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Abstract

A growing body of research has demonstrated
the inability of NLP models to generalize com-
positionally and has tried to alleviate it through
specialized architectures, training schemes, and
data augmentation, among other approaches. In
this work, we study a different approach: train-
ing on instances with diverse structures. We
propose a model-agnostic algorithm for sub-
sampling such sets of instances from a labeled
instance pool with structured outputs. Eval-
uating on both compositional template splits
and traditional IID splits of 5 semantic pars-
ing datasets of varying complexity, we show
that structurally diverse training using our al-
gorithm leads to comparable or better gener-
alization than prior algorithms in 9 out of 10
dataset-split type pairs. In general, we find
structural diversity to consistently improve sam-
ple efficiency compared to random train sets.
Moreover, we show that structurally diverse
sampling yields comprehensive test sets that
are a lot more challenging than IID test sets.
Finally, we provide two explanations for im-
proved generalization from diverse train sets:
1) improved coverage of output substructures,
and 2) a reduction in spurious correlations be-
tween these substructures.

1 Introduction

Systematic compositionality—expressing novel
complex concepts as systematic compositions of ex-
pressions for simpler concepts—is the property un-
derlying human languages’ expressive power (Lake
et al., 2017; Fodor and Pylyshyn, 1988). However,
NLP models struggle to generalize to novel com-
posite expressions in the context of semantic pars-
ing (Lake and Baroni, 2018; Loula et al., 2018;
Kim and Linzen, 2020).

Data augmentation has been extensively ex-
plored for compositional generalization (Akyiirek
et al., 2021; Guo et al., 2021; Wang et al., 2021;
Guo et al., 2020; Qiu et al., 2022). However, in-
stances in semantic parsing possess structure, such
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Figure 1: An instance from COVR and its abstract
syntax tree (AST) and different types of substructures
in it, including templates, bigrams, and subtrees. Note
that subtrees will also include each node in the AST.

as abstract syntax trees (ASTs) of target programs
(Figure 1). Randomly selecting instances from a
grammar, or even from human annotators, while
ignoring similarity in their structure is likely to
produce skewed distributions with spurious cor-
relations between substructures. This task ambi-
guity and underspecification are known to cause
overparameterized models to have high variance
and poor generalization (D’Amour et al., 2020;
Geirhos et al., 2020). In contrast, a structurally di-
verse set of instances containing a variety of struc-
tures should better cover the combinatorial space
of structures and yield more sample-efficient train
sets. Moreover, this improved coverage should
yield more comprehensive test sets than the tradi-
tional IID test sets.

Prior work on diverse sampling has shown im-
proved sample efficiency in compositional (non-
1ID) splits, by selecting instances to have diverse
program templates (Oren et al., 2021) or AST bi-
grams (Bogin et al., 2022) (see Figure 1 for ex-
amples). However, for reasonably-sized programs,
templates are very large structures, and bigrams
very small; focusing on either does not necessar-
ily improve diversity across a range of differently-
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sized structures. Moreover, there is little evidence
of sample efficiency of diverse train sets in the IID
setting and no exploration of diverse test sets.

In this study, we take a broader look at the advan-
tages of structural diversity. We propose a general,
substructure, and model-agnostic recipe for struc-
turally diverse subsampling algorithms that inter-
leaves selecting unseen substructures with selecting
instances containing those substructures. Experi-
menting with different substructure and instance
selection criteria, we show improved performance
from 1) prioritizing the selection of more frequent
unseen substructures in the training pool, 2) us-
ing subtrees! as substructures that are neither too
granular (bigrams) nor too large (templates), and 3)
simultaneously diversifying over both small (sub-
tree) and larger (template) substructures.

