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Abstract

We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made
with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are
used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous
red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs.
We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the
Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based
on the likelihood ratio test, yields a detection significance of 7.1σ (LRG), 5.7σ (ELG), and 11.1σ (QSO). These
are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective
clustering amplitude of neutral hydrogen (H I), defined as ( )b f10H

3
H H

2
I I I mº W + á ñ , where ΩH I is the

cosmic abundance of H I, bH I is the linear bias of H I, and 〈fμ2〉= 0.552 encodes the effect of redshift-space
distortions at linear order. We find 1.51H 0.97

3.60
I = -

+ for LRGs (z= 0.84), 6.76H 3.79
9.04

I = -
+ for ELGs (z= 0.96),

and 1.68H 0.67
1.10

I = -
+ for QSOs (z= 1.20), with constraints limited by modeling uncertainties at nonlinear scales.

We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias
Δ v=− 66± 20 km s−1 for the QSOs. We split the QSO catalog into three redshift bins and have a decisive
detection in each, with the upper bin at z= 1.30 producing the highest-redshift 21 cm intensity mapping
measurement thus far.

Unified Astronomy Thesaurus concepts: Cosmology (343); Large-scale structure of the universe (902); H I line
emission (690); Quasars (1319); Emission line galaxies (459)

1. Introduction

Measurements of the large-scale clustering of matter have great
potential to improve our understanding of both the early and late
universe, probing phenomena ranging from cosmic inflation to

dark energy to galaxy evolution. This large-scale structure (LSS)
can be mapped in a variety of ways, including tabulating the
locations of luminous objects, using gravitational lensing to relate
the distorted appearance of galaxy shapes to mass along the line of
sight, identifying the absorption of Lyα photons in the spectra of
distant quasars, and isolating so-called secondary anisotropies in
maps of the cosmic microwave background (CMB).
Another approach to mapping LSS, 21 cm intensity map-

ping, uses the hyperfine “spin-flip” transition in neutral
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hydrogen (hereafter H I), which has rest wavelength 21.106 cm
(rest frequency 1420.406MHz). The probability of this
transition occurring spontaneously in a given hydrogen atom
is extremely low, but this is balanced by the large cosmic
abundance of H I in such a way that extragalactic 21 cm
emission (and/or absorption) is measurable in aggregate. The
lack of comparably strong spectral lines at frequencies below
1420MHz and the optical thinness of the hyperfine transition
together imply that we can, if foregrounds can be removed,
directly observe a redshift of the 21 cm line. This can then be
related to a distance from the observer. Thus, maps of the radio
sky at different frequencies contain information about the
distribution of H I at different cosmic times, and the spectral
and angular fluctuations of these maps can provide us with a
3D picture of this distribution (Battye et al. 2004; Chang et al.
2008; Wyithe & Loeb 2008; Peterson et al. 2009). This idea
extends beyond the 21 cm line, and intensity mapping is now
being pursued across a wide range of atomic and molecular
transitions (Kovetz et al. 2019).
At z 6, after cosmic reionization has completed, the vast

majority of H I is concentrated in the surroundings of
galaxies, where it is shielded from ionizing radiation
(Villaescusa-Navarro et al. 2018). Thus, a post-reionization
21 cm intensity mapping survey is effectively a coarse-
grained galaxy survey, in which galaxies are detected in bulk
via their H I content.

The 21 cm brightness temperature fluctuations are there-
fore highly correlated with galaxy catalogs from other
surveys, and this fact has enabled the first detections of LSS
using 21 cm intensity mapping. After the initial detection by
Pen et al. (2009), which combined existing spectral intensity
data from the HIPASS survey with the 6dF galaxy survey,
subsequent analyses have used dedicated observations by the
Green Bank and Parkes radio telescopes, in concert with
galaxy catalogs from the DEEP2, WiggleZ, and 2dF surveys
and the extended Baryon Oscillation Spectroscopic Survey
(eBOSS; Chang et al. 2010; Masui et al. 2013; Anderson
et al. 2018; Tramonte & Ma 2020; Li et al. 2021; Wolz et al.
2022), to detect cross-correlations with signal-to-noise ratios
between 4 and 13. Several of these studies have placed
constraints on the product ΩH IbH Ir, where ΩH I is the mean
H I density as a fraction of the present-day critical density,
bH I is the linear bias of H I with respect to matter, and r is a
cross-correlation parameter that absorbs uncertainties in the
modeling.

In principle, much more powerful measurements of LSS are
possible with custom-built telescopes that are optimized for
21 cm observations. This, alongside several other science
targets, motivated the design and construction of the Canadian
Hydrogen Intensity Mapping Experiment (CHIME).21 CHIME
is a transit radio interferometer composed of four 20 m ×
100 m cylindrical reflectors, each instrumented with 256 dual-
polarized feeds observing at 400–800 MHz. Signals from each
feed are processed by an FX correlator and stored for offline
cosmological analysis. These signals are also fed to separate
back ends devoted to studying fast radio bursts (CHIME/FRB
Collaboration et al. 2018) and pulsars (CHIME/Pulsar
Collaboration et al. 2021). CHIME Collaboration et al.
(2022b) provides an overview of the key features and
operational status of the telescope.

In this paper, we report the first detection of LSS with 21 cm
intensity mapping data from CHIME,22 in cross-correlation
with galaxies and quasars measured by eBOSS (Dawson et al.
2016). We make use of a stacking approach, which averages
sky maps constructed from CHIME observations at the
locations of each eBOSS object. The data processing involved
in this approach is more straightforward than other cross-
correlation methods (e.g., a cross-power spectrum) and
involves intermediate data products (such as sky maps) that
can be interpreted in terms of features of the telescope and
analysis pipeline. These interpretations are vital for examining
the performance of our analysis methods, several of which have
been custom designed for CHIME.
Using 102 nights of CHIME data, we have achieved

significant detections of cross-correlations with eBOSS cata-
logs of luminous red galaxies (LRGs), emission-line galaxies
(ELGs), and quasars (QSOs). We quantify this significance
within a Bayesian framework, finding Bayes factors 1 0 
(comparing our signal model with a noise-only model) of

( )ln 18.91 0  » (LRGs), 10.8 (ELGs), and 56.3 (QSOs),
each corresponding to decisive evidence on the Jeffreys scale
(Jeffreys 1961); an alternative quantification, using a frequen-
tist likelihood ratio test, yields signal-to-noise ratios of 7.1
(LRGs), 5.7 (ELGs), and 11.1 (QSOs).
H I stacking analyses have previously been carried out on

interferometric data from the Westerbork Synthesis Radio
Telescope (Rhee et al. 2013; Hu et al. 2019, 2020), the Giant
Metrewave Radio Telescope (Lah et al. 2007; Kanekar et al.
2016; Rhee et al. 2016, 2018; Bera et al. 2019; Chowdhury
et al. 2020), and the Very Large Array (VLA; Chen et al.
2021), as well as on single-antenna data from Parkes (Delhaize
et al. 2013; Tramonte et al. 2019; Tramonte & Ma 2020) and
the Arecibo Legacy Fast ALFA Survey (Guo et al. 2020). The
primary motivation of many of these studies was to improve
our understanding of galaxy evolution by probing the
reservoirs of H I that serve as fuel for star formation. At
z 0.2, the 21 cm line is too faint to detect in individual
galaxies, but stacking enables a measurement of the average
21 cm flux (and therefore the average H I mass) across all
objects in a given catalog, and a sufficiently small beam
(possessed by the interferometers above) acts to limit the
associated confusion noise. Under certain assumptions about
the H I mass–luminosity relation, as well as the completeness
and luminosity function of the catalog used for stacking, these
measurements can also be used to constrain ΩH I(z), which
controls the overall amplitude of the large-scale 21 cm
fluctuations that can be used for cosmology (see Chen et al.
2021 for a recent summary of these constraints).
In contrast to the interferometers mentioned above, CHIME

is designed to make 21 cm observations that are intentionally
confusion dominated, allowing efficient mapping of the large-
scale clustering of 21 cm sources via the corresponding
fluctuations in measured 21 cm intensity in broad spatial
pixels. Thus, instead of exclusively probing the H I within
individual objects in an external catalog, our stacking
measurements are broadly sensitive to the nearby structures
that are correlated with each object. To infer the value of
ΩH I(z), we must model gravitational and baryonic clustering in
addition to the properties of the catalog objects themselves.

21 http://chime-experiment.ca/

22 LSS has previously been detected by cross-correlating CHIME’s first
catalog of fast radio bursts with photometric galaxy catalogs (Rafiei-Ravandi
et al. 2021).
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This modeling is most straightforward at the largest spatial
scales, but as part of our analysis, we have needed to apply
aggressive filtering that has removed the sensitivity of the data
to these well-understood scales. Nevertheless, after margin-
alizing over the uncertainty associated with modeling of
smaller-scale clustering, we are able to constrain an effective
H I clustering amplitude H I , defined as ΩH I(bH I+ 〈fμ2〉),
where bH I is a linear bias factor that relates large-scale
clustering of H I to the clustering of all matter, and 〈fμ2〉 is an
effective quantity involving the linear growth rate, f, and the
relative contribution of line of sight and transverse information
(described in detail in Section 6.2). With 〈fμ2〉= 0.552, we
obtain 1.51H 0.97

3.60
I = -

+ (LRGs), 6.76H 3.74
9.04

I = -
+ (ELGs), and

1.68H 0.67
1.10

I = -
+ (QSOs), to be compared with fiducial model

values of 1.13, 1.21, and 1.37, respectively. While this
precision is lower than previous single-antenna measurements,
it is significantly more robust in its incorporation of modeling
uncertainty: if we were able to fix the values of all small-scale
parameters a priori, the precision on H I would improve to
between 10% and 20% for each sample. We are actively
working on improvements to the calibration procedure and data
processing that will allow for less aggressive filtering and
enable the recovery of larger spatial scales. This is expected to
both increase the signal-to-noise ratio of the detection and
reduce the modeling uncertainty on the parameter constraints.

This paper (which includes descriptions of several analysis
methods that have not previously appeared in the literature) is
organized as follows:

1. In Section 2, we describe the CHIME and eBOSS data we
use, visualizing the sky coverage in Figure 1 and redshift
coverage in Figure 2.

2. In Sections 3 and 4, we describe how CHIME data are
processed into stacks at the locations of eBOSS catalog
objects, including our procedures for real-time processing

(Section 3.1), applying additional corrections to indivi-
dual days of data (Section 3.2), averaging over days
(Section 3.3), mapmaking (Section 4.3), beam calibration
(Section 4.4), foreground filtering (Section 4.5), masking
(Section 4.6), stacking (Section 4.7), and covariance
estimation (Section 4.8).

3. In Section 5, we discuss the cosmological scales our
analysis probes (Section 5.1), our model for the
stacking signal (Section 5.2), our simulation framework

Figure 1. Map of the northern radio sky as measured by CHIME. Shown is the average spectral flux density over the 587.5–800 MHz subband. The hashed regions
indicate the spatial footprints of the eBOSS catalogs. The LRG and QSO catalogs share a common footprint indicated by the light-pink hash marks. The footprint of
the ELG catalog is indicated by the blue circular hash marks. The eBOSS catalogs are spread across two fields: the NGC and the SGC. We only present results for the
NGC field in this work. The color scale is linear between −1 and 1 Jy beam−1 and logarithmic otherwise. The map contains negative values because the
autocorrelation data have been excluded. The zero-point is defined by setting the median value of a quiet part of the map with R.A. between 135° and 150° equal to
zero for each decl. and frequency prior to averaging over the subband.

Figure 2. The redshift distribution of the LRG, ELG, and QSO catalogs for the
NGC field. The y-axis indicates the number of sources per unit redshift. The
upper x-axis indicates the frequency of 21 cm emission from a source at the
redshift indicated by the lower x-axis. The dark-gray band denotes the range of
frequencies that are outside the CHIME band (400–800 MHz). The light-gray
bands denote ranges of frequencies that are inaccessible to CHIME because
they are contaminated by a persistent source of RFI. The black solid lines mark
the edges of the 587.5–800 MHz subband that will be used in this analysis.
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(Section 5.3), and our simulation-based approach to
model fitting (Section 5.4).

4. We begin Section 6 by presenting our stacking measure-
ments and discussing several null tests in Section 6.1. The
main results are shown in Figures 19 and 20. We then
introduce our model fitting procedure (Section 6.2),
visualize the constraints on the parameters of our model
and discuss degeneracies (Section 6.3; see Figures 23–25),
and quantify the significance of the detected signal
(Section 6.4; see Table 3).

5. In Section 7, we present the results of several validation
tests that were performed on the data, related to consistency
between the two instrumental polarizations, consistency
between jackknives in observing time, beam calibration
accuracy, and linearity of the stacking procedure.

6. In Section 8, we discuss several aspects of the
interpretation of these results: confirmation of a systema-
tic bias in the reported QSO redshifts (Section 8.1),
uncertainties on our constraints on the H I clustering
amplitude H I (Section 8.2; see Table 8), comparisons of
the corresponding ΩH I constraints with previous results
from the literature (Section 8.3; see Figure 29), and
prospects for constraining the mean H I mass of objects in
external catalogs (Section 8.4).

7. In Section 9, we state our conclusions and discuss the
prospects for future 21 cm measurements by CHIME.

We also include four appendices, detailing our Gibbs-sampling-
based approach to delay spectrum estimation (Appendix A), the
construction of our primary beam model using catalogs of point-
source fluxes (Appendix B), the justification for stacking
simulated Gaussian 21 cm maps on lognormal mock catalogs
(Appendix C), and our construction of simulation-based signal
templates used for model fitting (Appendix D).

For computations requiring a cosmological model, we use
cosmological parameters from the final Planck data release
(specifically, the “TT,TE,EE+lowE+lensing+BAO” para-
meters from Table 2 of Planck Collaboration et al. 2020).

2. Data

2.1. CHIME

Our analysis uses the CHIME stack data set acquired
between 2019 January 1 and November 5. The stack data set
is described in CHIME Collaboration et al. (2022b) and
consists of the Nfeed

2 visibilities (with Nfeed= 2048) after they
have been integrated to Δt= 9.9405 s cadence, calibrated for
complex gain variations, and compressed by averaging subsets
of redundant baselines. We selected 102 nights from this period
to include in the analysis, using criteria that will be described in
Section 3.3.1. After masking intervals of poor data quality,
these 102 nights contain 521 hr of total integration time on the
relevant eBOSS field.

CHIME is sensitive to radio frequencies from 400 to 800
MHz, which corresponds to 21 cm emission from redshifts 2.55
to 0.78. However, frequencies from 400 to 500 MHz suffer
from frequent narrowband, transient radio frequency inter-
ference (RFI). In addition, approximately 60% of frequencies
between 488 and 584 MHz are corrupted by persistent RFI
from locally broadcast TV channels. Hence, for this initial
analysis we have restricted our attention to the CHIME data
acquired in the relatively clean portion of the band between
587.5 and 800 MHz, corresponding to 21 cm emission from

redshifts 1.42 to 0.78. The spectral resolution of the stack
data set is Δν= 0.390625MHz, resulting in 544 frequency
channels within this range. We anticipate that the real-time,
RFI excision algorithm that was deployed on the CHIME
correlator in 2019 mid-October and recent improvements to the
offline RFI excision algorithm will enable the inclusion of the
lower half of the CHIME band in future analyses.

2.2. eBOSS Catalogs

eBOSS (Dawson et al. 2016), the cosmological survey within
the Sloan Digital Sky Survey IV (SDSS-IV; Blanton et al. 2017),
was conducted over 4.5 yr using spectrographs previously used
for BOSS (Smee et al. 2013), mounted on the Sloan Telescope
(Gunn et al. 2006) at the Apache Point Observatory. eBOSS
produced four distinct samples of objects, each of which has been
used to measure large-scale clustering and place constraints on a
variety of cosmological parameters (see Alam et al. 2021 for a
summary of these results). In this work, we cross-correlate three of
these samples, from SDSS Data Release 16 (Ahumada et al.
2020), with CHIME measurements.
The eBOSS ELG sample (Raichoor et al. 2021) selected targets

using imaging from the Dark Energy Camera Legacy Survey
(Dey et al. 2019), making special use of emission in the [O II]
double at (λ3727, λ3729)to obtain efficient and accurate redshift
estimates. This resulted in a catalog of 173,736 unique objects
over 0.6< z< 1.1, spread across two fields: the 550 deg2 North
Galactic Cap (NGC) and the 620 deg2 South Galactic Cap (SGC).
These correspond to comoving volumes of 0.63 and
0.71 h−3 Gpc3, respectively. We show both fields, superimposed
on a representative CHIME sky map, in Figure 1.
The LRG sample (Ross et al. 2020) is composed of objects

from optical imaging taken during previous phases of SDSS
(Albareti et al. 2017), along with infrared data from the Wide-
field Infrared Survey Explorer satellite (Lang et al. 2016).
Selection criteria were designed to target galaxies with z> 0.6,
with the resulting final catalog containing 174,816 objects over
0.6< z< 1.0, distributed between a 2566 deg2 NGC field and a
1676 deg2 SGC field (shown in Figure 1). The corresponding
comoving volumes are 2.2 and 1.4 h−3 Gpc3, respectively.
The QSO sample (Lyke et al. 2020; Ross et al. 2020) is

composed of objects observed during previous phases of SDSS
and new objects selected from the same imaging data as the
LRGs. The QSO catalog used for clustering (as opposed to the
QSOs used for Lyα forest studies) contains 343,708 objects
over 0.8< z< 2.2, covering the same two fields as the LRGs
(with comoving volume 12 h−3 Gpc3 for the NGC field and
8.0 h−3 Gpc3 for the SGC field).
Figure 2 shows the redshift distribution of the LRG, ELG, and

QSO samples for the NGC field, along with vertical bands
indicating redshift ranges that are outside of the CHIME band
(dark gray) or excluded owing to persistent RFI (light gray).
Persistent RFI obscures 14.2% of the 587.5–800 MHz band, but
we mask a larger fraction of the band (not shown in Figure 2) in
this analysis, for reasons that will be described in Section 4.2.
The stack of the SGC catalog on the CHIME data is a factor of

3–3.5 times noisier than the stack on the NGC catalog for the
same tracer of LSS. There are several reasons for this. First, in the
case of the LRG and QSO catalogs there are 50% fewer sources in
the SGC field compared to the NGC field. Second, we have less
integration time on the SGC field because the range of R.A.
occupied by the SGC field transits at CHIME at night in the
summer time, whereas the NGC field transits at night in the winter
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time, when the nights are longer. Finally, the SGC field is at a
lower decl. where the CHIME primary beam response is reduced
and where we are forced to use a more aggressive delay filter
because of aliasing of foregrounds. For these reasons, we have
only a modest detection (∼4σ) of 21 cm emission when stacking
on the QSOs in the SGC field, and we do not have a detection for
the ELGs and LRGs in the SGC field. In what follows, we present
the results for the NGC field only. We note, however, that our
measurements in the SGC field are consistent with the amplitude
of the 21 cm signal inferred from the catalogs in the NGC field,
given the increased noise.

Each object in the eBOSS clustering catalogs includes
weight values that account for imaging systematics, close pairs
(which can be affected by spectroscopic fiber collisions), and
the probability of a catastrophic redshift failure. We found that
incorporating these weights into our analysis had a negligible
impact on our results. Therefore, we do not employ the eBOSS
weights in what follows. The weight given to each object is
determined entirely by the sensitivity of the CHIME data at that
object’s angular and spectral location.

2.3. Effective Redshift of Tracer Cross-correlations

The effective redshift, zeff, of each catalog, when cross-
correlated with CHIME data, is a combination of the redshift
distribution of the sources in the catalog, the RFI mask used for
the CHIME analysis, and the sensitivity of the CHIME data
outside the masked regions. To determine zeff, we first take
each catalog, and for every source within it, we extract the
inverse variance weights for that source in the processed
CHIME data (these weights and how they are propagated
through our pipeline will be described in Section 3). We then
use these to construct a weighted median of the redshifts of the
catalog. Similarly, to define an effective range of each catalog,
we take the 16% and 84% weighted percentiles of the redshift
distribution (i.e., the 68% equal-tailed interval), which gives a
region within “1σ” of the effective redshift. This differs
substantially from the minimum–maximum redshift range
where the source number density drops at the edges of the
redshift distribution, most notably for the low-redshift end of
the QSO distribution and the high-redshift end of the LRG
distribution. These are all summarized in Table 1.

Some sources have zero weight owing to RFI masking and
outlier cuts. In Table 1 we give the total number of sources
within the frequency band being analyzed and an effective

source number, defined as the number of sources lying within a
voxel with nonzero weight. Depending on the frequency range,
this is typically ∼50% of the total source number.
In Table 1 we also list five additional catalogs that are

subdivisions of the QSO catalog, the largest and broadest
redshift sample. The three catalogs QSOb0, QSOb1, and
QSOb2 divide the redshift span into three roughly equal parts
from lowest to highest redshift; the two catalogs QSOb00 and
QSOb01 further divide the lowest-redshift catalog into two
more catalogs. These additional catalogs will be used in later
analysis of the data.

2.4. Coordinate Systems

CHIME is a transit instrument, and as such we are acutely
sensitive to the precession of Earth’s polar axis. Historically,
the celestial coordinate system has been anchored to the vernal
equinox, which makes the coordinate system sensitive to both
an unavoidable precession of Earth’s polar axis and an artificial
shift in the zero-point of the R.A. coordinate (B1950 and J2000
coordinates are realizations of this anchored at their respective
epochs).
The new system outlined in Petit & Luzum (2010) and Kaplan

(2005) fixes some of these problems. The fundamental position of
sources is given in International Celestial Reference System
(ICRS) coordinates, which are fixed and unchanging coordinates
that are essentially aligned with J2000 coordinates. Position as seen
by an observer on Earth can be given in Celestial Intermediate
Reference System (CIRS) coordinates, a frame in which the polar
axis shifts with Earth’s precession and the R.A. origin is minimally
rotated. Unlike previous equinox-based coordinates, CIRS
coordinates only contain the minimal shift required to keep the
polar alignment. As such, they are much more suited to use in
CHIME: over a 5 yr period a typical equinox R.A. position shifts
by 4 3, or around a quarter of a CHIME pixel, whereas a CIRS
position changes only by 1 5, about 1/10 of a pixel. This means
that we are able to trivially align and average data products such as
maps over much longer periods.
In this new system Greenwich Apparent Sidereal Time is

replaced by Earth rotation angle. Instead of local sidereal time,
we use local Earth rotation angle, which is equivalent to the
current CIRS R.A. of the local meridian.
Throughout this paper the celestial coordinates we use will

be CIRS coordinates at the average epoch of the data being
analyzed, and any maps presented will be in those coordinates.

Table 1
The Redshift Distribution of Each Tracer Used in the Cross-correlation Analysis

Tracer Frequency Range Source Number Effective Redshift Redshift Range

(MHz) Total Nonzero Weight zeff zmin–zmax z0.16–z0.84

LRG 585–800 39706 21615 0.84 0.78–1.00 0.81–0.87
ELG 585–800 63381 31181 0.96 0.78–1.10 0.83–1.03
QSO 585–800 94706 48046 1.20 0.80–1.43 1.00–1.36

QSOb0 700–800 26908 11960 0.97 0.80–1.03 0.85–1.01
QSOb1 650–700 23760 12311 1.12 1.03–1.19 1.07–1.16
QSOb2 585–650 44038 23775 1.30 1.19–1.43 1.23–1.39

QSOb00 745–800 11095 5299 0.84 0.80–0.91 0.82–0.87
QSOb01 700–745 15813 6661 0.99 0.91–1.03 0.96–1.01

Note. Frequency range gives the band that the analysis is limited to, whereas the redshift range gives the spread of source redshifts within that band. The z0.16–z0.84
span gives the 16% and 84% weighted percentiles giving an effective range within “1σ” of the effective redshift (the weighted median of the source redshifts). For
later analysis we further split the QSO catalog into subbands, denoted by the QSObX and QSObXY tracers.
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In the absence of better terminology, we will use sidereal day to
refer to the interval between transitions of the Earth rotation
angle through zero.

3. CHIME Data-processing Pipeline

The CHIME data-processing pipeline can be divided into
two parts, the real-time and offline pipelines. The real-time
pipeline runs on the CHIME correlator and supporting
computing infrastructure. It operates on the digitized voltages
measured by the 2048 antenna feeds, and outputs calibrated
visibilities at 1024 frequency channels spanning the 400–800
MHz band. These are integrated to roughly 10 s cadence and
further compressed by averaging over a subset of the redundant
baselines. The offline pipeline runs on Compute Canada’s
Cedar cluster. It operates on an archived copy of the visibility
data and applies additional RFI masking and calibration,
averages over all redundant baselines, interpolates onto a fixed
grid in local Earth rotation angle, flags bad data, and averages
over sidereal days. These real-time and offline operations,
which produce the data product we refer to as a “sidereal
stack,” are illustrated in Figure 3.

The CHIME real-time pipeline, offline pipeline, and analysis
code used in this work is open source and publicly available. It can
be found at https://github.com/kotekan/, https://github.com/
radiocosmology/, and https://github.com/chime-experiment/.

3.1. Real-time Processing

We refer the reader to CHIME Collaboration et al. (2022b)
for a description of the CHIME correlator, the real-time
pipeline, and the archived data products. Below we highlight
several aspects of the real-time processing that are relevant for
interpreting what follows.

3.1.1. Real-time RFI Excision

CHIME Collaboration et al. (2022b) describe an RFI
excision algorithm that runs on the CHIME correlator and is
based on the spectral kurtosis statistic calculated at 0.66 ms
cadence. This algorithm was deployed for a test period in 2019
June and then turned off until 2019 mid-October. Hence, the
majority of the data (82 of 102 nights) used for this analysis
did not benefit from fast-cadence RFI excision and rely entirely
on the offline, ∼10 s cadence excision algorithms that will be
described in Section 3.2.3. This mixed data set is processed
consistently in our analysis, but it simply has a higher rate of
flagging in the offline pipeline for the days where real-time
excision was not used.

3.1.2. Complex Gain Calibration

The complex gain of each feed is calibrated once per sidereal
day by fitting a model to the eigendecomposition of the Nfeed

2

visibility matrix during the transit of the brightest radio source

Figure 3. A schematic representation of the data-processing pipeline, starting from visibilities and culminating in the generation of the calibrated average over 102
nights that we refer to as a “sidereal stack.” The real-time pipeline (Section 3.1) performs spectral-kurtosis-based RFI excision (for a subset of the time span used in
this work; see Section 3.1.1), gain calibration, and averaging over redundant baselines within each cylinder pair. It also computes fast-cadence noise estimates that are
used as weights in several later steps. The daily processing pipeline (Section 3.2) applies a correction for clock drift between different ADCs in the CHIME F-engine,
further averages redundant baselines over cylinder pairs, applies an ambient-temperature-dependent gain correction factor, regrids the time axis of each day onto a
common grid in local Earth rotation angle, and applies data quality flags. This pipeline also constructs a time–frequency mask that targets longer-timescale RFI and
incorporates this mask in a smoothing operation applied to the noise weights. Finally, we average over sidereal days (Section 3.3), first manually identifying and
excluding bad days of data before forming several seasonal averages and then averaging these seasons together.
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that is available at night. The primary calibration source is
Cygnus A because it is the brightest radio point source in the
sky between 400 and 800 MHz. It is also unresolved by the
longest CHIME baselines and has a stable, well-characterized
spectral flux density. Cassiopeia A, Taurus A, and Virgo A are
used as alternative calibration sources when Cygnus A is
transiting during the day. If a source other than Cygnus A was
used for calibration, then the resulting gains are corrected for
differences in the primary beam pattern of each feed at the
location of the calibrator relative to the location of Cygnus A.
This “beam ratio” is characterized by averaging the ratio of the
gains from the two point sources over many nights. Hence, the
complex gain calibration effectively normalizes the primary
beam response at each frequency to unity on meridian at the
decl. of Cygnus A.

The complex gains are scaled by the flux density of the
calibrator source, such that application of the gains converts the
visibility data to units of janskys per beam. The flux density of
these sources was measured with the Karl G. Jansky VLA in
2014 and 2016 at frequencies ranging from 220MHz to
48.1 GHz. VLA legacy observations from 1998 also exist at
73.8 MHz for all sources but Casseopia A. These measure-
ments are interpolated to the CHIME band using the
polynomial expressions provided in Perley & Butler (2017,
hereafter P17). The uncertainty on the relative spectral flux
density of the calibration sources in the CHIME band is less
than 1%. The absolute flux of the P17 scale at these frequencies
is determined by measurements of Cygnus A by Baars et al.
(1977), which the authors estimate is accurate at 3%–5%.

3.1.3. Compression

The CHIME feeds are located on a regular grid, and as a
result the Nfeed

2 visibilities contain many redundant measure-
ments for each baseline. In order to compress the data, the real-
time pipeline performs a weighted average of all redundant
baselines formed from feeds on the same pair of cylinders.
Correlator inputs that are malfunctioning or otherwise
anomalous are identified and flagged in semi-real-time using
10 different tests based on a variety of data products and
housekeeping metrics. The weight given to a particular baseline
is 0 if either of the inputs that form the baseline is currently
flagged and 1 otherwise. This uniform weighting scheme will
result in lower sensitivity compared to an inverse variance
weighting scheme that accounts for feed-to-feed differences in
the noise referred to the sky. We estimate that the magnitude of
this degredation in sensitivity is approximately 5%. Note that
redundant baselines formed from feeds on different pairs of
cylinders are not averaged at this stage. This baseline collation
strategy allows for cylinder-dependent corrections and calibra-
tions to be applied offline. Below, we refer to the resulting
visibility for baseline b at frequency ν and time t as Vraw(b,
ν, t).

3.1.4. Weights

The real-time pipeline estimates the variance of the visibility
for each baseline, frequency channel, and ∼10 s integration by
differencing the even and odd 30 ms subintegrations. Since the
observed foregrounds do not change significantly on 30 ms
timescales, they cancel for this difference, leaving contributions
from RFI and intrinsic radiometric noise. This “fast-cadence

estimate” of the variance is propagated through each stage of
the real-time and offline pipeline.
In general, there is percent-level agreement between the fast-

cadence estimate of the variance and the radiometric estimate
calculated from the measured autocorrelation, frequency
channel width, and total integration time. Most cases where
the two estimates differ correspond to known periods of bad
data quality or have a temporal and spectral extent that is
characteristic of transient RFI. The fast-cadence estimate is
used to construct inverse variance weights that are used to
average over sidereal days, average over baselines during
mapmaking, and average over sources when stacking on
external catalogs. The inverse variance weights are not used to
average over redundant baselines; instead, we use the uniform
weighting scheme described in Section 3.1.3.

