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ABSTRACT
Discovering evolutionary traits that are heritable across species
on the tree of life (also referred to as the phylogeny) is of great
interest to biologists to understand how organisms vary and evolve.
However, the measurement of traits is often a subjective and labor-
intensive process, making trait discovery a highly label-scarce prob-
lem. We present a novel approach for discovering evolutionary
traits directly from images without relying on trait labels. Our pro-
posed model-agnostic approach, Phylo-NN , encodes the image of
an organism into a sequence of quantized feature vectors –or codes–
, where different segments of the sequence capture evolutionary
signals at varying levels in the phylogeny tree. We demonstrate
the effectiveness of our approach in producing biologically mean-
ingful results in a number of downstream tasks including species
image generation and species-to-species image translation, using
fish species as a target example.

CCS CONCEPTS
• Computing methodologies → Neural networks; Computer
vision; Image representations; • Applied computing → Imag-
ing.

KEYWORDS
computer vision, neural networks, phylogeny,morphology, knowledge-
guided machine learning
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1 INTRODUCTION
One of the grand challenges in biology is to find features of organisms–
or traits–that define groups of organisms, their genetic and develop-
mental underpinnings, and their interactions with environmental
selection pressures [16]. Traits can be physiological, morphological,
and/or behavioral (e.g., beak color, stripe pattern, and fin curva-
ture) and are integrated products of genes and the environment.
The analysis of traits is critical for predicting the effects of en-
vironmental change or genetic manipulation, and to understand
the process of evolution. For example, discovering traits that are
heritable across individuals, or across species on the tree of life
(also referred to as the phylogeny), can identify features useful for
individual recognition or species classification, respectively, and
is a starting point for linking traits to underlying genetic factors.
Traits with such genetic or phylogenetic signal, termed evolution-
ary traits, are of great interest to biologists, as the history of genetic
ancestry captured by such traits can guide our understanding of
how organisms vary and evolve. This understanding enables tasks
such as estimating the morphological features of ancestors, how
they have responded to environmental changes, or even predicting
the potential future course of trait changes [7, 28]. However, the
measurement of traits is not straightforward and often relies on
subjective and labor-intensive human expertise and definitions [40].
Hence, trait discovery has remained a highly label-scarce problem,
hindering rapid scientific advancement [27].

With the recent availability of large image repositories contain-
ing millions of images of biological specimens [42, 45, 46], there is a
great opportunity for the field of data mining and machine learning
(ML) to contribute to the problem of trait discovery [27]. Advances
in deep learning methods for mainstream ML problems have en-
abled us to extract useful information from images and to map them
to structured feature spaces where they can be manipulated in a
number of ways, e.g., for image generation and image-to-image
translation. In this work, we ask the question: can deep learning
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Figure 1: Our proposed Phylo-NN model converts images to
discrete Phylo-sequences where different segments of the
sequence (shown in distinct colors) capture evolutionary in-
formation at different levels of phylogenetic tree (L1 to L4).

models discover biological traits that capture evolutionary signals au-
tomatically from images in an unsupervised manner without relying
on trait labels?

Despite the biological relevance of answering this question, dis-
covering evolutionary traits directly from unlabeled images is chal-
lenging for two main reasons. First, since traits are determined both
by the genes and the environment, not all image features extracted
by a deep learning model for reconstructing images or differentiat-
ing between species will exhibit evolutionary signals. Hence, it is
important to disentangle the image features of an organism that pre-
serve evolutionary information from remaining features influenced
by unrelated factors [7]. Second, information about evolutionary
signals is not available as a set of known attributes (or trait labels)
but rather in the form of structured knowledge of how species are
related to each other on the phylogeny (see Figure 1). Without
access to trait labels, current methods for feature disentanglement
in deep learning [5, 26] are unfit for discovering evolutionary traits.
Furthermore, current standards in deep learning for image synthe-
sis [13, 38] or interpretable machine learning (ML) [4, 30] are unable
to leverage structured forms of biological knowledge (e.g., phyloge-
netic trees and pedigrees) in the training and extraction of image
features, making them unsuitable for analyzing and manipulating
learned features in biologically meaningful ways.

We propose a novel approach for unsupervised trait discovery
from images termed phylogeny-guided neural networks (Phylo-NN ),
which encodes the image of an organism into a sequence of quan-
tized feature vectors or “codes”, where different segments of the
sequence capture evolutionary signals at varying levels in the phy-
logeny tree (see Figure 1). Analogous to gene sequences, our image-
derived sequences (termed Phylo-sequences) enable us to discover
evolutionary traits that one species shares with other species and
with ancestor nodes within its lineage, represented by branching
points in the phylogenetic tree. Further, by manipulating the space
of Phylo-sequences, we can perform a number of downstream tasks
such as species image generation, species-to-species image transla-
tion, and visualization of evolutionary traits. We demonstrate the
effectiveness of Phylo-NN in solving these tasks in a biologically
meaningful way compared to baseline methods, using fish species
as a target example.

Our work, for the first time, provides a bridge between the “lan-
guage of evolution” represented as phylogenetic trees and the “lan-
guage of images” extracted from images as Phylo-sequences. This
work is part of a larger-scale effort to establish a new field of re-
search in “Imageomics” [31], where images are used as the source
of information to accelerate biological understanding of phenotypic
traits. Our work also provides a novel methodological advance in
the emerging field of knowledge-guided machine learning (KGML)
[18–20] by using structured biological knowledge in the learning
of latent representations for image generation and translation.

