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Abstract

Training a referring expression comprehension

(ReC) model for a new visual domain requires

collecting referring expressions, and potentially

corresponding bounding boxes, for images in

the domain. While large-scale pre-trained mod-

els are useful for image classification across

domains, it remains unclear if they can be ap-

plied in a zero-shot manner to more complex

tasks like ReC. We present ReCLIP, a simple

but strong zero-shot baseline that repurposes

CLIP, a state-of-the-art large-scale model, for

ReC. Motivated by the close connection be-

tween ReC and CLIP’s contrastive pre-training

objective, the first component of ReCLIP is a

region-scoring method that isolates object pro-

posals via cropping and blurring, and passes

them to CLIP. However, through controlled ex-

periments on a synthetic dataset, we find that

CLIP is largely incapable of performing spatial

reasoning off-the-shelf. Thus, the second com-

ponent of ReCLIP is a spatial relation resolver

that handles several types of spatial relations.

We reduce the gap between zero-shot baselines

from prior work and supervised models by as

much as 29% on RefCOCOg, and on RefGTA

(video game imagery), ReCLIP’s relative im-

provement over supervised ReC models trained

on real images is 8%.

1 Introduction

Visual referring expression comprehension (ReC)—

the task of localizing an object in an image given

a textual referring expression—has applications in

a broad range of visual domains. For example,

ReC is useful for guiding a robot in the real world

(Shridhar et al., 2020) and also for creating natu-

ral language interfaces for software applications

with visuals (Wichers et al., 2018). Though the

task is the same across domains, the domain shift

is problematic for supervised referring expression

models, as shown in Figure 1: the same simple

∗This work was done while Sanjay, Will, and Matt were
affiliated with AI2.

(a) RefCOCO+ (Yu et al., 2016)

(b) RefGTA (Tanaka et al., 2019)

Figure 1: Predictions from ReCLIP (cyan) and

UNITER-Large (Chen et al., 2020) (red) for the same

referring expression on images from two visual domains.

UNITER-Large fails on the GTA (video game) domain,

while ReCLIP selects the correct proposal in both cases.

Close-ups of the two GTA boxes are shown.

referring expression is localized correctly in the

training domain but incorrectly in a new domain.

Collecting task-specific data in each domain

of interest is expensive. Weakly supervised ReC

(Rohrbach et al., 2016) partially addresses this is-

sue, since it does not require the ground-truth box

for each referring expression, but it still assumes

the availability of referring expressions paired with

images and trains on these. Given a large-scale pre-

trained vision and language model and a method

for doing ReC zero-shot—i.e. without any addi-
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Figure 2: Overview of ReCLIP. Given object proposals, we isolate the corresponding image regions by cropping

and blurring (only cropping shown here). Using a parser, we extract the noun chunks of the expression. For each

noun chunk, CLIP outputs a distribution over proposals. The relations from the parser and CLIP’s probabilities are

combined by a spatial relation resolver to select the final proposal. In this example, CLIP ranks b3 highest for both

noun chunks, but using the relation resolver we obtain the correct answer b4.

tional training—practitioners could save a great

deal of time and effort. Moreover, as pre-trained

models have become more accurate via scaling (Ka-

plan et al., 2020), fine-tuning the best models has

become prohibitively expensive–and sometimes in-

feasible because the model is offered only via API,

e.g. GPT-3 (Brown et al., 2020).

Pre-trained vision and language models like

CLIP (Radford et al., 2021) achieve strong zero-

shot performance in image classification across

visual domains (Jia et al., 2021) and in object de-

tection (Gu et al., 2021), but the same success has

not yet been achieved in tasks requiring reason-

ing over vision and language. For example, Shen

et al. (2021) show that a straightforward zero-shot

approach for VQA using CLIP performs poorly.

Specific to ReC, Yao et al. (2021) introduce a zero-

shot approach via Colorful Prompt Tuning (CPT),

which colors object proposals and references the

color in the text prompt to score proposals, but

this has low accuracy. In both of these cases, the

proposed zero-shot method is not aligned closely

enough with the model’s pre-training task of match-

ing naturally occurring images and captions.

In this work, we propose ReCLIP, a simple but

strong new baseline for zero-shot ReC. ReCLIP,

illustrated in Figure 2, has two key components: a

method for scoring object proposals using CLIP

and a method for handling spatial relations between

objects. Our method for scoring region proposals,

Isolated Proposal Scoring (IPS), effectively reduces

ReC to the contrastive pre-training task used by

CLIP and other models. Specifically, we propose

to isolate individual proposals via cropping and

blurring the images and to score these isolated pro-

posals with the given expression using CLIP.

To handle relations between objects, we first

consider whether CLIP encodes the spatial infor-

mation necessary to resolve these relations. We

show through a controlled experiment on CLEVR

images (Johnson et al., 2017) that CLIP and another

pre-trained model ALBEF (Li et al., 2021) are un-

able to perform its pre-training task on examples

that require spatial reasoning. Thus, any method

that solely relies on these models is unlikely to

resolve spatial relations accurately. Consequently,

we propose spatial heuristics for handling spatial

relations in which an expression is decomposed

into subqueries, CLIP is used to compute proposal

probabilities for each subquery, and the outputs for

all subqueries are combined with simple rules.

On the standard RefCOCO/g/+ datasets (Mao

et al., 2016; Yu et al., 2016), we find that ReCLIP

outperforms CPT (Yao et al., 2021) by about 20%.

Compared to a stronger GradCAM (Selvaraju et al.,

2017) baseline, ReCLIP obtains better accuracy on

average and has less variance across object types.

Finally, in order to illustrate the practical value of

zero-shot grounding, we also demonstrate that our

zero-shot method surpasses the out-of-domain per-

formance of state-of-the-art supervised ReC mod-

els. We evaluate on the RefGTA dataset (Tanaka

et al., 2019), which contains images from a video

game (out of domain for models trained only on

real photos). Using ReCLIP and an object detector

trained outside the target domain, we outperform

UNITER-Large (Chen et al., 2020) (using the same

proposals) and MDETR (Kamath et al., 2021) by

an absolute 4.5% (relative improvement of 8%).