3.2. Daily Processing

Here we describe the daily pipeline that applies additional
processing to a copy of the archived visibility data. This
includes correcting for clock drift, averaging over redundant
baselines on different cylinder pairs, identifying and masking
RFI, correcting common-mode thermal variations in the
amplitude of the gain, interpolating the data onto a common
grid in local Earth rotation angle, and finally masking ranges of
time with poor data quality. We briefly describe each of these
stages. The primary data product output by this processing is
the visibility for all unique baselines on each local sidereal day
as a function of local Earth rotation angle at Δν=
0.390625MHz spectral resolution.

3.2.1. Timing Correction

The sampling rate of the analog-to-digital converters (ADCs)
that digitize the signal measured by the CHIME feeds is
derived from a 10MHz clock that originates from a GPS-
disciplined, oven-controlled crystal oscillator and is distributed
to the circuit boards that house the ADCs through a hierarchical
network consisting of coaxial cables, power splitters, and
amplifiers. Thermal susceptibility of this distribution network
results in copies of the clock drifting with respect to one
another on timescales set by the different refrigeration cycles of
the water chillers used to control the temperature of the
electronics. The magnitude of this effect is particularly large
between copies of the clock provided to ADCs in different
receiver huts, which are temperature controlled by independent
chillers.
The CHIME ADCs are housed in eight electronics crates.

The thermal drift between the eight copies of the clock that are
distributed to the eight crates is measured using a broadband
noise source following the procedure described in CHIME
Collaboration et al. (2022b). This yields a proxy for the drift,

( )tcd
clockdt , between the copies of the clock provided to

electronics crate c relative to electronics crate d. The visibility
is then corrected as follows:

( ) { ( ) }
( ) ( )

b
b

V t j t

V t

, , exp 2
, , . 1

bcd cdcal,1
clock

raw

n p n dt
n

= - á ñ
´

Î

Here ( )t bcd cd
clockdtá ñ Î is constructed by averaging the estimates

of the relative clock drift between the pairs of crates that
digitize the pairs of inputs that form every redundant baseline
averaged by the real-time pipeline to obtain Vraw(b, ν, t).
Applying this correction reduces the standard deviation of the
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delay noise on timescales less than 20 minutes from 4.25 to
1.5 ps on average, as inferred from the phase stability of the
signal from bright point sources. Note that further improve-
ments have been achieved by applying a more complicated,
ADC-dependent correction in real time, but the analysis
described in this work uses the simpler, offline correction
described above.

3.2.2. Redundant Baseline Collation

The timing correction described in the previous section is the
only cylinder-dependent correction that was applied for this
analysis. The next stage of the pipeline averages all redundant
baselines by performing a weighted average over the redundant
baselines measured by different cylinder pairs. The weighting
scheme used is consistent with the scheme used by the real-
time pipeline. Specifically, each cylinder pair is weighted by
the number of redundant baselines that were previously
averaged by the real-time pipeline. These weights are
constructed from the set of correlator input flags that were
used by the real-time pipeline at each time sample.

3.2.3. RFI Excision

Narrowband RFI will contaminate the high-delay modes that
our analysis relies on to avoid the spectrally smooth fore-
grounds. Hence, identifying and masking times and frequency
channels that are corrupted by RFI is critical to detect the 21 cm
signal. The RFI excision occurs in three stages, with each stage
generating a single 2D mask in (frequency, time) that is applied
to the weight data set for all baselines before proceeding to the
next stage. The first stage masks any frequency channel that
coincides with a known, persistent source of RFI. There were
two sources of persistent RFI in the 587.5–800 MHz band: the
mobile LTE bands and the local oscillator (LO) used by the
Synthesis Telescope at the Dominion Radio Astrophysical
Observatory (DRAO; Landecker et al. 2000). These two
sources occupy 14.2% of the band.

The second stage creates a mask by identifying variations in
the autocorrelation that have a spectral and temporal extent
characteristic of RFI. The average autocorrelation over the
2048 inputs is normalized at each frequency by the median
value over the local sidereal day to remove static variations in
the bandpass. The median and median absolute deviation
(MAD) are then calculated over a 2D moving window in
(frequency, time) of size (10MHz, 7 minutes). Any time and
frequency where the autocorrelation deviates from the median
by more than 5 times the MAD over the window centered on its
location is masked. The window size was calibrated by first
identifying RFI events through manual inspection of the
autocorrelations acquired on a few typical days and then
searching for a window that maximized the fraction of RFI
corrupted data that is masked while minimizing the amount of
clean sky data that is masked.

The third stage creates a mask by identifying RFI-like
variations in the visibility data from the cross-polar, intracy-
linder baseline with 10 m separation. This baseline has a
relatively large number of redundant copies and thus low
radiometric noise compared to most other baselines. RFI events
are more easily discriminated from the background radio sky in
a cross-polar visibility because the RFI is in general polarized,
whereas the radio sky is largely unpolarized at the scales at
which the 10 m baseline is sensitive. The algorithm for

identifying RFI events is similar to the algorithm applied to
the autocorrelations. The median is calculated over a 2D
moving window in (frequency, time) of size (4.3 MHz,
1 minute) and subtracted to remove background radio emission
from the sky. The MAD is then calculated over a 2D window
of size (8.2 MHz, 7.4 minutes). Any time and frequency where
the visibility deviates from the median by more than 5 times the
MAD over the window centered on its location are masked.
The window sizes were chosen using a procedure similar to
that described in the previous paragraph.
One common source of transient RFI arises from the

reflection of distant broadcast TV channels off meteor
ionization trails and aircraft. These appear in known 6MHz
wide bands and last ∼5 s. A targeted search for these events is
performed on the moving median-subtracted, cross-polar
visibility by identifying time samples where the majority of
frequencies within each TV channel are outliers. The entire TV
channel is masked if more than 50% of the frequencies within
that TV channel exceed 1.8 times the moving MAD. This
results in a false-positive rate equal to the 5M AD cut used in
the standard third-stage excision, assuming a Gaussian noise
model.

3.2.4. Thermal Calibration

Common-mode variations in the amplitude of the complex
receiver gain are corrected using a linear regression model
based on measurements of the outside temperature. Details of
the model construction and an evaluation of its performance are
provided in CHIME Collaboration et al. (2022b). To briefly
summarize, fractional variations in the amplitude of the
complex gain inferred from hundreds of bright point-source
transits are regressed against the outside temperature as
measured by the DRAO weather station at the time of transit.
The resulting thermal susceptibility increases with frequency
from 0.07%K−1 at 400MHz to 0.2%K−1 at 800MHz and
varies across inputs at the 0.05%K−1 level. The susceptibility
is averaged over the 2048 inputs, and the frequency
dependence is fit to a quadratic function. The visibility
measured by baseline b at frequency ν and time t is then
corrected as follows:

( ) [ ( )( ( ) ( ))] ( )
( )

b bV t T t T t V t, , 1 , , ,
2

cal,2
2

cal,1n a n n= + - *

where α(ν) is the quadratic model for the thermal susceptibility,
T(t) is the outside temperature at time t, and T(t*) is the outside
temperature at time t* at which the complex gain calibration
was derived by the real-time pipeline. The quantity t* is a step
function that changes once per sidereal day to the most recent
time of transit of the calibrator source. This procedure improves
the stability from roughly 0.8% to 0.5% (standard deviation in
fractional power units) by correcting the common-mode drift in
the amplitude caused by changes in the outside temperature
between daily point-source calibrations.

3.2.5. Weight Smoothing

The radiometric noise is not expected to change appreciably
on short timescales. In order to reduce the uncertainty on our
estimate of the variance of the radiometric noise and also make
our estimate less sensitive to transient RFI events, a rolling
median filter with a 5-minute window is applied to the time
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axis of the inverse variance weight data set. Any time that was
masked is ignored when calculating the median and also
remains masked after the filtering is applied.

3.2.6. Sidereal Regridding

The next stage of the daily processing pipeline interpolates
the visibilities onto a fixed grid in local Earth rotation angle f
that ranges from 0° to 360° with 4096 samples, giving a
spacing d 5. 27= ¢f . The interpolation algorithm assumes that
the processed visibilities, Vcal,2(b, ν, t), are sampled from some
regularly gridded sky visibility, Vgrid(b, ν, f), and corrupted by
both noise and RFI, denoted as n(b, ν, t). Since the sky
visibility is band limited by its maximum fringe rate and the
chosen sample rate is more than twice that, the following
relation holds:

( ) ( ) ( ) ( )b b bV t K V n t, , , , , , , 3g
h

gh h gcal,2 gridån n f n= +

where ( )K sincgh d
gh=
fD

f
is the interpolation kernel with

Δfgh= f(tg)− fh, and the summation runs over the regular
grid in local Earth rotation angle. The infinite support of the
kernel is computationally problematic, so a common approx-
imation involves truncating the kernel by multiplying it with a
window function. We use the Lanczos kernel, which is given
by
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The parameter a controls the kernel width and couples at most
4a+ 1 samples of Vgrid.

We use a Wiener filter to invert Equation (3) and solve for
the regularly gridded sky visibility, given the noisy, RFI
contaminated data. Let vcal,2 denote the vector containing the
time-ordered visibility for a given frequency and baseline. The
regularly gridded visibility vgrid for that frequency and baseline
is estimated as

ˆ ( )v CK N v , 5T
grid

1
cal,2= -

where

( ) ( )C S K N K , 6T1 1 1= +- - -

( )N N N1
noise RFI

1= +- - is the inverse covariance of the noise
and RFI, and S−1 is the inverse covariance of the sky visibility.
The noise covariance is assumed to be diagonal and equal to
the fast-cadence estimate of the variance described in
Section 3.1.4. The RFI covariance is also assumed to be
diagonal and equal to infinity for times and frequencies that are
missing or have been masked by the procedure described in
Section 3.2.3 and equal to zero otherwise. Finally, the sky
covariance is assumed to be diagonal and constant as a function
of baseline, frequency, and sidereal angle, such that
S Is1

max
2=- - , where I is the identity matrix and

s 1 10 Jy beammax
4 1= ´ - is chosen to be around the

maximum flux observed on the sky. Each frequency and
baseline is solved independently. This is made computationally
tractable by utilizing the fact that C−1 is a band matrix, which is
a consequence of the compact support of the Lanczos kernel.

Choosing the kernel width, a, is a balance between the
computational cost of the regridding (which is O(a2)) and the
accuracy of the reconstruction. We use a= 5 in this work,
which has deviations away from the ideal sinc transfer of
10−3 for the typical range of fringe rates in this analysis.
The covariance of the filtered signal is ˆ ˆ†v v Cgrid gridá ñ = as

given by Equation (6). The weight data set that tracks the
inverse variance of the noise present in the visibilities is
therefore updated to w(b, ν, fh)= 1/Chh(b, ν). The interpola-
tion scheme introduces ringing in the visibilities at the edge of
any large gap of missing or masked data, with the post-
interpolation weights at these edges gradually transitioning to
smax

2- . In order to mask these artifacts, we apply a baseline-
dependent threshold to the weight data set, setting it to zero if it
is less than 50% of the average weight over all frequencies and
sidereal angles. As these samples lie at the edge of large
periods of missing data, the relative increase in the amount of
data flagged is small.

3.2.7. Daytime, Moon, and Data Flags

Next, we apply a series of flags that exclude certain time
ranges from further analysis. The weight data set is set to zero
for any time sample that meets one or more of the following
criteria: (1) the Sun is above the horizon (52% flagged), (2) the
Moon is within 5° of the meridian (3% flagged), (3) the data
quality is poor as indicated by a “bad data flag” in our database
(36% flagged).
The database that is used for the last item is updated external

to the daily pipeline and contains a variety of flag types based
on different metrics for data quality. The following data flag
types were employed in this analysis:

Rain: Mask any time where the accumulated rainfall during
the 30 hr prior was greater than 1 mm. This condition finds
intervals where a large number of feeds are likely to be wet.
Precipitation at the site causes analog signal corruption in
4%–12% (interquartile range) of the feeds due to water
pooling on the focal line (CHIME Collaboration et al. 2022b;
10% flagged).
Jumps: Mask any time where the autocorrelation for five or
more feeds has shown a sudden (30 minutes), broadband
increase of more than 20% in the past 30 hr. This condition,
too, is designed to find intervals where a large number of
feeds are likely to be wet (29% flagged).
Correlator restart: Mask the interval between a correlator
restart and the next daily point-source calibration. The FPGA
resynchronization that occurs during a correlator restart
introduces a change in the relative phase between feeds
digitized by different ADC chips that is nonnegligible with
respect to our requirements on phase stability (7.1% flagged).
Acquisition restart:Mask the interval between a restart of the
data acquisition software and application of the calibration
gains (2.8% flagged).
Bad calibration: Mask any time where the calibration gains
were not updated in the past 24 hr. Also mask intervals where
poor-quality gains were applied to the visibility data as
determined by several metrics that are generated by the real-
time pipeline and monitored by the telescope operator (0.4%
flagged).

CHIME acquired 245 days of integration time during the
309-day period between 2019 January 1 and November 6. The
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64 days of instrument downtime consisted of 55 days of
planned hardware maintenance and software upgrades and
9 days of unintended interruptions due to power failures,
cooling failures, and other accidental outages. The flags
described above exclude 70% of the remaining data from the
stacking analysis, with the daytime and rain/jumps flags
representing the primary sources of data loss. After applying
these flags, the total integration time is 1760 hr, of which 834 hr
was spent observing the range of R.A. containing the NGC
field. This total is further reduced by the sidereal day flags that
will be described in Section 3.3.1.

3.3. Averaging Sidereal Days

After the individual days have been flagged and processed to
a common grid in local Earth rotation angle, the days are
averaged together to produce a high-sensitivity measurement of
the sky.

This process is complicated by the presence of noise
crosstalk, a bias in the zero-level of a non-autocorrelation
visibility. Physically this requires both signal chains being
correlated to share a common source of thermal noise. We
expect there to be two major contributors to this: one is the
leaking of thermal noise generated within the low-noise
amplifier on one signal chain that is broadcast by the antenna
and received (directly, or by an indirect path) by another
antenna; another source is antennas seeing thermal emission
from the ground by a direct path or by scattering or diffraction
from nearby structures. The correlation of this common source
of noise yields a bias in the visibility between the two antennas.
A thorough investigation of the source of the crosstalk is
beyond the scope of this paper; however, we will discuss the
crosstalk briefly in Section 3.3.4.

We observe the crosstalk to be relatively stable in time,
varying slowly over the course of 1 day (we quantify this in
Section 3.3.4). In practice, this allows the crosstalk removal to
be performed by estimating and removing a single time-
independent signal from each day for each frequency and
baseline. However, as the crosstalk signal is not known a priori
and must be measured from the data, it is degenerate with any
constant sky signal within the time period being used to
estimate it.

As we use only nighttime data spread over a year, there is no
single period in common between all days that we can choose
as a reference. To account for this, we break the sidereal
averaging into two stages: the first operates on data taken from
each quarter of the year, and the second combines those into a
full stacking of the data.

3.3.1. Sidereal Day Flags

Prior to averaging the sidereal streams, we make further cuts
to the data. Any sidereal day with less than 80% of the day
remaining after applying the data flags in Section 3.2.7 is
rejected, as is any day where less than half the crosstalk
reference range is available (see next section).

Finally, each day is manually inspected via a standardized
set of visualizations:

1. A delay power spectrum for each baseline generated by
averaging over all unmasked time samples (see
Appendix A). This presents a holistic summary of all

elements of the data and is particularly powerful for
illustrating poor RFI flagging and misbehaving baselines.

2. A sensitivity plot showing the estimated point-source flux
sensitivity found by appropriately averaging the fast-
cadence estimate of the variance over all baselines at each
time and frequency. This is another summary of the
whole data set and is a good diagnostic of RFI excision
performance.

3. A sky map (see Section 4.3) at two different frequencies
and its difference from a day-averaged map. This is not a
complete summary, as it does not incorporate information
from every frequency, but is very effective at identifying
poor calibration.

Each day was inspected by at least two people, and any day
flagged by at least one person was removed from further
analysis.
After all these cuts are applied, 102 sidereal days remain for

averaging. After also applying the flags described in
Section 3.2.7, the 102 sidereal days contain 1073 hr of
integration time. Of this, 521 hr was spent observing the range
of R.A. containing the NGC field.

3.3.2. Sidereal Averaging (Seasonal)

The first stage of sidereal averaging combines data from a
single quarter of each calendar year and assigns each “good”
day of data into alternating partitions of the data. By splitting
into partitions per quarter, we are able to produce two jackknife
splits of our data that have approximately the same sensitivity
and sidereal coverage; these will be used for consistency tests
in Section 7.2.
For each quarter, we pick a single hour-long range in local

Earth rotation angle that is observed within the nighttime for
the entire quarter and avoids the transits of bright point sources.
This time range is used to reference the crosstalk signal for the
entire quarter. We illustrate these ranges for each quarter, as
well as how the quarters overlap with the eBOSS NGC field, in
Figure 4.
Every day we calculate the median over this time range for

each visibility and subtract it from the data for that day.
Assuming that the crosstalk signal is approximately constant
across the day, this procedure will remove that day’s crosstalk
contamination and a small amount of the sky signal, which is
the same across all days within the quarter. It is important to
use consistent estimates of the crosstalk; therefore, if more than
70% of the data within this reference range are missing for a
frequency on a given day, the entire frequency will be flagged
out for the whole day. This differs from the initial selection
discussed in Section 3.3.1, as it is determined from the full
frequency-dependent missing data mask for that day, not just
the frequency-independent data flags.
After the crosstalk has been removed consistently from all

days within the quarter, the days within each partition are
averaged together with an inverse variance weighting.

3.3.3. Sidereal Averaging (All)

The second stage of sidereal averaging is to combine the data
for all quarters and partitions. As the crosstalk removal uses a
different sky reference region for each quarter, a simple
averaging would introduce discontinuities at the boundaries. To
account for this, we exploit the overlap in local Earth rotation
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angle of the nighttime data for each quarter with its neighbors
to solve for the differences and set a common reference.

To do this, we treat our estimate of the regularly gridded
visibility vgrid,i (where we have dropped the ˆ symbol to
simplify notation) for each frequency and baseline within a
partition i (out of p total partitions) as being composed of a
signal v that we are interested in that is constant for all
partitions, a noise ni, and a residual crosstalk contribution xi
that is different for each partition and also incorporates the bias
from the per-partition crosstalk referencing. We write this as

( )v v n x . 7i i igrid, = + +

We model the statistics of each component as having zero
mean with covariance matrices 〈vv†〉= S, †n n Ni i iá ñ = , and

†x x Xi iá ñ = . As the crosstalk has little time variation, we model
the residuals as a low-rank contribution (with rank k), allowing
us to factorize the covariance as X=UU†, where U is a
rectangular matrix. Though the crosstalk referencing means
that the modes xi may be very different, we assume that the
crosstalk statistics are the same across all partitions, so X does
not depend on i. The noise matrix Ni is assumed to be diagonal
and includes both the noise expected in the data (Section 3.1.4)
and any masking that has been applied (Sections 3.2.3 and
3.2.7), encoded in the standard way of setting the inverse
variance to zero for masked samples. Although the averaging
over sidereal days has reduced the number of samples that are
flagged entirely, ranges of R.A. observed during the daytime
for the entire quarter and badly RFI-contaminated frequencies
will still be masked.

To solve for the signal, we start by writing a Wiener
estimator for s treating both ni and xi as a generalized noise

⎡
⎣⎢

⎤
⎦⎥

ˆ ( ) ( )v C N X v , 8
i

i i
1
grid,å= + -

where the covariance matrix C is defined by

( ) ( )C S N X . 9
i

i
1 1 1å= + +- - -

A naive application of this scheme would require tracking and
inverting a large matrix for each frequency, but we can simplify
it by repeated application of the Woodbury matrix identity.23

First, we expand the Ni+X term, allowing us to regroup
Equation (9) as

( )†C C WW , 101
0
1= +- -

where

( )C S N 11
i

i0
1 1 1å= +- - -

and W is a block matrix,

( ∣ ∣ ∣ ) ( )W W W W , 12p0 1 1= ¼ -

with one block for each partition, and within each block are k
columns for each crosstalk mode and a row for each R.A.

Figure 4. In the first stage of combining individual days, we combine sidereal days within each quarter of the year. The figure above shows the R.A. range of
nighttime data for each day within a quarter (gray shaded region). The bulk of the sensitivity to the eBOSS NGC field (pink band) comes from the first two quarters of
the year, where the local nighttime better overlaps with the NGC R.A. range. In order to combine the days, we need to consistently reference the mean level of each
day to remove crosstalk. For each quarter, we pick a single hour of local Earth rotation angle (blue boxes) for which we compute the median and subtract it from each
day’s sidereal stream. These regions are chosen to be within the nighttime and avoid the transit of bright point sources, in order to minimize the bias from gain
variations.

23 The Woodbury matrix identity allows us to expand the inverse of a low-rank
update to a matrix with known inverse. In its most general form it is written as
( ) ( )A UCV A A U C VA U VA ,1 1 1 1 1 1 1+ = - +- - - - - - - with A and C square,
but potentially different sizes.
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sample. The blocks are

( ) ( )†W N U I U N U , 13i i k i
1 1 1 2= +- - -

where Ik is the identity matrix of size k, and each Wi can be
interpreted as a noise-weighted projection operator onto the
crosstalk basis for each partition.

The estimator in Equation (8) can be rewritten as

⎡
⎣⎢

⎤
⎦⎥

ˆ ( ) ( )†v C N WW v . 14
i

i i i i
1

grid,å= --

A second application of the Woodbury identity, this time to
Equation (10), allows us to write C in a more easily applied
form:

( ) ( )( )
† †C C C W I W C W W C . 15k p0 0 0

1
0= + -´

-

To produce the final estimate for the stacked signal, we need to
generate Wi for each day and retain it, accumulate
( )†N WW vi i i i

1
grid,-- to generate ˆC v1- , and then finally apply

the deconvolving matrix C, which can be done efficiently by
evaluating matrix-vector products from right to left in
Equation (15) using the accrued Wi rather than explicit
construction of C. Conceptually this final step uses the noise-
weighted overlaps between the different partitions (in the
I−W†C0W term) to solve for a consistent bias and remove it.
In the implementation within our pipeline we model the

crosstalk as a single time-independent constant mode per day (
i.e., k= 1 and U∝ 1, where 1 is a column vector filled with
ones). We also assume that both X and S are much larger than
the instrumental noise N for unmasked samples. This means
that the estimator we use does not depend on S at all, nor on the
scale of X (but it does depend on the form), and, importantly,
means that C0 is a diagonal matrix. However, this does produce
one singular mode, the sidereal average of each visibility, that
must be regularized externally. Finally, rather than using the N
for each baseline, we use an average over all baselines, which
ensures that the same linear combinations of partitions are used
for all baselines at a given frequency. We use these same linear
combinations when updating the baseline-dependent weights in
the final stack, although we drop the small correction to the
weights that comes from removing the crosstalk, which
primarily affects the off-diagonal elements of the noise
covariance that we do not track in our analysis, for memory
reasons.

As the sidereal-time-independent component of the sky is
entirely degenerate with a constant noise bias, the mean of each
sidereal stream is a singular mode. To regularize this
degenerate mode, we add a constant offset to set the median
in time of the full sidereal day to zero.

3.3.4. Crosstalk Properties

Throughout this analysis we have made the strong assump-
tion that we can model the crosstalk as a constant mode per
day. To test the validity of this, we use the estimate of the true
sky V̂ produced above and compare it with the data for each
individual day Vgrid,i. Assuming that the true sky estimate is
faithful, this allows us to estimate the time-dependent crosstalk
within that day. Practically, we do this by regressing these
inputs against each other in short time intervals for each

baseline and frequency, i.e., we fit a model

( ) ( ) ˆ ( ) ( ) ( )b b b bV G V X, , , , , , , 16igrid, n f n n f n= +

where G is an overall scaling factor and X is the crosstalk
estimate for the interval. We use 64 intervals over the sidereal
day, which gives a time resolution of ∼22 minutes. We exclude
daytime intervals from our fit, as well as periods around bright
source and lunar transits.
The accuracy of the inferred crosstalk is limited by the fact

that we do not have an independent estimate of the true sky,
and so we depend on the averaging over days that produced it
to suppress time/R.A.-dependent crosstalk variation, and that
assuming that the visibilities of the true sky have zero median
does not significantly bias the crosstalk estimate.
Using the extracted crosstalk estimates across each day, we

compute three summaries of the time dependence, which we
show in Figure 5. The first is the mean crosstalk calculated over
the full time range analyzed in this paper; the second is the
interday variation, which is defined as the variance over days
of the mean of each sidereal day; and the final summary is the
intraday variation, which is the mean over days of the variance
within each sidereal day. In all cases we have used a simple
outlier cut on the intraday variance to remove anomalous time
samples and frequencies, though some residual contributions
remain that generate the baseline-independent horizontal
banding visible in both the inter- and intraday variation. The
following summary statistics we quote are all for instrumental
Stokes I and at a frequency (≈613.7 MHz) observed to have
low levels of interference.
As we might expect, the crosstalk is significantly stronger for

baselines within a cylinder, with the rms crosstalk taken over
north–south (NS) baselines ∼30 times larger than between
neighboring cylinders and ∼70 and ∼130 times larger than the
two- and three-cylinder separations. For the intracylinder
crosstalk, the signal is strongly concentrated in the shortest
baselines, with 90% of the cumulative rms coming from
baselines 5.5 m and 99% from 12.8 m. A delay-space
analysis indicates that most of the crosstalk contributions
correspond to specific path lengths. Within a single cylinder,
the major contributions appear to be from the indirect paths
between two feeds, with one reflection from the cylinder vertex
(with smaller contribution from paths with multiple reflec-
tions); between cylinders, the major contribution is from the
direct geometric path between the feeds, with smaller
contributions from this path combined with a straight up-down
reflection of the signal at either feed. These observations lead
us to believe that the dominant crosstalk mechanism is from
rebroadcast amplifier noise, though we cannot rule out a
contribution from ground pickup. Regardless, the crosstalk
removal and analysis that follows do not depend on the origin.
The importance of the time dependence of the crosstalk

differs depending on the cylinder separation, with the fractional
contributions being larger at longer cylinder separations, where
the typical crosstalk is lower. Overall we find that the rms
intraday crosstalk variations are ≈3%, 5%, 9%, and 15% of the
mean level for the zero-to-three-cylinder separations, respec-
tively, and the interday variations ≈5%, 8%, 10%, and 17%.
We believe that the low intraday variation justifies our decision
to use a single crosstalk reference region in each day, but the
small separation between the inter- and intraday variation
means that to make further improvements we will need to
account for the time variation across each day.
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4. Stacking Pipeline

We have developed a dedicated pipeline to stack the CHIME
data on the angular and spectral locations of the sources in a
spectroscopic catalog. The pipeline takes as input the sidereal
stack that is generated by the CHIME data-processing pipeline
as described in Section 3. It subtracts the signal from the four
brightest point sources and masks corrupted frequency
channels. Next, it constructs a map of the sky at each frequency
channel, deconvolving a model for the primary beam pattern in
the process. It applies a high-pass filter to the frequency axis of
each map pixel to remove foregrounds. It then masks frequency
channels and pixels that are outliers. Finally, it stacks the maps
on the angular and spectral locations of the sources in a catalog.
The entire process is visualized in Figure 6. In what follows,
we describe each stage of the pipeline.

4.1. Point-source Subtraction

The CHIME feeds have nonnegligible off-axis response. As
a result, the signal from the four brightest point sources—
Cygnus A, Cassiopeia A, Taurus A, and Virgo A—is
significant whenever these sources are above the horizon.
The first stage of the stacking pipeline performs a targeted
removal of these four sources. All other foregrounds are
removed from the data using a spectral filter that will be
described in Section 4.5. Prior to filtering, the spectral structure
introduced by the on-axis response of the instrument is
calibrated (see Section 4.4) and deconvolved from the data (see

Section 4.3). The effectiveness of this calibration will be
quantified in Section 7.3 by comparing the recovered flux
density of a set of standard calibrators to measurements made
by other telescopes.
The following model is assumed for the contribution of the

four brightest point sources to the visibility measured by
baseline b at local Earth rotation angle f and frequency ν:

( ) ( ) ( )· ˆ ( )bV a e, , , , 17b n

s
s

j c
psrc

1

4
2 ,s sån f n f= pn q f f

=

-

where as(ν, f), θs, and fs denote the primary-beam-modulated
amplitude, decl., and R.A. of source s, respectively; n̂ is the
unit vector pointing toward the source’s location; and c is the
speed of light. At every frequency and local Earth rotation
angle we estimate the set of source amplitudes a using
weighted linear regression:

ˆ ( ) ( )† †a Z N Z Z N v. 181 1 1= - - -

Here v is a vector containing the visibilities for a selection of
baselines,

( )· ˆ ( )Z e 19b n
is

j c2 ,i s s= pn q f f-

is the geometric phase factor for baseline i and source s, and N
is the noise covariance. As before, we assume that the noise
covariance is diagonal and equal to the propagated fast-cadence
estimate of the variance (see Section 3.1.4).

Figure 5. The crosstalk observed in CHIME has complex spatial, spectral, and temporal behavior. In the top row we show the magnitude of the time-averaged
crosstalk in instrumental Stokes I as a function of cylinder separation (columns), north–south baseline length (horizontal axis), and frequency (vertical axis). In the
bottom two rows we compare the time variability calculated on different scales: the middle row shows the variation observed on timescales longer than a day, and the
bottom row shows scales less than a day. In both cases the amount of variation is much lower than the average crosstalk level, with the typical fractional variation
5% for the zero cylinder separation, and slightly higher at larger separations. The intraday variation is particularly susceptible to RFI and instrumental issues, leading
to the excess variation seen in horizontal bands.

13

The Astrophysical Journal, 947:16 (59pp), 2023 April 10 The CHIME Collaboration et al.



The amplitude as is equal to the spectral flux density of
source s modulated by the power beam pattern of the
instrument at the source’s coordinates and is expected to vary
slowly as a function of frequency and hour angle. To improve
the signal-to-noise ratio, the best-fit amplitude for each source
is smoothed in (ν, f) by iteratively applying a 2D moving
average window with size (1.2 MHz, 0°.44) and number of
iterations (12, 8). The model for the four brightest sources is
then computed using Equation (17) and subtracted from the
data. Note that only visibilities measured by baselines
consisting of feeds on different cylinders are used to solve
for the source amplitudes—because contamination from diffuse
Galactic emission and noise crosstalk is significantly reduced
for these intercylinder baselines—but the resulting model is
subtracted from all baselines.

4.2. Frequency Mask

The inverse variance weights are multiplied by a global
frequency mask that completely excludes certain frequency
channels from the stacking analysis. The list below gives the
conditions under which a frequency channel is masked and the
fraction of the 587.5–800 MHz band that meets each
condition.