2 BACKGROUND AND RELATEDWORK
What is a Phylogeny? The phylogeny of a set of species is a
tree that characterizes the evolutionary distances among these
species and their common ancestors represented as nodes of the
tree. In this tree, the length of every edge is a value that represents
the evolutionary distance between two nodes (measured in time
intervals representing thousands or millions of years), which is
estimated from living species, and time-calibrated ages using dated
fossil ancestors. While rates of change along different edges may
vary substantially, on average we expect that longer edges will
accumulate higher levels of genetic or phenotypic trait change than
shorter edges, and species that are recently diverged will be more
similar both in their genetics and phenotypic traits. In our work, we
consider discretized versions of phylogeny trees with nl = 4 levels,
such that every species class (leaf node in the tree) has exactly
nl − 1 ancestors. More on our phylogeny preprocessing pipeline in
Appendix B.
Deep Learning for Image Generation: There exists a large body
of work in the field of deep learning for image generation, including
methods based on Variational Autoencoders (VAEs) [24], Genera-
tive Adversarial Networks (GANs) [14, 21–23, 38], and Transformer
networks [10, 15]. While conventional VAEs embed images in con-
tinuous feature spaces and sample from a Gaussian distribution, a
recent variant of the VAE termed Vector-Quantized VAE (VQVAE)
[32] uses discrete feature spaces quantized using a learned code-
book of feature vectors (or codes) and employs a PixelCNN [43]
model for sampling in the discrete feature space. The rationale for
converting images to discrete representations is to allow for easier
and more complex manipulations (e.g., in language modeling) than
continuous features. This work was extended in [13] to produce
VQGAN, which is different from VQVAE in two aspects. First, it
adds a discriminator to its framework to improve the quality of the
generated images. Second, it uses a Transformer model, namely the
GPT architecture [36], to generate images from the quantized latent
space instead of a PixelCNN. VQGAN is a state-of-the-art method
that generates images of better quality efficiently at higher resolu-
tions than other counterparts such as StyleGAN [21] and Vision
Transformers [10, 15]. Our work derives inspiration from VQGAN
to embed images in discrete feature spaces but with the grounding
of structured biological knowledge available as phylogeny trees.
Interpretable ML: In order to move beyond black-box applications
of AI and to make deep learning decisions easy to understand by hu-
mans, there is a growing trend to focus on the interpretability and
explainability of deep learning features [11]. Some of the earliest
works in this direction include the use of saliency scores [41] and
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Figure 2: Overview of proposed Phylo-NN model architecture.

Class Activation Maps (CAMs) [39] that reveal sensitive regions of
an image that affect classification decisions. However, these meth-
ods are known to be noisy and often imprecise [1]. Recent work
includes the ProtoPNet model [4], which learns a set of template
image patches (or prototypes) for each class during training, and
then uses those templates to both predict and explain a test image.
These methods suffer from two drawbacks. First, they do not allow
for structured biological knowledge to guide the learning of inter-
pretable features and hence are not designed to produce results
that are biologically meaningful. Second, they are mostly developed
for classification problems and cannot be directly applied to image
generation and translation problems.
Disentangling ML Features: Another line of research that is rele-
vant to our work is on disentangling the features of a deep learning
model to align them with target “concepts.” This includes the ap-
proach of “Concept whitening” [5], where the latent space of a
classification model is whitened (i.e., normalized and decorrelated)
such that the features along every axis of the latent space corre-
sponds to a separate class. Another approach in this area is that of
Latent Space Factorization[26], where the latent space of an autoen-
coder is linearly transformed using matrix subspace projections to
partition it into features aligned with concept attributes and those
that capture non-attribute information.
Knowledge-Guided ML: KGML is an emerging area of research
that aims to integrate scientific knowledge in the design and learn-
ing of ML models to produce generalizable and scientifically valid
solutions [20]. Some examples of previous research in KGML in-
clude modifying the architecture of deep learning models to capture
known forms of symmetries and invariances [2, 48], and adding
loss functions that constrain the model outputs to be scientifically
consistent even on unlabeled data [8, 37]. In biology, KGML meth-
ods have been developed for species classification that leverage
knowledge of taxonomic grouping of species [9, 12]. We build upon
these methods to develop Phylo-NN that incorporates phylogeny
knowledge in the learning of discrete feature spaces for a variety
of downstream tasks including image generation and translation.

3 PROPOSED APPROACH: PHYLO-NN
Figure 2 provides an overview of our proposed Phylo-NN model.
Our method can operate on the latent space of any backbone en-
coder model E that takes in images as input and produces contin-
uous feature maps x as output. There are three computing blocks
in Phylo-NN as shown in Figure 2. The first block, Phylo-Encoder
(PE), takes continuous feature maps x as input and generates quan-
tized feature sequences as output. These sequences comprise of
two disentangled parts: zQp , which captures evolutionary signals at
varying levels in the phylogeny (p) tree, and zQnp, which captures

𝑧!"
#𝑧"

#

Conv𝑥 MLP MLP

𝑧" 𝑧!"
Quantizer

𝐷! 𝐷" 𝐷# 𝐷$!
…

0
1
2
…
𝑛!

Codebook

Figure 3: Detailed view of the Phylo-Encoder block in Phylo-
NN .

non-phylogeny (np) information that is still important for image
reconstruction but is not influenced by evolutionary signals. The
second block, Phylo-Decoder (PD), maps the sequences back to the
space of feature maps x̂, such that x̂ is a good reconstruction of x.
We then feed x̂ into a backbone decoder model D that reconstructs
the original image. Note that in the training of PE and PD models,
both the backbone models E and D are kept frozen, thus requiring
low training time. Phylo-NN can then be plugged into the latent
space of any powerful encoder-decoder framework to perform trait
discovery. The third block of Phylo-NN is a transformer model T
that takes in the species class variable as input, and generates a dis-
tribution of plausible Phylo-sequences corresponding to the class
as output. These sequences can be fed to the PD model to generate
a distribution of synthetic images. In the following, we provide
details of each of the three blocks of Phylo-NN .

