67

—

(68

=

[69

—

(70

-

(71]

Thanh Dang Nguyen, Marco Chiesa, and Marco Canini. 2017. Decentralized consistent updates in SDN. In Proceedings
of the Symposium on SDN Research. 21-33. DOI : http://dx.doi.org/10.1145/3050220.3050224

Pavol Cerny, Nate Foster, Nilesh Jagnik, and Jedidiah McClurg. 2016. Optimal consistent network updates in polyno-
mial time. In Proceedings of the International Symposium on Distributed Computing. 114-128. DOI : http://dx.doi.org/10.
1007/978-3-662-53426-7_9

Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header space analysis: Static checking for networks.
In Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation. 113—-126.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A general approach to network configuration
verification. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication. 155-168.
DOI:http://dx.doi.org/10.1145/3098822.3098834

Belema Agborubere and Erika Sanchez-Velazquez. 2017. OpenFlow communications and TLS security in software-
defined networks. In Proceedings of the 2017 IEEE International Conference on Internet of Things and IEEE Green
Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data. 560-566.
DOI: http://dx.doi.org/10.1109/iThings- GreenCom-CPSCom-SmartData.2017.88

Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. 2016. The good, the bad, and the
differences: Better network diagnostics with differential provenance. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. 115-128. DOI : http://dx.doi.org/10.1145/2934872.2934910

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres, and Nick McKeown. 2014. I know what
your packet did last hop: Using packet histories to troubleshoot networks. In Proceedings of the 11th USENIX Sympo-
sium on Networked Systems Design and Implementation.

Ryan Wallner and Robert Cannistra. 2013. An SDN approach: Quality of service using big switch’s floodlight open-
source controller. Proceedings of the Asia-Pacific Advanced Network 35 (2013), 14-19. DOI : http://dx.doi.org/10.7125/
APAN.35.2

Pradip Kumar Sharma, Saurabh Singh, Young-Sik Jeong, and Jong Hyuk Park. 2017. DistBlockNet: A distributed
blockchains-based secure SDN architecture for IoT networks. IEEE Communications Magazine 55, 9 (2017), 78-85.
DOI: http://dx.doi.org/10.1109/MCOM.2017.1700041

Arash Shaghaghi, Mohamed Ali Kaafar, Rajkumar Buyya, and Sanjay Jha. 2020. Software-Defined Network (SDN)
Data Plane Security: Issues, Solutions and Future Directions. In Handbook of Computer Networks and Cyber Security.
341-387.

Maha Shamseddine, Wassim Itani, Ayman Kayssi, and Ali Chehab. 2017. Virtualized network views for localizing
misbehaving sources in SDN data planes. In Proceedings of the 2017 IEEE International Conference on Communications.
1-7. DOI: http://dx.doi.org/10.1109/ICC.2017.7997296

Richard Skowyra, Andrei Lapets, Azer Bestavros, and Assaf Kfoury. 2014. A verification platform for SDN-enabled
applications. In Proceedings of the 2014 IEEE International Conference on Cloud Engineering. 337-342. DOI : http://dx.
doi.org/10.1109/IC2E.2014.72

Bin Yuan, Chen Lin, Deqing Zou, Laurence Tianruo Yang, and Hai Jin. 2021. Detecting malicious switches for a secure
software-defined tactile internet. ACM Transactions on Internet Technology 21, 4 (2021), 1-23. DOI : http://dx.doi.org/
10.1145/3415146

Ashidha Anil, TA Rufzal, and Vipindev Adat Vasudevan. 2022. DDoS detection in software-defined network using en-
tropy method. In Proceedings of the 7th International Conference on Mathematics and Computing. 129-139. DOI : http://
dx.doi.org/10.1007/978-981-16-6890-6_10

Narmeen Zakaria Bawany, Jawwad A. Shamsi, and Khaled Salah. 2017. DDoS attack detection and mitigation using
SDN: methods, practices, and solutions. Arabian Journal for Science and Engineering 42, 2 (2017), 425-441. DOI : http://
dx.doi.org/10.1007/s13369-017-2414-5

Chaitanya Buragohain and Nabajyoti Medhi. 2016. FlowTrApp: An SDN based architecture for DDoS attack detection
and mitigation in data centers. In Proceedings of the 2016 3rd International Conference on Signal Processing and Integrated
Networks. 519-524. DOI : http://dx.doi.org/10.1109/SPIN.2016.7566750