In summary, our contributions include: (1) Re-

CLIP, a zero-shot method for referring expression

comprehension, (2) showing that CLIP has low
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zero-shot spatial reasoning performance, and (3) a

comparison of our zero-shot ReC performance with

the out-of-domain performance of state-of-the-art

fully supervised ReC systems.1

2 Background

In this section, we first describe the task at hand

(§2.1) and introduce CLIP, the pre-trained model

we primarily use (§2.2). We then describe two

existing methods for scoring region proposals using

a pre-trained vision and language model: colorful

prompt tuning (§2.3) and GradCAM (§2.4).

2.1 Task description

In referring expression comprehension (ReC), the

model is given an image and a textual referring

expression describing an entity in the image. The

goal of the task is to select the object (bounding

box) that best matches the expression. As in much

of the prior work on REC, we assume access to a

set of object proposals b1, b2, ..., bn, each of which

is a bounding box in the image. Task accuracy is

measured as the percentage of instances for which

the model selects a proposal whose intersection-

over-union (IoU) with the ground-truth box is at

least 0.5. In this paper, we focus on the zero-shot

setting in which we apply a pre-trained model to

ReC without using any training data for the task.

2.2 Pre-trained model architecture

The zero-shot approaches that we consider are

general in that the only requirement for the pre-

trained model is that when given a query con-

sisting of an image and text, it computes a score

for the similarity between the image and text. In

this paper, we primarily use CLIP (Radford et al.,

2021). We focus on CLIP because it was pre-

trained on 400M image-caption pairs collected

from the web2 and therefore achieves impressive

zero-shot image classification performance on a

variety of visual domains. CLIP has an image-

only encoder, which is either a ResNet-based ar-

chitecture (He et al., 2016) or a visual transformer

(Dosovitskiy et al., 2021), and a text-only trans-

former. We mainly use the RN50x16 and ViT-

B/32 versions of CLIP. The image encoder takes

the raw image and produces an image representa-

tion x ∈ R
d, and the text transformer takes the

1Our code is available at https://www.github.

com/allenai/reclip.
2This dataset is not public.

sequence of text tokens and produces a text rep-

resentation y ∈ R
d. In CLIP’s contrastive pre-

training task, given a batch of N images and match-

ing captions, each image must be matched with

the corresponding text. The model’s probability

of matching image i with caption j is given by

exp(βxi
T
yj)/

∑N
k=1

exp(βxi
T
yk), where β is a

hyperparameter.3

We now describe two techniques from prior work

for selecting a proposal using a pre-trained model.

2.3 Colorful Prompt Tuning (CPT)

The first baseline from prior work that we consider

is colorful prompt tuning (CPT), proposed by Yao

et al. (2021) 4: they shade proposals with differ-

ent colors and use a masked language prompt in

which the referring expression is followed by “in

[MASK] color”. The color with the highest proba-

bility from a pre-trained masked language model

(MLM) (VinVL; (Zhang et al., 2021)) is then cho-

sen. In order to apply this method to models like

CLIP, that provide image-text scores but do not of-

fer an MLM, we create a version of the input image

for each proposal, where the proposal is transpar-

ently shaded in red.5 Our template for the input text

is “[referring expression] is in red color.” Since we

have adapted CPT for non-MLM models, we refer

to this method as CPT-adapted in the experiments.

2.4 Gradient-based visualizations

The second baseline from prior work that we con-

sider is based on gradient-based visualizations,

which are a popular family of techniques for un-

derstanding, on a range of computer vision tasks,

which part(s) of an input image are most impor-

tant to a model’s prediction. We focus on the most

popular technique in this family, GradCAM (Sel-

varaju et al., 2017). Our usage of GradCAM fol-

lows Li et al. (2021), in which GradCAM is used

to perform weakly supervised referring expression

comprehension using the ALBEF model. In our

setting, for a given layer in a visual transformer,

we take the layer’s class-token (CLS) attention ma-

trix M ∈ R
h,w. The spatial dimensions h and

w are dependent on the model’s architecture and

are generally smaller than the input dimensions

3
xi and yi are normalized before the dot product.

4CPT is the name given by Yao et al. (2021), but note that
we do not perform few-shot/supervised tuning.

5Specifically, we use the RGB values (240, 0, 30) and
transparency 127/255 that Yao et al. (2021) say works best
with their method. An example is shown in Appendix B.
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of the image. Then the GradCAM is computed

as G = M ⊙
∂L
∂M

, where L is the model’s output

logit (the similarity score for the image-text pair)

and ⊙ denotes elementwise multiplication. The

procedure for applying GradCAM when the visual

encoder is a convolutional network is similar; in

place of the attention matrix, we use the activa-

tions of the final convolutional layer. Next, we

perform a bicubic interpolation on G so that it has

the same dimensions as the input image. Finally,

we compute for each proposal bi = (x1, y1, x2, y2)
the score 1

Aα

∑x2

i=x1

∑y2
j=y1

G[i, j], where A is the

area of the image and α is a hyperparameter, and

we choose the proposal with the highest score.

3 ReCLIP

ReCLIP consists of two main components: (1) a

region-scoring method that is different from CPT

and GradCAM and (2) a rule-based relation re-

solver. In this section, we first describe our region

scoring method (§3.1). However, using controlled

experiments on a synthetic dataset, we find that

CLIP has poor zero-shot spatial reasoning perfor-

mance (§3.2). Therefore, we propose a system that

uses heuristics to resolve spatial relations (§3.3).