We evaluate on template and IID splits of five
semantic parsing datasets of varying complexities
and find that training on diverse train sets consis-
tently outperforms random train sets. In particu-
lar, our proposed subtree diversity algorithm is the
most consistent, performing comparably with or
better than the template and bigram diversity in
9 out of 10 splits, with both bigram and template
algorithms often performing worse than random
subsampling in IID splits. We study the efficacy
of diversely sampled test sets and show that our
diverse sampling algorithm yields test sets that are
harder and more comprehensive than IID tests, es-
pecially with IID training sets. Finally, by com-
paring random and structurally diverse subsamples,
we show that the latter 1) better cover the space
of substructures, especially those in the long tail,
and 2) have weaker spurious correlations between
substructures, explaining their benefits in training
and evaluation.

To conclude, our results demonstrate the effec-
tiveness of structurally diverse train sets in induc-
ing generalization and of structurally diverse test
sets as comprehensive evaluations. We hope these
insights will encourage the use of structural di-
versity as a criterion when sampling train or test
sets from a pool of labeled instances. A setting
where we expect our algorithm will be particularly
useful is that of prototyping semantic parsers in
zero-data settings, where a pool of programs is
sampled from a grammar and mapped to canonical
utterances (Wang et al., 2015; Herzig and Berant,

'These could also be called subgraphs but we’ll stick to
“subtree” as the whole structures are trees.

2019; Campagna et al., 2020; Yin et al., 2022). An-
other potential application could be in exemplar
selection for in-context learning. Our code, data,
and models are available at https://github.com/
Shivanshu-Gupta/structural-diversity.

2  Setup

Semantic Parsing, the task we focus on, involves
parsing an utterance x into a program or logical
form y. Following Oren et al. (2021) and Bogin
et al. (2022), we will assume access to a pool of in-
stances Dpoor = {€i, ..., en}, where e; = (x4, y;),
from which we wish to sample instances. As the
example in Figure 1 shows, logical forms possess
hierarchical structure which can be represented as
trees called abstract syntax trees (ASTs). These
structures are composed of smaller substructures
such as subtrees of the AST, that are shared across
logical forms. We can thus view each instance as
a bag of output substructures: C(e;) = C(x;, y;) =
Clyi) = {c?}, e CT{ﬁ}} C C, where C is the map-
ping from instances to their substructures and C' is
the set of all unique substructures.

The goal of structurally-diverse sampling is to
select instances that contain among them a variety
of different substructures. Our hypotheses, that
we verify in §6, are that a collection of such in-
stances would both better cover the combinatorial
space of structures and reduce spurious correla-
tions between substructures compared to random
instances. A structurally diverse train set should
thus give the model more information about the sys-
tem underlying the instances’ structure and hence
improve generalization. Similarly, its improved
coverage should also make a structurally diverse
test set more comprehensive. This is analogous to
how one would choose to evaluate on a test set with
balanced classes even when the training data might
have a considerable imbalance.

3 Structurally Diverse Subsampling

3.1 Substructures

Prior work (Oren et al., 2021; Bogin et al., 2022)
has used program templates and bigrams in pro-
gram ASTs (Figure 1) for their diverse subsampling
algorithms. Bigrams are pairs of parent-child and
sibling nodes in program ASTs. Program templates
represent the reasoning pattern in the program and
are obtained by replacing certain program tokens
such as strings and numbers with their abstract type.
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Their exact implementation depends on the dataset
and is described in §4.2.

While we follow Oren et al. (2021) and Bogin
et al. (2022) in extracting substructures from pro-
grams alone, we choose to use different substruc-
tures, as templates and bigrams do not seem to hve
the optimal granularity to diversify over. Templates
are too coarse; they still share a lot of structure,
and there may be a combinatorially large number
of them. On the other hand, bigrams are too fine
and may be unable to capture many salient struc-
tural patterns. We thus use subtrees of the program
AST up to a size d. The ASTs are constructed as
in Bogin et al. (2022): tokens in a program are cat-
egorized as either functions, values, or structural
tokens (such as parentheses or commas) that define
the hierarchical structure of the program.