3.1 Phylo-Encoder Block
Figure 3 shows the sequence of operations that we perform inside
the PE block. We first apply a convolutional layer on x to produce
feature maps of size (H ×W × C). We split these C feature maps
into two sets. The first Cp maps are fed into an MLP layer to learn
a global set of feature vectors zp capturing phylogeny information.
The size of zp is kept equal to (nl np × d), where nl is the number
of phylogeny levels, np is the number of feature vectors we intend
to learn at every phylogeny level, and d is the dimensionality of
feature vectors. Similarly, the remaining C − Cp maps are fed into
an MLP layer to produce a set of feature vectors znp capturing
non-phylogeny information of size (nnp × d)
Vector Quantization: Both zp and znp are converted to quantized
sequences of feature vectors, zQp and zQnp, respectively, using the
approach developed in VQVAE [32]. The basic idea of this quanti-
zation approach is to learn a set (or codebook) of nq distinct feature
vectors (or codes), such that every feature vector in zp and znp is re-
placed by its nearest counterpart in the codebook. This is achieved
by minimizing the quantization loss, Lq = |z − z𝑄 |. The advantage
of working with quantized vectors is that every feature vector in
zQp and zQnp can be referenced just by its location (or index) in the
codebook. This allows for faster feature manipulations in the space
of discrete code positions than continuous feature vectors.
Using phylogeny knowledge in zQp : To ensure that the quantized
feature sequence zQp contains phylogeny information, we design
a novel phylogeny loss for training zQp , described in the following.
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Note that zQp contains nl sub-sequences of length np, where every
sub-sequence corresponds to a different level of the phylogeny tree.
While the first sub-sequence 𝑆1 should ideally capture information
contained in x that is necessary for identifying ancestor nodes at
level 1 of the phylogeny tree, 𝑆2 should contain additional informa-
tion that when combined with 𝑆1 is sufficient to identify the correct
ancestor node of x at level 2. In general, we define the concept
of a Phylo-descriptor 𝐷𝑖 = {𝑆1, 𝑆2, . . . , 𝑆𝑖 } of x that contains the
necessary information for identifying nodes at level 𝑖 (see Figure 3).
We feed 𝐷𝑖 to an MLP layer that predicts the class probabilities of
nodes at level 𝑖 , which are then matched with the correct node class
of x at level i, 𝑐𝑖 (x), by minimizing the following phylogeny loss,
Lp:

Lp =

nl∑︁
𝑖=0

𝛽𝑖CE(MLP𝑖 (𝐷𝑖 (x)), 𝑐𝑖 (x)), (1)

where CE is the cross-entropy loss and 𝛽𝑖 is the weighting hyper-
parameter for level 𝑖 .
Disentangling zQp and zQnp While minimizing Lp guides the learn-
ing of zQp to contain phylogeny information, we still need a way
to ensure that zQnp focuses on complementary features and does
not contain phylogeny information. To achieve this, we first apply
an orthogonal convolution loss Lo (originally proposed in [47])
to the convolutional layer of Phylo-Encoder, to constrain the C
convolutional kernels to be orthogonal to each other. To further
ensure that zQnp has no phylogeny information, we also employ an
adversarial training procedure to incrementally remove phylogeny
information from zQnp. In particular, we apply an MLP layerMLPadv
on zQnp, and then train the parameters of MLPadv to minimize the
following adversarial loss:

Ladv =

nl∑︁
𝑖=0

𝛽𝑖CE(MLP𝑖 (MLPadv (z
Q
np (x))), 𝑐𝑖 (x)), (2)

This is aimed at training MLPadv on the parameters of MLPadv to
detect any phylogeny information contained in zQnp. Simultaneously,
we train to maximize Ladv on the rest of Phylo-NN ’s parameters,
making zQnp irrelevant for the task of identifying nodes in the phy-
logeny tree.

4 PHYLO-DECODER BLOCK
The goal of the PD block is to convert z𝑄 = {zQp , z

Q
np} back to the

space of original feature maps, x. The sequence of operations in
PD are almost a mirror image of those used in PE. We first pass
zQp and zQnp through two MLPs, and then concatenate the outputs
of these MLPs to create feature maps of size (H ×W × C). These
feature maps are then fed into a convolutional layer to produce x̂.
Minimizing the reconstruction loss, Lrec = |x̂ − x|, ensures that x̂ is
a good approximation of x. Finally, PE and PD are jointly trained
using a weighted summation of all the losses mentioned above

4.1 Transformer Block
Once PE and PD have been trained, we can extract Phylo-sequences
z𝑄 for every image in the training set, and convert any Phylo-
sequence to an image. The goal of the Transformer block is to learn

the patterns of codes in the extracted Phylo-sequences of different
classes (e.g., species class or ancestor node class), and use these
patterns to generate synthetic Phylo-Sequences for every class. To
achieve this task, we follow the approach used by VQGAN [13]
and train a GPT transformer model [36] T 𝑖 to generate plausible
sequences of z𝑄 for every node class at level 𝑖 . The generated Phylo-
sequences can then be converted into synthesized specimen images
using PD and D.

5 EVALUATION SETUP
5.1 Data
In this work, we used a curated dataset of Teleost fish images
from five ichthyological research collections that participated in
the Great Lakes Invasives Network Project (GLIN). After obtaining
the raw images from these collections, we handpicked a subset of
about 11, 000 images and pre-processed them by resizing and ap-
propriately padding each image to be of a 256×256 pixel resolution.
Finally, we split the subset into a training set and a validation set of
ratios 80% and 20%, respectively. Details of the data pre-processing
are provided in Appendix A.

Our dataset includes images from 38 species of Teleost fisheswith
an average number of 40 images per species. We further discretized
the phylogeny tree to have nl = 4 ancestor levels, where the last
level is the species class. Details about the phylogeny tree selection
and discretization are provided in the Appendix B.