3.1 Isolated Proposal Scoring (IPS)

Our proposed method, which we call isolated pro-

posal scoring, is based on the observation that

ReC is similar to the contrastive learning task with

which models like CLIP are pre-trained, except

that rather than selecting one out of several im-

ages to match with a given text, we must select

one out of several image regions. Therefore, for

each proposal, we create a new image in which

that proposal is isolated. We consider two methods

of isolation – cropping the image to contain only

the proposal and blurring everything in the image

except for the proposal region. For blurring, we

apply a Gaussian filter with standard deviation σ
to the image RGB values. Appendix A.2 provides

an example of isolation by blurring. The score for

an isolated proposal is obtained by passing it and

the expression through the pre-trained model. To

use cropping and blurring in tandem, we obtain

a score scrop and sblur for each proposal and use

scrop + sblur as the final score. This can be viewed

as an ensemble of “visual prompts,” analogous to

Radford et al. (2021)’s ensembling of text prompts.

Model
Text-pair Text-pair Image-pair Image-pair

Spatial Non-spatial Spatial Non-spatial

CLIP RN50x4 43.39 89.83 48.90 97.36

CLIP RN50x16 51.19 89.83 50.22 96.48

CLIP RN50x64 47.80 94.58 51.54 97.36

CLIP ViT-B/32 48.47 95.25 48.90 96.48

CLIP ViT-B/16 50.51 92.54 50.22 96.92

CLIP ViT-L/14 52.88 96.27 50.66 94.27

Table 1: Accuracy on CLEVR image-text matching task. CLIP
performs well on the non-spatial version of the task but poorly
on the spatial version. Text-pair tasks have 295 instances each;
image-pair tasks have 227 instances each.

3.2 Can we use CLIP to resolve spatial

relations?

A key limitation in Isolated Proposal Scoring is

that relations between objects in different propos-

als are not taken into account. For example, in

Figure 2, the information about the spatial rela-

tionships among the cats is lost when the proposals

are isolated. In order to use CLIP to decide which

object has a specified relation to another object,

the model’s output must encode the spatial relation

in question. Therefore, we design an experiment

to determine whether a pre-trained model, such

as CLIP, can understand spatial relations within

the context of its pre-training task. We generate

synthetic images using the process described for

the CLEVR dataset (Johnson et al., 2017). These

scenes include three shapes–spheres, cubes, and

cylinders–and eight colors–gray, blue, green, cyan,

yellow, purple, brown, red.

In the text-pair version of our tasks, using the

object attribute and position information associated

with each image, we randomly select one of the

pairwise relationships between objects–left, right,

front, or behind–and construct a sentence fragment

based on it. For example: “A blue sphere to the

left of a red cylinder.” We also write a distractor

fragment that replaces the relation with its opposite.

In this case, the distractor would be “A blue sphere

to the right of a red cylinder.” The task, similar to

the contrastive and image-text matching tasks used

to pre-train these models, is to choose the correct

sentence given the image. As a reference point,

we also evaluate on a control (non-spatial) task in

which the correct text is a list of the scene’s objects

and the distractor text is identical except that one

object is swapped with a random object not in the

scene. For example, if the correct text is “A blue

sphere and a red cylinder,” then the distractor text

could be “A blue sphere and a blue cylinder.”

In the image-pair version of our tasks, we have a
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single sentence fragment constructed as described

above for the spatial and control (non-spatial) tasks

and two images such that only one matches the text.

Appendix B shows examples of these tasks.

CLIP’s performance on these tasks is shown in

Table 1. Similar results for the pre-trained model

ALBEF (Li et al., 2021) are shown in Appendix D.1

While performance on the control task is quite

good, accuracy on the spatial task is not so dif-

ferent from random chance (50%). This indicates

that the model scores of image-text pairs largely do

not take spatial relations into account.

3.3 Spatial Relation Resolver

Since CLIP lacks sensitivity to spatial relations,

we propose to decompose complex expressions

into simpler primitives. The basic primitive is a

predicate applying to an object, which we use CLIP

to answer. The second primitive is a spatial relation

between objects, for which we use heuristic rules.

Predicates A predicate is a textual property that

the referent must satisfy. For example, “the cat”

and “blue airplane” are predicates. We write P (i)
to say that object i satisfies the predicate P . We

model P as a categorical distribution over objects,

and estimate p(i) = Pr[P (i)] with the pre-trained

model using isolated proposal scoring (§ 3.1).

Relations We have already discussed the impor-

tance of binary spatial relations like “the cat to the

left of the dog” for the ReC task. We consider

seven spatial relations–left, right, above, below,

bigger, smaller, and inside. We write R(i, j) to

mean that the relation R holds between objects i
and j, and we use heuristics to determine the prob-

ability r(i, j) = Pr[R(i, j)]. For example, for left,

we set r(i, j) = 1 if the center point of box i is to

the left of the center point of box j and r(i, j) = 0
otherwise. §C.1 describes all relation semantics.

Superlative Relations We also consider superla-

tives, which refer to an object that has some relation

to all other objects satisfying the same predicate,

e.g. “leftmost dog”. We handle superlatives as a

special case of relations where the empty second ar-

gument is filled by copying the predicate specifying

the first argument. Thus, “leftmost dog” effectively

finds the dog that is most likely to the left of other

dog(s). Our set of superlative relation types is the

same as our set of relation types, excluding inside.

Semantic Trees Having outlined the semantic

formalism underlying our method, we can describe

Figure 3: Example extraction of semantic trees from depen-
dency parses. Predicate text in blue. Red arcs show paths
contributing spatial relation left and superlative largest. For
the superlative, we create a parent node with the original node
as the only child, effectively converting it into a relation.

it procedurally. We first use spaCy (Honnibal and

Johnson, 2015) to build a dependency parse for the

expression. As illustrated in Figure 3, we extract

a semantic tree from the dependency parse, where

each noun chunk becomes a node, and dependency

paths between the heads of noun chunks become

relations between entities based on the keywords

they contain. See §C.2 for extraction details. In

cases where none of our relation/superlative key-

words occur in the text, we simply revert to the

plain isolated proposal scoring method using the

full text.

In the tree, each node N contains a predicate PN

and has a set of children; an edge (N,N ′) between

N and its child N ′ corresponds to a relation RN,N ′ .