3.2 Algorithm

As motivated in §2, we want to sample instances
containing among them a variety of substructures.
Additionally, we wish to experiment with: 1) pri-
oritizing substructures more common in the pool,
as we expect it to reduce the divergence of the
subsample from the pool distribution; and 2) simul-
taneously diversifying over both fine (subtree) and
coarse (template) granularity substructures. One
approach would be constructing an optimization
problem that directly selects an optimally diverse
set of instances. However, this has the challenge of
defining a measure of diversity that is also tractable
to optimize for large pools and a large number of
substructures (see Table 2). Additonally, it would
be harder to experiment with the different varia-
tions of diverse sampling described above.

We thus take the route of an iterative algorithm
(pseudo-code in Algorithm 1) that alternates be-
tween picking a substructure and picking an in-
stance with that substructure till the requisite num-
ber, B, of instances has been sampled. Here, w,
and w, specify the substructure and instance selec-
tion criteria by assigning weights based on the cur-
rent state comprising sampled instances Dqmple.
substructures Clsgympie, and templates Tsqpmpre. The
algorithm resets Cygmpie and Tsgpmpie once all sub-
structures and templates, respectively have been
sampled to allow cycling over them repeatedly. In
the following sections, we will show that with dif-
ferent substructure definitions and substructure and
instance-weighting schemes, Algorithm 1 can sub-
sume both the template diversity and bigram diver-

Algorithm 1 Structurally Diverse Subsampling

Require: Instance pool Dj.0:; set of all substructures C, and
templates T in pool: instance-to-substructure mapping C;
template mapping 7 ; substructure weight function w.; in-
stance weight function we; training budget B
Dsample, Csampl67 Tsu.'mple — (z)

140
while i < B do
c= argnéax wc(c, Dpool: Dsa'rrzple7 Csample)
ce
€ = argmax We (67 Dpooh Dsamplea Tsample)
e€Dyo01
s.t. ce€C(e)
Dpool <~ Dpool \e
Dsample <~ Dsample Ue
Csa'mple — Csample Uc
Tsample — Teample U {T(e)}
C+ U C(e)
e€Dpo01
T+« {T(e):e € Dpoor}
if Csampie = C then
Csample — ¢
end if
if Tsampte = 1 then
Tsample — d)
end if
end while
return Dqmpie

sity algorithms from Oren et al. (2021) and Bogin
et al. (2022). Additionally, it will allow us to exper-
iment with the variations described above.

3.3 Subtree Diversity

Our proposed subsampling algorithm diversifies
over subtrees as defined in §3.1, i.e., C(z,y) is the
set of subtrees of size < d in the AST of y. We
will use d = 4. Since we want to prioritize select-
ing more frequent unsampled substructures in the
pool, we will use we(c) = 1[c & Csample] Fpoot (€)
where F,y0(c) is the number of instances in the
pool containing c.

For selecting instances given a sampled substruc-
ture, we use these instance weighting schemes:

1. RANDEX samples an instance uniformly at
random: we(e) is a constant.

2. RANDNEWT samples an instance with unseen
template: we(e) = 1[T (e) & Tsampie)-

3. FREQNEWT samples instance with the most
frequent unsampled template: w.(e) =
1[T(e) ¢ Tsample]Fpool(T(e>) where T (e)
is e’s template and F,y,(t) is the number of
instances in the pool with template ¢.

The last two schemes seek to improve the cover-
age of templates to allow the diversifying of both
subtrees and templates.
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3.4 Template and Bigram Diversity

Template Diversity from Oren et al. (2021), hence-
forth referred to as TEMPLATE, can be imple-
mented in the framework of Algorithm 1 as:

* C(x,y) is a singleton set containing the tem-

plate for .

* we(c) is a constant function i.e. a random

template.

* we(e) is a constant function (RANDEX).
Additionally, we also experimented with selecting
only among the unsampled templates i.e. w.(c) =
1 [¢ ¢ Csampie) and with prioritizing more frequent
unsampled templates using the substructure weight-
ing scheme of §3.3. We found both of these to im-
prove performance but only include the results for
the latter. We will refer to it as TEMPLATE[FREQ].