Anass Sebbar, Karim Zkik, Youssef Baddi, Mohammed Boulmalf, and Mohamed Dafir Ech-Cherif El Kettani. 2020.
MitM detection and defense mechanism CBNA-RF based on machine learning for large-scale SDN context. Journal of
Ambient Intelligence and Humanized Computing 11, 12 (2020), 5875-5894. DOI : http://dx.doi.org/10.1007/s12652-020-
02099-4

Peter Pereini, Maciej Kuzniar, Marco Canini, and Dejan Kosti¢. 2014. ESPRES: Transparent SDN update scheduling. In
Proceedings of the 3rd Workshop on Hot Topics in Software Defined Networking. 73-78. DOI : http://dx.doi.org/10.1145/
2620728.2620747

[72] Jedidiah McClurg, Hossein Hojjat, Pavol Cerny, and Nate Foster. 2015. Efficient synthesis of network updates. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation. 196-207.
DOI:http://dx.doi.org/10.1145/2737924.2737980

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

http://dx.doi.org/10.1145/3050220.3050224
http://dx.doi.org/10.1007/978-3-662-53426-7_9
http://dx.doi.org/10.1145/3098822.3098834
http://dx.doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.88
http://dx.doi.org/10.1145/2934872.2934910
http://dx.doi.org/10.7125/APAN.35.2
http://dx.doi.org/10.1109/MCOM.2017.1700041
http://dx.doi.org/10.1109/ICC.2017.7997296
http://dx.doi.org/10.1109/IC2E.2014.72
http://dx.doi.org/10.1145/3415146
http://dx.doi.org/10.1007/978-981-16-6890-6_10
http://dx.doi.org/10.1007/s13369-017-2414-5
http://dx.doi.org/10.1109/SPIN.2016.7566750
http://dx.doi.org/10.1007/s12652-020-02099-4
http://dx.doi.org/10.1145/2620728.2620747
http://dx.doi.org/10.1145/2737924.2737980

8:40

[73]
[74]
[75]

[76]

[77]
(78]
[79]

[80]

(81]

(82]

(83]

[84]

(85]

[86]
(87]

(88]

[89]
[90]
[o1]

[92]
[93]

[94]
[95]

J. Lembke et al.

Yvo G. Desmedt. 1994. Threshold cryptography. European Transactions on Telecommunications 5, 4 (1994), 449-458.
DOI : http://dx.doi.org/10.1002/ett.4460050407

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 1996. Robust threshold DSS signatures. In Pro-
ceedings of the Advances in Cryptology — EUROCRYPT. 354-371. DOI : http://dx.doi.org/10.1007/3-540-68339-9_31

Adi Shamir. 1979. How to share a secret. Communications of the ACM 22, 11 (1979), 612-613. DOI : http://dx.doi.org/10.
1145/359168.359176

Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Verifiable secret sharing and achieving
simultaneity in the presence of faults. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science.
383-395. DOI : http://dx.doi.org/10.1109/SFCS.1985.64

Aniket Kate, Yizhou Huang, and Ian Goldberg. 2012. Distributed Key Generation in the Wild. Cryptology ePrint
Archive, Paper 2012/377. (2012). Retrieved 7 Dec., 2020 from https://eprint.iacr.org/2012/377.

Vassos Hadzilacos and Sam Toueg. 1994. A Modular Approach to Fault-Tolerant Broadcasts and Related Problems. Tech-
nical Report. Cornell University.

Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable failure detectors for reliable distributed systems. Journal of
the ACM 43, 2 (1996), 225-267. DOI : http://dx.doi.org/10.1145/226643.226647

Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. 2007. PeerReview: Practical accountability for distributed
systems. In Proceedings of the21st ACM SIGOPS Symposium on Operating Systems Principles. 175-188. DOI : http://dx.
doi.org/10.1145/1294261.1294279

Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007. Attested append-only memory: Mak-
ing adversaries stick to their word. In Proceedings of the21st ACM SIGOPS Symposium on Operating Systems Principles.
189-204. DOI : http://dx.doi.org/10.1145/1294261.1294280

