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Abstract

A growing body of research has demonstrated

the inability of NLP models to generalize com-

positionally and has tried to alleviate it through

specialized architectures, training schemes, and

data augmentation, among other approaches. In

this work, we study a different approach: train-

ing on instances with diverse structures. We

propose a model-agnostic algorithm for sub-

sampling such sets of instances from a labeled

instance pool with structured outputs. Eval-

uating on both compositional template splits

and traditional IID splits of 5 semantic pars-

ing datasets of varying complexity, we show

that structurally diverse training using our al-

gorithm leads to comparable or better gener-

alization than prior algorithms in 9 out of 10

dataset-split type pairs. In general, we find

structural diversity to consistently improve sam-

ple efficiency compared to random train sets.

Moreover, we show that structurally diverse

sampling yields comprehensive test sets that

are a lot more challenging than IID test sets.

Finally, we provide two explanations for im-

proved generalization from diverse train sets:

1) improved coverage of output substructures,

and 2) a reduction in spurious correlations be-

tween these substructures.

1 Introduction

Systematic compositionality—expressing novel

complex concepts as systematic compositions of ex-

pressions for simpler concepts—is the property un-

derlying human languages’ expressive power (Lake

et al., 2017; Fodor and Pylyshyn, 1988). However,

NLP models struggle to generalize to novel com-

posite expressions in the context of semantic pars-

ing (Lake and Baroni, 2018; Loula et al., 2018;

Kim and Linzen, 2020).

Data augmentation has been extensively ex-

plored for compositional generalization (Akyürek

et al., 2021; Guo et al., 2021; Wang et al., 2021;

Guo et al., 2020; Qiu et al., 2022). However, in-

stances in semantic parsing possess structure, such
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Figure 1: An instance from COVR and its abstract

syntax tree (AST) and different types of substructures

in it, including templates, bigrams, and subtrees. Note

that subtrees will also include each node in the AST.

as abstract syntax trees (ASTs) of target programs

(Figure 1). Randomly selecting instances from a

grammar, or even from human annotators, while

ignoring similarity in their structure is likely to

produce skewed distributions with spurious cor-

relations between substructures. This task ambi-

guity and underspecification are known to cause

overparameterized models to have high variance

and poor generalization (D’Amour et al., 2020;

Geirhos et al., 2020). In contrast, a structurally di-

verse set of instances containing a variety of struc-

tures should better cover the combinatorial space

of structures and yield more sample-efficient train

sets. Moreover, this improved coverage should

yield more comprehensive test sets than the tradi-

tional IID test sets.

Prior work on diverse sampling has shown im-

proved sample efficiency in compositional (non-

IID) splits, by selecting instances to have diverse

program templates (Oren et al., 2021) or AST bi-

grams (Bogin et al., 2022) (see Figure 1 for ex-

amples). However, for reasonably-sized programs,

templates are very large structures, and bigrams

very small; focusing on either does not necessar-

ily improve diversity across a range of differently-

4995



sized structures. Moreover, there is little evidence

of sample efficiency of diverse train sets in the IID

setting and no exploration of diverse test sets.

In this study, we take a broader look at the advan-

tages of structural diversity. We propose a general,

substructure, and model-agnostic recipe for struc-

turally diverse subsampling algorithms that inter-

leaves selecting unseen substructures with selecting

instances containing those substructures. Experi-

menting with different substructure and instance

selection criteria, we show improved performance

from 1) prioritizing the selection of more frequent

unseen substructures in the training pool, 2) us-

ing subtrees1 as substructures that are neither too

granular (bigrams) nor too large (templates), and 3)

simultaneously diversifying over both small (sub-

tree) and larger (template) substructures.

We evaluate on template and IID splits of five

semantic parsing datasets of varying complexities

and find that training on diverse train sets consis-

tently outperforms random train sets. In particu-

lar, our proposed subtree diversity algorithm is the

most consistent, performing comparably with or

better than the template and bigram diversity in

9 out of 10 splits, with both bigram and template

algorithms often performing worse than random

subsampling in IID splits. We study the efficacy

of diversely sampled test sets and show that our

diverse sampling algorithm yields test sets that are

harder and more comprehensive than IID tests, es-

pecially with IID training sets. Finally, by com-

paring random and structurally diverse subsamples,

we show that the latter 1) better cover the space

of substructures, especially those in the long tail,

and 2) have weaker spurious correlations between

substructures, explaining their benefits in training

and evaluation.