For example, as shown in Figure 3, “a cat to the left

of a dog” would be parsed as a node containing the

predicate “a cat” connected by the relation left to its

child corresponding to “a dog”. We define πN (i)
as the probability that node N refers to object i,
and compute it recursively. For each node N , we

first set πN (i) = pN (i) and then iterate through

each child N ′ and update πN (i) as follows6:

π′

N (i) ∝ πN (i)
∑

j

Pr
[

RN,N ′(i, j) ∧ PN ′(j)
]

∝ πN (i)
∑

j

rN,N ′(i, j)πN ′(j).

The last line makes the simplifying assumption that

all predicates and relations are independent.7

To compute our final output, we ensemble the

distribution πroot for the root node with the output

of plain isolated proposal scoring (with the whole

input expression) by multiplying the proposal prob-

abilities elementwise. This method gives us a prin-

cipled way to combine predicates (PN ) with spatial

relational constraints (RN,N ′) for each node N .
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Model
RefCOCOg RefCOCO+ RefCOCO
Val Test Val TestA TestB Val TestA TestB

Random 18.12 19.10 16.29 13.57 19.60 15.73 13.51 19.20

Supervised SOTA 83.35 81.64 81.13 85.52 72.96 87.51 90.40 82.67

CPT-Blk w/ VinVL (Yao et al., 2021) 32.1 32.3 25.4 25.0 27.0 26.9 27.5 27.4
CPT-Seg w/ VinVL (Yao et al., 2021) 36.7 36.5 31.9 35.2 28.8 32.2 36.1 30.3

CLIP
CPT-adapted 22.32 23.65 23.85 21.55 25.92 23.16 21.44 26.95
GradCAM 50.86 49.70 47.83 56.92 37.70 42.85 51.07 35.21
ReCLIP w/o relations 57.70 57.19 47.43 50.02 43.85 41.97 43.42 39.02
ReCLIP 59.33 59.01 47.87 50.10 45.10 45.78 46.10 47.07

CLIP w/ Object Size Prior
CPT-adapted 28.98 30.14 26.64 25.13 27.27 26.08 25.38 28.03
GradCAM 52.29 51.28 49.41 59.66 38.62 44.65 53.49 36.19
ReCLIP w/o relations 59.19 59.01 54.66 60.27 46.33 48.53 53.60 40.84
ReCLIP 60.85 61.05 55.07 60.47 47.41 54.04 58.60 49.54

Table 2: Accuracy on the RefCOCOg, RefCOCO+ and RefCOCO datasets. ReCLIP outperforms other zero-shot methods on
RefCOCOg. On RefCOCO+ and RefCOCO, ReCLIP is on par with or better than GradCAM on average and has lower variance
between TestA and TestB, which correspond to different kinds of objects. When taking into account a prior on object size
(filtering out objects smaller than 5% of the image), GradCAM’s advantage on the TestA splits is erased. Best zero-shot results
in each column are in bold, and best zero-shot results using the size prior are underlined. CLIP results use an ensemble of the
RN50x16 and ViT-B/32 CLIP models. CPT-adapted is an adapted version of CPT-Blk. Supervised SOTA refers to MDETR
(Kamath et al., 2021); we use the EfficientNet-B3 version. All methods except MDETR use detected proposals from MAttNet
(Yu et al., 2018). CPT-Seg uses Mask-RCNN segmentation masks from Yu et al. (2018).

4 Experiments

4.1 Datasets

We compare ReCLIP to other zero-shot methods on

RefCOCOg (Mao et al., 2016), RefCOCO and Re-

fCOCO+ (Yu et al., 2016). These datasets use im-

ages from MS COCO (Lin et al., 2014). RefCOCO

and RefCOCO+ were created in a two-player game,

and RefCOCO+ is designed to avoid spatial rela-

tions. RefCOCOg includes spatial relations and

has longer expressions on average. For comparing

zero-shot methods with the out-of-domain perfor-

mance of models trained on COCO, we use Re-

fGTA (Tanaka et al., 2019), which contains images

from the Grand Theft Auto video game. All re-

ferring expressions in RefGTA correspond to peo-

ple, and the objects (i.e. people) tend to be much

smaller on average than those in RefCOCO/g/+.

4.2 Implementation Details

We use an ensemble of the CLIP RN50x16 and

ViT-B/32 models (results for individual models

are shown in Appendix G). We ensemble model

outputs by adding together the logits from the

two models elementwise before taking the soft-

max. GradCAM’s hyperparameter α controls the

6Superlatives of a node are processed after all its relations.
7We write ∝ because π

′

N (i) is normalized to sum to 1.

effect of the proposal’s area on its score. We se-

lect α = 0.5 for all models based on tuning on the

RefCOCOg validation set. We emphasize that the

optimal value of α for a dataset depends on the size

distribution of ground-truth objects. ReCLIP also

has a hyperparameter, namely the standard devi-

ation σ. We try a few values on the RefCOCOg

validation set and choose σ = 100, as we show

in Appendix E.4, isolated proposal scoring has lit-

tle sensitivity to σ. As discussed by (Perez et al.,

2021), zero-shot experiments often use labeled data

for model selection. Over the course of this work,

we primarily experimented with the RefCOCOg

validation set and to a lesser extent with the Ref-

COCO+ validation set. For isolated proposal scor-

ing, the main variants explored are documented in

our ablation study (§4.6). Other techniques that we

tried, including for relation-handling, and further

implementation details are given in Appendix E.

4.3 Results on RefCOCO/g/+

Table 2 shows results on RefCOCO, RefCOCO+,

and RefCOCOg. ReCLIP is better than the other

zero-shot methods on RefCOCOg and RefCOCO

and on par with GradCAM on RefCOCO+. How-

ever, GradCAM has a much higher variance in its

accuracy between the TestA and TestB splits of Re-

fCOCO+ and RefCOCO. We note that GradCAM’s
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hyperparameter α, controlling the effect of pro-

posal size, was tuned on the RefCOCOg validation

set, and RefCOCOg was designed such that boxes

of referents are at least 5% of the image area (Mao

et al., 2016). In the bottom portion of Table 2, we

show that when this 5% threshold, a prior on object

size for this domain, is used to filter proposals for

both GradCAM and ReCLIP , ReCLIP performs on

par with/better than GradCAM on TestA. ReCLIP’s

spatial relation resolver helps on RefCOCOg and

RefCOCO but not on RefCOCO+, which is de-

signed to avoid spatial relations.