5.2 Backbone Encoder and Decoder
Since Phylo-NN can operate on the feature space x of any backbone
encoder E and produce reconstructed feature maps x̂ that can be
decoded back to images by a corresponding backbone decoder D,
we tried different encoder-decoder choices including pix2pix [17],
ALAE [33], and StyleGAN [23]. However, we found VQGAN [13]
feature maps to produce images of better visual quality than other
encoder-decoder models. Hence, we used the embeddings of a base
VQGAN encoder E as inputs in Phylo-NN for all our experiments.
The reconstructed feature maps of Phylo-NN were then fed it into
a base VQGAN quantizer serving as the backbone decoder D. Note
that while training Phylo-NN , we kept the parameters of the back-
bone models fixed, thus saving training time and resources while
benefiting from the modeling capabilities of the backbone models.

5.3 Baseline Methods
We considered the following baseline methods to compare the re-
sults for image generation and translation with Phylo-NN :
Vanilla VQGAN [13]: The first baseline that we consider is a
vanilla VQGAN model trained on the fish dataset. By comparing
the learned embeddings and generated images of Phylo-NN with
vanilla VQGAN, we aim to demonstrate the importance of using
biological knowledge to guide the extraction of evolutionary traits
from images, rather than solely relying on the information con-
tained in image data.
Concept whitening (CW) [5]: For this second baseline, we re-
placed the last normalization layer in the encoder block of vanilla
VQGAN with the concept whitening (CW) module, where we used
species class labels as concept definitions. This is intended to eval-
uate if CW is capable of disentangling the evolutionary traits of

4
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species automatically from images without using the structured
knowledge of how species are related to one another in phyloge-
netic trees. The whitened embeddings zcw produced by the CW
module are fed into the quantizer module of vanilla VQGAN for con-
verting the embeddings to images. While training the CW module,
we optimized the whitening and rotation matrices for all concepts
at every 30 batches. Similar to what we did in Section 4.1, we lever-
aged the VQGAN’s transformer and conditioned on the species
label to generate plausible sequences of zcw that are then decoded
into specimen images.
Latent Space Factorization (LSF) [26]: The third baseline that
we considered is the LSF method, which is another method for
feature disentanglement given concept attribute labels. Specifically,
we introduced a variational autoencoder (VAE) model between
the encoder and the quantization layer of the base VQGAN model.
Similar to CW, for factorizing the latent space using LSF, we chose
the species class of each image itself as the concept attribute. The
LSF module was trained to optimize VAE’s KL-divergence loss and
recreation loss along with the attribute and non-attribute losses, as
originally defined in the LSF method [26].

6 RESULTS
In the following, we analyze the results of Phylo-NN from multiple
angles to assess the quality of its learned embeddings and generated
images in comparison with baseline methods. The code and datasets
for running all the analyses reported in this paper can be found at
https://github.com/elhamod/phylonn.

6.1 Validating Species Distances in the
Embedding Space

In order to evaluate the ability of Phylo-NN to extract evolutionary
traits from images in an unsupervised manner (i.e., without using
trait labels), we show that distances between species pairs in the
embedding space of Phylo-NN are biologically meaningful and are
correlated with ground-truth values better than baseline methods.
In the following, we describe the two types of ground-truths used,
the approach used for computing distances in the embedding space
of comparative methods, and the comparison of correlations with
ground-truth values.
Phylogenetic Ground-truth (GT): The first type of ground-truth
that we consider for evaluating the embedding distance between
a pair of species is the evolutionary distance between their corre-
sponding nodes in the phylogenetic tree. In particular, for any two
species, we can calculate the sum total of edge lengths that is needed
to traverse the path between their nodes in the phylogeny. The
longer the path, the more distant the species are on the evolutionary
scale. Hence, if Phylo-NN indeed captures evolutionary traits in its
embedding space, we would expect it to show higher correlations
with evolutionary distances computed from the phylogenetic tree
as compared to baselines.
Morphological Ground-truth (GT): Another approach that we
use to measure the similarity in the traits of two species is by using
ground-truth measurements of linear morphological traits obtained
from the FishShapes v1.0 dataset [34]. This dataset contains expert-
measured traits that are known to carry evolutionary signals, de-
fined and collected using traditional methods that are subjective and

labor-intensive. We specifically used 8 functionally relevant traits
from the FishShapes dataset for every fish species. Some species
were not available in the FishShapes dataset, so when possible, ei-
ther the closest relative was substituted or the species was dropped
(see supplementary materials for details). The species were then
matched to a time-calibrated phylogeny of fishes [3, 35] and the
log-transformed measurements were rotated with phylogenetically-
aligned components analysis (PACA, [7], which rotates the traits
to the axis with the highest level of phylogenetic signal. After cor-
recting for overall size and allometry, the principal components of
PACA were used to compute the Mahalonobis distance between
every pair of species, using a covariance matrix proportional to the
evolutionary rate matrix. See supplementary materials for more
details of the complete pipeline of calculations.
Computing Embedding Distances: To compute pair-wise dis-
tances in the embedding space of Phylo-NN , we first compute the
probability distributions of quantized codes at every position of
the Phylo-sequence (i.e., zQp and zQnp) in the test images for every
species. We then compute the Jensen-Shannon (JS) divergence [29]
between the probability distributions of codes at a pair of a species
to measure the similarity of learned Phylo-NN embeddings at the
two species. We adopt a similar approach for computing the JS-
divergence of species-pairs in the quantized feature space of vanilla
VQGAN. For baseline methods that operate in continuous feature
spaces (CW and LSF), we first calculate the mean feature vector for
every species and then compute the cosine similarity in the mean
vectors of a pair of species.
Comparing Correlations with Ground Truth: Figure 4(a) and
Figure 4(b) show the pair-wise species distance matrices for mor-
phological and phylogenetic GTs, respectively. We can see that both
ground-truths show a similar clustering structure of species, indi-
cating groups of species that share evolutionary traits. However,
there are differences too; while phylogenetic GT is solely based
on phylogeny, the morphological GT uses both the phylogeny and
information about phenotypic traits. Figure 4(c) and Figure 4(d)
show the JS-divergences among species computed separately for
the two disentangled parts of PhyloNN’s embeddings (zQp and zQnp).
We can see that the embeddings containing phylogenetic infor-
mation show a similar clustering structure of distances as the GT
matrices, in contrast to the non-phylogenetic embeddings. This
shows the ability of Phylo-NN to disentangle features related to
phylogeny from other unrelated features. Figure 4 also shows the
embedding distance matrices of the baseline methods, which are
not as visually clean as Phylo-NN in terms of matching with the
GT matrices.

