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Reservoir management and contaminant transport simulations rely on accurate modeling of the subsurface. This
task becomes more challenging when the reservoir of interest also has a large amount of fractures. Inverse
modeling of these fractured media involves first performing multiple field tests such as pumping tests, tracer
tests, or seismic surveys. Inverse modeling methods then are used to find potential geologic models that produce
simulated results that match field observations. Popular methods include the Ensemble Kalman Filter, Markov
Chain Monte Carlo, and simulated annealing. A common challenge these methods face is that inverse modeling
of fractured media is inherently a multiobjective optimization task. The inverse modeling method must find a
discrete fracture model that produces the same flow characteristics as observed in field pumping or tracer tests.
But it also must find a discrete fracture model with a fracture network that matches the fracture parameter
distribution observed by the field measurements such as seismic surveys. This challenge can be approached in
two steps. The first step is producing discrete fracture network models with parameter distributions that match
field observations from seismic surveys. This study focused on the second step, involving the development of
a method that can take a population of discrete fracture networks and generate new fracture networks in a
way that preserves the fracture parameter distribution. This was done using a genetic algorithm modified to
apply to the domain of discrete fracture networks. During genetic mixing, the fractures of the child model
are generated by randomly copying over fractures from the parent models. This process ensures the child
model adopts the fracture parameter distribution of the parent models. This study tests the effectiveness of
this genetic algorithm on a synthetic example. The results of the experiment show the genetic algorithm is
able to effectively produce a population of discrete fracture models with breakthrough curves that match the
curves of the reference model.

1. Introduction simulate flows through fractured rock. This conceptual model would

be suitable to simulating flows through impermeable crystalline rock.

Fracture network models are important tools across multiple indus-
tries. The most prominent use of fracture network models is in the
petroleum industry where they are used for determining the optimal
methods for fracturing and recovering petroleum from reservoirs. An-
other application for fracture network models is geothermal energy
production. To design effective methods for producing fractures that
transfer thermal energy from the crust to the fluids flowing through
the fracture network, researchers rely on accurate fracture network
models. A wide variety of conceptual models exist for simulating flows
through fractured rock. Concepts include modeling the rock is a discrete
network of fractures, another as nonuniform continuum of hydraulic
parameters, or even as a hybrid where the rock is modeled as a
nonuniform continuum that contains a small number of dominant
discrete features (Neuman, 2005). Such variety exists because of the
different geologic contexts that produces a range of flow behavior.
This study focuses on the use discrete fracture network models to
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Unlike traditional groundwater flow simulations that discretize the
domain as a grid of cells each with its hydraulic properties, discrete
fracture networks describe fractures as a set of finite planes with a
defined shapes, sizes, locations and orientations. The fracture param-
eters often are defined on the basis of a probability distribution that
imitates distributions of fractures measured in the field. During flow
simulations, the fluids strictly flow through these fracture planes with
the flow behavior governed by the hydraulic properties of the fracture
planes and how the fracture planes are connected. Note that for real
fractured rock, fluid exchange can exist between the fracture and the
matrix. For this work, we assume that most of the fluid dynamics is
governed by the geometry of fractures and how they are connected to
each other. The goal is to investigate how the complexities of geometry-
dominated flow affect the performance of a proposed method using
genetic algorithms. Thanks to the flexibility of genetic algorithms, the
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proposed method can be adjusted to handle scenarios where the fluid
exchange between fractures and the rock becomes more significant.