4.4 Results on RefGTA

Next, we evaluate on RefGTA to compare our

method’s performance to the out-of-domain accu-

racy of two state-of-the-art fully supervised ReC

models: UNITER-Large (Chen et al., 2020) and

MDETR (Kamath et al., 2021).

Like ReCLIP, UNITER takes proposals as in-

put.8 We show results using ground-truth propos-

als and detections from UniDet (Zhou et al., 2021),

which is trained on the COCO, Objects365 (Shao

et al., 2019), OpenImages (Kuznetsova et al., 2020),

and Mapillary (Neuhold et al., 2017) datasets. Fol-

lowing the suggestion of the UniDet authors, we

use the confidence threshold of 0.5. MDETR does

not take proposals as input.

Table 3 shows our results. For methods that take

proposals (all methods except MDETR), we con-

sider two evaluation settings using UniDet–DT-P,

in which the detected proposals are filtered to have

only proposals whose predicted class label is “per-

son”, and DT, in which all detected proposals are

considered. ReCLIP’s accuracy is more than 15%

higher than the accuracy of UNITER-Large and

roughly 5% more than that of MDETR. ReCLIP

also outperforms GradCAM by about 20%, and the

gap is larger when all UniDet proposals are con-

sidered. ReCLIP w/o relations is 1-2% better than

ReCLIP in the settings with ground-truth proposals

and filtered UniDet proposals. One possible reason

for this gap is that the objects of relations in the

expressions could be non-people entities. When

8UNITER requires features from the bottom-up
top-down attention model (Anderson et al., 2017).
We use https://github.com/airsplay/

py-bottom-up-attention to compute the features for
RefGTA. We trained UNITER models on RefCOCO+ and
RefCOCOg using features computed from this repository.
On the RefCOCO+ validation set, the resulting model has an
accuracy roughly 0.4% less than that of a model trained and
evaluated using the original features (when using ground-truth
proposals).

Model
Val Test

GT DT-P DT GT DT-P DT

Random 27.03 21.53 4.86 27.60 21.75 5.13

UNITER-Large

RefCOCO+ 49.57 47.52 35.04 50.60 48.30 34.40

RefCOCOg 49.81 48.59 27.58 51.05 49.78 28.31

MDETR

RefCOCO+ – – 38.49 – – 39.02

RefCOCOg – – 38.29 – – 39.13

Pretrained – – 54.91 – – 56.60

CLIP GradCAM 51.90 51.03 33.66 51.53 50.73 34.51

ReCLIP 69.84 68.42 60.93 70.79 69.05 61.38

w/o relations 71.66 70.27 60.98 72.56 70.84 61.31

Table 3: Accuracy on RefGTA dataset. ReCLIP w/o relations
outperforms all other methods. GT denotes use of ground-
truth proposals; DT denotes use of detected proposals; DT-
P denotes detected proposals filtered to have only people.
Subscripts RefCOCO+/RefCOCOg indicate finetuning dataset;
Pretrained indicates a model that is not finetuned. MDETR
does not take proposals as input, so the GT and DT-P columns
are blank. We use the EfficientNet-B3 versions of MDETR.
Bold indicates best score in a column.

considering all UniDet proposals, the relation re-

solver in ReCLIP does not hurt accuracy much but

also does not improve accuracy significantly–an ad-

ditional challenge in this setting is that the number

of proposals is dramatically higher. Appendix F

shows qualitative examples of predictions on Re-

fGTA.

4.5 Using another Pre-trained Model

In order to determine how isolated proposal scor-

ing (IPS) compares to GradCAM and CPT on other

pre-trained models, we present results using AL-

BEF (Li et al., 2021). ALBEF offers two methods

for scoring image-text pairs–the output used for

its image-text contrastive (ITC) loss and the out-

put used for its image-text matching (ITM) loss.

The architecture providing the ITC output is very

similar to CLIP–has only a shallow interaction be-

tween the image and text modalities. The ITM

output is given by an encoder that has deeper in-

teractions between image and text and operates

on top of the ITC encoders’ output. Appendix D

provides more details. The results, shown in Ta-

ble 4, show that with the ITC output, IPS performs

better than GradCAM, but with the ITM output,

GradCAM performs better. This suggests that IPS

works well across models like CLIP and ALBEF

ITC (i.e. contrastively pre-trained with shallow

modality interactions) but that GradCAM may be

better for models with deeper interactions.

4.6 Analysis

Performance of IPS Our results show that

among the region scoring methods that we consider,
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Model RefCOCOg RefCOCO+(A) RefCOCO+(B)

ALBEF ITM (Deep modality interaction)
CPT-adapted 24.99 26.83 26.43
GradCAM 55.92 61.75 42.79
IPS 55.21 51.82 42.63

ALBEF ITC (Shallow modality interaction)
CPT-adapted 21.10 19.00 21.33
GradCAM 47.53 44.60 36.00
IPS 54.07 45.90 39.58

Table 4: Accuracy on RefCOCOg and RefCOCO+ test sets
using ALBEF pre-trained model. IPS does best when using
ALBEF’s ITC architecture, while GradCAM is better for ITM.

(a) ReCLIP is correct, while GradCAM is incorrect

(b) Both ReCLIP and GradCAM are incorrect

Figure 4: RefCOCOg validation examples using ground-

truth proposals. Ground-truth referents are green, Re-

CLIP predictions are blue, and GradCAM predictions

are red. In 4a, ReCLIP makes the correct prediction

based on local context. In 4b, ReCLIP grounds an in-

correct noun chunk from the expression.