To quantitatively evaluate the ability of Phylo-NN to match with
GT distances compared to baselines, we compute the Spearman
correlation between the GT distance matrices and embedding dis-
tance matrices for different methods as shown in Table 1. We can
see that Phylo-NN shows higher correlations at the species level
with both morphological and phylogenetic GTs as compared to
other baselines. Furthermore, since Phylo-NN learns a different
Phylo-descriptor for every ancestor level in contrast to baseline
methods that learn a flat representation, we can also compute Phylo-
NN ’s distance matrix at any ancestor level and compare it with
GT matrices at the same ancestor level. We can see that Phylo-NN
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(a) Morphological ground truth (b) Phylogenetic ground truth

(c) JS-divergence for Phylo-NN ’s
phylogenetic embedding

(d) JS-divergence for Phylo-NN ’s
non-phylogenetic embedding

(e) Cosine distance for CW’s [5]
embedding

(f) Cosine distance for LSF’s [26]
embedding

(g) JS-divergence for Vanilla VQ-
GAN’s [13] embedding

Figure 4: Comparing embedding distance matrices of meth-
ods with morphological and phylogenetic ground-truths

shows significantly higher correlations with GT matrices at higher
ancestor levels than the species level.

6.2 Evaluating Species-to-species Image
Translations

To further assess how well Phylo-NN ’s learned embedding captures
phylogenetic traits, we investigate how altering the quantized em-
bedding of an image specimen incrementally in a phylogenetically
meaningful ordering affects the morphological traits when the al-
tered embeddings are decoded back as an image. To do that, we set

Table 1: Correlations between GT distances and embedding
distances

Morphological Phylogenetic

PhyloNN

level0 0.86 0.83
level1 0.87 0.85
level2 0.78 0.83
species 0.70 0.78

LSF 0.33 0.53
CW 0.71 0.66
vanilla VQGAN 0.31 0.24

up the following experiment. We pick two specimen images from a
pair of species. By encoding the two images using Phylo-NN , we
obtain their corresponding encodings, z𝑄1 and z𝑄2 . We then start to
replace the codes in the Phylo-sequence z𝑄1 with the corresponding
codes in z𝑄2 iteratively, until z𝑄1 transforms completely into z𝑄2 . The
order of this iterative replacement is by first replacing the codes rep-
resenting the non-phylogenetic part of the embedding zQnp1, then
the part representing the information in the earliest ancestral level
(level 0), to the next ancestor level (level 1), till we eventually reach
the last level of the phylogenetic tree, which is the species level. At
the final point, the entire Phylo-sequence z𝑄1 has been replaced with
z𝑄2 . This phylogeny-driven ordering of code replacements helps
us capture key “snapshots” of the species-to-species translation
process that are biologically meaningful. In particular, by observing
the traits that appear or disappear at every ancestor level of code
replacement, we can infer and generate novel hypotheses about the
biological timing of trait changes as they may have happened in
the process of evolution.

Figure 5 shows an example of such a translation process between
a specimen of the species Carassius Auratus to a specimen of the
species Lepomis Cyanellus. We can see that although the two speci-
mens look similar on the surface, there are several subtle traits that
are different in the two species that are biologically interesting. For
example, the source species has a V-shaped tail fin (termed caudal
fin), while the target species has a flatter tail fin. By looking at their
place of occurrence in the translation process of Phylo-NN , we can
generate novel biological hypotheses of whether they are driven
by phylogeny or not, and whether they appeared earlier or later in
the target species in the course of evolution. For example, we can
see that the flat tail feature of the target species appears right after
replacing the non-phylogenetic part of the embedding, indicating
that this feature may not be capturing evolutionary signals and
instead maybe be affected by the environment. On the other hand,
if we observe another fin that appears in the middle of the body of
the target species (termed pectoral fin), we can see that it seems
to get more prominent only in the later levels (it is absent in level
0). This suggests the hypothesis that the presence of pectoral fin
in the target species may have been added later in the course of
evolution. Our work opens novel opportunities for generating such
biological hypotheses, which can be further investigated by biolo-
gists to potentially accelerate scientific discoveries. Figure 5 also
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shows the translations obtained by baseline methods for the same
pair of species specimens. We can see that the baselines are mostly
performing a smooth interpolation between the source and target
images. In particular, the transition points in the translation process
of baseline methods do not correspond to biologically meaningful
events, since they only rely on the information contained in data
and do not use biological knowledge.