Even with a method for accurately simulating the flow of fluids
through the fracture network, researchers must still somehow convert
field measurements into a set of discrete fracture network parameters
such that the simulated flow model produces results that match obser-
vations from the field. This task of inverse modeling is known as history
matching and researchers have deployed a wide range of methods to ac-
complish it. Methods include ensemble Kalman filters (Ping and Zhang,
2013; Nejadi et al., 2017), Markov Chain Monte Carlo optimization (Ma
et al., 2008; Xu et al., 2013), and simulated annealing (Tran, 2007;
Mahmoodpour and Masihi, 2016). An important method for converting
a set of well observations into a hydraulic model for fractured rock is
hydraulic tomography (Illman et al., 2009; Illman, 2014; Zha et al.,
2015; Klepikova et al., 2020; Ringel et al., 2021). The process for
hydraulic tomography begins by first acquiring data from pumping
tests applied to a well field at the site of interest. These tests must
be designed in a way that properly extracts information about the
hydraulic properties of the rock between the wells. The tests usually
involve selecting a well to pressurize, then monitoring the pressure of
adjacent wells through time to see how the pressure from the injection
well propagates through the rock. Once data is collected, a variety
of inversion methods can be used to convert the collected data into
hydraulic models. For Klepikova et al. (2020), a misfit function was
first defined to measure the differences between the simulated and
observed. The parameters of the model were then tuned using the
Nelder—-Mead Simplex algorithm (McKinnon, 1998) in order to find the
optimal parameter values that minimizes the misfit function. Zha et al.
(2015) performed their inversion step using the simultaneous succes-
sive linear estimator algorithm (Xiang et al., 2009) where a successive
Bayesian linear estimator derives the mean parameter fields using the
results of field tests and assumes prior knowledge of the mean value
and spatial structures of estimated parameters. To perform inversion
for a three-dimensional discrete fracture network, Ringel et al. (2021)
used a reversible jump Markov Chain Monte Carlo method (Fan and
Sisson, 2011) to calculate the likelihood a given change to a proposed
model (such as adding or removing a fracture) yields a new model that
is most likely to produce pressure transients that match with field tests.
Note that many of these methods have the same underlying process
of running multiple fluid flow simulations to find a group of model
parameters that produce results that fit field observations. Often these
simulations are large and computationally expensive, so researchers use
a variety of techniques and heuristics to efficiently find solutions while
minimizing the required amount of computational resources.

Another popular family of methods used by researchers includes
evolutionary techniques, which are optimization algorithms with
heuristics that are inspired by biological processes in nature. One of
the most popular heuristics is the concept of natural selection. Possible
solutions to an optimization problem are represented as individuals in a
population. The fitness of these individuals is determined by how well
they solve the optimization problem. Individuals that perform poorly
are assigned a low fitness value and removed from the population. But
individuals that perform well are assigned a high fitness value and
are allowed to stay in the population. After the weakest individuals
have been removed from the population, the remaining individuals
then are allowed to reproduce and create a new generation of possible
solutions. During the reproduction process, the child solutions adopt
characteristics from each of the parent solutions. The idea is that the
children will adopt the beneficial characteristics of their parents, ideally
producing a new generation of solutions that will perform better than
the previous generation. Evolutionary methods such as differential
evolution (Das and Suganthan, 2010; Pant et al., 2020) and genetic
algorithms (Mitchell, 1998; Sivanandam and Deepa, 2008) rely on this
main heuristic of natural selection. Researchers then can use these
techniques to find the optimal set of fracture network parameters that

fits simulation results to field observations (Cadini et al., 2013; Liu and
Reynolds, 2019; Zhang et al., 2019; Maucec et al., 2020).

Although it is important to be able to generate a set of possible
fracture network parameters that produce simulation results that fit
with field observations, it is just as important that the distribution of
the fracture parameters also match what is observed in the rock. To
effectively produce a set of fractures that imitate the parameter dis-
tributions in real life, stochastic fracture network generation methods
can be used (J.P., 2005; Bonneau et al., 2013). These methods often
deploy simple generating heuristics inspired by the rock mechanics
involved with fracture formation and propagation. These simple rules
can generate fractures with parameters such as fracture shape, size,
orientation, or spatial density with the same distributions as observed
in the field using techniques like well logging and micro-seismics (Willis
et al., 2006; Han et al., 2021; Kennedy et al., 2022). Because fracture
networks involve complexity at multiple scales, fractal dimensions are
another popular method used to ensure that generated fracture models
imitate distributions found in the field (Liu et al., 2015; Zhang et al.,
2019). Overall, researchers have many methods available for them to
produce realistic and accurate distributions of fractures.