Bigram Diversity from Bogin et al. (2022) , here-
after referred to as BIGRAM, can also be imple-
mented in the framework of Algorithm 1 as:

* C(x,y) is the set of bigrams in y’s AST as
defined by Bogin et al. (2022).

* Bogin et al. (2022)’s bigram diversity algo-
rithm randomly samples from unsampled bi-
grams until there is still an unsampled bigram
and then any random bigram. This can be for-

mulated as: w.(c) = 1 {c ¢ Csample} where
Coampte = U C(e) is the set of all bi-

eEDsample
grams in the current sample.

* we(e) is a constant function (RANDEX).
We also experimented with bigram diversity with
the substructure weighting scheme of §3.3. We will
refer to this algorithm as BIGRAM[FREQ].

4 Experiments

Given a dataset D of utterance-program pairs, we
create three different types of splits with each split
consisting of a training pool D,,, and test set
Dyest. We then compare the various subsampling
algorithms described in §3 by using them to sample
training sets Dy,.q;, Of varying budget size B from
D01 and evaluating on Dyegy.

4.1 Splits

IID split For this we randomly sample instances
from D to use as Dy, keeping the rest for Do

Template split This is a type of compositional split
proposed by (Finegan-Dollak et al., 2018). Here
instances are grouped based on their program tem-
plate as described in §3.1 The split is then created

by randomly splitting the set of templates into a
train set and a test set and using examples for train
or test templates as D), Or Dyest respectively. We
follow the procedure of Bogin et al. (2022) to ob-
tain solvable template splits where every token in
the test set also occurs in the train set.

Subtree split In §2 we argued that diversely sub-
sampled sets of instances should also make for
more comprehensive test sets. We thus exper-
iment with a third type of split: we use SUB-
TREE[FREQNEWT] diverse subsampling to sample
test sets Dyes¢ from D, keeping the rest as Dy,

4.2 Datasets

We use five semantic parsing datasets from diverse
domains and complexity for our analysis, with both
synthetic and natural language input utterances. Ta-
bles 1 and 2 show a few examples and statistics
regarding number of instances and different types
of substructures.

COVR: A synthetic dataset that uses a variable-
free functional query language and is generated
using a synchronous context-free grammar (SCFG)
adapted from the VQA dataset of Bogin et al.
(2021a). We use the SCFG to generate 100K exam-
ples for our experiments.

ATIS (Hemphill et al., 1990; Dahl et al., 1994): A
dataset of natural language queries about aviation
paired with A-calculus programs.

Overnight (Wang et al., 2015): A dataset contain-
ing both synthetic and natural language utterances
from 11 domains (e.g. socialnetwork, restaurants,
etc.) paired with Lambda-DCS logical forms.
Schema2QA (Xu et al., 2020): Uses the ThingTalk
language (Campagna et al., 2019). We use the syn-
thetic instances from the people domain generated
by Oren et al. (2021).

SM-CalFlow (Andreas et al., 2020): Consists of
dialogs paired with LISP programs. Each instance
is a single dialogue turn from one of two domains
about creating calendar events or querying an org
chart.

Except for SM-CalFlow, which we took from
Andreas et al. (2020), we used the preprocessed
versions of the above datasets provided by Bogin
et al. (2022) and used their code? to anonymize
programs and produce ASTs. For SM-CalFlow,
we anonymized strings and numbers such as “staff

*https://github.com /benbogin/
unobserved-local-structures
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Dataset Input Utterance

Target Program

COVR What is the number of black dog

(synthetic) that is chasing mouse ?