6.3 Generalization to Unseen Species
As the objective of Phylo-NN is to encode specimen images into
their corresponding phylogenetic and non-phylogenetic quantized
sequences of codes, we are interested in studying the distribution
of codes used within different descriptors of phylogenetic concepts
(e.g., species nodes or ancestor nodes). Naturally, we expect speci-
mens that belong to the same species to largely share the same phy-
logenetic code in terms of the species descriptor 𝐷nl , while varying
in terms of the non-phylogenetic codes. More generally, specimens
belonging to species that share a common ancestor at a phyloge-
netic level 𝑖 should largely share the codes with 𝐷𝑖 while varying in
terms of the rest of the phylogenetic and non-phylogenetic codes.
This should also apply for specimens of unseen (or newly discov-
ered) species that we have not yet observed in the training set. We
posit that by looking at the similarity of codes generated for an un-
seen species during testing, we should be able to infer its ancestor
lineage in terms of the species sampled during training.

To quantify this phenomenon, for a given phylogenetic concept
of interest, we construct two sets of histograms, Hp and Hnp of sizes
[nl×np] and [nnp], respectively. Each value in the histograms,Hp𝑖, 𝑗

and Hnp𝑘 , describes the distribution of codes of that corresponding
location in the sequence across all the specimen in the dataset of
interest. Take a look at Appendix F for some examples.

Once these histograms are constructed, we can qualitatively
inspect them and extract the unique or most common codes for a
certain sequence location. However, a quantitative way to evaluate
the purity of Phylo-NN codes is by calculating the entropy of each
histogram inHp andHnp. If the entropy is low for a certain sequence
location, it means only a few possible codes occur at that location,
alluding to the fact that those specific codes at that location are
key at characterizing the phylogenetic concept in question. On the
other hand, higher entropy means a variety of codes occur at that
location, implying that such a location is not discriminative to the
phylogenetic concept of interest.

Finally, to compare the code distributions for two species, we
use the JS-divergence metric for calculating the difference between
two histograms of a sequence location. Similar to what is done in
Section 6.1, such a metric can be aggregated to quantify the coding
differences between the species in question.

To assess the Phylo-NN ’s ability to generalize to unseen species,
we train it on a subset of the species in our dataset and then evaluate
the quality of the embedding space when the model is introduced to
species it has never seen before during training. In our experiment,
we chose to train on the same dataset as before while only exclud-
ing three species. Once the model is trained, we look at the average
JS-divergence distance between each of the three missing species
and three other species in the tree. These three other species were
selected such that each missing species has one seen species that is

Table 2: JS-diveregence of the phylogenetic codes at the
species level between unseen and seen species

Seen species
Notropis
nubilus

Lepomis
macrochirus

Noturus
flavus

Un
se
en

sp
ec
ie
s Notropis per-

cobromus
0.47 0.71 0.62

Lepomis mega-
lotis

0.73 0.43 0.72

Noturus miu-
rus

0.62 0.71 0.48

close to it phylogenetically (i.e., both species share the same ances-
tor at the immediate ancestor level) while the others are relatively
far from it.

Table 2 shows the average distance of the phylogenetic codes
among the six aforementioned species. Looking at the table, one
can see that this distance is smallest for each unseen species and
its counterpart that shares the same immediate ancestor (shown
as the diagonal in the table). This confirms that even though the
model has not seen the former species, it was able to characterize
it using a coding sequence that is significantly closer to that of its
seen counterpart than the other species’.

While Table 2 highlights the phylogenetic matching in the em-
bedding space at the species descriptor level, 𝐷nl , Table 3 does the
same but for the descriptor at a distant ancestor level (level 0), i.e.,
𝐷0. Based on the phylogeny tree we have used in this example, both
the Notropis and Noturus species share the same distant ancestor at
that descriptor level. On the other hand, Lepomis species does not
share that ancestor. Hence, we find that the JS-divergences increase
for the Lepomis unseen species with seen species that are not Lep-
omis as compared to Table 2. On the other hand, the JS-divergences
decrease for the other two unseen species w.r.t. seen species that are
on the off-diagonals of the table. This confirms that 𝐷0 specifically
captures the phylogenetic information of that distant ancestor that
is common across Notropis and Noturus seen and unseen species.

Finally, to confirm that this phylogenetic correlation is mainly
constrained only to the phylo-descriptors, we calculate the same
distances but using the non-phylogenetic part of the sequences. The
result is shown in Table 4. Here, we can see the distances are much
closer to each other, implying that the non-phylogenetic embedding
is not specialized at differentiating among the different species, and
hence cannot be used to phylogenetically categorize the unseen
species.

6.4 Assessing the Clustering Quality of the
Embedding Space Using t-SNE Plots

In this section, we qualitatively assess the quality of generated
images by visualizing their embedding space. Visualization tools
such as loss landscape visualizations [25] and t-SNE plots [44], have
been frequently used as investigative tools in deep learning in recent
years as they help gauge a model’s generalization power. To that
end, we are interested in understanding how Phylo-NN clusters the
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(a) Phylo-NN

(b) Vanilla VQGAN / CW

(c) LSF

Figure 5: Comparing species-to-species image translations from a Carassius Auratus specimen to a Lepomis Cyanellus specimen

Table 3: JS-diveregence of the phylogenetic codes at the earli-
est ancestral level between unseen and seen species

Seen species
Notropis
nubilus

Lepomis
macrochirus

Noturus
flavus

Un
se
en

sp
ec
ie
s Notropis per-

cobromus
0.26 0.81 0.50

Lepomis mega-
lotis

0.81 0.27 0.81

Noturus miu-
rus

0.52 0.80 0.31

Table 4: JS-diveregence of the non-phylogenetic codes be-
tween unseen and seen species

Seen species
Notropis
nubilus

Lepomis
macrochirus

Noturus
flavus

Un
se
en

sp
ec
ie
s Notropis per-

cobromus
0.39 0.45 0.39

Lepomis mega-
lotis

0.46 0.36 0.48

Noturus miu-
rus

0.40 0.42 0.36

embedding space compared to other baselines by analyzing these
models’ t-SNE plots.