1. Mask any frequency channel that coincides with a
known, persistent source of RFI. There were two sources
of persistent RFI in the 587.5–800 MHz band: the mobile
LTE bands, and the LO used by the Synthesis Telescope

at DRAO (Landecker et al. 2000). These are shown in
Figure 2 (14.2% masked).

2. Mask any frequency channel where the sidereal stack is
missing a subset (or all) of the full sidereal day, which
prevents a straightforward application of the m-mode
transform required for mapmaking. This could be due to a
GPU node that was not operational for a significant
portion of 2019, as one example (12.5% masked).

3. Mask any frequency channel where the total integration
time over the range of R.A. coinciding with the NGC
field is less than 75% of the maximum over frequencies.
Again, most often this is due to a temporarily nonopera-
tional GPU node (5.9% masked).

4. Mask any frequency channel where manual inspection of
the foreground-filtered map in an initial iteration of the
analysis revealed residuals that are large relative to the
expected radiometric noise and corrupt a significant
fraction of the NGC field. This procedure is described in
greater detail in Section 4.6 (14.7% masked).

In total, these four conditions mask 47.2% of the 587.5–800
MHz band.

4.3. Mapmaking

The next step in the data processing is to construct a map
from the sidereal visibilities. We use a mapmaking technique
that is tailored to CHIME, or effectively any transit radio
interferometer consisting of cylindrical telescopes oriented in
the NS direction with a close-packed array of antennas along

Figure 6. A schematic representation of the stacking pipeline, proceeding from the sidereal stack described in Section 3.3. After subtraction of the four brightest point
sources (Section 4.1), sky maps are formed (Section 4.3), accounting for a global frequency mask (Section 4.2) and a model for the primary beam pattern (Section 4.4).
Our foreground filtering scheme is designed to reject components of the data with variance far in excess of the expected thermal noise and includes a high-pass delay
filter (Section 4.5) and several additional masking operations (Section 4.6), including masking of frequencies that are attenuated by the delay filter. Finally, the filtered
maps are stacked at the positions of objects in each eBOSS catalog (Section 4.7).
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the axis of each cylinder. The technique draws on the work
presented in Shaw et al. (2014) and Masui et al. (2017) but is
distinct and has not been described elsewhere, so we go into
considerable detail in this section. Note that these types of
maps are referred to as deconvolved ringmaps in CHIME
Collaboration et al. (2022b).

4.3.1. Baseline Configuration

To good approximation, the CHIME baselines bc are located
on a 2D grid that lies in the plane tangent to Earth’s surface at
(latitude, longitude) ≡ (Λ, Φ)= (49°.320709, − 119°.623677).
The 2D grid is given by

ˆ ˆ ( )b x yxd yd , 20c cx c y= +

where x̂c is the unit vector that is orthogonal to the cylinder, ŷc
is the unit vector parallel to the cylinder, dx= 22.0 m is the
(center-to-center) cylinder spacing, dy= 0.3048 m is the
spacing of the feeds along the focal line, and the grid indices
are denoted by x ä [−3, 3] and y ä [−255, 255].

The sidereal visibilities are arranged onto this 2D grid. Let
( )V ,xy

pq n f denote the visibility measured at frequency ν and
local Earth rotation angle f by the baseline at the (x, y) grid
position. The variables p, q ä {X, Y} refer to the polarizations
of the two antennas that form the baseline, with the dipole of
the X and Y polarizations oriented in the x̂c - and ŷc-directions,
respectively. The analysis presented in this work will only use
the co-polar baselines, XX and YY, so that p= q, and we drop
the redundant index in the notation going forward. Note that it
is assumed that the visibilities have conjugate symmetry about
the origin, specifically

( ) ( )V V . 21x y
p

xy
p

, º- - *

The CHIME cylinders were aligned with the NS direction by
design. However, we have empirically determined that the
cylinders are rotated by ψ=− 0°.071 with respect to true
astronomical north using observations of a large number of
bright point sources (CHIME Collaboration et al. 2022b). Let
b= R(ψ)bc denote the baselines in a coordinate system where x̂
is aligned with the east–west (EW) direction, ŷ is aligned with
the NS direction, and

⎡
⎣⎢

⎤
⎦⎥

( ) ( )R
cos sin
sin cos

22y
y y
y y

=
-

is the rotation matrix that transforms between the cylinder-
based coordinate system and the NS based coordinate system.

The measured visibility is the true sky visibility  corrupted
by noise n,

( ) ( ) ( ) ( )V n, , , . 23xy
p

xy
p

xy
pn f n f n f= +

The sky visibility  is the integral of the spectral flux density,
S, of the sky multiplied by the primary beam pattern, A, of the
two feeds and a geometric phase factor set by the baseline
between the feeds:

( ) ∣ ( )∣

( ) ( )

· ˆ ( )A e

S d d

, , ,

, , cos . 24

b n
xy
p p j c2 2 , òn f n q f f

n q f q q f

= ¢ - ¢

´ ¢ ¢ ¢ ¢ ¢

pn q f f¢ - ¢

Here c is the speed of light and ˆ ( )n ,q f f¢ - ¢ is the unit vector
pointing toward decl. q¢ and hour angle HA f fº - ¢ and is

given by

ˆ ( ) ( ) ˆ
( ( )) ˆ
( ( )) ˆ ( )

n x
y
z

, cos sin

cos sin sin cos cos

sin sin cos cos cos , 25

q f f q f f
q q f f
q q f f

¢ - ¢ = - ¢ - ¢
+ L ¢ - L ¢ - ¢
+ L ¢ + L ¢ - ¢

with Λ denoting the latitude of the telescope. Note that
Equation (24) assumes that the primary beam pattern is the
same for all feeds of a given polarization. It also assumes that
there are no residual complex gain variations.

4.3.2. North–South Beamforming

The CHIME power beam, |A|2, is reasonably compact in the
hour-angle direction. The FWHM of the main lobe is 2°.1
(2°.5) for the Y (X) polarization in the 587.5–800 MHz band,
and the sidelobes are 1% (CHIME Collaboration et al.
2022b). If we restrict the integral in Equation (24) to the range
of hour angles covering the main lobe of the primary beam,
then we can expand the geometric phase to first order in the
small angles HA and ψ to obtain

· ˆ ( ) [ ( ) ( )]
( )

( )

b n xd

yd

, sin cos

sin .

26

x

y

q f f q y q f f
q

¢ - ¢ = ¢ - L - ¢ - ¢
+ ¢ - L

The geometric phase due to the y component of the baseline is
given by the second term in Equation (26). Since this term
depends only on decl. and does not depend on hour angle, we
can form a linear combination of all visibilities with the same x
so that only signal from a specific decl., θ, adds coherently:

( ) ( ) ( )

( )

( )V W V e, , , , ,

27

x
p

y
xy
p

xy
p j yd c2 sinyån f q n f n f= pn q- -L

where

( ) ( ) ( ) ( )W w
y
w, , , 28xy

p
xy
p

xy
pån f n f n f=

¢
¢

denotes the relative weights, which are normalized to preserve
point-source flux. This beamforming operation is repeated for a
grid of pointings that span from horizon to horizon and are
equally spaced in ( )sin q - L . This operation can be done
efficiently with a fast Fourier transform (FFT), but, in practice,
we evaluate the expression directly to ensure that the grid of
pointings is the same for all frequencies.
We will refer to ( )V , ,x

p n f q as the hybrid beamformed
visibility, since the NS component of the baseline has been
beamformed to a specific decl., but there is still fringing
associated with the EW component of the baseline. Combining
Equations (24)–(27), we obtain the following theoretical
expression for the hybrid beamformed visibilities:

( ) ( ) ( )

( ) ( )

ˆ
b B

S d d

, , , , , , ,

, , cos , 29

x
p p

x
p

synth
, òn f q n q q f n q f f

n q f q q f

= ¢ ¢ - ¢

´ ¢ ¢ ¢ ¢ ¢

q

where

( )
∣ ( )∣

( )

[ ( ) ( )]

B

A e

, ,

, ,
30

x
p

p j xd c2 2 sin cosx

n q f f
n q f f
¢ - ¢

= ¢ - ¢ pn q y q f f¢-L - ¢ - ¢
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will be referred to as the beam transfer function and

( )

( ) ( )
ˆ [ ( ) ( )]

31

b W e, , , ,x
p

y
xy
p j yd c

synth,
, 2 sin sinyån q q f n f¢ =q pn q q¢-L - -L

is the synthesized beam in the q̂-direction. The top panel of

Figure 7 shows an example of
ˆ

bsynth
q for the weighting scheme

used in this analysis.
The absolute weights in Equation (28) are set to the inverse

variance of the corresponding visibility, i.e.,

( ) [ ( ( ))] ( )w V, Var , , 32xy
p

xy
p 1n f n f= -

which will maximize the point-source sensitivity since the
amplitude of a true point source is the same for all baselines.
We describe how the variance of the visibilities is estimated in
Section 3.1.4. The inverse variance weights scale approxi-
mately as the number of redundant baselines that are averaged
together by the real-time pipeline to produce ( )V ,xy

p n f , which
scales with the NS baseline distance as (256− |y|). As a result,
the inverse variance weights produce an approximately
triangular window function in y. This yields a synthesized

beam
ˆ

bsynth
q that has an FWHM ranging from 0°.35 at 585MHz

to 0°.25 at 800MHz and sidelobes that range from 0.05 to 10−4

of the peak. Note that, instead of inverse variance weights, we
could set the weights to any window function that further
suppresses the sidelobes at the expense of point-source
sensitivity.

In principle, the synthesized beam
ˆ

bsynth
q depends on both the

EW baseline distance x and the local Earth rotation angle f,
because the inverse variance weights change with these
parameters. However, the weights that are used in this analysis
yield a synthesized beam that is quite stable with f and similar
across x. Indeed, the standard deviation of the synthesized
beam over f is at most 0.1% (relative to the peak) over all
polarizations, frequencies, and decl., and the standard deviation
over x is at most 2%. In order to simplify the derivation that
follows, we will drop the dependence of the synthesized beam
on both f and x. This assumption can be enforced directly—
while maintaining roughly the same sensitivity—by explicitly
using the triangular window function, or, in other words, by
setting wxy(ν, f)= 256− |y|. Doing so, we find no appreciable
change in either the signal or noise in the stacks on the eBOSS
catalogs.

The regularly gridded baselines do not Nyquist sample the
visibility of the sky in the ŷ-direction for frequencies

492 MHzc

d2 y
n » , which includes all frequencies considered

in this analysis. As a result, the hybrid beamformed visibilities
will suffer from aliasing. In this derivation, the effects of aliasing

are encoded in the synthesized beam
ˆ

bsynth
q . Let ( ) 1c

dy
b n º -

n
.

If ( ) ( )sin q b n- L < - or ( ) ( )sin q b n- L > , then the
synthesized beam will have two main lobes, one centered on
the desired decl. q q¢ = and a duplicate centered on the
frequency-dependent aliased decl. ( )aliasq n¢ , given by

the equation

⎧

⎨
⎪

⎩⎪

( ( ) )

( ) ( ) ( )

( ) ( ) ( )

( )

c

d
c

d

sin

sin if 1 sin

sin if sin 1.

33

y

y
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 

 

q n

q
n

q b n

q
n

b n q

¢ - L

=

- L + - - L -

- L - - L

Hence, the hybrid beamformed visibility ( )V , ,x
p n f q will

contain equal contributions from the sky (modulated by the

Figure 7. The synthesized beam (i.e., the point-spread function of the map) for
the Y polarization array at decl. θ = 0°. Each color corresponds to a different
frequency as described in the legend in the bottom panel. The top panel shows
the synthesized beam in the q̂-direction (see Equation (31)). The x-axis is
uniformly spaced in the sine of the zenith angle and spans from horizon to
horizon, with the region to the right of the NCP annotation corresponding to the
antipodal transit at hour angle = 180°. The synthesized beam has sensitivity to
both the beamformed decl. at 0q¢ =  and—due to aliasing—a second
frequency-dependent decl. at ( )aliasq n¢ (see Equation (33)). The inset panel
zooms in on ±5° from the beamformed decl. The bottom panel shows the
synthesized beam in the f̂-direction (see Equation (47)). The exclusion of
intracylinder baselines in the mapmaking procedure results in negative
shoulders on either side of the main lobe. Aliasing in the f̂-direction results
in two grating lobes with amplitudes that are 40% of the amplitude of the main
lobe. As the regularization parameter η → 0 (see Equation (45)), the primary
beam is perfectly deconvolved (assuming an accurate primary beam model)
and the grating lobes disappear. For this analysis we have chosen a relatively
large value of η, which results in better point-source sensitivity but larger
grating lobes.
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beam transfer function) at q¢ and ( )aliasq n¢ . This is illustrated in
the top panel of Figure 7. At the upper edge of the band, β
(800MHz)= 0.23, which implies that there is a stripe of the
sky centered on zenith (specifically θ ä [36°.0, 62°.6]) that is
free from aliases at all CHIME frequencies. Outside of this
stripe, the aliased sky is heavily attenuated in the intercylinder
baselines by utilizing the fact that it will fringe at a different
rate than the true sky. This is discussed further below.

The first sidelobe of the synthesized beam in the q̂-direction
has an amplitude that is 5% of the amplitude of the main lobe,
the next sidelobe is 1%–2%, and beyond roughly 2° separation
all sidelobes are below 0.5%. We therefore assume that a
hybrid beamformed visibility is dominated by the sky at a
narrow range of decl. centered on θ. This assumption will start
to break down at right ascensions that coincide with bright
foregrounds. This problem is mitigated to a certain extent by
subtracting the four brightest point sources directly from the
sidereal visibilities, as explained in Section 4.1, and using only
intercylinder baselines that resolve out the bright, diffuse
Galactic emission, which will be explained below.

4.3.3. Primary Beam Deconvolution

Since the beam transfer function does not change appreci-
ably on scales less than the FWHM of the synthesized beam, it
can be brought outside of the integral over q¢ in Equation (29),
resulting in the following equation:

( ) ( )

( ) ( ) ( )ˆ

B d

b S d

, , , , cos

, , , , . 34

x
p

x
p

p
synth
,

 ò
ò

n f q n q f f q f

n q q n q f q

= - ¢ ¢

´ ¢ ¢ ¢ ¢q

Given a model for the primary beam A, the beam transfer
function is computed using Equation (30) and then decon-
volved from the hybrid beamformed visibilities at each decl. to

recover the flux density of the sky S convolved with
ˆ

bsynth
q . The

construction of the primary beam model will be described in
Section 4.4. The FFT of the hybrid beamformed visibility is
taken along the f-axis,

˜ ( ) ( ) ( )V
N

V e,
1

, , . 35xm
p

n
x
p

n
jm nån q n f q=

f

f-

Here the sum runs over the Nf= 4096 samples on the grid in
local Earth rotation angle and the m-modes range over [−2047,
2048]. We will refer to this operation as the m-mode transform
going forward. The same operation is performed on the beam
transfer function. Figure 8 provides an example of the m-mode
transform of both the hybrid beamformed visibility and the
beam transfer function.

The beam transfer function is then deconvolved from the
data in m-space using a Tikhonov regularization scheme

˜ ( )
( ) ˜ ( ) ˜ ( )

( ) ∣ ˜ ( )∣
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where

( ) ( ) ( ) ( )W w w 37x
p

x
p

x
x
pån n n=

denotes the relative weight given to each EW baseline and η is
a regularization parameter. The different EW baselines measure

a largely disjoint set of m-modes, with each baseline primarily
sensitive to the range of m values centered on

( ) ( ) ( )m xd c, 2 cos , 38x xcenter, n q pn q= -

with width

( ) ( ) ( )m w c, 2 cos , 39width n q pn q=

where w= 20 m is the width of the cylinder. However, there is
some mild overlap that is dependent on the aperture
illumination and accounted for by the m-mode transform of
the primary beam pattern. Equation (36) first performs a
weighted average of the measurements made by the different
EW baselines and then deconvolves the primary beam by
effectively dividing by the corresponding weighted average of
the m-mode transform of the beam transfer function. The
regularization parameter η is the assumed inverse signal-to-
noise ratio. It defines which m-modes are signal dominated, and
hence should be divided by the beam, and conversely which m-
modes are noise dominated, and hence should not be amplified
further by dividing by the beam.
We set

⎧
⎨⎩

( ) [ ( )] ∣ ∣ ( )w
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0 0
0,

40x
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=
>-
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, 41x
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2
2ås n s n f=

f

is the variance of the noise in the m-mode transform of the
hybrid beamformed visibility and

⎛

⎝
⎜

⎞

⎠
⎟[ ( )] ( ) ( )w, , 42x

p

y
xy
p2

1

ås n f n f=
-

is the variance of the noise in the hybrid beamformed visibility.
This weighting scheme masks all intracylinder baselines and
propagates the inverse variance weights through the beamforming
and m-mode transform for intercylinder baselines. The redun-
dancy of the array results in ( ) [ ]W 0.0, 0.5, 0.333, 0.166x

p n »
for |x|= [0, 1, 2, 3], corresponding to the intracylinder
autocorrelation that is removed, the three-fold redundancy in the
one-cylinder separation, the twofold redundancy in the two-
cylinder separation, and the single appearance of the three-
cylinder separation.
The intracylinder baselines are masked for this analysis

because they contain two sources of contamination that are
significantly reduced in the intercylinder baselines: (1) large-
scale diffuse Galactic emission, and (2) noise crosstalk (see
Section 3.3). Since the noise crosstalk changes slowly with
time, it contaminates only low m, which is where the signal
from the sky resides for intracylinder baselines. Note that the
signal from the sky at decl. near the north celestial pole (NCP)
will also appear at low m, even for intercylinder baselines.
However, the maximum decl. of sources in the eBOSS NGC
field is 60°, which is far enough from the NCP that the
crosstalk contamination in the intercylinder measurements is
negligible.
The beam transfer function of the intercylinder baselines is

largely insensitive to the range of m-modes occupied by the
aliased sky for the decl. considered in this analysis. This can be
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shown in a rough way using Equations (33), (38), and (39). The
NGC field spans decl. from 13° to 60°, and over this range
there is zero overlap between ( ) ( )m m, ,xcenter,

1

2 widthn q n q

and ( ( )) ( ( ))m m, ,xcenter, alias
1

2 width aliasn q n n q n for all ν and
for all x> 0. However, examining Figure 8, it is clear that for
θ 20° our actual beam model does have some sensitivity to
the aliased sky for the x= 1 baseline. Therefore, although the
deconvolution procedure will heavily attenuate the aliased sky,
it is still expected to introduce some nonnegligible
contamination.

The regularization parameter is set to η= 10−4. This value
was chosen by constructing a map for several different values
of η between 10−6 and 10−3 and choosing the value that
maximizes the point-source sensitivity. Note that smaller
values of the regularization parameter result in better
deconvolution of the primary beam in the f̂-direction, but also
higher noise, and were thus disfavored for the analysis
presented in this work.

Finally, the deconvolved map is obtained by taking the
inverse m-mode transform

( ) ˜ ( ) ( )M M e, , , . 43p

m
m
p jmån q f n q= f

4.3.4. Map Normalization

In order to determine the correct normalization for the map,
we consider a radio sky that contains a single point source with

unit flux density at decl. θ and local Earth rotation angle f¢. The
m-mode transform of the hybrid beamformed visibilities at that
decl. is given by

˜ ( ) ˜ ( ) ( )B e, , . 44xm
p

xm
p jm n q n q= f- ¢

The source profile along the f-axis of the resulting map is
therefore
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and the peak flux density of the source is ap(ν, θ, 0), which in
general is not equal to unity. Therefore, in order to preserve the
point-source flux through the mapmaking process, the map is
normalized as

( ) ( )
( )

( )M
M

a
, ,

, ,

, , 0
46p

p

p
n q f

n q f
n q



and the synthesized beam in the f̂-direction is given by
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. 47p
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The bottom panel of Figure 7 shows an example of
ˆ

bsynth
f for the

weighting scheme, regularization parameter, and beam model
employed in this analysis.

Figure 8. The m-mode transform of the hybrid beamformed visibilities (top row) and beam transfer function (bottom row) for the Y polarization array at frequency
ν = 700.78125 MHz. Each column shows a different EW baseline separation. The dashed cyan lines are given by ( ) ( )m m, ,xcenter,

1

2 widthq n q n (see Equations (38)
and (39)) and enclose the range of m where that baseline has the bulk of its sensitivity to the sky. By convention, the positive intercylinder baselines (x > 0) measure a
negative fringe rate (negative m) for the sky south of the NCP and a positive fringe rate (positive m) for the sky north of the NCP. In the top row, the aliased sky is
annotated in the x = 3 column and is also clearly visible in the x = 2 and x = 1 column, but it overlaps entirely with true sky for the intracylinder baselines at x = 0. In
general, the aliased sky and true sky are well separated in m-space for the intercylinder baselines. The bright features at approximately 20°, 40°, and 60° decl.
correspond to residual signal from Taurus A, Cygnus A, and Cassiopeia A, respectively. The leakage from Cassiopeia A to other decl. is clearly visible in the x = 3
panel. In the bottom row, there is ringing outside of the dashed cyan lines because our model for the primary beam pattern has been truncated so that it only includes
the main lobe (see Appendix B).
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The resulting map is modeled as

( ) ( ) ( ) ( )M n, , , , , , . 48p p pn q f n q f n q f= +

Here  is related to the flux density of the sky through the
relation

( ) ( ) ( )

( ) ( )

ˆ ˆ
b b

S d d

, , , , , ,

, , cos , 49

p p p
synth
,

synth
, òn q f n q q n q f f

n q f q q f

= ¢ - ¢

´ ¢ ¢ ¢ ¢

q f

where the synthesized beams in the q̂- and f̂-directions can be
calculated directly from Equations (31) and (47), respectively.
The quantity np(ν, θ, f) represents the noise in the map.

4.3.5. Variance Estimation

The variance of the noise in the map is estimated as

[ ( )] ( ) [ ( )] ( )F, , , , , 50p p p
map

2
map

2s n q f n f s n q=

where [ ( )],p
map

2s n q is obtained by propagating the variance
given by Equation (41) through the mapmaking
(Equation (36)), inverse m-mode transform (Equation (43)),
and normalization (Equation (46)) procedure. The integration
time in the sidereal stack is nonuniform, primarily due to
seasonal changes in the length of the day and the likelihood of
rainfall. As a result, the variance of the noise depends on the
local Earth rotation angle. This dependence is lost when
propagating the variance through the forward and inverse m-
mode transform. The factor Fp(ν, f) approximately recovers
this dependence and is given by the weighted average over EW
baselines of the fractional change in the variance of the noise in
the hybrid beamformed visibilities, i.e.,
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where ( ),x
ps n f is given by Equation (42).

This procedure for propagating the variance through the
mapmaking has been validated as follows. We generate
visibilities that have been randomly drawn from a circularly
symmetric, complex Gaussian distribution with mean 0 and
variance equal to the expected variance of the radiometric
noise,
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where ( ), 2 m s denotes a Gaussian distribution with mean μ

and variance σ2. Estimation of the expected radiometric
variance ( ) ( )w, ,xy

p
xy
p2 1s n f n f= - is described in

Section 3.1.4. The mapmaking procedure is then applied to
this Gaussian noise realization in an identical manner as to the
data. The sample variance of the map pixels is calculated in a
2D rolling window in (θ, f) and compared to the estimate given
by Equation (50). In general, we find good agreement (5%)
between the two. This technique of processing a Gaussian noise
realization using the same pipeline that is applied to the data
will be used in other comparisons below.

4.4. Beam Calibration

Our primary beam model is obtained by deconvolving a
model for the radio sky that consists only of extragalactic point
sources from the visibilities measured with baselines that have
a large EW component. The long baselines resolve out the
diffuse Galactic emission, making a point-source-only sky
model a reasonable description of the data. There are several
high-resolution, large-area sky surveys that can be interpolated
to the 400–800 MHz CHIME band to construct this sky model.
At lower frequencies we rely on the VLA Low-frequency Sky
Survey (Cohen et al. 2007) at 74MHz and the Westerbork
Northern Sky Survey (Rengelink et al. 1997) at 326MHz. At
higher frequencies we rely on the NRAO VLA Sky Survey
(Condon et al. 1998) at 1400MHz and the Green Bank survey
(Gregory et al. 1996) at 4850MHz. The method used to
deconvolve the sky model from the data is similar to the
method used to construct a map, which was described in the
previous section. Whereas the mapmaker deconvolves a model
for the primary beam from the hybrid beamformed visibilities
to estimate the intensity of the sky, the beam calibration
deconvolves a model for the sky intensity from the same hybrid
beamformed visibilities in order to estimate the primary beam.
Appendix B describes this method in detail.
The resulting power beam, |AY(ν, θ, f)|2, for the Y

polarization array is shown in the top row of Figure 9. We
briefly describe the main features of the CHIME primary beam
pattern, referring the reader to CHIME Collaboration et al.
(2022b) for a more in-depth discussion. The large (50%)
ripples that are evident in the frequency and decl. direction are
the result of multipath interference. Radiation from the sky can
be absorbed and then reradiated by feeds or reflected off the
ground plane. It then reflects off the cylinder and interferes with
the primary path from the sky. The period of the ripple is
∼30MHz and is set by the 5 m focal length of the CHIME
cylinders. Harmonics at 60 and 90MHz, which arise from
multiple reflections off the focal line and cylinder, are also
significant, although they may not be distinguishable by eye in
Figure 9. The narrowing of the beam in the hour-angle
direction as one moves toward higher frequencies is due to
diffraction through the 20 m aperture. The apparent widening
of the beam in the hour-angle direction as one approaches the
NCP is simply due to the fact that a point at decl. θ travels cos q
degrees on the sky for every degree in hour angle that elapses.
The beam is normalized to 1.0 on meridian at the decl. of
Cygnus A (40°.73392) at each frequency in order to match how
the data are normalized during complex gain calibration. This
imprints the interference pattern at the decl. of Cygnus A onto
all other decl. The power beam for the X polarization array
exhibits the same general features but is slightly wider in both
the hour-angle and decl. direction and also has a lower response
at zenith because the dipole illuminates the cylinder less
efficiently.
In order to characterize the effect that the ripples in the beam

have on our final stacking result, we repeat our analysis with a
“control” beam that has the same large-scale properties as the
default beam model, but without the small-scale structure in the
frequency and decl. direction. The control beam is a modified
version of the analytical beam model proposed in Shaw et al.
(2015, hereafter S15) for cylindrical telescopes. To briefly
summarize the S15 model, the beam pattern of the antenna
(henceforth “base” beam) is assumed to be that of a horizontal
dipole mounted a distance λ/4 over a conducting ground plane.
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The response in the EW direction is the result of solving the
Fraunhofer diffraction problem for a dipole illuminating an
aperture with width equal to the 20 m cylinder width. The
response in the NS direction is simply the reflected amplitude
of the base beam. The primary beam of the telescope is then the
outer product of these two 1D functions.

In this work, the S15 model for the base beam is modified to
more accurately describe existing measurements of the CHIME
primary beam. The assumption that the base beam for the X
polarization is the base beam for Y polarization rotated by 90°
is abandoned. The FWHM of the base beam in the EW
direction is assumed to be polarization dependent but frequency
independent and is obtained by performing a fit to holographic
observations of several bright sources made in conjuction with
the John A. Galt 26 m telescope (see CHIME Collaboration
et al. 2022b for a description of these measurements). The
FWHM of the base beam in the NS direction is assumed to be
polarization and frequency dependent and is obtained by fitting
a flattened Gaussian to the meridian profile of the default beam
at each frequency and then fitting the resulting FWHM as a
function of frequency to a third-order polynomial in order to
smooth over the small-scale ripples while retaining large-scale
variations observed in the width of the meridian beam with
frequency. The rest of the procedure is unchanged: the beam
model is given by the outer product of an EW response
obtained by solving the Fraunhofer diffraction problem and a
NS response obtained from the reflected base beam amplitude.

The resulting beam model is shown in the bottom row of
Figure 9.

4.5. Foreground Filtering

The deconvolved map described in Section 4.3 is dominated
by emission from extragalactic point sources, which is expected
to be a factor of ∼103–105 brighter than the 21 cm signal of
interest (Santos et al. 2005). This foreground contamination can
be separated from the 21 cm signal on the basis of spectral
scale; the foregrounds are expected to be spectrally smooth,
whereas the 21 cm signal varies rapidly with frequency (Shaver
et al. 1999; Oh & Mack 2003; Liu & Tegmark 2011). For each
pixel in the map, we apply a high-pass filter along the
frequency axis to supress the foregrounds while retaining some
fraction of the 21 cm signal.
Designing an adequate filter is complicated by the fact that—

as discussed in Section 4.2—47.2% of the band has been
masked in order to remove RFI-like features and other
narrowband, instrumental artifacts. The DAYENU technique
(Ewall-Wice et al. 2021) is used to construct a linear filter for
the irregularly sampled map spectra that achieves the required
suppression at large spectral scales. In what follows, we briefly
summarize this technique.
Let τ denote the delay, which is the Fourier transform dual to

frequency ν. The following simple model is assumed for the

Figure 9. 2D slices through the 3D primary beam models. We show the power beam for the Y polarization array. The top row is the default beam model, obtained by
deconvolving a model for the radio emission from extragalactic point sources from the visibilities measured with long EW baselines. The bottom row is the control
beam model, which has similar global properties to the default, but without the small-scale spectral structure. Left: beam model as a function of decl. and frequency on
the meridian (hour angle = 0°. 0). The decl. axis is uniformly spaced in the sine of the zenith angle. The region to the right of the NCP annotation corresponds to the
antipodal transit at hour angle = 180°. Middle: beam model as a function of hour angle and frequency at a decl. of 36°. 0. Right: beam model as a function of hour angle
and decl. at 700 MHz. The region above the NCP annotation corresponds to the antipodal transit at hour angles given by the upper x-axis. The beam has been
normalized to 1.0 on meridian at the decl. of Cygnus A (40°. 73392) at each frequency in order to match how the data are normalized by the calibration procedure. The
gray band denotes frequencies where we do not have a valid model for the beam owing to persistent RFI in mobile LTE bands.
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covariance of the map as a function of τ:
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where the region below τcut is the region of delay space
contaminated by bright foregrounds, ò is a small number that
corresponds to the ratio of the radiometric noise to foreground
variance, Δν= 0.390625MHz is the width of the frequency
channel, and ( ),Dd t t¢ is the Dirac delta function. This model
results in the following analytical formula for the covariance
between frequency channel νm and νn:

[ ( )] ( )C sinc 2 . 54mn m n mn
1

cut pt n n d= - +-

where ( ) ( )x x xsinc sinº and δmn is the Kronecker delta.
To construct the filter, the delay cut ( )p

cutt q and stop-band
rejection ò are specified. Note that we allow the delay cut to
vary as a function of polarization and decl. Equation (54) is
then evaluated for each pair of frequency channels in the
587.5–800 MHz band. Rows and columns of the covariance
matrix that correspond to masked frequencies are zeroed and
the Moore–Penrose pseudo-inverse is calculated:

( ) [ ( ) ] ( )R m C m , 55p T pq q= +

where m is a vector that is 1 for valid frequencies and 0 for
masked frequencies. The filter is then applied to each map pixel
independently,
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The weights are also propagated through the filtering operation
according to
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where ( ), ,p
maps n q f is given by Equation (50).