Though seismic surveys can be used to generate a discrete fracture
network (Sicking and Malin, 2019), this does not necessarily mean
the generated model will produce simulated well test results that will
match with all field observations such as well pressure tests. Instead,
it is best to create discrete fracture network models using results from
both seismic surveys and well pressure tests (Mayerhofer et al., 2006).
For example, seismic survey data can used to define the number of frac-
tures and the density of fractures for a given study volume. Hydraulic
tomography can then use well pressure tests to determine remaining
model parameters such fracture connectivity, orientations and size.
Once discrete fracture networks can be generated to have some of
the same parameter distributions measured from seismic surveys, it
can be challenging to also modify the generate models such that they
also match the flow characteristics measured from pumping and tracer
tests performed in the field. When naively changing the parameters of
the fracture network to better fit with measured flow characteristics,
this often can cause the distribution of fracture parameters to deviate
from distributions measured in the field. To deal with this need for a
fracture model with both accurate fracture distributions and accurate
flow characteristics, researchers use optimization techniques that can
handle multiobjective functions (Maucec et al., 2020). Instead of using
techniques that iteratively generate a population of fracture models that
converge toward both accurate distributions and flow characteristics at
the same time, this work proposes a different method that can meet
this multiobjective goal in two distinct and straightforward steps. The
first step involves establishing a method for readily generating a set
of fracture models with fracture parameter distributions that match
field observations. This step can be done by simply using any of the
popular methods in the literature such as stochastic generation or using
fractal dimensions. The second, critical step is to use the population
of generated fracture networks to create new fracture models that are
more likely to match flow characteristics but in a way that preserves
the fracture distributions of the previously generated fracture network
models. This is done by creating a genetic algorithm optimization archi-
tecture that is designed to preserve the fracture parameter distribution
of the population with each generation. This work includes a synthetic
experiment to investigate the effectiveness of this technique.

2. Methodology
2.1. Discrete fracture network

To model the discrete fracture networks, the software package DFN-
Works by the Los Alamos National Laboratory was used (Hyman et al.,

2015). DFNWorks is composed of multiple software packages combined
to form a seamless software suite for generating three-dimensional
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models of discrete fracture networks as well as simulating flow and
transport of particles through these fracture networks. To generate
a discrete fracture network, DFNWorks first uses a feature rejection
algorithm for meshing (FRAM) method to generate the underlying geo-
metric model for the discrete fracture network. At this stage, fractures
are represented as flat polygons of various sizes and are distributed
across a three-dimensional volume. Each of the polygons is assigned
additional attributes such as aperture size. To generate a fracture
network, the distribution of the fracture network parameters are first
defined. Once defined, the distributions then are sampled and the
fracture network is iteratively built, one fracture at a time. After each
fracture is added, the FRAM method checks if a series of constraints
are met. Constraints such as proximity to other fractures or proximity
to the model domain boundary are considered. If the added fracture
fails to meet a criterion, then the fracture is rejected and a new one
is created. Otherwise, the fracture is kept within the fracture model
and the process continues. When the growing fracture model achieves
a certain stopping criterion, such as a set number of fractures, the
iteration loop halts, and the geometric fracture model is presented
as the final model ready for the next step of the process. After the
geometric fracture model is created, the LaGriT meshing tool converts
the geometric model into a mesh model. The meshing process produces
a Delaunay triangulation mesh that is ideal for parallel computations.

During the fracture generation phase, the user has the freedom to
define a probability distribution from which the software can sample
to generate the fractures. For fracture radius, DFNWorks provides
options for a log-normal distribution, an exponential distribution, a
truncated power law distribution, or simply a constant. For this study,
the truncated power law distribution was used:
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In this equation, the probability density function P(r) is parameterized
with the maximum fracture radius r,, the minimum fracture radius r,
and an exponent « that defines the shape of the power law distribution.
The truncated power law distribution was used because its additional
parameters allow greater control on the shape of the distribution
that controls the fracture radius (Di Federico and Neuman, 1997; Di
Federico et al., 1999; Neuman, 2008). But the proposed method does
not rely on a specific distribution to function, so the approach will
still work when an alternate fracture distribution function is used. For
the fracture orientation, the orientation vector (normal to the fracture
plane) must be sampled by essentially using a Gaussian distribution that
is embedded onto the surface of a three-dimensional sphere. This was
done by using the three-dimensional von Mises—Fisher distribution.
Kk exp(icpu’ x)
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In this equation, the probability distribution function f(x) is param-
eterized by u and «. u is the vector for the mean orientation, with
T indicating that the vector is transposed. x is the parameter that
represents the variance of the distribution around the mean orientation.
DFNWorks samples this distribution by using the algorithm outlined
by Wood (1994).