To conclude, our results demonstrate the effec-

tiveness of structurally diverse train sets in induc-

ing generalization and of structurally diverse test

sets as comprehensive evaluations. We hope these

insights will encourage the use of structural di-

versity as a criterion when sampling train or test

sets from a pool of labeled instances. A setting

where we expect our algorithm will be particularly

useful is that of prototyping semantic parsers in

zero-data settings, where a pool of programs is

sampled from a grammar and mapped to canonical

utterances (Wang et al., 2015; Herzig and Berant,

1These could also be called subgraphs but we’ll stick to
“subtree” as the whole structures are trees.

2019; Campagna et al., 2020; Yin et al., 2022). An-

other potential application could be in exemplar

selection for in-context learning. Our code, data,

and models are available at https://github.com/
Shivanshu-Gupta/structural-diversity.

2 Setup

Semantic Parsing, the task we focus on, involves

parsing an utterance x into a program or logical

form y. Following Oren et al. (2021) and Bogin

et al. (2022), we will assume access to a pool of in-

stances Dpool = {ei, . . . , en}, where ei = (xi, yi),
from which we wish to sample instances. As the

example in Figure 1 shows, logical forms possess

hierarchical structure which can be represented as

trees called abstract syntax trees (ASTs). These

structures are composed of smaller substructures

such as subtrees of the AST, that are shared across

logical forms. We can thus view each instance as

a bag of output substructures: C(ei) = C(xi, yi) =

C(yi) = {c
{i}
1

, . . . , c
{i}
m } ⊆ C, where C is the map-

ping from instances to their substructures and C is

the set of all unique substructures.

The goal of structurally-diverse sampling is to

select instances that contain among them a variety

of different substructures. Our hypotheses, that

we verify in §6, are that a collection of such in-

stances would both better cover the combinatorial

space of structures and reduce spurious correla-

tions between substructures compared to random

instances. A structurally diverse train set should

thus give the model more information about the sys-

tem underlying the instances’ structure and hence

improve generalization. Similarly, its improved

coverage should also make a structurally diverse

test set more comprehensive. This is analogous to

how one would choose to evaluate on a test set with

balanced classes even when the training data might

have a considerable imbalance.

3 Structurally Diverse Subsampling

3.1 Substructures

Prior work (Oren et al., 2021; Bogin et al., 2022)

has used program templates and bigrams in pro-

gram ASTs (Figure 1) for their diverse subsampling

algorithms. Bigrams are pairs of parent-child and

sibling nodes in program ASTs. Program templates

represent the reasoning pattern in the program and

are obtained by replacing certain program tokens

such as strings and numbers with their abstract type.
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Their exact implementation depends on the dataset

and is described in §4.2.

While we follow Oren et al. (2021) and Bogin

et al. (2022) in extracting substructures from pro-

grams alone, we choose to use different substruc-

tures, as templates and bigrams do not seem to hve

the optimal granularity to diversify over. Templates

are too coarse; they still share a lot of structure,

and there may be a combinatorially large number

of them. On the other hand, bigrams are too fine

and may be unable to capture many salient struc-

tural patterns. We thus use subtrees of the program

AST up to a size d. The ASTs are constructed as

in Bogin et al. (2022): tokens in a program are cat-

egorized as either functions, values, or structural

tokens (such as parentheses or commas) that define

the hierarchical structure of the program.

3.2 Algorithm

As motivated in §2, we want to sample instances

containing among them a variety of substructures.

Additionally, we wish to experiment with: 1) pri-

oritizing substructures more common in the pool,

as we expect it to reduce the divergence of the

subsample from the pool distribution; and 2) simul-

taneously diversifying over both fine (subtree) and

coarse (template) granularity substructures. One

approach would be constructing an optimization

problem that directly selects an optimally diverse

set of instances. However, this has the challenge of

defining a measure of diversity that is also tractable

to optimize for large pools and a large number of

substructures (see Table 2). Additonally, it would

be harder to experiment with the different varia-

tions of diverse sampling described above.