OVERNIGHT  person whose height is 180 cm and

(synthetic', whose birthdate is 2004

natural®) owhat person born in 2004 is 180
cm tall

SCHEMA2QA o

(synthetic) what people are named aideliz li

ATIS a flight on continental airlines leav-

(natural) ing boston and going to denver

SM-CALFLOW When is my next staff meeting
(natural) scheduled for?

count ( with_relation ( filter ( black , find ( dog ) ),
chasing , find ( mouse ) ) )

(listValue (filter (filter (getProperty (singleton en.person)
(string Itype)) (string height) (string =) (number 180 en.cm))
(string birthdate) (string =) (date 2004 -1 -1)))

( Person ) filter id = "aideliz Ii"

( lambda $0 e ( and ( flight $0 ) ( airline $0 co : al )
( from $0 boston :

ci ) (to $0 denver : ci)))

(Yield (Event.start (FindNumNextEvent (Event.subject?
(? = "staff meeting")) 1L)))

Table 1: Examples of input utterance and target program pairs for the datasets used in this work.

Dataset Instances Bigrams Subtrees Templates
ATIS 5037 5091 41536 1149
COVR 100000 298 4490 29141
OVERNIGHT 4419 354 3015 87
SM-CALFLOwW 106072 43689 208527 21082
SCHEMA2QA 1577860 223 3060 139

Table 2: Number of instances, bigrams, subtrees (size
< 4), and templates in the datasets used for structural
diversity experiments.

meeting” and “1L” in Table 1 and used nltk? to
produce ASTs. Additionally, we excluded all in-
stances with a particular program that accounted
for more than 12% of the original dataset.

4.3 Model and Training

We use the pre-trained BART-base model (Lewis
et al., 2020) for our experiments, fine-tuning it on
subsamples for each dataset, split, and subsampling
algorithm. For each dataset, we use 4 different ran-
dom seeds to create 4 splits of each type. Then for
each split and training budget, we use 3 different
seeds to subsample 3 training sets for each sub-
sampling algorithm. See App. A for more details.

5 Results

5.1 Structurally Diverse Train Sets

Figure 2 compares the various structurally diverse
sampling algorithms, and random sampling on
Template and the IID splits of the different datasets.

Structural Diversity improves sample efficiency.
Random sampling is outperformed by structurally
diverse sampling in 9 out of 10 dataset-split

*https://www.nltk.org/

type combinations with about 2x sample effi-
ciency in template splits of all five datasets ex-
cept COVR and IID splits of SCHEMA2QA and
OVERNIGHT. The only exception is the IID
split of SM-CALFLOW. We believe this is due
to a greater imbalance in substructures in SM-
CALFLOW where over a third of templates (as well
as bigrams and subtrees) only appear in a single
instance.

Subtree diversity is most consistent. Our pro-
posed subtree diversity algorithm is the most con-
sistent among the various diverse sampling algo-
rithms. In all but 1 of the 10 splits, it outperforms or
matches both template and bigram diversity which
often lag behind even random sampling. The only
exception is template diversity in the template split
of SCHEMA2QA, which has very few templates
(see Table 2). These results suggest that the optimal
substructure granularity depends on the task. For
datasets with little structural diversity, diversifying
over templates is sufficient. However, diversify-
ing over smaller substructures is more beneficial
for complex datasets with many program templates
overlapping in structure as it exploits the structural
similarity of programs.

Combining subtree and template diversity
improves performance. Comparing SUB-
TREE[RANDNEWT] and SUBTREE[RANDEX] we
see that the former performs better in template
splits with minor reductions in IID splits. This
suggests that simultaneously diversifying over fine
and coarse substructures, subtrees, and templates
here, can be more effective than either alone.

Prioritizing more frequent compounds im-
proves efficiency. Figure 6 compares BIGRAM
and TEMPLATE with BIGRAM[FREQ] and TEM-
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Figure 2: Comparing different subsampling algorithms on IID and Template splits for varying budgets.
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Figure 3: Subtree splits are more comprehensive than IID splits and hence are much harder with randomly sampled

train sets but not with diverse train sets.

PLATE[FREQ] respectively. It is evident that on
IID splits, bigram and template diversity greatly
benefit from prioritizing more frequent substruc-
tures instead of random selection, with only minor
degradation in template splits.