In order to find an appropriate delay cut, the delay power
spectrum of the map is estimated as

( ) { ˜ ( )} ( )P M, Var , , , 58pt q t q f= f

where M̃ denotes the Fourier transform of the map along the
frequency axis. Direct calculation of M̃ through the FFT will
result in a point-spread function in delay space that has large
sidelobes owing to the band-limited and irregularly spaced
nature of our map spectra. This will leak power from the bright
foreground to higher delays, thus biasing our determination of
τcut. To address this, the delay power spectrum is estimated
using a Gibbs sampling method, which is described in detail in
Appendix A.

Figure 10 shows the delay power spectrum of the map as a
function of decl. for each polarization. Note that the variance
was calculated over f ä [110°, 263°], which corresponds to the
range of R.A. covered by the eBOSS NGC field. The delay
power spectrum is normalized by the delay power spectrum of
the expected radiometric noise. This is obtained by applying
the mapmaking and delay power spectrum estimation to a
Gaussian noise realization randomly drawn according to
Equation (52).

At high delays, the measured spectrum is in a good
agreement with our expectation for the noise, and at low

delays we are dominated by foreground emission. Ideally all
foreground power would be contained within the bright peak
centered on 0 ns. However, the ripples in the primary beam are
imprinted on the foregrounds, leaking power to higher delays.
The three additional peaks observed at integer multiples of
∼30 ns correspond to interference of the primary path through
the telescope with secondary paths that have undergone one,
two, and three additional reflections off the focal line and
cylinder. The amplitude of these peaks has been reduced by
deconvolving the model for the primary beam; however, they
are still significant compared to our expectation for the noise.
We are actively working on improving the accuracy of our
beam model and implementing a deconvolution procedure that
better addresses the off-axis response (see S15 for one
example) to further reduce the amplitude of these peaks. The
“U”-shaped tracks in the delay power spectrum correspond to
the brightest point sources moving through the far sidelobes. In
this case, there is a delay associated with the EW component of
the baseline that is not corrected by the mapmaking procedure
because it assumes that the instrument has no sensitivity
outside the main lobe of the primary beam. For each bright
source, there are three “U”-shaped tracks corresponding to the
three intercylinder, EW baseline separations that extend out to
progressively higher delays. Finally, at large zenith angle, or
low and high decl., the foreground power extends out to higher
delays owing to aliasing of the sky in the baselines with one-
cylinder EW separation, as explained in Section 4.3.
The stop-band rejection is set to ò= 10−12, which is much

smaller than the inverse of the dynamic range of the delay
power spectrum (∼5× 10−9). This ensures that the brightest
foreground features near 0 ns delay are attenuated to well
below the radiometric noise level.

Figure 10. Delay power spectrum of the deconvolved map for the X (top) and Y
(bottom) polarizations, normalized by our expectation for the radiometric noise.
The delay power spectrum is obtained by computing the variance of the delay
spectrum of the map over f ä [110°, 263°] (see Appendix A for details). The
dashed line is obtained by finding the minimum delay where Pdata/Pnoise < 3 at
each decl. The solid line is obtained by subtracting 75 ns from the dashed line
and corresponds to the delay cut that is used in this analysis. Note that the x-
axis has been restricted in this figure: we are sensitive out to 1250 ns, but
beyond 500 ns the measured spectrum matches our expectation for radiometric
noise.
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Our initial delay cut is defined as the minimum delay where
the measured power spectrum is less than 3 times the power
spectrum of the Gaussian noise realization. This is indicated by
the dashed cyan line in Figure 10 and results in an aggressive
filter that yields a map that is dominated by radiometric noise.
However, the dominant contamination at delays just below our
aggressive cut originates from a few bright sources in the far
sidelobes, which are easily masked. In an attempt to maximize
signal-to-noise ratio, we examine four different delay cuts that
correspond to the aggressive cut minus [25 ns, 50 ns, 75 ns,
100 ns]. For each cut, a foreground filter is constructed and
applied to both the data and a simulation of the 21 cm signal.
Next, the regions around known bright point sources are
masked. The foreground-filtered data and signal are then
pushed through the rest of the analysis pipeline, which is
described in the sections that follow. As the delay cut is
reduced, the relative increase in the noise is compared to the
relative reduction in the amplitude of the simulated 21 cm
signal. The aggressive cut minus 75 ns results in the maximum
signal-to-noise ratio of the four values tested. This is indicated
by the solid blue line in Figure 10 and will be used as the delay
cut ( )p

cutt q for the rest of the analysis.

4.6. Additional Masking

The foreground filter heavily attenuates the signal at
frequencies near the edges of the 587.5–800 MHz band and
at frequencies neighboring large spans of masked frequencies.
These heavily attenuated frequencies would be improperly
upweighted when stacking on external catalogs because the
pipeline accounts for the fact that the noise has been attenuated
but does not account for the fact that the signal has also been
attenuated. To address this, at each polarization and decl. the
median value of the nonzero diagonal elements of the filter is
calculated. Any frequency where the diagonal element of the
filter is less than 20% of the median is masked. This removes
approximately 4.2% of the 587.5–800 MHz band.

The simulations described in Section 5.3 predict that the rms
of the radiometric noise is more than an order of magnitude
larger than the rms of the 21 cm signal in the foreground-
filtered, deconvolved map. The distribution of map pixel values
is largely set by the radiometric noise, and the 21 cm signal is a
small perturbation that is only evident after averaging over a
large number of sources. The map does contain residual
foregrounds, RFI, and instrumental artifacts that are large
compared to the propagated fast-cadence estimate for the noise.
However, this excess noise is for the most part restricted to
specific frequency bins or localized to regions on the sky. The
subset of the data that exceeds our expectation for the noise is
masked using the following procedure.

The foreground-filtered, deconvolved map is standardized
by dividing the value of each map pixel by the standard
deviation from the fast-cadence estimate. These standardized
maps are examined manually at each frequency channel. Any
channel that contains residuals that both are large compared
to the expected noise and corrupt a significant portion of the
NGC field are masked. Note that the delay filter couples
frequency channels, so a channel may show significant
residuals due to the filter leaking some narrowband artifact
from an adjacent channel. This can be disentangled for the
most part by identifying artifacts with a common spatial
profile across frequencies and then masking the channel
where that artifact has the largest magnitude. It could also be

automated through an iterative procedure of masking and
foreground filtering. In the end, 14.7% of the 587.5–800
MHz band is discarded in this way. We note that newer
versions of the pipeline with improved RFI excision have
reduced this fraction to roughly 5%, and most of these
frequency channels are believed to be recoverable in future
analyses by making additional improvements to the RFI
excision algorithm and by further vetting the time ranges that
are included in the sidereal stack. The frequency mask
generated through this procedure is applied to the unfiltered
map, and the foreground filter is reapplied.
The total fraction of the 587.5–800MHz band that remains

after removing persistent RFI bands, frequencies that do not
have complete sidereal coverage, frequencies that have low
integration time for the NGC field, frequencies that show
excess noise, and frequencies near the edges of the large gaps
of missing data is 48.6%. Finally, any map pixel whose
absolute value is greater than 6σ is masked, where σ is again
obtained from the fast-cadence noise estimate. This removes
1.4% of the remaining map pixels within the NGC field. The
choice of a 6σ threshold was informed by signal injection
simulations that are described in Section 7.4. The threshold is
large enough that the resulting bias in the amplitude of the
21 cm signal is small compared to the statistical uncertainty.
Figure 11 shows the map at several stages of the pipeline
processing for a typical frequency channel; the third and fourth
panels depict the application of the 6σ mask.
Figure 12 shows in black the standard deviation of the map

pixels within the NGC field as a function of frequency after all
masking has been applied. The noise for a single frequency
channel is on average 0.6 mJy beam−1, with an increase to
1.0 mJy beam−1 in the upper 50MHz of the band. The
increased noise at high frequencies is driven by a reduction
in the primary beam response on meridian when averaged over
the decl. spanned by the NGC field, a mild increase in the
system temperature, and frequent flagging of the highest
frequencies (794MHz) by the threshold applied in the
sidereal regridding stage of the pipeline (see Section 3.2.6).
This last item will be corrected in future revisions of the
pipeline. The noise in the map is on average 50% greater than
the expected radiometric noise, which is shown in red. To
generate the expected radiometric noise, visibilities are drawn
randomly according to Equation (52) and then propagated
through the mapmaking and foreground filtering procedure. For
comparison, we also show in blue the standard deviation of the
map pixels in a jackknife of even and odd days. The procedure
for constructing this jackknife will be described in Section 7.2.
The noise in the jackknife is in better agreement with the
expected radiometric noise, except in a few 6MHz wide bands
where there is still unmasked, transient RFI. This is due to the
fact that the residual foregrounds are largely due to instrument
chromaticity that is the same from day to day and thus cancels
in the jackknife. Note that a slightly different frequency mask
was used for the jackknife because the frequency channels at
the upper edge of the band do not have full coverage of the
sidereal day in the even or odd split. This results in the
jackknife noise dropping below the expected radiometric noise
because the large filter attenuation at the upper edge of the band
is pushed to lower frequencies.
Using a more aggressive mask (3σ) removes 6.6% of the

map pixels within the NGC field and brings the measured noise
to within 22% of the expected radiometric noise on average at
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the expense of introducing a significant nonlinearity into the
analysis pipeline. Using a more aggressive mask (3σ) and more
aggressive delay filter with a cutoff that is 75 ns larger
(indicated by the dashed cyan line in Figure 10) brings the
measured noise to within 12% of the expected radiometric
noise on average. However, this results in a significant

reduction in the amplitude of the stacked 21 cm signal in
simulations, and a better signal-to-noise ratio is anticipated
using the less aggressive delay cut. Note that with either mask
or delay cut the excess noise from residual foreground, RFI,
and instrumental artifacts is comparable to or less than the
radiometric noise for the 102-day sidereal stack, assuming that
they add in quadrature.

4.7. Stacking

For each source in a given eBOSS catalog, a spectral cube
centered on the source’s location is extracted from the
deconvolved, foreground-filtered map. First, the R.A. and decl.
of the source are converted from ICRS to CIRS coordinates to
account for the precession and nutation of Earth’s polar axis.
The redshift of the source is converted to the frequency of the
redshifted 21 cm emission,

( )
z

1420.406 MHz

1
. 5921cmn =

+

The map pixel and frequency channel closest to these
coordinates are found, and ±50 pixels (channels) are extracted
in the angular (frequency) directions. This results in a spectral
cube that spans ±3° in R.A./decl. and ±20MHz in frequency.
The stacked signal is given by the weighted average of the

spectral cubes over all sources in the catalog:
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Figure 11. The deconvolved map at 700.78125 MHz at several stages of the
processing. The range of R.A. and decl. matches that of the eBOSS NGC field.
The top panel shows the map constructed from all Y polarization baselines
(excluding autocorrelations). The second panel shows the map constructed
from only the intercylinder baselines, which resolve out the diffuse Galactic
emission, leaving primarily emission from extragalactic point sources. The
range on the color scale has been compressed by a factor of ∼15. The third
panel shows the intercylinder map after applying the delay filter. The range on
the color scale has been further compressed by a factor of ∼300. Residuals
associated with very bright sources in the far sidelobes, bright sources in the
main lobe, and instrumental artifacts are evident. However, they are localized,
and the fourth panel shows the result of masking any pixel that is more than 6
times the standard deviation of the expected radiometric noise (1.3% of the
pixels). This can be compared to the bottom panel, which shows a realization of
the radiometric noise generated according to Equation (52). The horizontal
features in the bottom two panels are due to the ripples in the primary beam
pattern, which are imprinted on the noise during deconvolution.

Figure 12. Standard deviation of pixels within the NGC field in the
deconvolved, foreground-filtered map. Black denotes the measured standard
deviation. Red denotes the expected standard deviation due to radiometric
noise, which is based on the fast-cadence estimate of the variance. Blue denotes
the measured standard deviation in a jackknife of even and odd days (see
Section 7.2). The measured noise in a single frequency channel is on average
0.6 mJy beam−1, with an increase to 1.0 mJy beam−1 in the upper 50 MHz of
the band. This is on average 50% greater than the expected radiometric noise,
due to residual foregrounds and RFI. The residual foregrounds are largely the
same from day to day and therefore cancel in the even–odd jackknife, but the
RFI does not. As a result, the jackknife is in better agreement with the
radiometric noise outside of certain 6 MHz wide bands that still suffer from
unmasked, transient RFI.
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where (νs, θs, fs) denote the frequency channel and map pixel
closest to the coordinates of source s and
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denotes the relative weight given to source s, with the absolute
weight w p

hpf given by Equation (57).
Note that we make no attempt to interpolate the spectral

cubes onto a common grid relative to the coordinates of the
source. Instead, we take a forward modeling approach where
the stacking procedure is applied to simulations in order to
characterize how the pixelization alters a stack of the 21 cm
signal. This will result in a small degradation in signal-to-noise
ratio because we are not stacking on the true peak, but given
the pixelization used, we estimate this to be only ∼3% for the
NGC field.

For simplicity, all model fitting and parameter estimation
uses only the central pixel of the stack as a function of
frequency offset. Going forward we will use dp(Δν)≡ dp(Δν,
0, 0) to describe the stack of the pixels closest to the
coordinates of the sources.

4.8. Noise Covariance Estimation

The probability distribution of the noise in the stack must be
characterized in order to derive accurate uncertainties on the
inferred model parameters. As discussed in Section 4.6,
residual foregrounds and RFI are expected to be subdominant
but significant contributors to the noise, and both are likely
correlated between frequencies. More generally, the foreground
filter couples all frequency channels, ensuring a nonzero
correlation between frequency offsets in the stack. These
factors are not accounted for in the propagated fast-cadence
noise estimate, which only includes the radiometric contrib-
ution to the noise and does not account for the correlation
between frequency channels. To develop an accurate noise
model, we stack the data on a large number of random mock
catalogs and examine the distribution of values.

Each eBOSS clustering catalog has a corresponding
“random” catalog that approximates the 3D selection function
of the clustering catalog and is more than 40 times as dense
(Ross et al. 2020; Raichoor et al. 2021). We randomly sample
the random catalog without replacement to generate a mock
catalog that has the same number of sources as the true catalog.
The deconvolved, foreground-filtered map is then stacked on
the mock catalog following the same procedure described in
Section 4.7. This process is repeated Nmock= 10,000 times.

The noise covariance of the stacked data is estimated using
the sample covariance of the mocks
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is the sample mean of the mocks. An example of the sample
covariance is shown in Figure 13.
We find that the sample mean for a given frequency offset

and polarization is nonzero at a level larger than expected given
the standard error. The rms of the sample mean over all
frequency channels and polarizations is ˆsm = 0.7−1.9
μJy beam−1 depending on the tracer, which is roughly 20%
of the sample standard deviation over mock catalogs and a
factor of 20 times larger than the standard error. This sample
mean over mocks is subtracted from the stack on the true
catalog to ensure a consistent noise model.
We find that the distribution of values observed in the mocks

is consistent with a multivariate Gaussian whose covariance
and mean are set to the sample variance and mean as calculated
above.

Figure 13. Estimated noise covariance of the NGC QSO stack, obtained by
computing the sample covariance of stacks on 10,000 random mock catalogs.
Each subpanel in the top panel shows the covariance between frequency offsets
for a different pair of polarizations. The bottom panel shows the average value
of the covariance as a function of distance from the central diagonal of each
subpanel, with the different polarization pairs denoted using different line
styles as indicated in the legend. The noise in the two polarizations is largely
independent. However, there is nonnegligible correlation in the noise between
frequency offsets within a polarization. The sinc-like dependence on frequency
offset is introduced by the foreground filter (see Equation (54)). The period of
the ripple is different for the two polarizations because a different delay cut was
used on average.
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4.9. Future Improvements

In this section we summarize improvements to the data
processing that are expected in the short term. Real-time RFI
excision was deployed on the CHIME correlator in 2019
October, and its performance is summarized in CHIME
Collaboration et al. (2022b). In addition, we have developed
more effective methods for offline RFI excision that can be
applied retroactively to all past data. We have also improved
the tests that are used to identify anomalous data in the
individual sidereal days. As a result, we expect to recover most
of the 14.7% of the 585–800MHz band that was masked
during manual inspection of the foreground-filtered maps. We
also expect that these changes will mitigate artifacts responsible
for the excess noise observed at high delays and enable an
analysis of the 400–585MHz band.

Our analysis must include intracylinder baselines in order to
recover the large angular scales relevant for measuring the
imprint of the baryonic acoustic oscillation (BAO) on the
power spectrum of 21 cm emission. Preliminary work suggests
that we can include the majority of intracylinder baselines in
our analysis if we also apply a high-pass filter along the time
axis to remove the additive noise crosstalk. This also removes
the largest angular modes of the sky but retains those angular
modes that probe the BAO.

Similarly, our analysis must use a less aggressive delay filter
in order to recover large line-of-sight scales. Currently we are
limited at low delays by sources in the far sidelobes and
uncalibrated spectral structure in the primary beam. The
development of a full-sky model for the primary beam and
the deconvolution of the off-axis response has been a major
focus of the CHIME collaboration over the past several years.
Some of the progress on the full-sky beam model has been
reported in CHIME Collaboration et al. (2022a, 2022b). An
algorithm for performing the deconvolution is described in
Shaw et al. (2014) and S15.

Although not currently limiting our results, the stability of
the complex receiver gains is expected to improve in future
analyses. In 2020 July an ADC-dependent correction for the
clock drift was deployed on the CHIME correlator, which is
expected to improve the delay noise on short timescales
(20 minutes) by roughly a factor of 2. In addition, techniques
are being developed to perform an offline correction for
thermal expansion of the focal line, which is the dominant
source of phase instability on longer timescales (CHIME
Collaboration et al. 2022b).

Finally, the results presented in this work employed 521 hr
of total integration time. The CHIME archive now contains
almost 20 times this amount after accounting for the flags
described in Sections 3.2.7 and 3.3.1. Inclusion of these data
will significantly reduce the radiometric noise and certain types
of systematic errors, for example, those due to RFI.

5. Signal Modeling and Simulations

Interpreting our stacking measurements requires that we are
able to predict the cosmological signal within them and that we
understand the performance of our analysis pipeline, including
any signal loss that has occurred. In this section we discuss the
framework to address these: a parameterized model of the
cosmological signal, a simulation pipeline producing synthetic
time streams and source catalogs, and a scheme for using these

simulations to predict the stack signal from the parameters of
our model.

5.1. Cosmological Scales Being Probed

To set the stage for the modeling approach described later in
this section, in Figure 14 we show the approximate range of
physical scales probed by our stacking measurements,
represented as comoving wavenumbers k∥ (along the line of
sight) and k⊥ (transverse to the line of sight). This range
depends on observing frequency due to the relationship
between frequency and radial distance and also due to
chromaticity of CHIME’s beam response, so we show results
at three frequencies within the portion of the band used in our
analysis.
The foreground filter described in Section 4.5 acts roughly as

a high-pass filter in k∥, with the minimum accessible k∥
determined by the delay cut τcut; for Figure 14, we use
τcut= 200 ns, reflective of the typical delay cut within the decl.
covered by the eBOSS catalogs. The sensitivity at high k∥ is
attenuated by the finite width of CHIME’s frequency channels,
which we approximate as top hats with width 390.625 kHz.
Similarly, the sensitivity at high k⊥ is determined by the

profile of the synthesized beam associated with the maps
described in Section 4.3. For Figure 14, we use the simplified
1D beamforming result from Masui et al. (2017) to obtain NS
and EW synthesized beam profiles based on CHIME’s feed
layout and the analytical (“control”) primary beam model

Figure 14. Approximate physical scales probed by the stacking measurements,
as comoving wavenumbers along the line of sight (k∥) or transverse to it (k⊥).
We evaluate the range of scales at three observing frequencies that span the
relevant portion of the CHIME band. The accessible values of k∥ are
determined by the CHIME frequency channel width and delay filtering
prescription, while the ranges of k⊥ arise from the synthesized beamwidth and
choice to exclude intracylinder baselines; see main text for details. The maxima
of the first three BAO wiggles in the matter power spectrum are shown by the
gray lines, making it apparent that the measurements in this work are
insensitive to BAO scales and instead mainly probe the nonlinear regime of
structure formation.
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discussed in Section 4.4, take the geometric mean of the
FWHMs in each direction, and translate this into a comoving
wavenumber at each plotted frequency. Finally, since intracy-
linder baselines are excluded from our analysis, we are not
sensitive to any angular scales that are only probed by pure NS
baselines; these scales are determined by the EW primary beam
profile, and we translate the EW FWHM into a minimum
accessible k⊥.

Note that a more thorough treatment of the scales being
probed is possible, in which the stacking measurements can be
related to an integral of the galaxy–H I cross-power spectrum
multiplied by a transfer function W(k∥, k⊥) that precisely
encodes the sensitivity of our analysis to a given Fourier mode.
Such a treatment is currently under development and will be
presented in a forthcoming publication (CHIME Collaboration
2023, in preparation), but preliminary results are in good
agreement with the estimates in Figure 14.

In this figure, we also show the maxima of the first three
BAO wiggles in the matter power spectrum, located at
multiples of kBAO= 2π/rdrag≈ 0.064 h−1 Mpc. It is clear that
our delay filter and exclusion of intracylinder baselines have
effectively filtered out any sensitivity to BAO scales from our
stacking measurements. The scales that remain are beyond the
reach of analytical perturbative methods for LSS statistics in
Fourier space (e.g., d’Amico et al. 2020; Ivanov et al. 2020;
Chen et al. 2022); while these scales have some overlap with
those accessible to hybrid simulation–perturbation theory
methods (e.g., Kokron et al. 2021), the majority of our
signal-to-noise ratio lies at even smaller scales, implying that
we cannot immediately apply those methods in our present
analysis.

Halo-based models for H I (e.g., Padmanabhan 2021) and
galaxy clustering can in principle describe the full range of
scales shown in Figure 14. However, we have found that a
simpler model, which makes efficient use of our simulation
framework described in Section 5.3, is fully capable of
describing the observed signal while allowing for margin-
alization over hard-to-predict properties of nonlinear clustering.
We describe this model and its application to our measurements
in the following subsections.

5.2. Signal Model

Cosmological modeling of the distribution of galaxies24 and
H I typically begins with the matter overdensity

( ) [ ( ) ( )] ( )x xz z z z, ,m m m md r r rº - , where an overbar
denotes a spatial average. In our modeling we assume that
galaxies and H I are each linearly biased tracers of the total
matter density. The overdensity corresponding to galaxy or H I
number density, δg or δH I, can then be written in Fourier space
as
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with α ä [g, H I]. In Equation (65), bα is the bias factor
(assumed to be scale independent), and the f (z)μ2 term encodes
the effect of redshift-space distortions at linear order (Kai-
ser 1987), with f as the logarithmic growth rate and μ≡ k∥/k.
We aim to capture the key nonlinear contributions to the two-

point statistics of the fields: we include real-space nonlinear
clustering in δm itself; the impact of small-scale velocities on
redshift-space observations (“Finger of God”; Jackson 1972) is
modeled with the damping function D̃ ;FoG

a and finally, we
include a term òα in Equation (65), which is uncorrelated with
δm and represents the contribution of shot noise to δα.
In our analysis we will only require the two-point statistics of

the correlated fields. These are captured entirely by the power
spectrum of two fields:
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The ingredients required to complete our model are functions
for the nonlinear matter power spectrum Pm, the linear bias bα,
the Finger-of-God function D̃FoG

a , and the shot noise Pshot
ab . We

discuss our fiducial choices for these ingredients in the
following sections.

5.2.1. Matter Power Spectrum

As input to our simulations, we use the halo model
prediction for the nonlinear matter power spectrum from Mead
et al. (2021), as implemented in the CAMB code (Lewis et al.
2000). We have also considered the Halofit fitting functions
from Smith et al. (2003) and Takahashi et al. (2012) and have
found that these different choices affect the final stacking
amplitude in the simulations by at most ∼3%, with little change
in the shape. Thus, the uncertainty arising from the specific
choice of nonlinear matter power spectrum is far subdominant
to the uncertainty inherent in our assumption of linear, scale-
independent bias in Equation (65).

5.2.2. Linear Bias

We assume the following for the linear bias of each eBOSS
sample:

( ) ( ) ( )b z z1.5 0.7 0.85 , 67ELG = + -

( ) ( ) ( ) ( )b z z z2.03 0.86 0.4 0.13 0.4 , 68LRG
2= + - + -

( ) ( ) ( ) ( )b z z z2.38 1.4 1.55 0.28 1.55 . 69QSO
2= + - + -

The ELG bias uses the redshift evolution of the linear bias
predicted by the simulations of Merson et al. (2019), normal-
ized such that Equation (67) evaluates to the bias measurement
from de Mattia et al. (2021) at the mean redshift of the eBOSS
ELG sample. The LRG bias is based on Zhai et al. (2017), who
fit a halo occupation distribution model to small-scale
clustering of a combined BOSS+eBOSS LRG sample and
computed the linear bias from this model. Specifically,
Equation (68) is the result of a quadratic fit to the best-
performing bias model from Figure 12 of Zhai et al. (2017).
The QSO bias is taken from the fitting function in Laurent et al.
(2017), based on measurements of the eBOSS QSO correlation
function in four redshift bins.
For the linear bias of H I, we follow Cosmic Visions 21 cm

Collaboration et al. (2018) in smoothly interpolating between
measurements from the IllustrisTNG simulations (Villaescusa-
Navarro et al. 2018) at z< 2 and the analytical model from

24 For brevity, we refer to ELGs, LRGs, and QSOs as “galaxies” in this
section.
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Castorina & Villaescusa-Navarro (2017) at z> 2.25 We show
our bias models for H I and each eBOSS sample in the left
panel of Figure 15.

5.2.3. Finger-of-God Models

We model the Finger-of-God damping in Fourier space as a
Lorentzian:
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where the damping scale σP,α can approximately be associated
with the pairwise velocity dispersion of galaxies or H I emitters
on nonlinear scales. The (constant-redshift) Fourier conjugate
of this function is an exponential in comoving distance (e.g.,
Scoccimarro 2004),
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and we implement the Finger-of-God effect by convolving our
simulated maps with this kernel along the line-of-sight axis.
This is equivalent to multiplying the 3D auto-power spectrum
of tracer α by ˜ ( )D k z,FoG 2ma and multiplying the cross-power

spectrum of H I and tracer α by ˜ ( ) ˜ ( )D k z D k z, ,H
FoG FoG
I m m´ a .

For each eBOSS sample, Fourier-space clustering measure-
ments have been analyzed using Finger-of-God models similar
to what we describe above. For ELGs and LRGs, de Mattia
et al. (2021) and Gil-Marín et al. (2020) use a squared
Lorentzian function multiplied into the 3D galaxy power
spectrum, finding best-fit values of σP,ELG= 2.79 h−1 Mpc at
zeff= 0.85 and σP,LRG= 3.64 h−1 Mpc at zeff= 0.7 (where we
quote the average of separate fits to the NGC and SGC fields).
For QSOs, Zarrouk et al. (2018) use a Gaussian Finger-of-God
model and perform fits that isolate the contribution to this
model from small-scale velocities (as opposed to QSO redshift
errors, which have a similar effect on the observed clustering).
Taking the average of their best-fit σP values for the “3-
multipole” and “3-wedge” analyses yields σP,QSO=

1.3 h−1Mpc at zeff= 1.48. We find that this is roughly equivalent
to Lorentzian damping with σP,QSO= 1.12 h−1Mpc.
We use these values to fix the amplitude of our fiducial σP(z)

models for each sample. We compute the redshift dependence
from a simple model in which σP(z) scales like a weighted
average of the velocity dispersion ( )M z,v

2s of a dark matter
halo of mass M, weighted by the halo mass function dn/dM
and the mean satellite occupation in a mass-M halo:

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )
( )

( ) ( )

( )
( )z

z

H z

dM N M M z

dM N M

1 ,
. 72P

dn

dM v

dn

dM

,
sat,

2

sat,

1 2

ò

ò
s

s
µ

+
a

a

a

To evaluate Equation (72), we use the halo mass function from
Tinker et al. (2008) and the eBOSS halo occupation
distribution models from Alam et al. (2020). The final results
for σP,α(z), incorporating the amplitude constraints described
above, are well fit by quadratic functions of redshift, which we
present below:
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For H I, we choose the damping scale based on simulations
from Sarkar & Bharadwaj (2019), who attempt to account for
the motion of H I within galaxies in addition to the contribution
from the velocity dispersion within dark matter halos. They
assume that the Finger-of-God damping of the 3D H I power
spectrum are given by a Lorentzian, and they fit a σP,HI(z)
relation to their simulations. We use these results, multiplied by
a factor of 2−1/2 to translate to the damping given by a squared
Lorentzian (as implied by our Equation (70)). The adopted
σP, HI(z) model is well fit by a quadratic function of redshift,

Figure 15. Fiducial models for various redshift-dependent quantities used in our simulated sky maps. See Sections 5.2.2–5.2.4 for discussions of how each model was
chosen. Left: linear bias of each eBOSS sample and H I. Middle: Finger-of-God damping scale, with same line styles as in the left panel. Top right: H I density, as a
fraction of the critical density at z = 0. Bottom right: mean 21 cm brightness temperature.

25 This bias model has been implemented in the PUMANoise code, available
from https://github.com/slosar/PUMANoise.
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given by

( ) ( ) ( ) ( )z

h
z z

Mpc
1.93 1.48 1 0.81 1 . 76P,H I

1
2s

= - - + -
-

Over the redshift range of interest, this σP, HI(z) model is within
20% of the values obtained in Villaescusa-Navarro et al. (2018)
from fits of a squared Lorentzian to measurements from the
IllustrisTNG simulations.

We plot our models for eBOSS and H I damping scales in the
middle panel of Figure 15.