IPS achieves the highest accuracy for contrastively

pre-trained models like CLIP. Figure 4a gives in-

tuition for this—aside from an object’s attributes,

many referring expressions describe the local con-

text around an object, and IPS focuses on this local

context (as well as object attributes).

Table 5 shows that using both cropping and blur-

ring obtains greater accuracy than either alone.

Error Analysis and Limitations Although Re-

CLIP outperforms the baselines that we consider,

there is a considerable gap between it and super-

vised methods. The principal challenge in improv-

ing the system is making relation-handling more

flexible. There are several object relation types

Isolation type RefCOCOg RefCOCO+

Crop 54.43 41.28
Blur 55.96 47.23
max(Crop,Blur) 55.76 44.55
Crop+Blur 57.70 47.43

Table 5: Ablation study of isolation types used to score propos-
als on Val splits of RefCOCOg/RefCOCO+, using detections
from MAttNet (Yu et al., 2018). Crop+Blur is best overall.

that our spatial relation resolver cannot handle; for

instance, those that involve counting: “the second

dog from the right.” Another challenge is in deter-

mining which relations require looking at multiple

proposals. For instance, ReCLIP selects a proposal

corresponding to the incorrect noun chunk in Fig-

ure 4b because the relation resolver has no rule for

splitting an expression on the relation “with.” De-

pending on the context, relations like “with” may

or may not require looking at multiple proposals,

so handling them is challenging for a rule-based

system.

In the RefCOCO+ validation set, when using de-

tected proposals, there are 75 instances for which

ReCLIP answers incorrectly but ReCLIP w/o re-

lations answers correctly. We categorize these in-

stances based on their likely sources of error: 4

instances are ambiguous (multiple valid propos-

als), in 7 instances the parser misses the head noun

chunk, in 14 instances our processing of the parse

leads to omissions of text when doing isolated pro-

posal scoring (e.g. in “girl sitting in back,” the

only noun chunk is “girl,” so this is the only text

used during isolated proposal scoring), 52 cases

in which there is an error in the execution of the

heuristic (e.g. our spatial definition of a relation

does not match the relation in the instance). (There

are 2 instances for which we mark 2 categories.)

The final category (“execution”) includes several

kinds of errors, some examples of which are shown

in Appendix F.

5 Related Work

Referring expression comprehension Datasets

for ReC span several visual domains, including

photos of everyday scenes (Mao et al., 2016;

Kazemzadeh et al., 2014), video games (Tanaka

et al., 2019), objects in robotic context (Shridhar

et al., 2020; Wang et al., 2021), and webpages

(Wichers et al., 2018).

Spatial heuristics have been used in previous

work (Moratz and Tenbrink, 2006). Our work is

also related to Krishnamurthy and Kollar (2013),
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which similarly decomposes the reasoning process

into a parsing step and visual execution steps, but

the visual execution is driven by learned binary

classifiers for each predicate type. In the super-

vised setting, prior work shows that using an ex-

ternal parser, as we do, leads to lower accuracy

than training a language module jointly with the

remainder of the model (Hu et al., 2017).

There is a long line of work in weakly super-

vised ReC, where at training time, pairs of refer-

ring expressions and images are available but the

ground-truth bounding boxes for each expression

are not (Rohrbach et al., 2016; Liu et al., 2019;

Zhang et al., 2018, 2020; Sun et al., 2021). Our

setting differs from the weakly supervised setting

in that the model is not trained at all on the ReC

task. Sadhu et al. (2019) discuss a zero-shot setting

different from ours in which novel objects are seen

at test time, but the visual domain stays the same.

Pre-trained vision and language models Early

pre-trained vision and language models (Tan and

Bansal, 2019; Lu et al., 2019; Chen et al., 2020)

used a cross-modal transformer (Vaswani et al.,

2017) and pre-training tasks like masked language

modeling, image-text matching, and image feature

regression. By contrast, CLIP and similar models

(Radford et al., 2021; Jia et al., 2021) use a sepa-

rate image and text transformer and a contrastive

pre-training objective. Recent hybrid approaches

augment CLIP’s architecture with a multi-modal

transformer (Li et al., 2021; Zellers et al., 2021).

Zero-shot application of pre-trained models

Models pre-trained with the contrastive objective

have exhibited strong zero-shot performance in im-

age classification tasks (Radford et al., 2021; Jia

et al., 2021). Gu et al. (2021) use CLIP can be

to classify objects by computing scores for class

labels with cropped proposals. Our IPS is different

in that it isolates proposals by both cropping and

blurring. Shen et al. (2021) show that a simple

zero-shot application of CLIP to visual question

answering performs almost on par with random

chance. Yao et al. (2021) describe a zero-shot

method for ReC based on a pre-trained masked lan-

guage model (MLM); we show that their zero-shot

results and a version of their method adapted for

models pre-trained to compute image-text scores

(rather than MLM) are substantially worse than

isolated proposal scoring and GradCAM.

6 Conclusion

We present ReCLIP, a zero-shot method for refer-

ring expression comprehension (ReC) that decom-

poses an expression into subqueries, uses CLIP to

score isolated proposals against these subqueries,

and combines the outputs with spatial heuristics.

ReCLIP outperforms zero-shot ReC approaches

from prior work and also performs well across vi-

sual domains: ReCLIP outperforms state-of-the-art

supervised ReC models, trained on natural images,

when evaluated on RefGTA. We also find that CLIP

has low zero-shot spatial reasoning performance,

suggesting the need for pre-training methods that

account more for spatial reasoning.

7 Ethical and Broader Impacts

Recent work has shown that pre-trained vision and

language models suffer from biases such as gen-

der bias (Ross et al., 2021; Srinivasan and Bisk,

2021). Agarwal et al. (2021) provide evidence that

CLIP has racial and other biases, which makes

sense since CLIP was trained on data collected

from the web and not necessarily curated carefully.