5.2 Structurally Diverse Test Sets

Figure 3 compares the performance of random and
diverse (SUBTREE[RANDEX]) subsamples in IID
and Subtree splits. It is evident that Subtree splits
are more challenging than IID splits. More impor-
tantly, this split is much harder with random train
sets than with diverse train sets, which, as the train-
ing budget increases, quickly close the gap with
IID performance on all datasets except ATIS. This
is expected since, unlike template splits, this split
is challenging not because of a systematic distribu-
tional gap between train and test sets, but because
it tests for a lot more structures that a random train
set may not cover. We thus believe that structurally
diverse test sets also enable more comprehensive
evaluation.

6 Analysis

Having seen that structurally diverse datasets im-
prove generalization, we now investigate why they

do so. In §2 we hypothesize that structural diver-
sity has two benefits over random sampling: (1)
improved coverage of the space of substructures,
and (2) reduced spurious correlations. We now
evaluate whether this is indeed the case.

We will view each instance as the set of subtrees
contained in it, i.e., e; C C where C is the set of all
subtrees in the dataset. We define the frequency of
a subtree, s, in a set of instances A as the number
of instances containing it, i.e. F4(s) = [{s € e:
e € A}|. The frequency of a pair of subtrees, s;, s;,
is analogously defined as F(s;, s;) = |[{si,sj €
e : e € A}|. The rank of a subtree in A is defined
as its position in a list of all subtrees descending in
frequency, with equally-frequent subtrees assigned
the average of their ranks.

6.1 Improved Coverage of the Long tail

To verify whether structural diversity improves the
coverage of substructures, we use random and SUB-
TREE[RANDEX] subsampling to take equal-sized
subsamples from pools consisting of entire datasets,
D, and compare the distribution of subtrees. Figure
4 shows the number of unique subtrees in random
and diverse subsamples bucketed by rank in D.
As can be seen in the figure, structurally diverse
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Figure 5: Average Mutual Information (AMI) of random subsamples compared with that of diverse subsamples.

sampling improves the coverage of substructures,
especially those in the long tail. Crucially, because
substructures are chosen by frequency, this cover-
age of the long tail does not come at the expense
of frequent substructures. We refer the reader to
Appendix C for additional analyses showing that
although SUBTREE[RANDEX] sampling directly
diversifies over only output subtrees, it also im-
proves coverage of program templates as well as
n-grams in input utterances.

6.2 Weakened Spurious Correlations

Structurally diverse datasets might improve gener-
alization by weakening the spurious correlations be-
tween substructures that would exist in any dataset
of bounded size.

Measure for Correlations We measure correla-
tions between substructures in a set of instances
D as the sum of pairwise mutual information (MI)
between them, normalized to account for the larger
number of distinct substructures in diverse subsam-
ples. Let S = s1, ..., sy, be the set of all subtrees
in a sample. We define an indicator random vari-
able I, for each subtree s thatis 1 if s is present in
a random instance, 0 otherwise. MI between two
subtrees, s; and s; is then defined as,

~ ﬁ(IS‘7IS‘)
MI[s;, s;] = — p(Is;, Is;) log ——"~
1= 2 P s
siols;
(1
where p(I; = 1) and p(ls, = 1,1, = 1) are

Split Type Budget COVR Overnight Schema2QA

1D 100 -0.50 -0.83 -0.39
300 -0.70 -0.76 -0.56
Template 100 -0.57 -0.58 -0.68
300  -0.60 -0.56 -0.64

Table 3: Spearman correlations of AMI and Accu-
racy for train sets sampled randomly and using SUB-
TREE[RANDEX] and SUBTREE[RANDNEWT] algo-
rithms averaged across 4 split seeds (from § 4).

empirical probabilities defined as,

. |{s€e:ec D}
Ploi = 1,5, = 1) = 1120 B P )

Other probabilities are defined analogously. Fi-
nally, our measure of correlations is the average
mutual information (AMI) across all subtree pairs:

1
AMI(D) = BE Z MI[s;, 5] “)
4,J

Results For each dataset, we took 3 samples using
random and subtree subsampling algorithms, treat-
ing the entire dataset as pool, and computed the
AMI over their substructures. Figure 5 shows that
diverse subsamples have lower AMI than random
subsamples across different training budgets and
the different split types, confirming our hypothesis
that structurally diverse datasets have lower correla-
tion. Moreover, examining Spearman correlations
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of AMI and accuracy (Table 3) for train sets sub-
sampled using random, SUBTREE[RANDEX] and
SUBTREE[RANDNEWT] subsampling algorithms
from the experiments in §4, we find that they are
significantly negatively correlated, giving further
credence to our measure. These results substantiate
our hypothesis that reducing spurious correlations
is indeed one way diverse subsamples improve gen-
eralization.

7 Related Work

Generalization Work on improving compositional
generalization has considered many approaches in-
cluding specialized architectures (Herzig and Be-
rant, 2021; Bogin et al., 2021b; Chen et al., 2020;
Gordon et al., 2020; Yin et al., 2021), data augmen-
tation (Andreas, 2020; Akyiirek et al., 2021; Guo
et al., 2021), modifications to training methodol-
ogy (Oren et al., 2020; Csordis et al., 2021), and
meta learning (Conklin et al., 2021; Lake, 2019).
Of these, data-augmentation has the advantage of
being model-agnostic; however, as argued in this
work, randomly selecting training instances is in-
efficient. Our work builds upon Oren et al. (2021)
and Bogin et al. (2022) in arguing for structurally
diverse training.

Training Many methods have been explored for
training instance selection, including: 1. Active
Learning (AL) (Lewis and Catlett, 1994; Settles
and Craven, 2008), where instances are iteratively
selected for annotation based on criteria such as
model uncertainty (Gal et al., 2017) or diversity
(Sener and Savarese, 2018); and 2. adversarial
selection of instances that model fails on (Bras
et al., 2020; Sakaguchi et al., 2020; Wallace et al.,
2019; Nie et al., 2020; Kiela et al., 2021). How-
ever, given that these methods use a model in the
loop for selection and generally work in the input
domain, they are not comparable to our method.
Additionally, the coupling of the dataset and model,
and the lack of generalizability of AL heuristics
has been shown to limit the effectiveness of active
learning in practice (Lowell et al., 2019; Karam-
cheti et al., 2021). Tamkin et al. (2022) recently
showed that pretrained models benefit more from
AL by preferring ambiguous instances or ones
with uncommon feature(s) thereby reducing task
under-specification which can lead to higher vari-
ance and instability in models under-constrained
by their training datasets (D’ Amour et al., 2020;
Geirhos et al., 2020). Our analyses from §6 show

that structurally diverse sampling also attempts to
reduce under-specification albeit by directly sam-
pling from a pool model-agnostically.

Evaluation Out-of-distribution (OOD) tests are
essectial as testing in-distribution may not penal-
ize models for learning spurious patterns (Linzen,
2020). Our work on sampling diverse test sets
is most related to methods for creating splits to
test for compositional generalization from existing
datasets (Keysers et al., 2020; Shaw et al., 2021;
Bogin et al., 2022). However, unlike these, diverse
test sets do not attempt to create a systematic gap
between the train and test sets, but, as shown in
§6.1, cover the space of structures better.

8 Conclusion

In this work, we studied the benefits of structural
diversity for the task of semantic parsing. We pro-
posed a novel model-agnostic algorithm for sam-
pling structurally diverse instances by diversifying
over subtrees in program ASTs. Evaluating on
multiple datasets with varying complexities and on
both IID and compositional splits, we demonstrated
that diversity almost always, and often significantly,
improves generalization. We further demonstrated
that structural diversity also yields more compre-
hensive test sets than traditional IID test sets. Fi-
nally, we showed that these benefits of structural
diversity are likely a manifestation of improved
coverage of the long-tail of substructures as well as
a reduction in spurious correlations between them.