5.2.4. 21 cm Brightness Temperature

We convert simulated maps of δH I into brightness temper-
ature fluctuations by multiplying by the mean 21 cm brightness
temperature ¯ ( )T zb . Recall that, after the end of reionization, the
spin temperature Ts is high compared to both the background
CMB temperature and Tå= hPlν21/kB. In this limit, the 21 cm
brightness temperature can be written as (e.g., Bull et al. 2015)
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where nH I is the comoving H I number density and A10 is the
Einstein coefficient for spontaneous emission in the 21 cm line.
Using ( ) ¯ ( )[ ( )]x xn z n z z, 1 ,H H HI I Id= + , we can write
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which justifies our method of converting maps of δH I into Tb.
Using ¯ ( ) ( ) ( )n z z m mcH I H I ,0 p er= W + , where

H G3 8c,0 0
2r p= is the critical density today,26 we can write

Tb as
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where H100= 100 km s−1 Mpc−1 and h=H0/100. The pre-
factor in square brackets is independent of cosmology,
consisting only of fundamental constants and A10. Using
A10= 2.8843e− 15 s−1 (Gould 1994), Equation (79) can be
written more compactly as27
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For ΩH I(z), we use the fitting function from Crighton et al.
(2015), which was determined from a compilation of ΩH I

estimates over 0< z< 5:

( ) ( ) ( )z z4 10 1 . 81H
4 0.6

IW = ´ +-

We plot Equations (80) and (81) in the right panels of
Figure 15.

5.2.5. Shot Noise

The cross-correlation between maps of H I and the distribu-
tion of galaxies in a given sample will be sensitive to the H I
content of the galaxies. Specifically, the 3D cross-power
spectrum of δTb(x, z) and δg(x, z) contains a cross shot-noise
contribution of the form (e.g., Wolz et al. 2017)

( ) ( ) ( )P z z C z M, , 82Tg g g
shot

H I H I H I H I= á ñ

where M gH Iá ñ is the mean H I mass per galaxy in the sample
and
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In principle, M gH Iá ñ depends on redshift, but for simplicity we
consider a single value that is averaged over the entire sample.
We also write the shot-noise contribution as being constant for
all zg, but note that there is expected to be a gradual, scale-
dependent decorrelation as ∣ ∣z zgH I - increases, due to relative
displacements of sources between different time slices.

5.2.6. Model Parameters

To produce a parameterized model of the 21 cm signal, we
use the ingredients presented in Sections 5.2.1–5.2.5 as a basis
and introduce a finite number of parameters that will scale their
magnitude but not their redshift dependence. In total, our
model contains seven parameters that are used to model the
contributions to the cross-power spectrum:

ΩH I: One of the key quantities controlling the stack signal is
the total amount of neutral hydrogen in the universe.
Although this quantity is expected to be redshift dependent,
in this paper we use the model given in Equation (81) as a
baseline and use a single redshift-independent parameter ΩH I

to scale the fiducial model about an effective redshift zeff,
which gives

⎡
⎣⎢

⎤
⎦⎥

( ) ( )
( )

( )z
z

z
. 84H H

H
fid

H
fid

eff
I I

I

I

W = W
W
W

bH I, bg: To control the bias of the 21 cm field and galaxy
density fields, which are again expected to be redshift
dependent, we scale the models given in Section 5.2.2,
giving
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for the 21 cm field and the equivalent definition for the
galaxy density,
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M10: The strength of the shot-noise contribution is governed
by the mass of neutral hydrogen typically associated with a
tracer galaxy M gH Iá ñ . We control this quantity with the

26 Following the common convention in the 21 cm intensity mapping
literature, we have defined ΩH I(z) in terms of the comoving H I number
density at redshift z and the critical density at z = 0.
27 Other versions of Equation (80) in the literature have prefactors that vary
significantly from 180 to 190 mK, most of which is accounted for by using
values of A10 from older calculations. The value quoted in the main text is
taken from a recent review of atomic transition properties (Wiese & Fuhr 2009),
which takes its A10 value for hydrogen from Gould (1994).
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parameter M10 defined by

( )M M M10 . 87gH I 10
10

á ñ = ´

αNL: The shape of the high-k real-space cross-power
spectrum is uncertain because of nonlinear gravitational
evolution and baryonic effects. We let this shape vary using a
linear mode that interpolates from a linear to a nonlinear
power spectrum

( ) ( ) ( ) ( ) ( )P k P k P k1 . 88NL NL NL La a= + -

For PNL(k) we use the model described in Section 5.2.1, and
for PL(k) we use a power spectrum with the same parameters
but with the Halofit corrections turned off. This parameter is
valid for αNL> 0, where values above 1 correspond to
increasing the power contributed by nonlinear evolution.
Although this parameter is not physically motivated, we
expect it to capture the effects of nonlinearities at the level
that can be measured in this work.
αFoG,H I, αFoG,g: To account for uncertainties in the Finger-
of-God smoothing, we allow redshift-independent scaling of
both the 21 cm and tracer velocity dispersion σP:

( ) ( ) ( )z z , 89P P,H I FoG,H I ,H I
fids a s=

( ) ( ) ( )z z . 90P g g P g, FoG, ,
fids a s=

Put together, these give a model for the cross-power spectrum
of the 21 cm emission and the galactic tracer, controlled by the
parameters given above. Written out fully, this gives
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where we have highlighted the individual parameters in bold.
Note that we evaluate the matter power spectrum at a fiducial
redshift zfid and apply the linear growth factor D+(z) to scale it
to other redshifts.

We also require one more parameter to describe an apparent
frequency or redshift offset between the H I and galaxies. This
will be needed to account for systematic redshift errors in the
eBOSS catalogs (see Section 8.1). As it is an observational
effect, we do not include it in the cross-power spectrum
description (where it would manifest itself as a phase rotation).

Δν0: This parameter shifts the stack signal away from being
centered at zero frequency lag. Positive values of Δν0 move
the peak of the signal to higher frequencies and thus to lower
redshifts.

5.3. Simulations

We make extensive use of simulations in this work, for
interpreting our stacking measurements in terms of physical

models, determining the signal transfer function, and quantify-
ing the linearity of our analysis pipeline via injection of
simulated signals into the data. In this section, we describe our
simulation methodology for generating sky maps of 21 cm
emission and galaxy density (Section 5.3.1), propagating these
through to mock galaxy catalogs (Section 5.3.2) and CHIME
time streams (Section 5.3.3), and finally performing the
stacking procedure (Section 5.3.4). The associated steps are
schematically shown in Figure 16. Note that we do not attempt
to simulate foregrounds, instead relying on several data-based
tests to assess the contribution of residual foregrounds to our
sky maps and cross-correlation measurements.

5.3.1. Map Generation

Each simulation produces a pair of correlated δg and δH I maps
of the sky generated as follows. The input real-space matter power
spectrum (Section 5.2.1), evaluated at z= 1, is transformed to a
3D correlation function using the hankl Python package
(Karamanis & Beutler 2021) via the FFTlog method. We
additionally employ Richardson extrapolation to repeated compu-
tations with increasingly fine k sampling in order to reduce
numerical errors. We then transform this to a multifrequency
angular power spectrum ( )C ,ℓ n n¢ and perform further frequency
integrals over top hats with width 0.390625MHz in order to
mimic the effect of CHIME’s frequency channelization.
We form a set of Nν HEALPix maps (Gorski et al. 2005) from

a Gaussian realization of this angular (matter) power spectrum,
use the linear growth factor for our fiducial cosmology to scale
each map to the redshift corresponding to its frequency, and
multiply by the bias bα(z) (Section 5.2.2). In tandem, we generate
the same number of maps of the gravitational potential f, to which
we apply a finite-difference second derivative in the radial
direction and appropriate prefactors to generate a velocity field
that is added to the biased matter to include linear redshift-space
distortions. These maps are then convolved with a frequency
kernel designed to reproduce the desired form of Finger-of-God
damping in Fourier space (Section 5.2.3).
Finally, the maps corresponding to δH I are multiplied by the

mean 21 cm brightness temperature ( )T zb (Section 5.2.4), while a
lognormal transform is applied to the δg maps, to ensure that
δg�− 1 everywhere; this allows 1+ δg to be used to construct a
probability density function from which to draw mock catalogs
(see Section 5.3.2). Note that we do not apply a lognormal
transform to the Tb maps: when Gaussian temperature maps are
stacked on mock catalogs generated from lognormal δg maps, the
two-point statistics are equivalent to the case where both sets of
maps are Gaussian (see Appendix C for details).
Our baseline simulations set the shot-noise contribution òX to

zero, but we require the ability to add shot noise to ascertain its
impact on the stacking signal. We incorporate this into our
simulations by adding correlated realizations of white noise to
each pair of δH I and δg maps, such that their cross-power
spectrum will contain the contribution from Equation (82) (the
auto-power spectra of these maps are never used). Specifically,
for each map voxel, we draw a random number from a
Gaussian with [ ( ) ( ¯ ( ) )]C z M T z Vg bH I H I vox

1 2s = á ñ , where Vvox

is the voxel volume, and add this value to the same voxel in the
δH I and δg maps.28

28 This method of adding correlated shot noise adds unphysical contributions
to the auto-power of the δH I and δg maps, which will also affect the variance of
the cross-power between them, but this effect is completely negligible for our
purposes.
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5.3.2. Mock Catalogs

For each galaxy sample we consider, we create mock
catalogs of N objects for each pair of simulated δH I and δg
maps. To do so, we select the pixel indices and frequency
channels from a probability density function given by

( ) ( )[ ( )] ( )x x xS 1 , 92g dµ +

where S(x) is a sample-specific selection function. Once a
voxel is selected, galaxies are assigned positions within it
according to uniform random distributions and further
displaced by simulated redshift errors as described below.

We obtain approximate galaxy selection functions from the
public random catalogs associated with each eBOSS sample. In
detail, for each sample, we build a histogram of object positions
with 32 redshift bins from 0.8< z< 2.5 and a HEALPix
angular pixelization with Nside= 16 (roughly 3°.7 resolution).
We then form a rank-7 approximation to this distribution by
performing a singular value decomposition of the histogram
(represented as a Nz×Npix matrix). Finally, we upsample this
to the HEALPix resolution of the input maps and apply
Gaussian smoothing in the angular direction (with width equal
to the original pixel size) to apodize any sharp boundaries.
Using this as the selection function for generating mocks
ensures that we reproduce the large-scale footprint and
modulations of each galaxy sample without introducing
smaller-scale features of the catalogs into our simulations.

We generate random redshift errors using a separate scheme
for each sample, based on estimates of redshift error
distributions (represented as line-of-sight velocities) published
by the eBOSS team. For LRGs, Ross et al. (2020) examined
pairs of observations of the same target and found that the
distribution of redshift differences was well fit by a Gaussian
with σ= 91.8 km s−1, corresponding to a redshift uncertainty
of σ= 65.6 km s−1 per object. For ELGs, Raichoor et al.
(2021) quote three redshift error percentiles based on repeated
observations; we find that these values are well fit by a Tukey
lambda distribution with λ=− 0.4 and σ= 11.88 km s−1.
For QSOs, Lyke et al. (2020) find that, over the entire QSO

catalog, the distribution of redshift differences between
repeated observations is well fit by a double Gaussian. This
implies that the single-observation redshift errors are also
described by a double Gaussian, with σ1= 150 km s−1,
σ2= 1000 km s−1, and 18% of objects having errors drawn
from the wider Gaussian.29 Though we use this model for our
primary analysis, there is evidence that it does not completely
capture the distribution of QSO redshift errors. We discuss the
discrepancies and the effect on our analysis in Section 8.1.

Figure 16. A schematic representation of the simulation pipeline. Starting from the multifrequency angular power spectrum ( )C ,ℓ n n ¢ corresponding to an input matter
power spectrum, we generate correlated full-sky maps of the matter overdensity δm and gravitational potential f at redshifts corresponding to each CHIME frequency
channel and transform these into maps of LRG/ELG/QSO overdensity and 21 cm brightness temperature using the models described in Section 5.2 and the
procedures in Section 5.3.1. Mock LRG/ELG/QSO catalogs are constructed from the corresponding maps (Section 5.3.2), while mock CHIME observations are
formed from the 21 cm maps (Section 5.3.3), and these observations are then processed with the same stacking pipeline as the data (Section 5.3.4). In this diagram,
boxes with long dashed outlines are defined using inputs from eBOSS or CHIME observations, rather than simulations (e.g., the delay cuts in the delay filter are those
from Figure 10).

29 These double-Gaussian parameters are quoted in Lyke et al. (2020) as
corresponding to the distribution of redshift differences between repeated
observations shown in their Figure 4, but in our own comparison we found that
the quoted widths of the two Gaussians correspond to the distribution of single-
object redshift errors implied by this figure.
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We do not attempt to simulate catastrophic redshift errors,
which the above references estimate to occur in less than 1% of
the LRG and ELG samples and as much as 2% of the QSO
sample. The effect of these errors on our stacking measure-
ments is a simple suppression of the overall amplitude, by an
amount equal to the catastrophic error fraction.

5.3.3. Time Streams

We make use of the m-mode formalism (S15) to translate
simulated 21 cm maps into visibilities. In this formalism, the
spherical harmonic coefficients ( )aℓm

P n of sky maps for Stokes
parameter Pä {I, Q, U, V} are related to the sidereal-time
Fourier transform of the visibility time stream, ˜ ( )Vxy m

p
, n , via

multiplication by a beam transfer matrix ( )Bxy ℓm
p P
;
, n :

˜ ( ) ( ) ( ) ( )V B a . 93xy m
p

P ℓ
xy ℓm
p P

ℓm
P

, ;
,åån n n=

After performing this multiplication, we convert the result to a
visibility time stream by inverse Fourier transforming in m,
applying zero-padding to the Fourier transform such that the
corresponding time resolution matches that of the observed
sidereal stacks.

We carry out separate versions of this procedure with beam
transfer matrices corresponding to the default or control beam
models from Section 4.4. We compute these matrices using
driftscan (Shaw et al. 2020a), with several performance
optimizations: precision truncation using the bitshuffle
library (Masui et al. 2015), omitting frequencies that fall
outside of the mask described in Section 4.2, and only
computing the P= I components (since the 21 cm signal is
unpolarized).

Up to this point, the simulated data are in temperature units.
To transform into spectral flux density units, we first compute
the beam solid angle for the assumed beam model:

( ) ∣ ( )∣ ( )d d Acos , , . 94p p 2ò òn q q f n q fW =

We then multiply the visibilities by the standard Rayleigh–
Jeans conversion factor and the beam solid angle, normalized
by the power beam evaluated at 0HA = ¢ and a reference decl.

θref:

( )∣
( )

∣ ( )∣
( )∣ ( )

V

k

c A
V

,

2 10

, , 0
, . 95

xy
p

p

p xy
p

Jy

26
B

2

2
ref

2 K

n f

n n
n q

n f=
´ W

With this normalization, a visibility corresponding to a point
source that transits at θ= θref has an amplitude equal to the flux
of the source. For consistency with CHIME’s beam and
complex gain calibration, we set θref to the decl. of Cygnus A.
From here, the simulated visibilities are processed in the

same way as the real data: a global frequency mask and noise
weights described in Sections 4.2 and 3.1.4 are applied, the
contributions of the four brightest point sources are inferred
and subtracted, beam-deconvolved maps are constructed as in
Section 4.3, delay filtering is applied with the decl.-dependent
delay cuts from Section 4.5, and the masking operations in
Section 4.6 are applied. Just as we simulate visibilities for each
of the default and control beam models, we also perform two
versions of the mapmaking step, assuming either beam model;
thus, we obtain four simulated data sets corresponding to each
pair of assumed and deconvolved beam, and we compare the
results in Section 7.3 in order to estimate the systematic
uncertainty arising from our choice of beam model.

5.3.4. Mock Source Stacking

Finally, we stack the simulated observations on the associated
mock catalogs, following the procedure in Section 4.7. Figure 17
shows stacking results corresponding to simulations of each
eBOSS sample, for a single LSS realization but averaged over 100
mock catalogs of 400,000 objects each, in order to suppress shot
noise associated with the catalog size. In the absence of delay
filtering, the stacking amplitude inferred from these simulations
for QSOs is greater than for ELGs and less than for LRGs; the
former follows from ELGs having lower bias and higher Finger-
of-God suppression than QSOs, while the latter is due to the
higher bias of LRGs than QSOs, which wins over the more severe
Finger-of-God effect for LRGs (see Figure 15).
The delay filter significantly suppresses the signal level,

reducing the zero-lag amplitude by around 80% for ELGs and
LRGs and 63% for QSOs. We attribute the lower suppression
for QSOs to their milder Finger-of-God suppression at small

Figure 17. Results of stacking simulated observations containing only 21 cm signal on mock ELG, LRG, and QSO catalogs correlated with the input signal, generated
according to the procedure in Section 5.3. The three panels correspond to simulations that use the selection functions and redshift error distributions of the three
eBOSS samples we consider. The stacking amplitude in the absence of delay filtering (blue dashed lines) is heavily suppressed by the delay filter (red dotted–dashed
lines) and further suppressed by the inclusion of random redshift errors in the catalogs (black solid lines).
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scales: the delay filter removes sensitivity to the largest scales
(see Section 5.1), and the remaining smaller-scale contribution
is larger for QSOs than for the other tracers owing to a smaller
amount of suppression. Finally, redshift errors in the simulated
catalogs reduce the zero-lag amplitude by no more than 10%
for ELGs and LRGs but by 40% for QSOs, thanks to the much
wider distribution of QSO redshift errors discussed above.

5.4. Template Calculation

To interpret our results, we need to be able to calculate the
expected signal from stacking on a given catalog for an
underlying set of parameters θ. We call this quantity the
template, denoted by s(Δν; θ). Though the template is entirely
determined by the cross-power spectrum in Equation (91),
propagating this through the instrumental transfer function and
our analysis procedure is challenging to do both efficiently and
accurately, and so it will be left to a follow-up paper (CHIME
Collaboration 2023, in preparation).

In this work, we instead use our simulation capability to
calculate the templates. In brief, we generate LSS realizations
corresponding to several modes, each of which is defined by a
specific combination of model parameters; average over a
sufficiently large number of random mock catalogs to estimate
the stack signal for each mode; and calculate the full template
for arbitrary parameter values by making linear combinations
of the template modes and applying an effective treatment for
the Finger of God. Overall the errors in this approach are 1%.
We describe this approach in detail in Appendix D.

In Figure 18, we display the change in the H I-tracer cross-
power spectrum (left panels) corresponding to variations of
each of our eight model parameters, along with the corresp-
onding change in the predicted stack signal (right panels).
Access to the full k range shown in the left panels would allow
nondegenerate constraints on several of these parameters, due
to their different impacts on the cross-power spectrum.
However, our filtering choices imply that the stack signal is
only sensitive to nonlinear scales (k 0.3 h−1 Mpc or so, as
shown in Figure 14), and as a result, we are left with significant
parameter degeneracies, which can be inferred from the similar
variations in the right panels of Figure 18.

6. Results

6.1. Stacking Measurements

The top left panel of Figure 19 shows the result of stacking the
deconvolved, foreground-filtered maps on the 3D positions in the
eBOSS NGC QSO catalog. It is shown as a function of R.A.
offset and decl. offset at 0MHz frequency offset, averaged over
the two polarizations, in other words, d(0,Δθ,Δf) in the notation
of Section 4.7. Also shown in the top row is our best-fit model for
the 21 cm emission based on the simulations described in the
preceding section and the residuals obtained by subtracting the
best-fit model from the data. The residuals can be compared to the
three panels in the second row, which correspond to three
different techniques for estimating the noise present in the stack.
The left panel is the result of applying the stacking procedure to a
Gaussian noise realization generated according to Equation (52).
The middle panel is the result of applying the stacking procedure
to a jackknife of even and odd days (see Section 7.2). Finally, the
right panel is the result of stacking the data on a random mock
catalog.

The noise in the residuals is consistent with that observed in
the random mock catalog. Both are in excess of the noise in the
even–odd jackknife, owing to the fact that residual foregrounds
are highly correlated between even and odd days and therefore
cancel in the jackknife. The noise observed in the even–odd
jackknife is in excess of that observed in the Gaussian noise
realization owing to unflagged RFI and variations in the
foregrounds from day to day caused by instrument instability.
The third row of Figure 19 shows 1D slices of both data and

the best-fit model. The negative shoulders in the R.A. direction
that are observed in both the data and model are caused by the
exclusion of intracylinder baselines from our analysis. The
grating lobes in the R.A. direction, which are shown in
Figure 7, have largely averaged away in the stack because their
location varies with frequency and decl. It is important to note
that the angular information displayed in Figure 19 was not
used to constrain the model. For simplicity, the model is only
fit to the central pixel of the stack as a function of frequency. A
full 3D fit could further improve the signal-to-noise ratio and
help break the degeneracy between the amplitude H I and the
Finger-of-God damping, but we leave that for a future analysis.
For all three tracers, the spatial extent of the signal is consistent

with the synthesized beam computed directly from Equations (47)
to (31) and averaged over sources, indicating that the 21 cm signal
is unresolved. Figure 20 shows the central pixel of the stack as a
function of frequency, i.e., d(Δν, 0, 0), for the three tracers in
black. The-dark gray and light-gray contours indicate the central
68% and 95% of values, respectively, observed when stacking the
maps on 10,000 random mock catalogs as outlined in Section 4.8.
The red line indicates our best-fit model for the signal. Note that
although the two polarizations are fit jointly, to simplify the figure
we show only their weighted average, with the weights set to the
inverse variance as measured by the random mock catalogs. Also
note that the polarization- and frequency-dependent mean value of
the noise has been characterized using the random mock catalogs
and subtracted from both the stack on the true catalog and the
stack on the mock catalogs that are shown in the figure.
The best-fit model shown in both Figures 19 and 20 consists

of fixing all nonlinear parameters at their fiducial values and
allowing the parameters governing the large-scale clustering of
H I to vary. This model has been described in Section 5.2.6.
The bottom row shows the result of subtracting the best-fit
model from the data and compares to the same gray mock
catalog contours shown in the top row. For all tracers, the
residuals are consistent with our noise model based on the
random mock catalogs. This is also true for all QSO redshift
bins, which are not shown.

6.2. Model Fitting

We assume that the noise in the stacked source data is
described by a Gaussian and that the signal is described by
the model given in Section 5.4. This means that the
likelihood function ( ∣ )d q of observing the stacked signal
d given a template s(θ) with model parameters

[ ]b b M, , , , , , ,0 H H g 10 NL FoG,H FoG,gI I Iq n a a a= D W is
described by a multivariate Gaussian

( ) ( ∣ ) ( )d 96 q q=
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with

( ( ) ) ( ( ) ) ( )d s d s , 98T2 1q m q mc S= - - - --

where s(θ) is the model for the 21 cm signal and μ andΣ−1 are
the mean and inverse covariance of the noise, respectively,
which are estimated using the sample mean and covariance of
the mock catalogs as outlined in Section 4.8.

Figure 18. The simulated stack signal after processing through the CHIME pipeline. Each row shows the effect of varying a parameter on the theoretical 21 cm QSO
cross-power spectrum in the left panel and the expected signal observed by CHIME in the right panel. The variation for each parameter is chosen to be over a range
consistent with our prior uncertainties. The fiducial model used within our modeling is indicated by the thick black line for each panel, and the location within range of
each parameter is indicated by the black line within the color bar.
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We employ a Markov Chain Monte Carlo (MCMC) to
sample from the joint posterior distribution,

( ∣ ) ( ) ( ) ( )d
1

, 99

q q qp=

where π(θ) is the prior probability distribution over the model
parameters and  is the normalization constant such that the
posterior integrates to unity.
We use noninformative priors for most parameters, ascribing

equal prior probability over large ranges. For the nonlinear

Figure 19. The stacked signal at Δν = 0 MHz as a function of R.A. offset (Δf) and decl. offset (Δθ) for the QSO catalog. The top row shows, from left to right, the
data, best-fit model, and residual. The second row shows, from left to right, the result of stacking the QSO catalog on a Gaussian noise realization, stacking the QSO
catalog on a jackknife of even and odd days, and stacking a random mock catalog on the data. The third row shows a slice of the data in black and the best-fit model in
red at Δθ = 0° on the left and Δf = 0° on the right. The bottom row shows, for these same slices, the residuals in black compared to the Gaussian noise realization in
dark blue, the jackknife in light blue, and the random mock catalog in orange. Note that, to facilitate the comparison, the slices in the bottom row have been offset by
an amount indicated by the dotted line of the same color.
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parameters we choose to do this even where there is some
external information either from simulations or more strongly
from analysis of the eBOSS data themselves (e.g., on the
Finger-of-God scale; see Section 5.2.3), as it is difficult to
combine the different prescriptions for modeling the nonlinear
scales. These analyses guide our choice of fiducial model, but
we allow a wide range of variation around them when trying to
fit the data.

The one exception to this is for the galactic bias bg. As it is a
large-scale parameter, it is less susceptible to systematic
differences in the modeling, and we instead use a prior
informed by modeling of the eBOSS tracers. For the QSOs, our
fiducial model is that from Laurent et al. (2017), and to get an
uncertainty on this, we fit a shift in the amplitude to the two
lowest-redshift bins in their analysis (which overlap with that
of this paper), which gives an uncertainty of 3% about the
fiducial model. For the LRGs we translate the overall results of
Zhai et al. (2017) of b= 2.30± 0.03 into a 1.3% uncertainty on
the amplitude of the bias model used here. Finally, for the
ELGs we symmetrize the measurements of b1 from Tamone
et al. (2020) to give an uncertainty of 10% for the ELG
linear bias.

For ΩH I, which gives an overall normalization to the signal,
we use a prior symmetric about zero, despite the fact that
physically ΩH I� 0. This is to ensure that our priors do not give
an artificial bias toward positive signal and give a more robust
estimation of the detection significance. However, we do
enforce that bH I� 0 to exclude an unphysical mode of high
probability with both ΩH I< 0 and bH I< 0.

We summarize our choice of priors in Table 2.
The affine-invariant ensemble sampler from the emcee

package (Foreman-Mackey et al. 2013) is used to sample from
the joint posterior distribution. We run 32 samplers initialized
from random locations within the region defined by Table 2. To
analyze the chains, we need to reduce them down to an

independent set of samples, but we must first determine how
correlated the samples actually are. To do this, we first define
the sample autocorrelation ˆ ( )i

sr t of a parameter θi within the
sth chain as
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where ī
sq is the sample mean for parameter θi, and then using

this, we define the autocorrelation length for a single parameter
and chain as
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Figure 20. Top: the stacked signal as a function of frequency offset for the ELG, LRG, and QSO catalogs. The data are shown in black, and the best-fit model is
shown in red. Bottom: the residuals obtained by subtracting the best-fit model from the data. For both the top and bottom rows, the dark-gray and light-gray bands
indicate the central 68% and 95% of values, respectively observed when applying the same stacking procedure to 10,000 mock catalogs.

Table 2
The Prior Placed on Each Parameter during Our Analysis

Parameter Type Description

Standard parameters
ΩH I Uniform Range: −10−2 to 10−2

bH I Uniform Range: 0 to 10
bg Gaussian Mean: ¯ ( )b b zg g

fid
eff= standard deviation: QSOs

3%, LRGs 1.3%, ELGs 10%
Δν0 Uniform Range: −0.8 MHz to 0.8 MHz
Nonlinear parameters
M10 Uniform Range: 0 to 20; Fixed: 0
αNL Uniform Range: 0 to 5; Fixed: 1
αFoG,H I Uniform Range: 0 to 5; Fixed: 1
αFoG,g Uniform Range: 0 to 5; Fixed: 1

Note. There are two classes of parameters in our analysis, standard parameters
that capture the large-scale quantities we hope to constrain, and nuisance
parameters that model the signal on small, nonlinear scales. In our analysis the
latter group of parameters will either be marginalized over or be fixed to their
fiducial values in order to assess the contribution of modeling uncertainties to
our constraints.

35

The Astrophysical Journal, 947:16 (59pp), 2023 April 10 The CHIME Collaboration et al.



For a single aggregate autocorrelation length ζ summarizing the
chain convergence we take the mean over the different
samplers and then use the longest autocorrelation across the
different model parameters. That is,

( ) ( )max mean . 102
i

s i
sz z=

This gives the number of MCMC steps over which the chains
remain correlated. Only samples from each chain separated by
ζ samples can be considered independent. The first 10× ζ

samples in each chain are discarded as burn-in. The chains are
then thinned by ζ and concatenated. The parameter space is
high dimensional and has complex degeneracies, which means
that the correlation lengths are large, ζ 500 in the full
parameter space. We also make extensive use of the GetDist
package (Lewis 2019) for analyzing the MCMC chains.

6.3. Parameter Constraints

In Figure 21 we show the constraint on the default model
parameters for the QSO catalog. We show constraints for both
a model where all parameters are allowed to vary and a model
where the nonlinear parameters are fixed to their fiducial values
(M10= 0, αNL= 1, αFoG,H I= 1, and αFoG,g= 1). The con-
straints show that certain parameter combinations are highly
degenerate, most notably ΩH I–bH I, but also correlations with
the nonlinear parameters αFoG,H I and αFoG,g. As these
degeneracies limit our ability to make a cosmological
interpretation of our results, it is worth attempting to under-
stand them.

The most severe degeneracy in our model is between ΩH I

and bH I, and it is clearly apparent in both the full and fixed
models. The origin of this can be seen in Equation (91), which,
simplified slightly down to the linear terms, has

( ) ( )( ) ( ) ( )P k b f b f P k, , 103H ,g H H
2

g
2

I I Im m mµ W + +

which contains a multiplicative ΩH IbH I term, responsible for
the curved degeneracy seen in the ΩH I–bH I panel of Figure 21.
Previous 21 cm cross-correlation analyses (Masui et al. 2013;
Switzer et al. 2013; Wolz et al. 2022) gave constraints directly
on the combination ΩH IbH Ir, where r is a scale-independent
cross-correlation parameter that absorbs modeling uncertainties
on nonlinear scales; however, this is not sufficient for the
analysis here. Although transforming our constraints to be in
terms of ΩH IbH I removes the curved degeneracy,30 we find that
a linear degeneracy against ΩH I remains. This can be
understood straightforwardly as the effect of the Kaiser
redshift-space distortions. As CHIME has higher resolution in
the frequency direction versus the angular direction, and we
have removed low-k∥ modes by foreground filtering, the
sensitivity in this analysis is biased toward wavenumbers with
higher μ (which is illustrated in Figure 14). As both bH I and f
are of order unity, the contribution of the Kaiser term is
important and cannot be neglected.