Therefore, we do not advise deploying our system

directly in the real world immediately. Instead,

practitioners interested in this system should first

perform analysis to measure its biases based on pre-

vious work and attempt to mitigate them. We also

note that our work relies heavily on a pre-trained

model whose pre-training required a great deal of

energy, which likely had negative environmental

effects. That being said our zero-shot method does

not require training a new model and in that sense

could be more environmentally friendly than super-

vised ReC models (depending on the difference in

the cost of inference).
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is greater than the area of box j.

Finally, for R = inside, we parameterize r(i, j)
as the ratio between the are of the intersection of

boxes i, j compared to the area of box i. Thus,

unlike the other six deterministic rules, inside is

modeled as a random variable.

C.2 Relation Extraction

We identify noun chunks in the dependency parse

as predicates. We then extract relations by looking

for dependency paths between the heads of noun

chunks that contain the following keywords:

• left: “left”, “west”

• right: “right”, “east”

• above: “above”, “north”, “top”, “back”, “be-

hind”

• below: “below”, “south”, “under”, “front”

• bigger: “bigger”, “larger”, “closer”

• smaller: “smaller”, “tinier”, “further”

• inside: “inside”, “within”, “contained”

We extract superlative relations by looking for de-

pendency paths off the head of a noun chunk con-

taining the following keywords:

• left: “left”, “west”, “leftmost”, “western”

• right: “right”, “rightmost”, “east”, “eastern”

• above: “above”, “north”, “top”

• below: “below”, “south”, “underneath”,

“front”

• bigger: “bigger”, “biggest”, “larger”,

“largest”, “closer”, “closest”

• smaller: “smaller”, “smallest”, “tinier”, “tini-

est”, “further”, “furthest”

D Description of ALBEF

The ALBEF model has an image-only transformer

and a text-only transformer like CLIP but also has

a multi-modal transformer that operates on the out-

puts of these two transformers. ALBEF is pre-

trained with three losses: (1) an image-text con-

trastive (ITC) loss that works just like CLIP’s and

uses the outputs of the image-only and text-only

transformers, (2) an image-text matching (ITM)

Model
Text-pair Text-pair Image-pair Image-pair

Spatial Non-spatial Spatial Non-spatial

ALBEF ITM 49.83 92.20 53.74 90.75

ALBEF ITC 49.83 85.42 51.54 72.25

Table 6: Accuracy on CLEVR image-text matching task. AL-
BEF performs well on the non-spatial version of the task but
poorly on the spatial version. Text-pair tasks have 295 in-
stances each; image-pair tasks have 227 instances each.

loss–where the task is to decide whether a given

image-text pair match–which uses the outputs of

the multi-modal encoder, and (3) a masked lan-

guage modeling loss which uses the outputs of the

multi-modal encoder. We explore both the ITC and

ITM scores in our experiments. ALBEF was pre-

trained on roughly 15M image-caption pairs from

conceptual captions (Sharma et al., 2018), SBU

Captions (Ordonez et al., 2011), COCO (Lin et al.,

2014), and Visual Genome (Krishna et al., 2016).9

D.1 ALBEF Performance on Synthetic Spatial

Reasoning Experiment

Table 6 shows the zero-shot accuracy of ALBEF

ITM and ITC in the synthetic spatial reasoning

experiment described in §3.2.

E Implementation Details

E.1 Text prompt

For ALBEF, we pass the input expression directly

to the model, whereas for CLIP, when using Grad-

CAM and ReCLIP (with or without relations), we

use the prefix “a photo of” following the authors’

observations (Radford et al., 2021). For CPT, the

prompt is given in § 2.3.

E.2 Position embeddings

Both CLIP and ALBEF use fixed-size position em-

beddings, so either the input image must be resized

to fit the dimensions of the embeddings or the size

of the embeddings must be changed. For all mod-

els, we resize the image to match the model’s vi-

sual input resolution. Resizing of images is done

via bicubic interpolation. Figure 9 shows the how

the performance of the GradCAM method varies

between resizing images and resizing embeddings–

for CLIP RN50x16, there is very little difference,

while for CLIP ViT-B/32 image resizing makes a

larger difference.

9As noted by the ALBEF authors, validation/test images
of RefCOCO+ and RefCOCOg are included in the training set
of COCO.
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E.7 Dataset Information

All datasets that we use are focused on English.

The COCO dataset can be downloaded from

https://cocodataset.org/#download.

The RefCOCO/g/+ datasets can be down-

loaded from https://github.com/

lichengunc/refer/tree/master/data.

The RefGTA dataset can be downloaded

from https://github.com/mikittt/

easy-to-understand-REG/tree/

master/pyutils/refer2. The RefCOCOg

validation set has 4896 instances, the RefCOCOg

test set has 9602 instances, the RefCOCO+

validation set has 10758 instances, the RefCOCO+

TestA set has 5726 instances, the RefCOCO+

TestB set has 4889 instances, the RefCOCO

validation set has 10834 instances, the RefCOCO

TestA set has 5657 instances, the RefCOCO TestB

set has 5095 instances, the RefGTA validation set

has 17766 instances, and the RefGTA test set has

17646 instances.

F Qualitative Examples

Figure 12 shows qualitative examples for the Re-

fGTA validation set. Figure 11 shows examples of

the execution errors mentioned in the error analysis

in Section 4.6.

G Additional Experiment Results

This section presents the full results on the

RefCOCOg/RefCOCO+/RefCOCO datasets, in-

cluding results without ensembling using CLIP

RN50x16 and ViT-B/32 models and results using

ground-truth proposals. Table 7 shows full results

on the RefCOCOg and RefCOCO+ datasets. Ta-

ble 8 shows full results on the RefCOCO dataset.

(a) bus behind bus

(b) person behind the fence

(c) chair under dog

(d) smallest train

Figure 11: Examples of execution errors causing Re-

CLIP to answer incorrectly on instances that it answers

correctly when not using the relation-handling method.