We hope that our results demonstrating the im-
portance of structural diversity will encourage fu-
ture research on better structurally diverse sampling
algorithms as well as their use to guide train and
test set construction. The algorithms in this work
are applicable whenever a large pool of possible
output programs is available. One such setting is of
prototyping a semantic parser in a zero-data setting
where a pool of outputs can be sampled from a
grammar and mapped to canonical utterances that
can subsequently be paraphrased for linguistic vari-
ation either manually or automatically (Wang et al.,
2015; Campagna et al., 2020). Another scenario
is that of selecting instances for in-context or few-
shot learning (Brown et al., 2020).

Perhaps more importantly, our results indicate
that the failure of NLP models on compositional
generalization may be due in part to the lack of
diversity in them, suggesting the need to create
more diverse benchmarks.
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Limitations

A key limitation of the algorithms discussed in
this work 1is their limited applicability due to the
assumption of the availability of a pool of output
programs paired with input utterances (natural or
canonical). To alleviate these, future work can
look at diverse sampling directly from a grammar
without the intermediate step of sampling a pool or
by preferring structural diversity in the input space
instead of the output space i.e. on natural language
utterances. The latter will additionally allow these
methods to be applied to linguistic tasks other than
semantic parsing.

Additionally, we took the route of a greedy itera-
tive sampling algorithm to allow us to tractably sub-
sample from large pools with large number of sub-
structures. Future work can thus explore tractable
optimization of some measure of diversity of sets
of instances.
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Budget #Epochs
50 160
300 128
600 96
1000 80

Table 4: Number of training epochs for COVR, ATIS,
Schema2QA and Overnight depending on train set size.

A Training

Models for COVR, ATIS, Schema2QA and
Overnight datasets were trained for different num-
ber of epochs depending on train set size as shown
in Table 4. Models for Schema2QA were all trained
for 240 epochs. Training was run with batch sizes
ranging from 8 to 20, depending on the maximum
number of example tokens in each dataset and a
learning rate of 3e~> with polynomial decay. Each
experiment was run with a Nvidia Titan RTX GPU
and took between a few minutes to a couple of
hours as we varied the training set size and number
of epochs. We used exact match accuracy as our
metric and following (Bogin et al., 2022), we do
early stopping using the test set. As our goal is to
estimate the train set quality and not the model, we
argue this is an acceptable choice in our setting.

B Additional Results

The original Bigram and Template diversity algo-
rithms (BIGRAM and TEMPLATE), while good in
template splits, are worse than even random sub-
sampling in IID splits. However, replacing their
substructure selection scheme with one that pri-
oritizes frequent substructures (BIGRAM[FREQ]
and TEMPLATE[FREQ]) improves both of their ef-
ficiencies in IID splits with minor degradation in
template splits (Figure 6). The only exception is
the template diversity in COVR. This is expected
given that it was generated from a synchronous
grammar with production rules sampled uniformly
at random and hence is dominated by instances
with shorter templates. Thus, TEMPLATE[FREQ]
will only pick these. Additionally, the slightly
poorer performance subtree diversity than template
diversity on SM-CALFLOW can be attributed to (1)
imperfect program to tree conversion and (2) the
presence of free-form strings in programs which to-
gether lead to a large number of spurious subtrees.

C Coverage

Figure 7 replicates the analysis of § 6.1 using pro-
gram templates and n-grams in the input utterances

as substructures showing that improving coverage
over subtrees also leads to improved coverage of
program templates as well as n-grams input utter-
ances.
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Figure 6: Prioritizing more frequent substructures greatly improves bigram and template diversity in IID splits with
relatively minor degradation in template splits.
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Figure 7: Number of unique program templates (top) and input utterance n-grams of size up to three (bottom) in
diverse and random subsamples bucketed by pool ranks. Titles include size of the subsample v/s the pool while the
legends include the number of unique substructures in each subsample v/s the pool.
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