To construct the t-SNE plot for each model, we iterate through
its generated images, encode them, obtain the quantized embedding
vector for each image (zQp and z𝑄 for Phylo-NN and vanilla VQGAN,
respectively), and finally create the t-SNE plots. For CW, we use
the whitened embeddings zcw instead.

Figure 6 shows these constructed t-SNE plots with two different
color-coding schemes. The first one (left column) color-codes the
data-points based on the grouping of species at the second phyloge-
netic level (i.e., the direct ancestor of the specimen’s species). Using
this color-coding scheme allows us to inspect how different species
cluster in the embedding space. The second color-coding (right col-
umn) is the average phylogenetic distance between the data-point
and its 𝑘-nearest neighbors (KNN), where 𝑘 = 5 in this setup. The
higher the average distance (i.e., the darker the data-point’s color),
the more distant the specimen is from those 𝑘 specimen’s that are
closest to it in the quantized embedding space. This color-coding
helps us spot how well the different species are separated from each
other in the embedding space, which generally characterizes the
quality of the encoding and its propensity for downstream tasks,
such as classification.

Looking at Figure 6, we can see that Phylo-NN (top row) clearly
clusters the generated images better than vanilla VQGAN and CW
as evident from its hierarchical clustering where the specimens
belonging to the same species clump into small clusters and these
clusters in turn clump into larger clusters (representing ancestor
nodes) that have a singular color. This demonstrates that Phylo-NN
is able to learn a phylogenetically-meaningful encoding, whereas
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the other base models’ clustering is quite fuzzy and poorly char-
acterizes any biological knowledge. Also, by looking at the right
column, we can see that Phylo-NN commits very little clustering
error in terms of its phylogenetic constraints because the average
phylogenetic distance is low (almost zero) for the majority of the
data points. This is in contrast to the other baselines where there is
quite a high clustering error as seen from the “heat” of its scatter
plot.

(a) Phylo-NN

(b) Vanilla VQGAN

(c) CW

Figure 6: t-SNE plots of the images generated by Phylo-NN
and other baselines.

7 CONCLUSIONS AND FUTUREWORK
In this work, we presented a novel approach of Phylo-NN for dis-
covering biological traits related to evolution automatically from
images in an unsupervised manner without requiring any trait la-
bels. The key novelty of our approach is to leverage the biological
knowledge of phylogenetic trees to structure the quantized embed-
ding space of Phylo-NN , where different parts of the embedding
capture phylogenetic information at different ancestor levels of
the phylogeny. This enables our method to perform a variety of
tasks in a biologically meaningful way such as species-to-species
image translation and identifying the ancestral lineage of newly
discovered unseen species.

In the future, our work can be extended to include a larger num-
ber of embedding dimensions to improve the visual quality of gen-
erated images and can be applied to other image datasets beyond

the fish dataset. Future work can explore extensions of Phylo-NN to
generate images of ancestor species or to predict images of species
that are yet to be evolved. Future work can also focus on making the
discovered Phylo-sequence embeddings explainable by understand-
ing the correspondence of each quantized code with a region in the
image space. Our work opens a novel area of research in ground-
ing image representations using biological knowledge available in
the form of phylogenetic trees, which can lead to new research
paradigms in other fields of science where images are abundant but
labels are scarce.
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A DATASET
As mentioned in Section 5.1, the images we use in this work come
from a 38-species semi-balanced subset of a larger collection that
participated in the Great Lakes Invasives Network Project (GLIN).
After further splitting this subset into training and test sets, we
apply some pre-processing that is necessary for the neural net-
work to yield best results. This pre-processing includes padding
the images with the ImageNet mean RGB color. We also use data
augmentation when training the base VQGANmodel. This includes
random horizontal flips, spatial shifts and rotations, and brightness
and contrast changes.

B PHYLOGENY PREPROCESSING
As mentioned in Section 2, we use a phylogeny tree to characterize
the evolutionary distances between the species in our dataset. The
phylogeny tree corresponding to the dataset described in Section 5.1
was obtained using opentree (https://opentree.readthedocs.io/en/
latest/) python package. Phylogeny processing and manipulation
were done using ete3 (http://etetoolkit.org/) python package.

In our application, we quantize our 38-species tree into nl = 4
distinct phylogenetic levels. Each level groups the 38 species based
on their common ancestry within that level. Tables 5 and 6 outline
each level with its corresponding species groupings.

C HYPER-PARAMETER SELECTION
In terms of hyper-parameter tuning, we used the following settings
for each of the trained models:
Vanilla VQGAN:We trained a VQGAN with a codebook of 1024
possible codes and an embedding sequence of 256 codes. We trained
the model for 836 epochs with a learning rate of 4.5 × 10−6. We
used this VQGAN as the base model for the rest of the models. A
batch size of 32 was used.
Phylo-NN Taking the base VQGAN model described above, we
trained a Phylo-NN that has zQp of dimensions (nl = 4, np = 8).
zQnp also has the same dimensionality. The dimensionality of the
embedding itself is d = 16 , and the size of the codebook nq = 64. A
batch size of 32 was used.
Concept Whitening (CW) Taking the base VQGAN model de-
scribed above, we trained CW for 10 epochs using the same hyper-
parameters as Vanilla VQGAN. We used a batch size of 20 for the
concepts.
Latent Space Factorization (LSF): An embedding dimension of
size 1024 was used.