To account for this, we transform to a plane of
(ΩH IbH I)–ΩH I and determine a linear combination of these
parameters that minimizes their variance. For a single LRG,
ELG, or QSO sample g, the solution for an exactly linear
degeneracy can be found by using the MCMC samples to
construct the covariance matrix between ΩH IbH I and ΩH I,
which we write as CΩb,g, and then finding the eigenvector with
minimal eigenvalue, which gives the linear combination we are
searching for. We will use this combination as our primary
amplitude parameter

( ) ( )b f10 , 104H
3

H H
2

I I I mº W + á ñ

where we make the interpretation that the coefficient 〈fμ2〉 is
the sensitivity-weighted average fμ2 that this CHIME analysis
is probing. We perform this optimization on the chains with
fixed nonlinear parameters, as this gives a cleaner separation
from other degenerate parameters.
The 〈fμ2〉 coefficient preferred by each tracer differs slightly

from ∼0.45 (QSOb00) to ∼0.62 (QSOb2), which we would
expect, as both f and CHIMEʼs sensitivity change with redshift.
As we would like to be able to compare our measurements
between tracers, we would instead like a single effective 〈fμ2〉.
To do this, we minimize the covariance CΩb,all, defined by

( )C C , 105b
g

b g,all
1

,
1å=W

-
W
-

where we sum over the tracers QSOb0, QSOb1, QSOb2, LRG,
and ELG (we exclude the other QSO tracers to avoid double-
counting the data). The form of CΩb,all is motivated by
considering each tracer to be a different measurement in the
(ΩH IbH I)–ΩH I plane: if each distribution were Gaussian and all
were consistent, the covariance on the combined distribution
would be given by CΩb,all. After this procedure, we derive an
effective 〈fμ2〉≈ 0.552, which we fix for the rest of this
analysis. The overall loss of constraining power from fixing a
single value is small, with a drop of ∼7% for the worst affected
tracer (full QSO catalog).
The second degeneracy we focus on is between the Finger-

of-God parameters. If we examine the cross-power spectrum
given by Equation (91) and expand the Finger-of-God damping
factors defined in Equation (70) assuming k∥σP? 1, we find
that

( ) ( ) ( ) ( )P k D k D k, 106H ,g H
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FoG,H g
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For most of the region of CHIMEʼs k-space sensitivity (see
Figure 14) we are close to this regime, and so we expect there
to be an approximate degeneracy of the form αFoG,H IαFoG,g,
which can be seen in the αFoG,H I–αFoG,g panel of Figure 21.
This motivates us to transform to two new parameters

( ) ( )108FoG, FoG,H FoG,g
1 2

Ia a a=+

( ) ( )log , 109FoG, FoG,H FoG,gIa a a=-

where in the large k∥ limit αFoG,+ controls the amount of
Finger-of-God damping and αFoG,− does not affect the cross-
power spectrum. The logarithm in the definition of αFoG,− is to
limit the effect of small αFoG,g values generating extremely
large values for this parameter.

30 In fact, we actually sample within a transformed basis by replacing the
parameter ΩH I with ΩH IbH I. This substantially improves convergence, as the
remaining linear degeneracy is easily navigated by the affine-invariant sampler,
where the original curved degeneracy was not. To do this, we need to carefully
adjust the prior applied in the sampler to ensure that the prior on ΩH I remains
uniform.
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In Figure 22 we show these new parameters and how they
are correlated with the parameters they are derived from. The
new amplitude-like parameter H I clearly flattens the degen-
eracy, capturing all the information in ΩH I and bH I. Similarly,
the parameter αFoG,+ correlates with the amplitude parameter,
whereas the orthogonal combination αFoG,− does not, although
there is interesting behavior observed at low αFoG,+ where we
are even further from the regime where we can make the
high-k∥ expansion used in Equation (107).

One of the key remaining degeneracies is that between the
overall amplitude, H I , and the combined Finger-of-God

strength, αFoG,+. This can be understood physically: on the
scales that CHIME observes, the Finger-of-God damping
reduces the stacked signal amplitude, and so an increase in
αFoG,+ must be compensated by an increase in the underlying
21 cm signal amplitude to remain consistent with the
measurements.
In Figures 23–25 we show the constraints for the QSO,

ELG, and LRG tracers stacked over the full 585–800 MHz
band for the amplitude parameter, H I , the frequency offset,
Δν0, the shot noise, M10, and the two nonlinear nuisance
parameters, αFoG,+ and αNL. In all cases we find an excellent

Figure 21. The constraints on the model derived from the cross-correlation of CHIME and the full eBOSS QSO sample. The red contours show the constraints on the
full parameter set (described in Section 5.2.6), whereas the blue contours show the constraints if we fix the nonlinear parameters to their fiducial values and only allow
Δν0, ΩH I, bH I, and bg to vary. The blue contours are not shown at all for the nonlinear parameters (M10, αNL, αFoG,H I, and αFoG,g), as they are not being varied, as
will be the case for future constraint plots. There are significant degeneracies between parameters, notably ΩH I–bH I, but also within the nonlinear parameters such as
αFoG,H I–αFoG,g.
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goodness of fit with min
2c being close to the 202 degrees of

freedom we expect (this comes from the 101 frequency
offsets in the stacked data for each of the X and Y
polarizations).

For all tracers, the amplitude constraints are significantly
weakened by marginalizing over the nonlinear parameters
compared to the case of fixed nonlinear parameters. However,
the posteriors are non-Gaussian and highly skewed such that,
despite the large credible interval, the probability that 0H I 
is negligible. Even though the nonlinear parameters are
degenerate with the amplitude, the amplitude must be nonzero
for a signal to be seen.

Interpretation of these constraints is complicated by a
volume factor pushing the constraints toward larger Finger-
of-God smoothing effects. The originally uniform prior on
π(αFoG,H I, αFoG,g) transforms to a π(αFoG,+, αFoG,−)∝ αFoG,+.
As the stack signal H FoG,

2
I aµ~ +, our broad noninformative

priors give an unintentional upward pressure on H I , as there is
more volume at higher FoG damping levels. This can be
resolved by placing a flat prior on αFoG,+, but as it is not a
physical parameter, this is difficult to justify. Future analysis
will need to have data that can break this degeneracy internally,
or use better modeling that allows for the prior bounds on
αFoG,H I and αFoG,g to be reduced.

Figure 22. The parameter constraints corresponding to the QSO catalog, showing the derived parameters, H I , αFoG,+, and αFoG,−, and their correlations with the
parameters they are derived from (ΩH I, bH I, αFoG,H I, and αFoG,g). This figure illustrates that these new parameters are less degenerate than the original parameters,
with H I decorrelating the ΩH I–bH I plane for both the fixed nonlinear models and full models, and with αFoG,+–αFoG,− effectively decorrelating the αFoG,H I–αFoG,g

plane for the full model, although the structure of the αFoG,+–αFoG,− posterior surface remains complex. After this, the key behavior in the constraints can be captured
by just two quantities, H I and αFoG,+, with a simple positive correlation.
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6.4. Detection Significance

Assessing the significance of the detection is difficult for two
reasons. First, the posterior distributions of the full set of
parameters are highly non-Gaussian, which means that a naive
“mean over standard deviation” figure does not accurately
represent the significance of a parameter being nonzero.
Second, there is not a single amplitude-like parameter that
we can use to assess significance. Although we are primarily
interested in ΩH I or H I , whose posterior distributions include
the projected degeneracies with αNL and αFoG,x, they are also
somewhat degenerate with M10, and this should be captured, as
any measurement of M10 should also count toward a detection.

One way of describing the detection significance is by way
of a Bayesian model comparison. In this case, we seek to
compare two explanations of the data, one in which the signal
is represented by the full signal model given above ( 1 ), and a
null model where the signal is exactly zero and the data are
entirely noise ( 0 ). To compare these, we need to calculate the
marginal likelihood, or Bayesian evidence,  , which is the
normalization constant for the posterior distribution shown in

Equation (99):

( ∣ ) ( )d 110  =

( ∣ ) ( ∣ ) ( )d d, 111n   ò q q q=

( ) ( ) ( )d . 112nò q qp q=

The evidence allows us to compare the relative probability of
two models given the observed data
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where the ( )  terms give the prior probabilities of the
models. We assume that the model prior probabilities are equal
from this point on, and we focus solely on the Bayesian
evidence ratio 1 0  (often termed the Bayes factor).
Calculating the evidence directly is challenging, as the

region of high likelihood is typically much smaller than the

Figure 23. The constraints from stacking the QSO catalog over the full frequency band chosen for this analysis. We reduce the original set of eight parameters down to
five: the amplitude-like H I , the frequency offsetΔν0, the correlated shot noiseM10, and the two relevant nonlinear nuisance parameters αFoG,+ and αNL. The fits with
all five parameters free (red contours) or with the M10, αFoG,+, and αNL fixed to their fiducial values (blue contours) both result in an excellent goodness of fit, with

219min
2c » for 202 degrees of freedom. We discuss the physical interpretation of these constraints in Sections 8.1, 8.3, and 8.4.
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prior volume, and so estimates tend to be dominated by sample
noise. The standard techniques for evidence calculation are
variants on nested sampling (Skilling 2006), but here we
instead use the simpler process of thermodynamic integration
(Gelman & Meng 1998), as we do not need the extra efficiency
of nested-sampling-based techniques. To do this, we introduce
the quantity

( ) ( ) ( ) ( )d . 115n ò q ql p q= l

Noting that ( )0 1 = and ( )1 = , we can write the quantity
we want to calculate as

( ) ( )dln
ln

. 116
0

1
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ò

l
l
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¶

¶

This transformation is useful because we can write the
integrand as

( )
( )

( ) ( ) ( ) ( )d
ln 1

ln 117n


 ò q q ql

l l
p q

¶
¶

= l

( ) ( )ln , 118 q=á ñl

where the á¼ñl denotes an expectation evaluated against a
posterior with the likelihood raised to the power λ. This gives
us a straightforward way of calculating ln : first, on a discrete

grid in λ, we use a standard MCMC sampler to draw from the
unnormalized distribution ( ) ( ) q qpl , and then we estimate

( )ln qá ñl from these samples; second, we numerically
integrate over these estimates to calculate ln .
We calculate the evidence for the signal model, 1 , by

multiple sampling runs (as described in Section 6.2) generated
at different λ. As the bulk of the variation in the integrand is
around λ∼ 0, we use the common choice of a grid regularly
spaced in λ1/5 (Calderhead & Girolami 2009), and as the
integrands are smooth and well behaved, we find that a
Romberg integration over 33 samples achieves sufficient
accuracy. For the evidence calculation, we use shorter chains
per λ step than for the parameter estimation, with only 15,000
samples per chain. After removing the initial samples for burn-
in and thinning to the independent samples, this leaves ∼700
samples for each λ step. To estimate the error on each evidence
calculation, we bootstrap resample the set of points at each λ
step, integrate over the resampled sets, and estimate the sample
variance over bootstrap sets. This gives a typical error in ln
of ∼0.1. In contrast, the null signal model, 0 , is a zero-
parameter model, and so its evidence is simply the likelihood of
the data evaluated at zero signal. That is,

[ ∣ ∣ ] ( )ln
1

2
ln 2 , 1190 0

2 p cS= - +

Figure 24. Parameter constraints from stacking the ELG catalog, in the same format as Figure 23.
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with

( ) ( ) ( )d d , 120T
0
2 1m mc S= - --

so that we do not need any MCMC scheme to calculate it.
With ln 0 and ln 1 , we have both of the ingredients

required to give the Bayes factor. To enable a comparison with
other significance estimates, we can turn the evidence ratio into
an effective “number of sigma.” Assuming that the only two
models that could explain the data are 0 and 1 and giving
them equal prior probabilities, ( ) ( ) 1 20 1   = = , we
can write the probability of the null model as

( ∣ ) ( )d
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. 1210
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 
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=

+

We turn this into an effective number of σ, N , via

( ( ∣ )) ( )dN 1 , 1221
0  = F --

where Φ−1(x) is the inverse cumulative distribution function of
the standard normal distribution.

An alternative, frequentist method of estimating the detec-
tion significance is to use a likelihood ratio test. First, we
compute the ratio of the maximum likelihood values between a

model with no signal and one with the full signal model
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with 2
0
2

min
2c c cD = - . This quantity is asymptotically χ2

distributed with degrees of freedom equal to the effective
number of model parameters. As our model has several notable
degeneracies, the effective number of model parameters will be
less than the total number of parameters. We use the Bayesian
model dimensionality (Handley & Lemos 2019)

[ ( ) ] ( )d 2 ln ln 125M
2 2 = á ñ - á ñ

as an estimate of the number of parameters, where the
expectation 〈K〉 is taken over the posterior. Taking an average
of this over the set of tracers, we find dM∼ 4.4, and so we use 4
as the effective number of parameters. Using this, we can
ascribe a detection significance via the probability for a 4

2cn=
distribution to exceed λ. We again turn this into an effective
number of sigma using the inverse cumulative distribution

Figure 25. Parameter constraints from stacking the LRG catalog, in the same format as Figure 23.
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functionof a standard normal distribution:
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As a final estimate of the detection significance, we take the
best-fit (minimum χ2) template as a fixed single template and
then fit that directly to the data with a varying amplitude, A. As
the likelihood is Gaussian, the distribution of A can be
computed exactly and is Gaussian with mean of 1 and variance
( )2 1cD - . This directly gives the number of sigma of detection,
NA 2c= D . We expect this quantity to overestimate the
detection significance, as the template has already been
adjusted to fit the data.

Table 3 shows the detection significance for each tracer
calculated by each method given above. The Bayes factors,

( )ln 1 0  , are 4.6 for all tracers, which corresponds to
decisive evidence for a cross-correlation detection according to
the interpretations of Jeffreys (1961) and Kass & Raftery
(1995). The numbers of sigmas for each method are reasonably
close, with the Bayesian-evidence-based number N the lowest
of the three and the amplitude parameter the highest. The
common criticism of evidence calculations is that they are
dependent on the prior widths, and, as is the case here, a choice
that is intended to be noninformative for the purpose of
parameter estimation can significantly lower the evidence
compared to a less conservative choice of prior. In our case,
parameters like M10 could be significantly narrower without
influencing the parameter estimation, which would boost the
Bayes factor. Although we do not attempt it here, one
resolution to this for nested comparisons (of which this is
one), advocated by Gordon & Trotta (2007), is to optimize the
prior widths centered on the value implied by the nested model
to maximize the Bayes factor.

We also calculate the evidence for the signal model where
we fix the nonlinear parameters, which we call 2 , and give the
log Bayes factor relative to the full signal model, ( )ln 1 2  , in
Table 3. In most cases ( )ln 1 2  is negative, that is, there is
not sufficient improvement in the fits to justify the expanded
model from statistical arguments alone, and in the remaining
cases the evidence is marginal.
Our rationale for varying the nonlinear parameters is to

explore what our data tell us about the large-scale H I
distribution while including the genuine uncertainties in the
modeling. With that in mind, we do not take this as an
indication that we should fix these nonlinear parameters, but as
one that they are not meaningfully constrained, as they allow
the model to overfit the data.

7. Validation

In this section we describe several consistency tests that were
performed on the analysis and inform the systematic errors that
are placed on the result. These tests consist of evaluating
whether the measurements made by the two polarizations are
consistent, evaluating whether the signal is the same from day
to day, estimating the uncertainty on the amplitude of the signal
due to beam calibration errors, and evaluating the linearity of
the analysis pipeline.

7.1. Consistency between Polarizations

The following procedure is used to determine whether
measurements made with the X and Y baselines are consistent
given our model for the noise and 21 cm signal. The two
polarizations are jointly fit to a restricted model and an
unrestricted model. For the restricted model, both polarizations
are described by the same set of parameters, θ, as outlined in
Section 6.2. The version of the model that holds the nonlinear
parameters fixed at their fiducial values is employed for this
exercise, since the version that allowed them to vary did not
yield a significantly better fit to the data for any tracer or QSO
redshift bin. For the unrestricted model, the polarizations are
described by a different set of parameters, θX and θY. The
maximum likelihood estimate of the parameters is obtained for
each model using the L-BFGS-B optimization algorithm. The
following test statistic is then calculated:

( ˆ ) ( ˆ ) ( ), 1272 2
res

2
unresq qc c cD = -

where χ2 is given by Equation (98), ˆ ˆ
resq qº denotes the

maximum likelihood parameter estimates for the restricted
model, and ˆ [ ˆ ˆ ],X Yunresq q qº denotes the maximum likelihood
parameter estimates for the unrestricted model. The χ2 values
and the test statistic are quoted in Table 4 for all tracers and all
QSO redshift bins.
The test statistic will follow a χ2 distribution with
DOF DOF DOFres unresD = - degrees of freedom under the

null hypothesis that the two polarizations are described by the
same model. Naively we expect ΔDOF to be equal to the
number of model parameters, since the unrestricted model has
twice the number of parameters as the restricted model.
However, the model parameters are highly degenerate, so that
using the number of parameters would likely overestimate
ΔDOF and bias the test toward accepting the null hypothesis.
To avoid this, the distribution of the test statistic under the

null hypothesis is empirically measured using the random mock
catalogs. We generate 10,000 realizations of our data by adding

Table 3
The Detection Significance for Each Tracer

Tracer Bayesian
Likelihood

Ratio Amplitude
( )ln 1 0  ( )ln 1 2  N Δχ2 NLR NA

LRG 18.9 −1.5 5.7 60.3 7.1 7.8
ELG 10.8 −2.4 4.1 40.8 5.7 6.4
QSO 56.3 −2.2 10.3 133.5 11.1 11.6

QSOb0 23.9 −2.3 6.5 66.2 7.5 8.1
QSOb1 19.6 0.8 5.8 53.2 6.6 7.3
QSOb2 16.9 −0.9 5.3 50.0 6.4 7.1

QSOb00 7.6 1.5 3.3 27.8 4.5 5.3
QSOb01 14.6 −1.6 4.9 46.3 6.1 6.8

Note. We calculate the detection significance by three different methods, using
the Bayesian evidence, a likelihood ratio test, and the amplitude constraints on
the best-fit model. The log Bayes factors, ( )ln 1 0  , all exceed the highest
threshold 4.6 for decisive evidence according to the scale of Jeffreys (1961),
and the Δχ2 values all have p-values  10−5. We also convert each to an
effective number of sigmas for comparison, giving N , NLR, and NA,
respectively. The results are similar; however, N suffers from the choice of
wide priors, and the amplitude ratio NA is overly optimistic, as it does not
account for the previous fitting of the template. We also give the evidence ratio

( )ln 1 2  comparing the full signal compared to fixing the nonlinear
parameters. For most catalogs there is no evidence in favor of the full model
(ln 0 < ), that is, the improved fit is not sufficient to support the additional
free parameters. Only for the QSOb00 tracer is there moderate evidence to
support the full model.
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the best-fit, restricted model and a stack on a random mock
catalog. We then fit each realization to the restricted and
unrestricted models and calculate the test statistic. The
probability to observe a value of the test statistic in excess of
that observed in the data is then determined from the empirical
cumulative distribution function. The results are presented in
the last column of Table 4. For all tracers and QSO redshift
bins, the null hypothesis that the two polarizations are
described by the same set of model parameters is accepted
with the probability to exceed (PTE)> 0.05. We also note that
the empirical distributions are reasonably well described by a
χ2 distribution with ΔDOF≈ 2.3 degrees of freedom.

7.2. Consistency between Even and Odd Days

The 102 sidereal days that were used to construct the
sidereal stack are split into two subsets by chronologically
ordering the days that went into each seasonal stack and then
separating the even days into one set and the odd days into the
other set (see Section 3.3.2). The two sets have size 50 and 52
sidereal days and a mean date that differs by 53 hr. Each set is
averaged using the procedure outlined in Section 3.3. This
yields two estimates of the visibilities that are then differenced
according to

( ) ( )V
c
V V

1
, 128even oddD = -

with

⎧
⎨
⎩

( ) ( )
( )c

w w

w w
w wif 0 0 ;

0 otherwise.

129
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even odd=

+
>  >

Here ( )V V ,xy
p n fº and ( )w w ,xy

p n fº denote the visibilities
and corresponding weights. The quantity c is a scale factor that
will set the variance of the radiometric noise in the difference
equal to that in the weighted average. In the limit that the even
and odd splits have equal radiometric noise, and hence equal
weight, then c= 2. In reality, the two splits have slightly
different weights such that c= 2.0065± 0.018 over the

baselines, frequency, and right ascensions examined. The
processing described in Section 3.3 through Section 4.7 is
applied to the differenced visibility, with the caveat that we use
the global frequency mask, delay cut, and primary beam model
that were previously derived from the weighted average of the
full set of days.
The cosmological 21 cm signal is constant as a function of

sidereal day and is expected to cancel in the difference. The
radiometric noise, on the other hand, will be independent in the
two subsets and therefore will remain in the difference.
Transient RFI is also expected to be independent in the two
subsets and remain in the difference. Residual foregrounds
caused by spectral leakage due to a chromatic instrument
transfer function will be the same from day to day and hence
cancel in the difference. Residual foregrounds due to seasonal
changes in the instrument transfer function will also cancel. On
the other hand, residual foregrounds due to changes in the
instrument transfer function from day to day will remain.
Since a significant portion of the noise in the stack is due to

residual foregrounds that will be mitigated by the differencing
procedure, the covariance matrix of the even–odd difference is
expected to change relative to the covariance matrix of the full
data set. We recalibrate the covariance matrix with mock
catalogs as outlined in Section 4.8. We find better agreement
between the even–odd difference covariance and the expected
radiometric noise, suggesting that the majority of ∼50% excess
noise in the full set is primarily due to foregrounds that are
static from one day to the next.
Under the null hypothesis that the observed signal is the

same on even and odd days, stacking the even–odd difference
on the true catalog should be statistically equivalent to stacking
on a random mock catalog. The distribution of the χ2 test
statistic for the random mock catalogs is well described by a
theoretical χ2 distribution with 202 degrees of freedom.
Table 5 quotes the χ2 value of the stack on each tracer and
QSO redshift bin, as well as the fraction of the 10,000 random
mock catalogs that have a χ2 test statistic in excess of that
observed for the true catalog. We find that all tracers and
redshift bins have a PTE greater than 0.05, except for the LRG
catalog, which has a PTE of 0.025, and the subset of the QSO
catalog with a redshift between 0.91 and 1.03 (QSOb01),
which has a PTE of 0.023. If the large χ2 values are due to
differences in the observed signal on even and odd days, then
we would expect to see a copy of the signal in the jackknife.
We recompute the test statistic using only frequencies
|Δν| < 5MHz, where the magnitude of the signal is largest.
We find that the PTE for the LRG catalog increases to 0.12, the
QSOb01 catalog decreases to 0.009, and all other tracers and
QSO redshift bins have a value greater than 0.05. This leads us
to conclude that the large χ2 observed when stacking the
jackknife on the LRG catalog originates from a rare noise
fluctuation rather than differences in the signal on even and odd
days. However, the large χ2 for the QSOb01 catalog warrants
additional investigation.
To explore this further, we perform a model-dependent

analysis of the even and odd days that is similar to the analysis
used to check for consistency between polarizations, which was
described in Section 7.1. Each split is processed independently
through the pipeline and then stacked on the true catalog and
the random mock catalogs. We use the same random mock
catalogs for both splits to ensure that the covariance matrix
captures correlated noise between them. The two splits are

Table 4
Model-dependent Test for Consistency between Polarizations

χ2

Tracer Restricted Unrestricted Δχ2 ΔDOF PTE

LRG 218.6 214.2 4.4 2.3 0.12
ELG 210.1 209.3 0.7 2.3 0.77
QSO 219.0 213.9 5.0 2.3 0.10

QSOb0 210.5 208.3 2.2 2.3 0.37
QSOb1 202.1 200.8 1.2 2.3 0.62
QSOb2 220.4 214.3 6.1 2.3 0.05

QSOb00 185.5 184.8 0.6 2.2 0.78
QSOb01 235.8 233.4 2.3 2.2 0.35

Note. For each tracer and redshift bin, we report the minimum χ2 obtained
when fitting a model in which the two polarizations are described by the same
set of parameters (restricted) and a different set of parameters (unrestricted).
The distribution of the difference, Δχ2, under the null hypothesis that the
polarizations are described by the same set of parameters is calibrated using
random mock catalogs and approximately follows a theoretical χ2 distribution
with the quoted ΔDOF degrees of freedom. The PTE provides the fraction of
random mock catalogs that exceed the value observed in the data.
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jointly fit to both a restricted and unrestricted model. The
restricted model describes both splits with the same set of
parameters. The unrestricted model describes each split with a
different set of parameters. We employ the version of our
model where the nonlinear parameters are held fixed at their
fiducial values (see Table 2). We compute Δχ2 as given by
Equation (127) and calibrate its distribution under the null
hypothesis using the random mock catalogs. The results are
presented in Table 6.

As anticipated, the LRG catalog passes the test (PTE= 0.71)
and the QSOb01 catalog fails the test (PTE= 0.02). The
QSOb0 catalog, which contains all QSOs with a redshift
between 0.80 and 1.03 and is a superset of QSOb01, also fails
the test (PTE= 0.005). The discrepancy appears primarily in
the amplitude of the signal, with the even-day split exhibiting
an approximately 50% larger amplitude than the odd-day split
for these two redshift bins. We perform an MCMC fit of both
the restricted and unrestricted models and use the posterior
distributions of the amplitude parameter H I to characterize the
fractional error in H I implied by this discrepancy. This is
defined as half the difference in H I between the even and odd
splits as measured by the unrestricted model fit divided by the
most likely value from the restricted model fit, and it is quoted
in the last column of Table 6.

The discrepancy is suggestive of a 50% difference in our
calibration between even and odd days at frequencies between
700 and 745MHz. However, we have ruled out an error in the
relative calibration of this magnitude by examining the spectra
of 34 bright point sources in the NGC field extracted from the
maps prior to foreground filtering. We find that the difference
in spectra between the even and odd days is at most 1% over all
sources and frequencies.

In order to account for the observed discrepancy, we will
assume an additional 25% systematic error on the H I
constraint for the QSOb0 and QSOb01 catalogs.

7.3. Beam Calibration Errors

In order to estimate the uncertainty on the default beam
model described in Section 4.4, it is compared to independent

measurements of the beam from observations of the Sun and
holographic observations of bright point sources made in
conjunction with the John A. Galt 26 m telescope (CHIME
Collaboration et al. 2022b). Based on these comparisons, we
estimate that within the main lobe the beam model is accurate
to 5% relative to the beam on meridian at the decl. of Cygnus
A. Currently our beam calibration technique is unable to
constrain the sidelobes of the beam (for details see
Appendix B). The solar and holographic data both suggest
that the sidelobes are 1% at hour angles 30° and 0.1% at
hour angles 30°. It is estimated that approximately 10% of the
beam solid angle lies outside the region that we are able to
measure with the default beam model.
The solar beam measurements are described in CHIME

Collaboration et al. (2022a) and span −23°.5� θ� 23°.5,
which corresponds to the range of apparent decl. that the Sun
travels between winter and summer solstice. The rms difference
between the solar and default beam model is 4% (relative to the
beam on meridian at the decl. of Cygnus A) in the region |
HA| 3°, |θ|< 23°.5, 587.5MHz< ν< 800MHz. However,
the inferred amplitude of the 21 cm signal is primarily sensitive
to the fractional error in the beam on meridian when averaged
over the large range of decl. and frequencies covered by the
eBOSS catalogs. In order to estimate the systematic error on the
21 cm amplitude due to beam uncertainties, the fractional
difference between the default and solar beam model on
meridian at the decl. and 21 cm frequency of each source in
each catalog is extracted and then averaged using the same
weights that are used in the stacking procedure described in
Section 4.7. Only 3% of the QSOs and LRGs in the NGC field
are at decl. that overlap with the solar data. However, 42% of
the ELGs in the NGC field lie at decl. where there are two
independent measurements of the beam, and the average
fractional difference between these two measurements is 6%.
We have also compared the flux density of the brightest

radio sources in the deconvolved map to their expected flux
density in order to obtain an additional estimate of the
systematic uncertainty on the 21 cm amplitude. The expected
flux densities are obtained by interpolating recent measure-
ments made by the VLA to frequencies in the CHIME band
(P17). There are 14 sources in total used for this purpose, with
an average decl. separation of 5°. These sources do not provide
a dense sampling of the decl. axis like the solar data, but they
do cover the full range of decl. spanned by the eBOSS catalogs.
All 14 sources have interpolated flux densities that are accurate
at the subpercent level and are greater than 10 Jy at 600MHz.
The rms of the fractional error in the flux density of these
sources in the deconvolved map is 5.0%, 6.4%, and 7.4% for
the range of frequencies and decl. spanned by QSO, LRG, and
ELG catalogs in the NGC field, respectively. Taking instead
the weighted average of the fractional error in the flux at the
decl. and 21 cm frequencies nearest to the sources in each
catalog yields 0.6%, 2%, and 0.5% for the QSO, LRG, and
ELG catalogs in the NGC field. Note that this is an end-to-end
test of our ability to recover the true flux of point sources and is
sensitive to a variety of potential sources of systematic error,
including beam calibration errors, but also complex gain errors
and regridding artifacts.
As a final check, we simulate observations of the fiducial

21 cm signal using both the default beam and the control beam.
For each of these simulations, we construct a map by
deconvolving both the default beam and control beam and

Table 5
Model-independent Test for Consistency between Even and Odd Days

|Δν| � 20 MHz
(202 DOF)

|Δν| � 5 MHz
(50 DOF)

Tracer χ2 PTE χ2 PTE

LRG 242.4 0.025 62.0 0.12
ELG 199.1 0.54 47.2 0.58
QSO 202.0 0.49 59.2 0.17

QSOb0 233.5 0.064 66.3 0.062
QSOb1 177.2 0.90 35.1 0.95
QSOb2 190.5 0.71 57.9 0.21

QSOb00 207.5 0.38 55.9 0.26
QSOb01 243.5 0.023 76.3 0.009

Note. For each tracer and redshift bin, we report the χ2 test statistic when
stacking the catalog on a jackknife of even and odd days. Under the null
hypothesis that the 21 cm signal is the same on even and odd days, this will
follow a χ2 distribution with the stated degrees of freedom. The PTE provides
the fraction of random mock catalogs that exceed the value observed when
stacking on the true catalog.
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then stack the map on simulated catalogs. We then examine the
fractional difference in the amplitude of the stacked signal for
the four different pairs of (simulation beam model, deconvolu-
tion beam model) relative to the (default, default) pair that was
used in the actual analysis. For all four pairs and all three
tracers the observed difference is less than 6%. This provides
an estimate of the systematic error due to uncertainty in the
interference pattern that modulates the beam. Note that this is a
very conservative estimate because the uncertainty on the
interference pattern is roughly a factor of 10 less than than the
amplitude of the interference pattern itself.

Based on the solar comparison, bright point-source compar-
isons, and simulations of different beam models, a conservative
8% systematic error on the amplitude of the 21 cm signal will
be assumed for all fields.

7.4. Linearity

Many of the elements in our analysis pipeline, such as the
delay filtering, are explicitly linear, meaning that they operate
independently on the 21 cm signal and foregrounds present in
the data. To characterize the linearity of the entire analysis, we
inject simulated 21 cm signal into the data, process the signal
+data combination in the same way as the data, and stack the
results on mock eBOSS catalogs that are correlated with the
simulated signal. We also separately perform the stacking on
mock catalogs using the data without injected signal and using
mock observations containing only the injected signal. In a
perfectly linear analysis, the difference of the signal+data and
data stacks will be equal to the signal-only stacks, while
nonlinearities will cause a violation of this equality. This
method has previously been used to characterize signal loss in
21 cm analyses that rely on strongly nonlinear foreground
filtering techniques (e.g., Masui et al. 2013; Paciga et al. 2013).