We thus take the route of an iterative algorithm

(pseudo-code in Algorithm 1) that alternates be-

tween picking a substructure and picking an in-

stance with that substructure till the requisite num-

ber, B, of instances has been sampled. Here, wc

and we specify the substructure and instance selec-

tion criteria by assigning weights based on the cur-

rent state comprising sampled instances Dsample,

substructures Csample, and templates Tsample. The

algorithm resets Csample and Tsample once all sub-

structures and templates, respectively have been

sampled to allow cycling over them repeatedly. In

the following sections, we will show that with dif-

ferent substructure definitions and substructure and

instance-weighting schemes, Algorithm 1 can sub-

sume both the template diversity and bigram diver-

Algorithm 1 Structurally Diverse Subsampling

Require: Instance pool Dpool; set of all substructures C, and
templates T in pool: instance-to-substructure mapping C;
template mapping T ; substructure weight function wc; in-
stance weight function we; training budget B
Dsample, Csample, Tsample ← φ
i← 0
while i < B do

c = argmax
c∈C

wc(c,Dpool, Dsample, Csample)

e = argmax
e∈Dpool

s.t. c∈C(e)

we(e,Dpool, Dsample, Tsample)

Dpool ← Dpool \ e
Dsample ← Dsample ∪ e
Csample ← Csample ∪ c
Tsample ← Tsample ∪ {T (e)}
C ←

⋃

e∈Dpool

C(e)

T ← {T (e) : e ∈ Dpool}
if Csample = C then

Csample ← φ
end if
if Tsample = T then

Tsample ← φ
end if

end while
return Dsample

sity algorithms from Oren et al. (2021) and Bogin

et al. (2022). Additionally, it will allow us to exper-

iment with the variations described above.

3.3 Subtree Diversity

Our proposed subsampling algorithm diversifies

over subtrees as defined in §3.1, i.e., C(x, y) is the

set of subtrees of size ≤ d in the AST of y. We

will use d = 4. Since we want to prioritize select-

ing more frequent unsampled substructures in the

pool, we will use wc(c) = 1[c /∈ Csample]Fpool(c)
where Fpool(c) is the number of instances in the

pool containing c.

For selecting instances given a sampled substruc-

ture, we use these instance weighting schemes:

1. RANDEX samples an instance uniformly at

random: we(e) is a constant.

2. RANDNEWT samples an instance with unseen

template: we(e) = 1[T (e) /∈ Tsample].
3. FREQNEWT samples instance with the most

frequent unsampled template: we(e) =
1[T (e) /∈ Tsample]Fpool(T (e)) where T (e)
is e’s template and Fpool(t) is the number of

instances in the pool with template t.

The last two schemes seek to improve the cover-

age of templates to allow the diversifying of both

subtrees and templates.
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3.4 Template and Bigram Diversity

Template Diversity from Oren et al. (2021), hence-

forth referred to as TEMPLATE, can be imple-

mented in the framework of Algorithm 1 as:

• C(x, y) is a singleton set containing the tem-

plate for y.

• wc(c) is a constant function i.e. a random

template.

• we(e) is a constant function (RANDEX).

Additionally, we also experimented with selecting

only among the unsampled templates i.e. wc(c) =
1 [c /∈ Csample] and with prioritizing more frequent

unsampled templates using the substructure weight-

ing scheme of §3.3. We found both of these to im-

prove performance but only include the results for

the latter. We will refer to it as TEMPLATE[FREQ].

Bigram Diversity from Bogin et al. (2022) , here-

after referred to as BIGRAM, can also be imple-

mented in the framework of Algorithm 1 as:

• C(x, y) is the set of bigrams in y’s AST as

defined by Bogin et al. (2022).

• Bogin et al. (2022)’s bigram diversity algo-

rithm randomly samples from unsampled bi-

grams until there is still an unsampled bigram

and then any random bigram. This can be for-

mulated as: wc(c) = 1

[

c /∈ C̃sample

]

where

C̃sample =
⋃

e∈Dsample

C(e) is the set of all bi-

grams in the current sample.

• we(e) is a constant function (RANDEX).

We also experimented with bigram diversity with

the substructure weighting scheme of §3.3. We will

refer to this algorithm as BIGRAM[FREQ].

4 Experiments

Given a dataset D of utterance-program pairs, we

create three different types of splits with each split

consisting of a training pool Dpool and test set

Dtest. We then compare the various subsampling

algorithms described in §3 by using them to sample

training sets Dtrain of varying budget size B from

Dpool and evaluating on Dtest.