D DETAILS OF MORPHOLOGICAL DISTANCE
PROCESSING

The 8 functionally relevant traits that we used from the FishShapes
dataset include: standard length, maximum body depth, maximum
fish width, lower jaw length, mouth width, head depth, minimum
caudal peduncle depth, andminimum caudal peduncle. Some species
were not available in the FishShapes dataset, so when possible, the
closest relative was substituted. (Notropis percobromus was replaced
with Notropis rubellus, and Carassius auratus was replaced with
Carassius carassius). Also, two species of Lepisosteus had no close

Table 5: Phylogenetic groupings of the species included in
this study at different ancestral levels

Level Species groupings

0
Alosa chrysochloris, Carassius auratus, Cyprinus
carpio, Notropis atherinoides, Notropis blennius,
Notropis boops, Notropis buccatus, Notropis
buchanani, Notropis dorsalis, Notropis hudsonius,
Notropis leuciodus, Notropis nubilus, Notropis
percobromus, Notropis stramineus, Notropis tele-
scopus, Notropis texanus, Notropis volucellus,
Notropis wickliffi, Noturus exilis, Noturus flavus,
Noturus gyrinus, Noturus miurus, Noturus nocturnus,
Phenacobius mirabilis

Esox americanus, Gambusia affinis, Lepomis auritus,
Lepomis cyanellus, Lepomis gibbosus, Lepomis gulo-
sus, Lepomis humilis, Lepomis macrochirus, Lepomis
megalotis, Lepomis microlophus, Morone chrysops,
Morone mississippiensis

Lepisosteus osseus, Lepisosteus platostomus

1

Alosa chrysochloris

Carassius auratus, Cyprinus carpio, Notropis atheri-
noides, Notropis blennius, Notropis boops, Notropis
buccatus, Notropis buchanani, Notropis dorsalis,
Notropis hudsonius, Notropis leuciodus, Notropis nu-
bilus, Notropis percobromus, Notropis stramineus,
Notropis telescopus, Notropis texanus, Notropis volu-
cellus, Notropis wickliffi, Phenacobius mirabilis

Esox americanus

Gambusia affinis, Lepomis auritus, Lepomis cyanel-
lus, Lepomis gibbosus, Lepomis gulosus, Lepomis
humilis, Lepomis macrochirus, Lepomis megalotis,
Lepomis microlophus, Morone chrysops, Morone
mississippiensi

Lepisosteus osseus, Lepisosteus platostomus

Noturus exilis, Noturus flavus, Noturus gyrinus, No-
turus miurus, Noturus nocturnus

relatives and were thus removed fro the Spearman correlation anal-
ysis. To correct for overall size and allometry, each measurement
was log transformed and regressed against Standard Length (SL)
using a phylogenetic regression in the R package phylolm, with
the residuals from the regression being the inputs into PACA. Dis-
tances in the principal components of PACA were measured as the
Mahalonobis distance between the multivariate means using a co-
variance matrix proportional to the evolutionary rate matrix from
the multivariate Brownian Motion fit in the R package mvMORPH
[6].
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Table 6: Phylogenetic groupings of the species included in
this study at different ancestral levels (continued)

Level Species groupings

2

Alosa chrysochloris

Carassius auratus, Cyprinus carpi

Esox americanus

Gambusia affinis

Lepisosteus osseus, Lepisosteus platostomus

Lepomis auritus, Lepomis cyanellus, Lepomis gib-
bosus, Lepomis gulosus, Lepomis humilis, Lep-
omis macrochirus, Lepomis megalotis, Lepomis
microlophus

Morone chrysops, Morone mississippiensis

Notropis atherinoides, Notropis blennius, Notropis
boops, Notropis buccatus, Notropis buchanani,
Notropis dorsalis, Notropis hudsonius, Notropis leu-
ciodus, Notropis nubilus’, Notropis percobromus,
Notropis stramineus, Notropis telescopus, Notropis
texanus, Notropis volucellus, Notropis wickliffi,
Phenacobius mirabilis

Noturus exilis, Noturus flavus, Noturus gyrinus, No-
turus miurus, Noturus nocturnus

E T-SNE PLOTS FOR TEST IMAGES
As we have shown in Section 6.4, the embedding of the images
generated by our Phylo-NN model exhibit much better qualities
than those generated by a vanilla VQGAN. In this section, we run
the same analysis on the test images. Clearly, a similar case can be
made here, namely that the encoding of the images using Phylo-
NN is superior to other models’ in terms of its clustering. Figure 7
illustrates this point clearly when comparing Phylo-NN ’s (top row)
t-SNE plots with those of the other models’. Both vanilla VQGAN
and CW perform worse at clustering the dataset compared to Phylo-
NN .

F EXAMPLES OF PHYLO HISTOGRAMS
In Section 6.3, by means of calculating the average JS-divergence of
sequence histograms, we investigated howwell the Phylo-sequences
match for species that share a common ancestor, as opposed to those
that don’t. In this section, we show some of these histogram plots
to illustrate their value and the insight they could provide.

In figures 8 to 10, each histogram represents a code location
in the phylogenetic sequence. Each column represents one of the
nl = 4 phylogenetic levels into which the phylogeny tree was
quantized, starting with the species level from right and climbing
the phylogenetic tree all the way to the earliest ancestral level on
the left. Each column has np = 8 codes. Each histogram shows
the relative frequency of each code of the learned nq = 64 codes
for its corresponding sequence location. The lower a histogram’s
entropy (i.e., when there is only one or a couple of codes that

(a) Phylo-NN

(b) Vanilla VQGAN

(c) CW

Figure 7: t-SNE plots of the test set images using different
models

dominate the histogram’s frequency spectrum), the more important
that code location hypothetically is for characterizing the species
at its corresponding phylogenetic level.

As can be seen, both Notropis species share many codes at many
sequence locations up to, but not including, the species level. This is
because these species share an immediate ancestor. In contrast, We
can see that the Lepomis species has a distinct histogram signature
and does share almost no codes with the Notropis species, except
for the earlier ancestral level (i.e., the left column).
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Figure 8: Notropis nubilus
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Figure 9: Notropis percobromus Figure 10: Lepomis macrochirus
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