In detail, we generate correlated 21 cm and galaxy number
density sky maps and propagate them through to simulated
time streams and mock LRG, ELG, or QSO catalogs following
the procedures in Section 5.3. The signal-only time stream is
added to the sidereal stack derived from the data prior to
subtraction of the brightest point sources (i.e., in the first box in
Figure 6), and this combined time stream is passed through the
same analysis pipeline as the data, culminating in the beam-

deconvolved, filtered, masked map being stacked on the mock
catalogs. Prior to delay filtering, the signal-only map has
rms∼ 0.3 mJy beam−1, compared to ∼3 Jy beam−1 for the data
map; therefore, the addition of signal to the data map has
negligible effect on the determination of the elevation-
dependent delay cut (Section 4.5), or on which frequencies
are identified as outliers (Section 4.6), so these aspects of the
analysis are not regenerated for the signal+data combination.
However, the final masking step—which masks map pixels

whose absolute value exceeds a chosen threshold, based on the
estimated map noise level—is explicitly nonlinear, so we
recompute this mask to determine the impact of this
nonlinearity on the recovered signal. We find that this impact
is significant, which can be explained as follows. The
distribution of pixel values in the signal-only map is symmetric
about zero, but this distribution is skewed positive if one only
considers pixels containing an object in a given mock catalog,
since these objects are more likely to occupy pixels corresp-
onding to matter overdensities, which are also correlated with
21 cm emission. Thus, if a given pixel (containing a catalog
object) in the data map is positive and just below the mask
threshold, it is more likely to be perturbed above the threshold
by the addition of the signal-only map; similarly, a given
negative pixel that is just beyond the threshold is more likely to
be perturbed within the threshold.
The net effect is that the signal injection increases the

number of negative near-threshold unmasked pixels and
decreases the number of such positive pixels, resulting in an
artificial attenuation of the overall stacking amplitude. A lower
threshold will result in a greater number of affected pixels and
more severe attenuation, while a higher threshold will mitigate
this, but at the expense of decreasing the signal-to-noise ratio
owing to a greater number of anomalous pixels being included
in the stack.
Figure 26 quantifies these two effects. For each threshold in

the figure, we compute the difference of stacks on signal+data
and data-only maps, form a “prediction” given by a stack on
the corresponding signal-only map, and fit the overall
amplitude of the prediction to the stack difference, using the
data stack covariance matrix described in Section 4.8. This
amplitude indicates the amount of attenuation (shown as solid

Table 6
Model-dependent Test for Consistency between Even and Odd Days

χ2

Tracer Restricted Unrestricted Δχ2 ΔDOF PTE 2
H I

H I





D

LRG 484.0 483.0 1.0 2.4 0.71 0.11 0.14
0.16- -

+

ELG 414.7 412.7 2.1 2.3 0.42 0.15 0.11
0.22- -

+

QSO 425.2 422.4 2.8 2.6 0.34 0.06 0.10
0.11- -

+

QSOb0 447.9 436.7 11.2 2.4 0.005 0.26 0.12
0.12

-
+

QSOb1 370.6 368.3 2.4 2.5 0.41 0.12 0.12
0.14- -

+

QSOb2 452.7 446.4 6.3 2.4 0.052 0.16 0.13
0.16- -

+

QSOb00 378.7 378.1 0.6 2.3 0.81 0.11 0.17
0.20

-
+

QSOb01 468.6 460.1 8.5 2.4 0.020 0.25 0.11
0.13

-
+

Note. For each tracer and redshift bin, we report the minimum χ2 obtained when fitting a model in which the even and odd splits are described by the same set of
parameters (restricted) and a different set of parameters (unrestricted). The distribution of the difference, Δχ2, under the null hypothesis that the splits are described by
the same set of parameters is calibrated using random mock catalogs and approximately follows a theoretical χ2 distribution with the quoted ΔDOF degrees of
freedom. The PTE provides the fraction of random mock catalogs that exceed the value observed in the data. The last column provides the fractional error on the
amplitude parameter, H I , inferred from this comparison.
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lines in Figure 26) induced by the outlier mask, while the
fractional uncertainty on this amplitude (shown as dashed lines)
indicates the effect of the mask threshold on the statistical
significance of the stacking measurement.

Based on these results, we choose a mask threshold of 6σ,
where σ is the estimated radiometric noise in the maps (see
Section 3.1.4). For the fiducial 21 cm model assumed in our
simulations, this results in signal attenuation of less than 4% for
each eBOSS tracer, which is at least a factor of three smaller
than the statistical uncertainty. Note that in our actual fits to
data, presented in Section 6, the stacking amplitudes are factors
of (1.9, 1.5, 1.4), for the (ELG, LRG, QSO) stacks, greater than
in our simulations. We have rerun the test in Figure 26,
modifying the amplitude of the injected signal accordingly, and
have verified that the attenuation level is unchanged, while the
fractional uncertainty decreases by the quoted factors. Even
with this change, the attenuation is still less than half of the
uncertainty for each tracer, which we deem to be acceptable for
this analysis.

8. Discussion

8.1. Quasar Redshift Errors

As illustrated in Figure 23, there is a statistically significant
frequency offset in the QSO stacks of Δν0≈− 0.2MHz, equal
to roughly half the width of a CHIME frequency channel. As
this is only seen in the QSO stacks and not within the
overlapping LRG and ELG measurements, it is difficult to
explain this as an instrumental issue within CHIME. Instead,
we interpret this as being a systematic bias in the eBOSS QSO
redshifts, stemming from the difficulty of determining a
redshift from the complex processes producing a QSO
spectrum (see Lyke et al. 2020). QSO emission lines such as
C IV are frequently blueshifted from the host galaxy redshift by
dynamical and radiative processes within the QSO's accretion

disk and outflowing winds (Richards et al. 2011; Shen et al.
2016).
Similar to Lyke et al. (2020), we express the redshift error as

a velocity that can be connected to our measured frequency
offset

( )v c
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In Figure 27, we show the inferred velocity bias for the
QSOb00, QSOb01, QSOb1, and QSOb2 stacks, which give
nonoverlapping measurements in redshift. Overall, we measure
Δv∼− 66 km s−1 at ∼3.3σ, with individual bins ranging from
0.8σ (QSOb2) to 2.5σ (QSOb01). Our analysis does not
account for the Doppler shift from Earthʼs motion around the
solar system barycenter; however, while the shift on any
individual source may be up to ∼30 km s−1, on average this
effect is small. Taking a weighted mean of the Doppler shift
toward each source for each night of observation, we find an
average Doppler correction of −3.1 km s−1.
Overall the results in Figure 27 are consistent with those of

Lyke et al. (2020, Figure 3), who estimated the systematic bias
in the zPCA redshift estimates (which we used for stacking) as
compared to redshifts of QSO host galaxies measured using
stellar absorption lines. We anticipate that future QSO cross-
correlation analyses with higher source numbers and improved
processing of the CHIME data will be able to provide useful
measurements of this bias across a broad range of redshifts.
The eBOSS QSO redshifts are significantly noisier than

those of LRG and ELG samples owing to the broader emission
lines, with significant long tails of poor redshift estimates (Lyke
et al. 2020). This has a noticeable effect on the stack signal
(recall Figure 17), as the convolutional effect of the redshift
errors broadens and suppresses the peak of the stack signal.

Figure 26. Comparison of the statistical uncertainty on the amplitude of the
stacked signal (dashed line) to the bias in the amplitude caused by application
of the outlier mask (solid lines) as a function of the threshold used to generate
the mask. The threshold is defined in units of the standard deviation of the
radiometric noise. The different colors correspond to different tracers of LSS.
These measurements were made using the signal injection technique described
in the text, wherein we stack on the sum of the data and the fiducial simulation
for the 21 cm signal. Increasing the threshold reduces the bias in the recovered
21 cm amplitude but also increases the statistical uncertainty due to inclusion of
residual foregrounds. A threshold of six times the expected radiometric noise
was chosen for this analysis, which results in a bias in the amplitude that is
<4% and small relative to the statistical error for all tracers.

Figure 27. The derived redshift bias for each tracer given as a velocity shift
Δv = cΔz/(1 + z). We derived this from the frequency offset Δν0 measured
from each tracer assuming that the source is a systematic bias in the eBOSS
catalog redshifts. For both the ELG and LRG catalogs (orange points) there is
no discernible bias, but the QSO catalogs (blue points; from left to right,
QSOb00, QSOb01, QSOb1, and QSOb2) have a significant bias. This is in
agreement with the bias of the zPCA redshift estimates shown in Figure 3 of
Lyke et al. (2020).
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Uncertainties in the QSO redshift error model can therefore
give sizable changes in the constraints on the signal amplitude.

In our primary analysis we use the “double-Gaussian” model
of Lyke et al. (2020, Equation (A2)) to describe the QSO
redshift uncertainties. However, the model as presented does
not seem to match their measurements of the redshift errors in
ways that are significant for our analysis. There are two clear
differences: first, the fraction of observations that have errors
drawn from the wider Gaussian component appears to be
smaller in the data (as shown in Figure 4 of Lyke et al. 2020)
than the ∼18% quoted in the model; second, there appears to
be a significant reduction in the errors at low redshift compared
to the rest of the sample (as shown in Figure 9 of Lyke et al.
2020), which is expected from the presence of O III and Hβ in
the wavelength range of the spectrograph at redshifts z 1
(Étienne Burtin, private communication).

To assess the importance of this, we modify the zPCA redshift
error model to capture these effects. This change is intended to
give a plausible alternative consistent with the data presented in
Lyke et al. (2020), though we do not claim that it is more
realistic. Producing an improved model would require repeat-
ing the analysis of Lyke et al. (2020) and is beyond the scope of
this paper. Our model is a straightforward modification of the
published “double Gaussian” where we allow the coefficients
to be redshift dependent. The redshift error on a single
observation of a QSO, as given by a velocity error δv, is drawn
from a redshift probability distribution
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It is necessary to change both σ1 and f, as no single change is
able to reproduce the observed low-redshift uncertainties.
However, we do leave σ2 unchanged with a redshift-
independent σ2(z)= 1000 km s−1.

In Figure 28 we show the change in our constraints that
occur if we switch to this modified model. The top panel
compares the redshift dependence of our new model to the
Lyke et al. (2020) model and the measured uncertainties in
their Figure 9. The bottom panel shows the change in the
inferred amplitude, H I , between the two models. We have
fixed the nonlinear parameters in these constraints, which gives
an indication of the statistical error on our constraints. At all
redshifts the difference between the published model and our
alternative is larger than the statistical uncertainty on H I and

suggests that redshift error distribution is a significant source of
systematic uncertainty in our analysis. Future analyses will
need to resolve the questions in this modeling to make
precision constraints on H I .
We use the differences observed in Figure 28 to estimate a

systematic uncertainty from the redshift error modeling of
∣ ∣ 2H

alt
H
norm

I I - , where the 2 comes from an argument
that the models considered are samples from some distribution
of plausible models.

8.2. H I Constraints and Sources of Error

We are interested in learning about the amplitude of
fluctuations in the H I distribution, which is probed most
effectively by the parameter H I (see Equation (104)) in our
analysis. In Section 6.3 we discuss the constraints on H I in
the case where we allow the full set of parameters to vary and
where we pin the nonlinear parameters to their fiducial values.
The uncertainty in the case with fixed nonlinear parameters

is dominated by the statistical uncertainty in the data and from
the prior on the galactic bias. We assume that this statistical
contribution is the same in the case where we allow the
nonlinear parameters to vary, with the weaker constraints
coming from modeling uncertainties. In this case, and assuming
that the modeling errors are multiplicative within the
degenerate regions of parameter space, we can roughly separate
the uncertainty in the full parameter constraints into statistical
and modeling contributions.

Figure 28. The QSO amplitude constraints are strongly dependent on the
model for the QSO redshift errors. In the top panel we show the statistical error
on the QSO zPCA redshift estimates given by differences between repeated
measurements of the same source. These estimates improve at z  1.1 (gray
shaded region) owing to the availability of the [O III] and Hβ lines. The
measured distribution (red line) is taken from Lyke et al. (2020, Figure 9), the
orange line shows the standard deviation of the published redshift-independent
error model (Lyke et al. 2020 Equation (A1)), and the blue line is a redshift-
dependent model described in the text that gives a plausible fit to the zPCA
errors. In the bottom panel we show the amplitude constraints (with fixed
nonlinear parameters) for assuming each of these redshift error models. The
shifts are significant and are redshift dependent. This suggests that the
modeling of the QSO redshift errors is a larger source of uncertainty than the
statistical error in our measurements.
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There are many potential additional sources of systematic
errors in our analysis that have been discussed beyond the
modeling uncertainty. These are listed, along with the statistical
and modeling uncertainty breakdown, in Table 7. This error
budget is dominated by the modeling uncertainties; however,
both the systematic error added to cover unexpected validation
failures (labeled “Consistency” in Table 7 and discussed in
Section 7.2) and the error from uncertainties in the QSO
redshift error model (Section 8.1) are larger than the statistical
error and thus could be the limiting sources if the modeling of
nonlinear scales can be improved.

In Table 8, we summarize the constraints on H I for all the
tracer catalogs. We show the case both with the nonlinear
parameters fixed and when the full set is allowed to vary,
illustrating again the substantial increase in the uncertainties
from these parameters. We also give a final case including the
total error budget from all the systematic contributions above
(we have assumed that they are all multiplicative effects). As
the modeling uncertainties are dominant, including these extra
sources of error gives only marginal increases to the total
uncertainty. The most severely affected catalogs are QSOb0
and QSOb01, due to the systematic error contributions from
both issues in the QSO redshift error model (which is worse at
low redshifts) and from the consistency test failures.

8.3. ΩH I Comparisons

To be able to compare our results directly to measurements
of ΩH I from other probes, we need to be able to break the
degeneracy between ΩH I and bH I. Although our measurements
are unable to do this internally and there are no external
measurements of bH I, we can use simulations as a guide.

As an indicator of the uncertainty on the bias, we use the bias
measured at z= 1 from various simulations. Villaescusa-
Navarro et al. (2018) use the IllustrisTNG hydrodynamic
simulation and find that bH I(z= 1)≈ 1.49, and Ando et al.
(2019) use another hydrodynamic simulation, the Osaka
simulation, to find that bH I(z= 1)≈ 1.26 (from their b0
measurements). Another approach uses semianalytic prescrip-
tions on top of dark-matter-only simulations, such as Spinelli

et al. (2020), who find bH I(z= 1)≈ 1.22 or 1.31 (depending on
whether the Millennium I or II simulation is used), or Wang
et al. (2021), who use an empirically calibrated star formation
model to find bH I(z= 1)≈ 1.27. Collectively these prescrip-
tions have a mean of ≈1.3 and a standard deviation of ≈0.1.
With this in mind, we place a simulation-derived Gaussian
prior on the bias with a conservative width of 20%, i.e.,

b 0.2b H
fid
IH Is = .

We reweight the MCMC chains from our analysis to apply
the updated prior on bH I and marginalize over all the other
parameters to derive constraints on ΩH I. We give our
measurements as the highest posterior density credible interval
about the mode of the distribution. In Figure 29 we show the
measurements for the LRG and ELG samples, as well as the

Table 7
Sources of Uncertainty

Tracer Fractional Errors (%)

Statistical Modeling Flux Template Consistency Beam Linearity Redshift Errors Total

LRG 14 150 4 1 0 8 1 0 151
ELG 18 93 4 0 0 8 2 0 95
QSO 10 49 4 0 0 8 4 14 52

QSOb0 13 73 4 0 25 8 2 24 82
QSOb1 14 76 4 0 0 8 4 13 79
QSOb2 15 73 4 0 0 8 5 13 76

QSOb00 21 191 4 0 0 8 1 25 194
QSOb01 15 76 4 0 25 8 2 21 85

Note. In this table we quantify the sources of error in our measurement. From left to right the sources are as follows: Statistical, inferred from the constraints with fixed
nonlinear parameters; Modeling is the symmetrized error from the constraints varying all parameters, after removing the statistical contribution; Flux is from
uncertainty in the absolute flux scale (Section 3.1); Template is from errors in the template calculation (Section 5.4 and Appendix D); Consistency gives systematic
errors inferred from issues observed in data validation (Section 7.2); Beam lists the uncertainties from an imperfect beam model (Section 7.3); Linearity gives a
systematic error to incorporate the effect of signal loss during our analysis that is not fully captured by our template calculation (Section 7.4); and Redshift Errors adds
a systematic error to account for the difference in inferred amplitudes across plausible alternatives to the QSO redshift error model (Section 8.1). The final column,
Total, combines the extra sources of systematic error with those from the full parameter constraints to give an estimate of the symmetrized fractional error.

Table 8
Parameter Constraints for Each Tracer

Tracer zeff H I

Fiducial Fixed NL Full NL Full + Systematics

LRG 0.84 1.13 1.82 0.25
0.26

-
+ 1.51 0.96

3.60
-
+ 1.51 0.97

3.60
-
+

ELG 0.96 1.21 2.35 0.42
0.43

-
+ 6.76 3.74

9.01
-
+ 6.76 3.79

9.04
-
+

QSO 1.20 1.37 1.86 0.17
0.18

-
+ 1.68 0.60

1.06
-
+ 1.68 0.67

1.10
-
+

QSOb0 0.97 1.22 2.27 0.28
0.31

-
+ 2.04 0.94

2.09
-
+ 2.04 1.19

2.21
-
+

QSOb1 1.12 1.31 1.75 0.25
0.25

-
+ 2.89 1.36

3.13
-
+ 2.89 1.44

3.17
-
+

QSOb2 1.30 1.43 1.81 0.28
0.27

-
+ 1.63 0.86

1.55
-
+ 1.63 0.90

1.57
-
+

QSOb00 0.84 1.14 2.49 0.54
0.52

-
+ 1.49 1.65

4.06
-
+ 1.49 1.69

4.08
-
+

QSOb01 0.99 1.23 2.23 0.34
0.35

-
+ 3.23 1.56

3.47
-
+ 3.23 1.91

3.64
-
+

Note. After reparameterization to avoid degeneracies, the physically interesting
parameter is the 21 cm amplitude H I . We show the highest posterior density
68% credible intervals for these parameters for both a prior with the nonlinear
parameters fixed and the full parameter space. Comparing the H I constraints
for the cases of fixed and varying nonlinear parameters, we can see that there is
a substantial increase in the uncertainty from modeling the small-scale
structure. We also show estimates for H I including the effects of the
systematic errors listed in Table 7. As the modeling errors are large, the
additional uncertainty from this is small.

48

The Astrophysical Journal, 947:16 (59pp), 2023 April 10 The CHIME Collaboration et al.



QSOs split across three redshift bins, compared to measure-
ments from other experiments.

There are four main methods for measuring ΩH I that we
include in Figure 29 for comparison:

Direct H I surveys: At the lowest redshifts, blind surveys of
the 21 cm line can measure the H I mass function directly,
which can be integrated to obtain estimates of ΩH I.
H I stacking: At intermediate redshifts, it is difficult to detect
individual galaxies in their 21 cm emission; to get around
this, high-resolution radio data can be stacked on the
positions of galaxies found in optical catalogs to get an
estimate of the average amount of H I per galaxy in the
sample. This can then be combined with an optical
luminosity function for the sample and corrected for
completeness to give an estimate of ΩH I.
H I intensity mapping: Another method is to cross-correlate
H I intensity mapping data with optical catalogs. These are
distinct from the H I stacking measurements described above

in that they do not resolve the emission in the (average of)
individual galaxies, but instead are sensitive to the correlated
H I mass in the vicinity of the galaxy. Our results are an
example of this technique.
Damped Lyα: At the highest redshifts damped Lyα systems
are detected in optical and UV QSO spectra, and the
distribution of their observed column densities can be
integrated to find ΩH I.

For all measurements, we convert into the Planck 2018
cosmology used in this paper, using ( )H z 2 =

[ ( ) ]H z1 10
2

m
3

mW + + - W , with Ωm= 0.30964. In each case,
the measurements are effectively a fluxlike quantity, which is
multiplied by an area to give an H I mass, divided by a survey
volume to give a density, and then divided by the critical
density to give ΩH I, though some of these steps are implicit
(this is still true for the damped Lyα analysis, though the “area”
in the mass is canceled with the one implicit in the volume). If
we approximate the observations as coming from a narrow

Figure 29. Constraints on ΩH I from this analysis compared to other experiments. In the top panel we show the constraints in this work when varying the full set of
modeling parameters, and in the bottom panel we fix the nonlinear parameters, which considerably reduced the uncertainties at the expense of hidden systematic
errors. We have selected a representative sample of measurements using independent data sets to place in this figure. The data sets are of four types: at the lowest
redshift there are direct 21 cm observations, such as those from ALFALFA (Jones et al. 2018) and the Arecibo Ultra Deep Survey (Xi et al. 2020); at intermediate
redshifts source stacking of individual galaxies such as Rhee et al. (2013), who use Westerbork data and low-redshift galaxies observed with CFHT-MOS, and three
studies combining GMRT radio data with different optical catalogs, VVDS optical data taken at VIMOS (Rhee et al. 2018), DEEP2 and DEEP3 at low redshift (Bera
et al. 2019), and DEEP2 at high redshifts (Chowdhury et al. 2020); also at intermediate redshifts are H I intensity mapping cross-correlations like Wolz et al. (2022),
who cross-correlate GBT intensity mapping data against eBOSS and WiggleZ catalogs; at the highest redshifts, measurements are from surveys of damped Lyα
systems such using Hubble Space Telescope ACS and GALEX data (Rao et al. 2017) and using ESO UVES (Zafar et al. 2013).
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band in redshift, then the cosmology dependence is

( ) ( )z
H

dz

dr

1
, 136H

0
2IW µ

where r is the comoving distance to redshift z. For the Wolz
et al. (2022) intensity mapping points we convert their ΩH IbH Ir
measurements into ΩH I constraints with the fiducial bias model
we use in this paper to allow a consistent comparison.

In Figure 29 for the constraints both when varying the
nonlinear parameters (top panel) and when fixing them (bottom
panel) our results are in broad agreement with other ΩH I

constraints. As we would expect, the uncertainties are much
larger when allowing the nonlinear parameters to vary, though
the distributions are non-Gaussian and the probability of
ΩH I� 0 is still negligible. We note that while we expect all
points to be pushed toward higher values of ΩH I by the prior
volume effect in the FoG parameters discussed in Section 6.3,
the CHIME+eBOSS ELG point is noticeably discrepant when
the nonlinear parameters are varied. We believe that this is a
chance fluctuation where the region further along the H I
−αFoG,+ degeneracy is preferred and leads to a ∼2σ shift from
the ΩH I values preferred by the other tracers. This can also be
seen clearly in Figure 24, where the preferred range of αFoG,+
values is higher than in the QSO and LRG cases (Figures 23
and 25, respectively). When fixing the nonlinear parameters,
the ELG constraints are much more consistent with both the
other CHIME tracers and the external data sets.

As the constraints with fixed nonlinear parameters do not
include the full modeling uncertainties, they show the internal
consistency and significance of our measurements but are not good
indicators of the plausible range of ΩH I determined from our data.
In all cases we are showing constraints derived with the fiducial
eBOSS QSO error model. As discussed in Section 8.1, we believe
that this model may bias the QSO constraints (particularly the
lowest-redshift bin) to higher values of ΩH I.

8.4. Atomic Hydrogen Content of Galaxies and Quasars

As mentioned previously, our stacking analysis not only probes
the correlated clustering of eBOSS catalog objects and H I but also
is sensitive to the H I associated with the objects themselves,
which sets the value of our M10 parameter for each sample (recall
that M10 is defined as the mean H I mass per catalog object, in
units of 1010Me). Figures 23–25 show that the posteriors for M10

peak at nonzero values for the QSO and LRG stacks, while for the
ELG stack the posterior peaks at M10= 0. In each case, however,
the model where M10 and the other nonlinear parameters (αFoG,+
and αNL) are allowed to vary is not strongly preferred over the
case where these parameters are fixed to their fiducial values (see
Section 6.4); thus, we cannot interpret the posteriors of M10 as
providing definitive information about the H I content of the
objects in each catalog.

Nevertheless, the finite width of these posteriors indicates
that future analyses may hold the promise of interesting
constraints. In particular, for the ELG stack, the highest
posterior density 68% credible interval is M10< 1.04. This is
consistent with the simulations of Wolz et al. (2022), which
were based on the DARK SAGE semianalytical galaxy evolution
model (Stevens et al. 2016) and predicted a shot-noise
contribution to the H I−ELG cross-power spectrum equivalent
to M10≈ 0.8 (as inferred from their Figure 12). It is also
consistent with the analysis of Chowdhury et al. (2020), who

stacked GMRT 21 cm observations on star-forming galaxies
from the DEEP2 survey and found M10= 1.19± 0.26 at an
effective redshift zeff= 1.03. A cross-correlation analysis with
greater power to break the parameter degeneracies in our model
would likely improve the constraint on M10 to a level where it
could fruitfully be compared with these other values.
Empirical information on the H I content of LRGs at z∼ 1 is

scarce: direct stacking analogous to Chowdhury et al. (2020)
has only been carried out at lower redshifts for such red
galaxies (e.g., Rhee et al. 2018). Thus, constraints on M10 for
LRGs (and QSOs) would provide valuable information about
the evolution and environments of these objects. On the other
hand, inclusion of an external prior on M10, obtainable from,
for example, stacking GMRT observations on a subset of
objects from each eBOSS catalog, would help to break the
degeneracies in our model (or other, more detailed models of
H I−galaxy cross-correlations), and we see this as a promising
avenue for future investigation.

9. Conclusions

In this paper, we have presented the first detection of
cosmological 21 cm emission with the CHIME telescope. This
detection is the result of constructing sky maps from CHIME
data, filtering and cleaning these maps in various ways, and
performing a cross-correlation analysis with catalogs of LRG,
ELG, and QSO positions from the eBOSS survey. We have
described several aspects of CHIME data processing that have
not previously appeared in the literature: these include our
procedures for combining multiple sidereal days of observa-
tions (Section 3.3), forming beam-deconvolved sky maps from
measured visibilities (Section 4.3), measuring delay power
spectra using Gibbs sampling (Appendix A), and inferring the
primary beam pattern based on external measurements of many
radio point sources (Appendix B).
We have filtered bright foregrounds out of the measurements

with a high-pass delay filter using the approach of Ewall-Wice
et al. (2021), with a decl.-dependent delay cutoff that selects
the regime where the fluctuations in the data are close to the
expected noise level. This filtering has the effect of removing
any sensitivity to linear cosmological scales related to BAOs,
such that the signal-to-noise ratio is concentrated at nonlinear
scales (0.3 hMpc−1 k few hMpc−1; see Figure 14).
We perform the cross-correlation by separately stacking

CHIME sky maps at the angular and spectral locations of the
objects in eBOSS catalogs of ELGs, LRGs, and QSOs. In each
case, the spatial extent of the signal is consistent with an
unresolved point source (Figure 19), so we present our main
results as 1D stacking profiles as a function of frequency offset
from the locations of the catalog objects (Figure 20). We
achieve significant detections for each catalog, as indicated by
Bayes factors 1 0  of ( )ln 18.81 0  » (LRGs), 10.8
(ELGs), and 56.3 (QSOs), computed by comparing our signal
model with a noise-only model; alternatively, a frequentist
likelihood ratio test gives signal-to-noise ratios of 7.1 (LRGs),
5.7 (ELGs), and 11.1 (QSOs).
We interpret these measurements using a simulation-based

framework (Sections 5.3 and 5.4), within a model that
considers H I and galaxies to be linearly biased tracers of the
underlying matter distribution, including the leading effects of
redshift-space distortions and a correlated shot-noise contrib-
ution related to the mean H I mass of the objects in each catalog
(Section 5.2). We are able to constrain an effective H I
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clustering amplitude ( )b f10H
3

H H
2

I I I mº W + á ñ , where ΩH I

is the cosmic abundance of H I, bH I is the linear bias of H I, and
〈fμ2〉 (equal to 0.552 in this analysis) is an average over the
linear growth rate f and an angular factor μ2 related to the line-
of-sight components of the Fourier modes probed in the stacks
(Section 6.2). We constrain this amplitude separately for each
eBOSS catalog, marginalizing over parameters controlling the
scale dependence of nonlinear clustering, obtaining

1.51H 0.97
3.60

I = -
+ (LRGs), 6.76H 3.79

9.04
I = -

+ (ELGs), and
1.68H 0.67

1.10
I = -

+ (QSOs) (see Table 8). Previous cross-correla-
tions between GBT 21 cm maps and galaxy catalogs have
measured ΩH IbH Ir (where r is a phenomenological cross-
correlation parameter) with 15%−25% precision (Chang et al.
2010; Masui et al. 2013; Wolz et al. 2022); our constraints on

H I are weaker than this, but only due to our more detailed
modeling of small-scale clustering, which requires margin-
alization over several parameters.

We also constrain an overall frequency offset Δν of the
stacking profile. This offset is consistent with zero for ELGs
and LRGs, while for QSOs we find Δν≈− 0.2 MHz. We
interpret this as a systematic bias in the measured redshifts of
the QSOs, corresponding to Δv≈− 66 km s−1 in velocity
units. As discussed in Section 8.1, this is consistent with what
was found by the eBOSS team in Lyke et al. (2020).

Our results point to several interesting directions for future
investigation. Our present analysis only considered CHIME
frequencies above 585MHz, corresponding to redshifts less than
1.42, but the eBOSS QSO catalog contains a significant number of
QSOs at higher redshift (see Figure 2), and it would be worthwhile
to repeat the stacking procedure using these objects, after
additional effort to remove transient RFI in CHIME data at the
relevant frequencies. In addition, similar future analyses have the
potential to constrain the mean H I mass per catalog object. This
would provide opportunities for coordination with stacking
analyses from higher-resolution interferometers like GMRT (e.g.,
Chowdhury et al. 2020), which could help to disentangle the
contributions from LSS and correlated shot noise and also provide
new information about the evolution and properties of LRG, ELG,
and QSO samples. In parallel, future cross-correlation analyses
could be used to obtain more detailed information about systematic
errors in spectroscopic redshifts obtained from optical instruments.