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro, David
Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukoli¢,
Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger fabric: A distributed operating system for permis-
sioned blockchains. In Proceedings of the 13th EuroSys Conference. 30:1-30:15. DOI : http://dx.doi.org/10.1145/3190508.
3190538

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. 2018. Om-
niLedger: A secure, scale-out, decentralized ledger via sharding. In Proceedings of the 2018 IEEE Symposium on Security
and Privacy. 19-34. DOI : http://dx.doi.org/10.1109/SP.2018.000-5

Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain: Scaling blockchain via full sharding.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 931-948. DOI : http://
dx.doi.org/10.1145/3243734.3243853

Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues. 2012. On the (limited) power of non-
equivocation. In Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing. 301-308. DOI : http://
dx.doi.org/10.1145/2332432.2332490

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2010. Reconfiguring a state machine. ACM SIGACT News 41, 1 (2010),
63-73. DOI : http://dx.doi.org/10.1145/1753171.1753191

Leslie Lamport. 1998. The part-time parliament. ACM Transactions on Computer Systems 16, 2 (1998), 133-169.
DOI: http://dx.doi.org/10.1145/279227.279229

Jiahao Cao, Renjie Xie, Kun Sun, Qi Li, Guofei Gu, and Mingwei Xu. 2020. When match fields do not need to match:
Buffered packets hijacking in SDN. In Proceedings of the 27th Annual Network and Distributed System Security Sympo-
sium. DOI : http://dx.doi.org/10.14722/ndss.2020.23040

Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short signatures from the weil pairing. Journal of Cryptology 17,
4 (2004), 297-319. DOI : http://dx.doi.org/10.1007/s00145-004-0314-9

([n. d.]). OpenFlow Role Request Messages. Retrieved 7 Dec., 2020 from https://ryu.readthedocs.io/en/latest/ofproto_
v1_3_ref html#role-request-message.

Standard for Local and Metropolitan Area Networks - Station and Media Access Control Connectivity Discovery,
802.1AB-REV Draft 6.0, IEEE, Jun. 24.

([n. d.]). About DETERLab. Retrieved 1 April, 2020 from https://deter-project.org/about_deterlab.

([n. d.]). DETERLab PC3000 Node Information. Retrieved 1 April, 2020 from https://www.isi.deterlab.net/
shownodetype.php?node_type=pc3000.

([n. d.]). OpenVz. Retrieved 1 April, 2020 from https://openvz.org/.

([n. d.]). Introducing data center fabric, the next-generation Facebook data center network. Retrieved 7
May, 2020 from https://code.fb.com/production-engineering/introducing-data- center-fabric-the-next-generation-
facebook-data-center-network/.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

http://dx.doi.org/10.1002/ett.4460050407
http://dx.doi.org/10.1007/3-540-68339-9_31
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1109/SFCS.1985.64
https://eprint.iacr.org/2012/377
http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1145/1294261.1294279
http://dx.doi.org/10.1145/1294261.1294280
http://dx.doi.org/10.1145/3190508.3190538
http://dx.doi.org/10.1109/SP.2018.000-5
http://dx.doi.org/10.1145/3243734.3243853
http://dx.doi.org/10.1145/2332432.2332490
http://dx.doi.org/10.1145/1753171.1753191
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.14722/ndss.2020.23040
http://dx.doi.org/10.1007/s00145-004-0314-9
https://ryu.readthedocs.io/en/latest/ofproto_v1_3_ref.html#role-request-message
https://deter-project.org/about_deterlab
https://www.isi.deterlab.net/shownodetype.php?node_type=pc3000
https://openvz.org/
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

Secure and Reliable Network Updates 8:41

[96] ([n. d.]). The Internet Topology Zoo. Retrieved 7 May, 2020 from http://www.topology-zoo.org/.

[97] Francisco Javier Ros and Pedro Miguel Ruiz. 2014. Five nines of southbound reliability in software-defined networks.
In Proceedings of the 3rd Workshop on Hot Topics in Software Defined Networking. 31-36. DOI : http://dx.doi.org/10.1145/
2620728.2620752

Received 8 June 2021; revised 7 May 2022; accepted 23 July 2022

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 8. Publication date: November 2022.

http://www.topology-zoo.org/
http://dx.doi.org/10.1145/2620728.2620752