Parts 11a and 11b show cases where the meaning of “be-

hind” does not match our heuristic, which checks which

proposal’s y-coordinate is smaller. Part 11c shows an

example where “under” means “directly under.” Part

11d shows an example in which due to the superlative

“smallest,” the size of proposals appears to be weighted

more heavily by our approach than scores CLIP assigns

to the proposals based on the text.
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Model
RefCOCOg RefCOCO+

V alg V ald Testg Testd V alg V ald TestAg TestAd TestBg TestBd

Random 20.18 18.117 20.34 19.10 16.73 16.29 12.57 13.57 22.13 19.60

UNITER-L (supervised; Chen et al. (2020)) 87.85 74.86 87.73 75.77 84.25 75.90 86.34 81.45 79.75 75.77
MDETR (supervised; Kamath et al. (2021)) – 83.35 – 81.64 – 81.13 – 85.52 – 72.96

Weakly supervised (non-pretrained; Sun et al. (2021)) – – – – 39.18 38.91 40.01 39.91 38.08 37.09

CPT-Blk w/ VinVL (Yao et al., 2021) – 32.1 – 32.3 – 25.4 – 25.0 – 27.0
CPT-Seg w/ VinVL (Yao et al., 2021) – 36.7 – 36.5 – 31.9 – 35.2 – 28.8

CLIP RN50x16
CPT-adapted 27.74 25.04 28.81 25.92 24.48 22.09 20.22 19.54 27.80 25.57
GradCAM 54.51 48.35 53.71 47.50 48.29 44.53 52.86 52.78 41.13 35.67
ReCLIP w/o relations 62.50 55.88 62.03 54.33 47.12 44.15 46.47 45.97 49.62 41.79
ReCLIP 64.79 57.66 64.39 56.37 47.92 44.53 46.38 45.88 50.89 42.87

CLIP ViT-B/32
CPT-adapted 24.16 21.77 24.70 22.78 25.07 23.46 22.28 21.73 28.68 26.32
GradCAM 54.00 49.51 54.01 48.53 48.00 44.64 52.13 50.73 43.85 39.01
ReCLIP w/o relations 62.38 55.35 61.76 54.33 48.53 44.96 50.16 48.24 47.29 41.71
ReCLIP w/o relations 65.48 56.96 64.38 56.15 49.20 45.34 50.23 48.45 48.58 42.71

CLIP Ensemble
CPT-adapted 25.96 22.32 25.87 23.65 25.44 23.85 22.00 21.55 28.74 25.92
GradCAM 56.82 50.86 56.15 49.70 51.10 47.83 57.79 56.92 43.24 37.70
ReCLIP w/o relations 65.32 57.70 65.59 57.19 51.54 47.43 51.80 50.02 50.85 43.85
ReCLIP 68.08 59.33 67.05 59.01 52.12 47.87 51.61 50.10 52.03 45.10

Table 7: Accuracy on the RefCOCOg and RefCOCO+ datasets. ReCLIP outperforms other zero-shot methods on RefCOCOg.
On RefCOCO+, ReCLIP is roughly on par with GradCAM but has lower variance between TestA and TestB, which correspond
to different kinds of objects. Subscript g indicates ground-truth proposals are used, and d indicates detected proposals are used.
Best zero-shot results for each model and each column are in bold. See Table 2 for results using object size prior.

Model
RefCOCO

V alg V ald TestAg TestAd TestBg TestBd

Random 16.37 15.73 12.45 13.51 21.32 19.20

UNITER-L (supervised; Chen et al. (2020)) 91.84 81.41 92.65 87.04 91.19 74.17
MDETR (supervised; Kamath et al. (2021)) – 87.51 – 90.40 – 82.67

Weakly supervised (non-pretrained; Sun et al. (2021)) 39.21 38.35 41.14 39.51 37.72 37.01

CPT-Blk w/ VinVL (Yao et al., 2021) – 26.9 – 27.5 – 27.4
CPT-Seg w/ VinVL (Yao et al., 2021) – 32.2 – 36.1 – 30.3

CLIP RN50x16
CPT-adapted 23.31 21.48 19.25 18.56 28.36 25.28
GradCAM 44.00 40.49 47.41 46.51 38.17 33.66
ReCLIP w/o relations 40.62 37.61 39.08 38.39 43.55 37.17
ReCLIP 45.94 41.53 41.24 40.78 52.64 45.55

CLIP ViT-B/32
CPT-adapted 25.12 23.79 23.39 22.87 28.42 26.03
GradCAM 45.41 42.29 50.13 49.04 41.47 36.68
ReCLIP w/o relations 44.37 40.58 45.09 43.98 43.42 37.63
ReCLIP 49.69 45.77 48.08 46.99 52.50 45.24

CLIP Ensemble
CPT-adapted 24.79 23.16 21.62 21.44 28.89 26.95
GradCAM 46.68 42.85 51.99 51.07 40.10 35.21
ReCLIP w/o relations 45.66 41.97 45.13 43.42 45.40 39.02
ReCLIP 50.51 45.78 47.11 46.10 54.94 47.07

Table 8: Accuracy on the RefCOCO dataset. Subscript g indicates ground-truth proposals are used, and d indicates detected
proposals are used. Best zero-shot results for each model and each column are in bold. See Table 2 for results using object size
prior.
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(a) a man in white shorts and white jacket, walking down
a sidewalk.

(b) a man in white jumpsuit with face mask walking.

(c) an african american woman with light colored sweater,
brown pants walking down sidewalk near another woman.

(d) woman in blue shirt in doorway.

(e) a man with yellow helmet behind the fence. (f) a bald black man is walking wearing a tan suit.

(g) a man in all black walking in front of another man.
(h) a man wearing a short-sleeved black top walks by a
black car.

(i) a woman in a white top.
(j) a man in a blue polo and brown shorts talking on a cell
phone.

Figure 12: Qualitative examples randomly sampled from the RefGTA validation set. Ground-truth referents are

in green, MDETR (pre-trained) predictions are in magenta, UNITER (trained on RefCOCO+) predictions are in

orange, and ReCLIP predictions are in cyan. The subcaptions are the corresponding referring expressions. For

UNITER and ReCLIP, this represents the setting in which we consider all proposals from UniDet.
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