4.1 Splits

IID split For this we randomly sample instances

from D to use as Dtest, keeping the rest for Dpool.

Template split This is a type of compositional split

proposed by (Finegan-Dollak et al., 2018). Here

instances are grouped based on their program tem-

plate as described in §3.1 The split is then created

by randomly splitting the set of templates into a

train set and a test set and using examples for train

or test templates as Dpool or Dtest respectively. We

follow the procedure of Bogin et al. (2022) to ob-

tain solvable template splits where every token in

the test set also occurs in the train set.

Subtree split In §2 we argued that diversely sub-

sampled sets of instances should also make for

more comprehensive test sets. We thus exper-

iment with a third type of split: we use SUB-

TREE[FREQNEWT] diverse subsampling to sample

test sets Dtest from D, keeping the rest as Dpool.

4.2 Datasets

We use five semantic parsing datasets from diverse

domains and complexity for our analysis, with both

synthetic and natural language input utterances. Ta-

bles 1 and 2 show a few examples and statistics

regarding number of instances and different types

of substructures.

COVR: A synthetic dataset that uses a variable-

free functional query language and is generated

using a synchronous context-free grammar (SCFG)

adapted from the VQA dataset of Bogin et al.

(2021a). We use the SCFG to generate 100K exam-

ples for our experiments.

ATIS (Hemphill et al., 1990; Dahl et al., 1994): A

dataset of natural language queries about aviation

paired with λ-calculus programs.

Overnight (Wang et al., 2015): A dataset contain-

ing both synthetic and natural language utterances

from 11 domains (e.g. socialnetwork, restaurants,

etc.) paired with Lambda-DCS logical forms.

Schema2QA (Xu et al., 2020): Uses the ThingTalk

language (Campagna et al., 2019). We use the syn-

thetic instances from the people domain generated

by Oren et al. (2021).

SM-CalFlow (Andreas et al., 2020): Consists of

dialogs paired with LISP programs. Each instance

is a single dialogue turn from one of two domains

about creating calendar events or querying an org

chart.

Except for SM-CalFlow, which we took from

Andreas et al. (2020), we used the preprocessed

versions of the above datasets provided by Bogin

et al. (2022) and used their code2 to anonymize

programs and produce ASTs. For SM-CalFlow,

we anonymized strings and numbers such as “staff

2https://github.com/benbogin/
unobserved-local-structures
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Dataset Input Utterance Target Program

COVR
(synthetic)

What is the number of black dog
that is chasing mouse ?

count ( with_relation ( filter ( black , find ( dog ) ) ,
chasing , find ( mouse ) ) )

OVERNIGHT

(synthetic†,
natural◦)

†person whose height is 180 cm and
whose birthdate is 2004

(listValue (filter (filter (getProperty (singleton en.person)
(string !type)) (string height) (string =) (number 180 en.cm))
(string birthdate) (string =) (date 2004 -1 -1)))◦what person born in 2004 is 180

cm tall

SCHEMA2QA
(synthetic)

what people are named aideliz li ( Person ) filter id = "aideliz li"

ATIS

(natural)
a flight on continental airlines leav-
ing boston and going to denver

( lambda $0 e ( and ( flight $0 ) ( airline $0 co : al )
( from $0 boston : ci ) ( to $0 denver : ci ) ) )

SM-CALFLOW

(natural)
When is my next staff meeting
scheduled for?

(Yield (Event.start (FindNumNextEvent (Event.subject?
(? = "staff meeting")) 1L)))

Table 1: Examples of input utterance and target program pairs for the datasets used in this work.

Dataset Instances Bigrams Subtrees Templates

ATIS 5037 5091 41536 1149
COVR 100000 298 4490 29141
OVERNIGHT 4419 354 3015 87
SM-CALFLOW 106072 43689 208527 21082
SCHEMA2QA 1577860 223 3060 139

Table 2: Number of instances, bigrams, subtrees (size

≤ 4), and templates in the datasets used for structural

diversity experiments.

meeting” and “1L” in Table 1 and used nltk3 to

produce ASTs. Additionally, we excluded all in-

stances with a particular program that accounted

for more than 12% of the original dataset.