More broadly, many of the methods developed for this
analysis are not specific to CHIME but could also be applied to
other low-redshift interferometric 21 cm surveys, such as
CHORD (Vanderlinde et al. 2019), Tianlai (Li et al. 2020; Wu
et al. 2021), HIRAX (Crichton et al. 2022), uGMRT
(Chakraborty et al. 2021), and the Ooty Wide Field Array
(Subrahmanya et al. 2017), as well as higher-redshift surveys
like HERA (DeBoer et al. 2017) and potential future projects
(Cosmic Visions 21 cm Collaboration et al. 2018).
Finally, we note that this paper has made use of only a small

fraction of the total amount of data collected by CHIME in the
past 4 yr. Future improvements in data processing will be
focused not only on enabling much more detailed cross-
correlation measurements but also on the ultimate goal of
measuring BAOs in the auto-power spectrum of 21 cm
emission, providing important clues as to the nature of dark
energy and the properties of the low-redshift universe.
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Appendix A
Delay Power Spectrum Estimation via Gibbs Sampling

Delay power spectra31 measure the power at different time
lags observed within a frequency spectrum and are an

29 https://www.alliancecan.ca
30 https://www.scinethpc.ca/
31 For clarity, we will use delay spectrum to refer only to the direct Fourier
transform of a frequency intensity or flux spectrum. The delay power spectrum
will refer only to the variance of this quantity. Though the intensity and flux are
both second-order statistics of the electric field and thus are power-like
quantities in a physical sense, we do not think that this is ambiguous anywhere
in this text.
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extremely powerful tool for investigating instrumental effects
and the frequency structure of radio emission from the sky (see
Figure 10 for an example). Superficially estimating a delay
power spectrum involves taking a Fourier transform of a
frequency spectrum and estimating the resulting power in the
time domain. However, in the presence of interference that
causes certain frequencies to be masked out and a large
dynamic range between the power at different delays,
significant care must be taken to avoid mixing of power
between different delays. There are several existing strategies
for dealing with this, such as using a CLEAN-like algorithm in
delay space (Parsons et al. 2014) and least-squares spectral
analysis (LSSA; see Vaníček 1969; Trott et al. 2016).

To understand the challenges involved, consider a noisy
observation f of a frequency spectrum with length Nf. This is
related to an underlying delay spectrum d by

( )f Fd n, A1= +

with noise n and where the delay spectrum is assumed to be
drawn from the input delay power spectrum D[τa]:

[ ] ∣ ∣ ( )D d . A2a a
2t = á ñ

The noise is described by covariance N, and for the moment we
treat the noise as being uniform except for entirely missing
frequencies that we give infinite noise. We write this as
N−1= σ−2M, where M is a diagonal masking matrix with ones
for included frequencies and zeros for missing frequencies. The
matrix F, with F e Nab

j2
f
1 2a b= p t n- , is unitary and performs a

discrete Fourier transform from the time (delay) domain to the
conjugate frequency domain.

A first attempt to estimate the delay power spectrum might
start by simply applying the mask M to the observed frequency
spectrum and performing an inverse Fourier transform,

ˆ ( )†d F Mf . A3inv =

With this estimate of the delay spectrum, we can then infer the
delay power spectrum D[τa] by using a variance over Nobs

observations, indexed by i:

ˆ [ ] ∣ ˆ ∣ ( )D
N

d
1

, A4a
i

N

a
i

obs 1

2
obs

åt =
=

with d̂a
i
being any estimator for da such as d̂inv defined above

(later we will introduce additional estimators). However, this
procedure generates significant leakage between delay chan-
nels, with a delay spread function given by the matrix F†MF.
In the case of random masking of Nmasked single frequencies, it
can be shown that this gives leakage at the level of

[ ]N D Na amasked f
2t~ å uniformly across delays, and we are

not able to see any structure in the delay power spectrum below
this level.

To improve this, we could modify the delay spectrum
estimate by deconvolving the delay spread function by its
pseudo-inverse, or equivalently use a maximum likelihood
estimator32

ˆ ( ) ( )† †d F N F F N f . A5ml
1 1= - + -

However, as F is unitary, the pseudo-inverse ( )†F N F1- + is
equal to ( )†F N F1- + , and as the noise matrix is diagonal with
zeros where samples are masked, ( )N N M;1 1 =- + - together,
these imply that ˆ ˆd dml inv= . In words, the maximum likelihood
estimator is exactly equivalent to inverse Fourier transforming
the masked frequency spectra.
Another option is using a Wiener filter instead of a

maximum-likelihood-type filter:

ˆ ( ) ( )† †d D F N F F N f , A6w
1 1 1 1= +- - - -

where Dab=D[τa]δab is the covariance matrix of the delay
spectrum signal. By providing information about the distribu-
tion of power at various delays, the filter can distinguish delays
related to true signal in the masked frequency spectra, resulting
in delay spectra with significantly lower leakage and hence
cleaner power spectra. However, constructing this requires that
we already know the delay power spectrum D[τa], which is the
quantity that we are trying to estimate. A close enough guess
may minimize the leakage enough to produce accurate delay
power spectrum estimates, but there is no knowing in advance
whether this is the case.
A resolution to this is to jointly solve for both the delay

spectrum and the delay power spectrum, a problem that is
tractable by Gibbs sampling (Geman & Geman 1984), an
MCMC technique for drawing samples from a joint distribution
where the conditional distributions are easily sampled. In
particular, we draw inspiration from techniques used for power
spectrum estimation of the CMB (e.g., Eriksen et al. 2004;
Wandelt et al. 2004).
We want to infer both the delay spectrum d and the delay

power spectrum (equivalent to the diagonal matrix D) by
drawing samples from the joint probability distribution

( ∣ )d D f, . Gibbs sampling allows us to do that by alternately
drawing from the conditional distributions ( ∣ )d D f, and

( ∣ )D d f, ; the ensuing set of samples will eventually converge
to the joint distribution, and we can take the mean over D
samples as an estimate of the delay power spectrum. We now
describe how to sample from each conditional distribution.
Starting with ( ∣ )d D f, , we can use Bayes’s theorem to

write

( ∣ ) ( ∣ ) ( ∣ ) ( )d D f f d D d D, , . A7  µ

The first term on the right-hand side is the likelihood function
for the frequency spectrum, which for Gaussian noise can be
written as ( ∣ ) ( )f d D f Fd N, ,C = - , where C is a
circularly symmetric complex Gaussian distribution:

( )
∣ ∣

( )†
z C

C
e,

1
. A8z C z

C
1


p

= - -

We will also model the conditional prior distribution for the
delay spectrum as Gaussian, with ( ∣ ) ( )d D d D,C = . Com-
bining these together and grouping the terms in d, we find that
the conditional distribution is

( ∣ ) ( ˆ ) ( )d D f d d C, , , A9C w = -

where C−1=D−1+ F†N−1F. Thus, the mean of the condi-
tional distribution is just the Wiener filter of Equation (A6),
with the standard covariance. Although drawing from this can
be done by solving for the mean, followed by inversion and
factorization of C−1 to add a random fluctuation, it is more

32 We note that this is similar to LSSA, though LSSA considers more general
cases, such as irregular sampling, and typically restricts the range of delays
being solved for to minimize correlations and leakage.

52

The Astrophysical Journal, 947:16 (59pp), 2023 April 10 The CHIME Collaboration et al.



efficiently done by constructing

( )† †C d F N f D w F N w , A101 1 1 2
1

1 2
2= + +- - - -

where w1 and w2 are standard Gaussian random samples, and
then solving for d (Jewell et al. 2004).

The conditional distribution for the delay power spectrum is
more straightforward. We wish to calculate the conditional
distribution ( ∣ )D d f, , which is independent of f, as all the
information about D is contained within d. Using a flat prior on
the elements of D and the prior ( ∣ )d D , we find that

( ∣ ) ( )D d f d D, ,C µ . Assuming that D is diagonal, we can
rewrite this in terms of the sample variance estimates ˆ [ ]D at for
each delay τa, which are sufficient statistics for the diagonal
elements of D itself, D[τa]. The sample variance ˆ [ ]D at has a χ2

distribution,

ˆ [ ]
[ ]

( ) ( )N
D

D
N , A11a

a
obs

2
obs

t
t

c~

and so we can draw samples from ( ∣ ) ( ˆ [ ]∣ [ ])D d D Da a  t tµ
by drawing a standard χ2 deviate for each delay xa∼ χ2(Nobs)
and setting the new sample for D[τa] to be ˆ [ ]N D xa aobs t .

Our practical implementation of this algorithm is as follows:

1. Pick a set of data whose delay spectra are expected to be
similar enough that we can average over them. For
computing delay spectra from visibilities, this might
consist of all R.A. samples for individual baselines (after
stacking over redundant copies). For the map delay
spectrum described in Section 4.5, we choose the set of

R.A. samples at each polarization and decl. As above, we
use Nobs to denote the size of this set.

2. Apply an apodization window to each frequency
spectrum, if desired. A Nuttall window is used in
Section 4.5.

3. Choose an initial guess D0[τa] for the delay power
spectrum. We use a white spectrum with amplitude
10 Jy beam−1 in this work.

4. Loop over the following steps until convergence has been
achieved:
(a) For each element i of the set of Nobs spectra, draw the

nth delay spectrum sample ( ∣ )d d f D,n
i

n¬ using
Equation (A10). Note that each dn

i is a delay spectrum
with N f elements.

(b) Draw the ( n+ 1)th delay power spectrum sample
[ ] ( [ ]∣{ } )dD Dn a a n

i
i
N

1 1
obst t¬+ = , using the Nobs delay

spectra drawn at step n to compute ˆ [ ]D at in
Equation (A11).

5. Take the average of the converged samples, after
removing burn-in and performing any necessary thinning.
In Section 4.5, we halt after 100 samples and take the
median over the final 50 samples as an estimate of the
delay power spectrum.

In summary, the Gibbs sampling approach is a statistically
well-motivated technique that iteratively deconvolves the delay
spectra, uses them to update a delay power spectrum, and uses
this to improve the next deconvolution round.
In Figure 30 we apply the various estimators discussed

above to a synthetic data set with high dynamic range in delay

Figure 30. To test the performance of the delay power spectrum estimation techniques discussed in Appendix A, we generate a set of random delay spectra with a true
delay power spectrum (black line) consisting of very high power at low delays and a plateau of low power outside this region. We Fourier transform these into
frequency spectra and apply the CHIME RFI mask used in this analysis (Section 3.2.3). In orange we show the direct inverse estimate, which has significant leakage at
the ∼10−2 level. The Wiener filter estimate (green solid) produces a much closer estimate, correcting most of the leakage effects, at the expense of needing a good
starting guess. If generated with a poor initial delay power spectrum (high power over twice the range of delays as the true power spectrum), the estimate is
significantly worse (green dashed). The Gibbs sampler produces an estimate that is much closer to the true power spectrum (red). Like any MCMC scheme, attention
must be paid to the convergence of the chain. We used 100 samples and derived our estimate from the median of the last half. The full chain is shown in gray and can
be seen converging from a poor starting guess of a flat delay power spectrum to the true power spectrum over ∼30 samples.
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space and a realistic frequency mask. We clearly see that the
Gibbs-sampling-based estimator is able to accurately recover
the input spectrum, while the naive inverse Fourier and Wiener
estimators show various degrees of discrepancy.

Appendix B
Estimating the Primary Beam by Deconvolving a Model for

the Point-source Sky

In this appendix, we describe the algorithm that is used to
directly reconstruct the average primary beam pattern of the
CHIME antennas. We provide a schematic representation of
this algorithm in Figure 31. First, a model for the radio
emission from extragalactic point sources is constructed from
measurements made by other telescopes. The specfind v2 table
(Vollmer et al. 2010) in the Vizier database is queried for flux
measurements of all known sources between decl. −40° and
85°. For each source, all available measurements of the flux are
fit to a power-law with frequency

⎛
⎝

⎞
⎠

( ) ( )s a
600 MHz

, B1n
n

=
g

where the amplitude a and exponent γ are allowed to float. The
fit is done by performing a weighted linear regression of the
logarithm of the flux to the logarithm of the frequency. The
uncertainties provided in the specfind v2 table are used to
construct inverse variance weights. These uncertainties are
20% of the measured flux (Vollmer et al. 2005), and the power-
law model is in general a good fit given these large
uncertainties. Only sources with s(600MHz)> 15 mJy that
have at least one measurement on either side of the CHIME
band are included in the sky model. There are 97,941 sources
in total that meet these criteria. All of the sources have at least
three flux measurements, with six flux measurements on
average.

Our model for the visibility measured by baseline b at
frequency ν and local Earth rotation angle f is then given by

( ) ( ) ( ) ( )· ˆ ( )bS s e, , , , B2b n

i
i

j c
i

2 ,i iån f n d f f= pn q f f-

where si(ν) is a power-law model for the flux of the ith source;
ˆ ( )n ,i iq f f¢ - is the unit vector pointing in the direction of the
ith source and is given by Equation (25), with fi and θi
denoting the sourceʼs R.A. and decl. in CIRS coordinates,
respectively; and

⎧
⎨
⎩

( ) ∣ ∣ ( ),
1

1

2
0 otherwise

, B3i
id f f f f f= - < D

with Δf= 0°.0879 denoting the sample spacing of the data in
local sidereal angle. The sum in Equation (B2) runs over all
sources.

The following identical operations are then performed on the
sidereal visibilities V and sky model S. We first arrange the
baselines onto a 2D grid and then beamform in the ŷ-direction
using Equation (27). The weights used in the beamformer are
given by

⎜ ⎟
⎛

⎝
⎡
⎣⎢

⎤
⎦⎥
⎞

⎠
( ) ( )w W

y

y
,

1

2
1 , B4xy

p

min max

n f
n

n
= +a

where Wα denotes the Dolph–Chebyshev window, α= 60 dB
is the peak-to-sidelobe ratio, 587.5 MHzminn = is the mini-
mum frequency examined, and y 255max= corresponds to the
maximum baseline distance in the ŷ-direction.
The window function in Equation (B4) will result in a

frequency-independent synthesized beam in the q̂-direction that
has an FWHM= 0°.385 and sidelobes that are 10−3 of the
peak amplitude. The Dolph–Chebyshev window minimizes the
main lobe width for a given number of baselines and equiripple
peak-to-sidelobe ratio. It will degrade the point-source
sensitivity relative to the inverse variance weighting scheme
discussed in Section 4.3; however, the loss of sensitivity is not
problematic for beam calibration because it relies on a
foreground signal that is 500 times brighter than the noise.
The low equiripple sidelobes help to ensure that each formed
beam is sensitive to the primary beam at a narrow range of decl.
The argument of the window function is scaled with

frequency so that the synthesized beam in the q̂-direction is
frequency independent. Essentially the resolution at every
frequency is degraded to the resolution at the lowest frequency.
This ensures that all frequencies are sensitive to the same decl.,
so that any errors in our sky model are not further modulated by
a frequency-dependent synthesized beam pattern.
Next, we multiply the hybrid beamformed visibilities by a

cosine-tapered window that is unity for 125° < f< 255° and
transitions to zero over a span of 15°. This restricts our
attention to a relatively quiet portion of the radio sky, avoiding
sharp features in the Galactic emission that are present in the
data but not in our model, and also avoiding regions of the sky
contaminated by Cygnus A and Casseopia A in the sidelobes,
which this technique is unable to account for properly. This
range of f also coincides with the range covered by the eBOSS
NGC field. The m-mode transform is then taken.
The model for the primary beam is obtained by cross-

correlating the sky model and the visibilities in m-mode space,

˜ ( )
˜ ( ) ˜ ( )

∣ ˜ ( )∣ ( )
( )B

S V

S
,

, ,

,
, B5xm

p xm xm
p

xm x
p2 2

n q
n q n q
n q s n

=
+

*

where S̃ , Ṽ , and B̃ denote the m-mode transform of the hybrid
beamformed visibilities for the sky model, data, and beam
transfer function, respectively, and σ is an estimate of the noise
in Ṽ .
The m-mode transform of the beam transfer function, B̃, is

multiplied by a cosine-tapered mask to remove any m-modes
that cannot originate from the sky near meridian. This mask is
unity for mcenter,x± 0.75mwidth and then smoothly transitions to
zero by mcenter,x±mwidth (see Equations (38) and (39)). The
inverse m-mode transform is then calculated to obtain our
estimate of the beam transfer function B for each EW baseline
separation x. The beam transfer function is then “fringes-
topped,” or in other words, it is multiplied by the complex
conjugate of the exponential term in Equation (30), to recover
|Ap(ν, θ, f)|2, which we will refer to as the power beam. Note
that this method yields four distinct estimates of the power
beam, one for each EW baseline separation.
We find that the resulting estimate of the power beam

exhibits small-scale variations along the decl. axis that are
highly correlated as a function of frequency and hour angle. We
suspect that these variations are due to errors in the flux of the
sources in the sky model, and we remove them as follows. At
each decl., the logarithm of the power beam at f= 0° is fit to a
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fourth-order polynomial in frequency. This logarithmic poly-
nomial model is then high-pass filtered along the q̂-direction so
that only variations on scales 3° are preserved. The power
beam at each decl. is then divided by the exponential of the
high-pass-filtered, logarithmic polynomial model.

The uncertainty in the power beam is estimated at each
frequency and decl. by examining the variance at large hour
angle ( ∣ ∣0.087 cos sin 0.42 q f ). This uncertainty varies
significantly as a function of decl. based on the brightness of
the sources at that decl. We apply a 2D Savitzky–Golay filter in
(ν, θ) space to low-pass-filter the beam model. For each (ν, θ,
f) a fourth-order Chebyshev polynomial in both ν and θ is fit to
a small window centered on that location. The best-fit
polynomial model is evaluated at that location to obtain the
low-pass-filtered version of the beam model. The variance in
the beam model at large hour angle is used to estimate the
weights in the fit and properly account for the decl.-dependent
uncertainties. The size of the window changes between three
distinct values based on the decl. and frequency in order to
retain features in the beam at progressively smaller scales as
one moves to lower decl. In addition to smoothing the beam,
the low-pass filter interpolates the beam to the majority of the
frequencies that have been masked because of missing data
or RFI.

Even after applying the 2D smoothing operation, there are
still sharp features in the beam along the frequency axis that we
believe originate from unflagged RFI present in the sidereal
visibilities. These sharp features will leak foreground power to
small-spectral scales when the beam model is deconvolved
from the data. To address this, at each (θ, f) we apply an
eighth-order low-pass Butterworth filter along the frequency
axis. The cutoff used for the low-pass filter is decl. dependent
in order to retain what we suspect are actual features of the
beam. The cutoff ranges from 125 to 200 ns.

The final estimate of the power beam is obtained from a
weighted average of the estimate from baselines with a 44 and
66 m EW component. The baselines with a 0 m EW component
are contaminated by diffuse Galactic emission, which is not
present in our sky model, and also coupled noise that varies
slowly as a function of Earth rotation angle and thus appears at
low m values that overlap with the range of m at which the
meridian sky fringes. The baselines with 22 m EW components

are also contaminated by coupled noise, albeit to a lesser
extent.
This technique is currently unable to measure the primary

beam accurately at hour angles greater than ≈2°.0, where the
first-order approximation for the geometric phase given in
Equation (26) begins to break down and an additional term that
depends on the NS baseline distance, decl., and hour angle
becomes relevant. The phase due to this term will be equal to
the first-order phase at a new “effective” decl. given by

( ( ))
( )

arcsin cos sin sin cos cos .
B6

effq q q f f¢ = L ¢ - L ¢ - ¢ + L

As a result, bright sources will exhibit a “U”-shaped track in
the hybrid beamformed visibilities as they move out of the
meridian beam centered on their true decl. q¢ and into meridian
beams centered on more northern decl. at effq¢ . The recovered
primary beam will be attenuated at large hour angles by a factor

( ) ( )ˆ ˆ
b b, , , , , ,p p
synth
,

eff synth
,n q q f n q q f¢ ¢q q . In the main lobe of the

primary beam the attenuation is less than 6% for the
polarizations, frequencies, and decl. considered in this work,
but in the sidelobes it quickly becomes significant. We are
actively exploring extensions to this algorithm that are capable
of recovering the sidelobes as well.

Appendix C
Stacking on Lognormal Galaxy Density Realizations

In Section 5.3.1, we made the following statement: if
simulated galaxy catalogs are drawn from lognormal realiza-
tions of the galaxy density δg and correlated Gaussian-
distributed H I maps are stacked on the resulting galaxy
positions, the measured stacking signal is the same as it would
be if the galaxy catalogs were drawn from Gaussian
realizations of the galaxy density. In this appendix, we justify
this statement. We will make use of the following Gaussian
integrals: if δ, α are n-component vectors and C is a
symmetric, positive-definite n× n matrix, we can write

( ) ( )· Cd e e2 det , C1C Cn nT T1
2

1 1
2ò d p=d d a d a a- +-

Figure 31. A schematic representation of the construction of the primary beam model used in our stacking analysis. Externally measured spectra of 97,941 radio point
sources are propagated into mock visibilities, which, after several transformations, are cross-correlated with CHIME observations to construct a beam transfer function
that assumes that the sky is solely composed of these sources. Further transformations are applied to minimize sensitivity to this assumption and remove artifacts.
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Consider an idealized version of the stacking analysis, in
which we average the H I overdensity δH I at a 3D separation r
from the location of each of N galaxies in a catalog:

( ) ( ) ( )r x rS
N

1
. C3

i

N

i
1

H Iå d= +
=

Suppose that δH I has Gaussian statistics, while the galaxy
overdensity δg, from which the galaxy positions are drawn, is
lognormal, related to a Gaussian field δG by

( ) ( )( ) ( )x e1 . C4x x
g Gd+ = d m+

In addition, let ( ) ( ) ( )x x x xC ,ab a bd d¢ º á ¢ ñ, where a, b ä {G,
H I}. Following the standard procedure for lognormal fields, we
fix μ(x) in Equation (C4) such that 〈1+ δg(x)〉= 1. We can
compute the relevant ensemble average by defining δ to be δg
evaluated at a finite number of points and writing
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where in the second equality we substituted Equation (C4) and
the probability distribution function for a Gaussian random
field, and in the final equality we used Equation (C1). Setting
this to unity implies that μ(x)=− (1/2)CGG(x, x).

We wish to show that stacked H I overdensity in
Equation (C3) approaches the same result whether the galaxy
positions are drawn from the lognormal field in Equation (C4)
or from the Gaussian field δG itself. To do so, we first consider
an ensemble average over galaxy positions in the catalog,
keeping the underlying fields (δg and δH I) fixed:
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with the integral evaluated over the survey volume V. The
probability distribution function of galaxy positions, ( ∣ )x g d , is
given by ( ∣ ) [ ( )]x xV 1g

1
g d d= +- . By combining

Equations (C4)–(C6) and the expressions for ( ∣ )x g d and μ

(x), we obtain
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We now take the ensemble average of Equation (C7) over
the density fields, as well as the catalog positions. Defining δ to
contain both δH I and δG and letting C represent the joint

covariance, we have
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where we used Equation (C2) in the second equality.
Combining this with Equation (C7) and assuming that the
fields have translation-invariant statistics, we arrive at

( ) ( ) ( )r rS C 0, , C9cat,fields H ,GIá ñ =

which is also what we would obtain if the galaxy positions
were drawn directly from δG itself.

Appendix D
Template Calculation

In this appendix, we discuss the challenge of calculating the
signal templates for arbitrary parameter combinations and the
approach we take in this work. Other than the frequency bias
parameter Δν0, the parameters described in Section 5.2.6 affect
the properties of the underlying LSS, or the 21 cm or tracer
density fields. This suggests that one way of calculating the
template is to produce a realization of the 21 cm field and a
correlated tracer catalog given a set of parameters and then
simulate a CHIME time stream from the 21 cm field using a
model for the instrumental transfer function, repeat the analysis
procedure done to the actual data (flagging, filtering, and
mapmaking), and finally stack the output on the mock catalog.
By repeating this procedure and averaging the results, we can
estimate the expected signal.
Unfortunately, a full Monte Carlo of this procedure is

challenging, as even a single iteration requires around 900
core-hours of compute time (dominated by the time stream
generation from input sky maps). Instead, we utilize the ergodic
principle. We have an overlapping volume of 10 h−3 Gpc3

(covered by the eBOSS QSO sample), but the stacking is
probing scales ∼10 h−1 Mpc. This gives many quasi-
independent regions of that size within the volume, and so
on those scales we expect the volume average to approach the
ensemble average, or equivalently, that averaging over
independent mock source catalogs drawn from a single LSS
realization should give the same as averaging over completely
independent LSS realizations. Though this naive picture will
break down on larger scales where the cosmic variance
contribution is significant, we find that the cosmic variation
in the stack signal is small: around 0.8% for the LRG sample,
0.2% for the ELGs, and 0.3% for QSOs (estimated by
comparing the zero-lag amplitude for stacks drawn from
distinct LSS realizations). This is no more than the variation
between single catalogs drawn from the same LSS realization
(∼0.7% for LRGs and QSOs, ∼1.2% for ELGs), although we
average over a sufficiently large number of catalogs to reduce
this contribution to well below the cosmic variance level.
While this gives us a tractable method of computing the

template for a given set of parameters, it still requires a costly
time stream simulation for each set of values. To avoid this, we
note that as both the process of observation and analysis are
linear (other than data-derived RFI and bright pixel masking), if
we can isolate individual terms in the cross-power spectrum
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description, they map to distinct contributions to the stacked
signal.

For the moment we will fix the Finger-of-God parameters
αFoG,H I and αFoG,g, as well as the nonlinear power
spectrum parameter αNL, and to make the notation more
compact, we will define scaling parameters about the fiducial
model: ( )zH H

fid
effI Ia = W WW , ( )b b zH H H

fid
effI I Ia = , and

( )b b zg g g
fid

effa = . With this we can rewrite Equation (91) as

( ) (
) ( )

P M P P

P P M P

, , ,

, D1
hg hv

vg vv

H ,g H g 10 H g H

g 10 sn

I I I Ia a a a a a a
a

= +
+ + +

W W

where we have left the k, μ, and z dependence implicit. The
power spectrum terms on the right-hand side are

( ) ( ) ( ) ( )P T z b z b z P D2hg b
fid

1 H
fid

1 g
fid

2I=

( ) ( ) ( ) ( )P T z b z f z P D3hv b
fid

1 H
fid

1 2
2

I m=

( ) ( ) ( ) ( )P T z b z f z P D4vg b
fid

1 g
fid

2 1
2m=

( ) ( ) ( ) ( )P T z f z f z P D5vv b
fid

1 1 2
4m=

( ) ( )P C z M10 , D6sn H 1
10

I =

with

[ ( ) ( ( ) ( ))]
( ) ( ) ( )

P P k P k P k

D k z D k z; ; . D7
L NL NL L

H
FoG

FoG,H 1 g
FoG

FoG,g 2I I

a
a m a m

= + -

´

The linearity of the simulation and analysis procedure means
that the stack signal should be separable into distinct terms like
Equation (D1). If we write the template generated by the given
parameters as s(αΩ, αH I, αg, M10), where we make the
dependence on Δν implicit, we find

( ) (
) ( )

s M s s

s s M s

, , ,

, D8
hg hv

vg vv

H g 10 H g H

g 10 sn

I I Ia a a a a a a
a

= +
+ + +

W W

where each sxy term is the stack signal corresponding to the
cross-power spectrum term Pxy as defined above. However, as
we cannot directly propagate a cross-power spectrum into a
stack signal, we must determine these terms indirectly. This can
be done by running simulations through with specific α

parameters that generate known linear combinations of the sxy.
By choosing these simulated parameters judiciously, we can
easily invert these combinations to generate the individual sxy
terms. One such choice is

( ) ( ) ( )
( ) ( )

s s s s

s

1, 1, 1, 0 1, 1, 0, 0 1, 0, 1, 0

1, 0, 0, 0 D9
hg = - -

+

( ) ( ) ( )s s s1, 1, 0, 0 1, 0, 0, 0 D10hv = -
( ) ( ) ( )s s s1, 0, 1, 0 1, 0, 0, 0 D11vg = -

( ) ( )s s 1, 0, 0, 0 D12vv =
( ) ( )s s 0, 0, 0, 1 . D13sn =

Each of the five unique combinations of parameters passed to
s(αΩ, αH Iαg, M10) in the equation above requires a separate
simulation to determine, but after that, we can use these modes
and Equation (D8) to determine the stacked template for any
combination of parameters.

This scheme allows us to exactly treat the effects of the three
linear parameters and the shot-noise contribution on the
template. Incorporating the effect of the nonlinear power

spectrum shape is straightforward, as the parameterization used
for αNL means that the output stack signal is a simple linear
mixing of two terms, as it is in the cross-power spectrum given
by Equation (D7). This means that four more simulations can
be used to generate templates at any αNL. However, the
template is a nonlinear function of the Finger-of-God
parameters and so cannot be exactly generated in a finite
number of modes.
To account for this, we start by noting that the effect of the

Finger-of-God treatment we use (see Section 5.2.3), at constant
time and in comoving distance, is a convolution of the
underlying fields along the line of sight. In a narrow enough
interval in redshift, such that we could ignore evolutionary
effects and the constant frequency spacing of our measurement
maps to a constant separation in comoving distance, this effect
commutes with the stacking, and we could apply it via
convolving a post-simulation sxy template to the desired αFoG,x

value, rather than needing to incorporate it into the simulations
directly. However, as our sources are located over wide redshift
intervals, evolution of the cosmological fields and the pairwise
velocity dispersion σP cannot be neglected, and in addition the
RFI masking, redshift-dependent source number density, and
sensitivity further break the stationarity of the radial axis.
However, even if there is no exact mapping from the Finger-

of-God effects into a convolution on the template modes, we
can still attempt to find an effective one that is accurate in the
vicinity of the fiducial Finger-of-God parameters αFoG,x= 1.
To do this, we use use a transfer function in delay, τ, the
Fourier conjugate of the frequency separation Δν, of the form

( ) ( )D ,
2

2
, D14x

eff
FoG,x

2
eff
2

FoG,x
2

eff
2

t a
t s

a t s
=

+
+

that will be applied to the templates with the fiducial Finger-of-
God strength. To motivate this choice, we note that within a
short redshift interval

( )
( ) ( )c

H z
z k

1

2
1 , D15

21

2
t

pn
» - +

and so if we set

( )
( )

( )H z

c z
2

1
D16eff 0 2 Ps pn s=

+

and then apply the transfer function above to the template, the
numerator would effectively undo the Lorentzian Finger-of-
God model with the fiducial αFoG,x= 1 and the denominator
would reapply it with the desired αFoG,x. Thus, we would have
transformed the template mode from the fiducial to the desired
αFoG,x parameter. To take into account the wide redshift range
and nonstationarity, we estimate an effective smoothing width
σeff by finding the value that minimizes the template error at a
higher αFoG,x= 1.2 compared to an exact simulation at the
same value. This effective convolution approach is applicable
over a wide range of values of αFoG,x, with errors at αFoG,x= 0
or 3 of 0.5% and much smaller around the pivot αFoG,x= 1.
Computationally this requires an additional eight simulations,
one for each of the four (αH I, αg) combinations with a
perturbed value of αFoG,H I= 1.2, and an additional four with
αFoG,g= 1.2.
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The final effect we need to apply is the frequency shift Δν0.
This is performed in Fourier space by phase rotating the delay
transform of the template.
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