4.3 Model and Training

We use the pre-trained BART-base model (Lewis

et al., 2020) for our experiments, fine-tuning it on

subsamples for each dataset, split, and subsampling

algorithm. For each dataset, we use 4 different ran-

dom seeds to create 4 splits of each type. Then for

each split and training budget, we use 3 different

seeds to subsample 3 training sets for each sub-

sampling algorithm. See App. A for more details.

5 Results

5.1 Structurally Diverse Train Sets

Figure 2 compares the various structurally diverse

sampling algorithms, and random sampling on

Template and the IID splits of the different datasets.

Structural Diversity improves sample efficiency.

Random sampling is outperformed by structurally

diverse sampling in 9 out of 10 dataset-split

3https://www.nltk.org/

type combinations with about 2x sample effi-

ciency in template splits of all five datasets ex-

cept COVR and IID splits of SCHEMA2QA and

OVERNIGHT. The only exception is the IID

split of SM-CALFLOW. We believe this is due

to a greater imbalance in substructures in SM-

CALFLOW where over a third of templates (as well

as bigrams and subtrees) only appear in a single

instance.

Subtree diversity is most consistent. Our pro-

posed subtree diversity algorithm is the most con-

sistent among the various diverse sampling algo-

rithms. In all but 1 of the 10 splits, it outperforms or

matches both template and bigram diversity which

often lag behind even random sampling. The only

exception is template diversity in the template split

of SCHEMA2QA, which has very few templates

(see Table 2). These results suggest that the optimal

substructure granularity depends on the task. For

datasets with little structural diversity, diversifying

over templates is sufficient. However, diversify-

ing over smaller substructures is more beneficial

for complex datasets with many program templates

overlapping in structure as it exploits the structural

similarity of programs.

Combining subtree and template diversity

improves performance. Comparing SUB-

TREE[RANDNEWT] and SUBTREE[RANDEX] we

see that the former performs better in template

splits with minor reductions in IID splits. This

suggests that simultaneously diversifying over fine

and coarse substructures, subtrees, and templates

here, can be more effective than either alone.

Prioritizing more frequent compounds im-

proves efficiency. Figure 6 compares BIGRAM

and TEMPLATE with BIGRAM[FREQ] and TEM-
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of AMI and accuracy (Table 3) for train sets sub-

sampled using random, SUBTREE[RANDEX] and

SUBTREE[RANDNEWT] subsampling algorithms

from the experiments in §4, we find that they are

significantly negatively correlated, giving further

credence to our measure. These results substantiate

our hypothesis that reducing spurious correlations

is indeed one way diverse subsamples improve gen-

eralization.

7 Related Work

Generalization Work on improving compositional

generalization has considered many approaches in-

cluding specialized architectures (Herzig and Be-

rant, 2021; Bogin et al., 2021b; Chen et al., 2020;

Gordon et al., 2020; Yin et al., 2021), data augmen-

tation (Andreas, 2020; Akyürek et al., 2021; Guo

et al., 2021), modifications to training methodol-

ogy (Oren et al., 2020; Csordás et al., 2021), and

meta learning (Conklin et al., 2021; Lake, 2019).

Of these, data-augmentation has the advantage of

being model-agnostic; however, as argued in this

work, randomly selecting training instances is in-

efficient. Our work builds upon Oren et al. (2021)

and Bogin et al. (2022) in arguing for structurally

diverse training.

Training Many methods have been explored for

training instance selection, including: 1. Active

Learning (AL) (Lewis and Catlett, 1994; Settles

and Craven, 2008), where instances are iteratively

selected for annotation based on criteria such as

model uncertainty (Gal et al., 2017) or diversity

(Sener and Savarese, 2018); and 2. adversarial

selection of instances that model fails on (Bras

et al., 2020; Sakaguchi et al., 2020; Wallace et al.,

2019; Nie et al., 2020; Kiela et al., 2021). How-

ever, given that these methods use a model in the

loop for selection and generally work in the input

domain, they are not comparable to our method.

Additionally, the coupling of the dataset and model,

and the lack of generalizability of AL heuristics

has been shown to limit the effectiveness of active

learning in practice (Lowell et al., 2019; Karam-

cheti et al., 2021). Tamkin et al. (2022) recently

showed that pretrained models benefit more from

AL by preferring ambiguous instances or ones

with uncommon feature(s) thereby reducing task

under-specification which can lead to higher vari-

ance and instability in models under-constrained

by their training datasets (D’Amour et al., 2020;

Geirhos et al., 2020). Our analyses from §6 show

that structurally diverse sampling also attempts to

reduce under-specification albeit by directly sam-

pling from a pool model-agnostically.

Evaluation Out-of-distribution (OOD) tests are

essectial as testing in-distribution may not penal-

ize models for learning spurious patterns (Linzen,

2020). Our work on sampling diverse test sets

is most related to methods for creating splits to

test for compositional generalization from existing

datasets (Keysers et al., 2020; Shaw et al., 2021;

Bogin et al., 2022). However, unlike these, diverse

test sets do not attempt to create a systematic gap

between the train and test sets, but, as shown in

§6.1, cover the space of structures better.

8 Conclusion

In this work, we studied the benefits of structural

diversity for the task of semantic parsing. We pro-

posed a novel model-agnostic algorithm for sam-

pling structurally diverse instances by diversifying

over subtrees in program ASTs. Evaluating on

multiple datasets with varying complexities and on

both IID and compositional splits, we demonstrated

that diversity almost always, and often significantly,

improves generalization. We further demonstrated

that structural diversity also yields more compre-

hensive test sets than traditional IID test sets. Fi-

nally, we showed that these benefits of structural

diversity are likely a manifestation of improved

coverage of the long-tail of substructures as well as

a reduction in spurious correlations between them.

We hope that our results demonstrating the im-

portance of structural diversity will encourage fu-

ture research on better structurally diverse sampling

algorithms as well as their use to guide train and

test set construction. The algorithms in this work

are applicable whenever a large pool of possible

output programs is available. One such setting is of

prototyping a semantic parser in a zero-data setting

where a pool of outputs can be sampled from a

grammar and mapped to canonical utterances that

can subsequently be paraphrased for linguistic vari-

ation either manually or automatically (Wang et al.,

2015; Campagna et al., 2020). Another scenario

is that of selecting instances for in-context or few-

shot learning (Brown et al., 2020).

Perhaps more importantly, our results indicate

that the failure of NLP models on compositional

generalization may be due in part to the lack of

diversity in them, suggesting the need to create

more diverse benchmarks.
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Budget #Epochs

50 160
300 128
600 96

1000 80

Table 4: Number of training epochs for COVR, ATIS,

Schema2QA and Overnight depending on train set size.

A Training

Models for COVR, ATIS, Schema2QA and

Overnight datasets were trained for different num-

ber of epochs depending on train set size as shown

in Table 4. Models for Schema2QA were all trained

for 240 epochs. Training was run with batch sizes

ranging from 8 to 20, depending on the maximum

number of example tokens in each dataset and a

learning rate of 3e−5 with polynomial decay. Each

experiment was run with a Nvidia Titan RTX GPU

and took between a few minutes to a couple of

hours as we varied the training set size and number

of epochs. We used exact match accuracy as our

metric and following (Bogin et al., 2022), we do

early stopping using the test set. As our goal is to

estimate the train set quality and not the model, we

argue this is an acceptable choice in our setting.

B Additional Results

The original Bigram and Template diversity algo-

rithms (BIGRAM and TEMPLATE), while good in

template splits, are worse than even random sub-

sampling in IID splits. However, replacing their

substructure selection scheme with one that pri-

oritizes frequent substructures (BIGRAM[FREQ]

and TEMPLATE[FREQ]) improves both of their ef-

ficiencies in IID splits with minor degradation in

template splits (Figure 6). The only exception is

the template diversity in COVR. This is expected

given that it was generated from a synchronous

grammar with production rules sampled uniformly

at random and hence is dominated by instances

with shorter templates. Thus, TEMPLATE[FREQ]

will only pick these. Additionally, the slightly

poorer performance subtree diversity than template

diversity on SM-CALFLOW can be attributed to (1)

imperfect program to tree conversion and (2) the

presence of free-form strings in programs which to-

gether lead to a large number of spurious subtrees.

C Coverage

Figure 7 replicates the analysis of § 6.1 using pro-

gram templates and n-grams in the input utterances

as substructures showing that improving coverage

over subtrees also leads to improved coverage of

program templates as well as n-grams input utter-

ances.
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