2.2. Flow and transport simulation

The DFNWorks suite (Hyman et al., 2015) also includes software
for running flow and transport simulations using the discrete fracture
network. Called DFNFlow, the software takes the meshed fracture net-
work model and uses PFLOTRAN to compute the pressure field across
the network. PFLOTRAN (Lichtner et al., 2015) is an open source code
base that was written by core developers from the U.S. Department
of National Laboratories such as the Los Alamos National Laboratory,
Sandia National Laboratory, Lawrence Berkeley National Laboratory,
and Oak Ridge National Laboratory, as well as contributions from

universities and research labs around the world. PFLOTRAN is capable
of massively parallel operations that can operate at multiple scales
and physics. PFLOTRAN also can solve differential equations for non-
isothermal multiphase flow, reactive transport, and geomechanics in
porous media. This study uses PFLOTRAN to solve for the single phase
flow across the fractures during steady state. PFLOTRAN does this
by solving the three-dimensional Richards equation (Richards, 1931).
The mixed form of the Richards equation proposed by Celia et al.
(1990) yields robust numerical solutions and maintains mass balance
for unsaturated flow problems (Wu et al., 2021):

Lo+ V() =0, 3)

In this equation, ¢ is time, ¢ is the porosity of the soil matrix, s is the
water saturation, # is the molar water density, q is the Darcy flux, and
0, is a (positive) source or a (negative) sink of water. The Darcy flux,
q, is calculated using Darcy’s Law:
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where k is the intrinsic permeability, k, is the relative permeability,
u is the water viscosity, P is the pressure, W,, is the formula weight
of water, g is the acceleration of gravity, and z is the vertical com-
ponent of the position vector. In this study, the van Genuchten soil
water retention curve (Van Genuchten, 1980) and the Mualem relative
permeability function (Mualem, 1976) was used to calculate the water
saturation and the relative permeability. For this study, the boundary
conditions for the model will be a no-flow boundary condition for
all boundaries except for the injection and extraction well. The two
wells will be set to a boundary condition of a constant pressure. The
permeability of the fractures are derived as a function of the aperture
of the fracture. This is done by first assuming the fluid flows between
two smooth, impermeable, parallel plates. This assumption allows the
Boussinesq equation (Boussinesq, 1868) to yield the volumetric flow
rate Q per unit fracture width normal to the direction flow (Hyman
et al., 2016):
_ .3 P8
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In this equation, b is the fracture aperture, p is the fluid density, g is
gravitational acceleration, and 4 is hydraulic head. This relationship
between fracture aperture and flow rate can be used to derive a
relationship between aperture and transmissivity (Hyman et al., 2016):

T =525 6
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This equation is referred to as the cubic law (Witherspoon et al., 1980).
PFLOTRAN uses this relationship to convert fracture aperture into per-
meability. Note that these equations assume that the flow through the
fracture is homogeneous and that there is no fluid exchange between
the fracture and the matrix. Such an assumption can be justified when
modeling flow through impermeable crystalline rock. For this study,
focus is on investigating whether the genetic algorithm is capable of
tuning a model with its flow dynamics dominated by the geometry
and connectivity of the fractures. However, the methods developed in
this work can be extended to study sites where there is significant
fluid exchange between the fracture and the matrix. After the flow
and pressure field is calculated, this information is sent to the software
called DFNTrans for particle transport calculations. During this step,
DFNTrans adopts the Lagrangian approach for calculating the path
that a cluster of non-reactive, indivisible particles take through the
discrete fracture model. To calculate the path the particles take, the
fluid velocity field first is calculated using the pressure field result
from PFLOTRAN as well as other flow attributes derived from the
fracture network. To calculate the velocity field, PFLOTRAN was set
to use a constant porosity of 25%. Since the goal of this work was
to test whether the proposed method can tune a model with flows
dominated by fracture geometry and connectivity, porosity was simply
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Parent Model A

Parent Model B

Child Model

Fig. 1. An example of genetic mixing for the genetic algorithm adapted to discrete fracture networks. Each of the fractures of a model is represented as individual genetic bases
that compose the genome of the model. During genetic mixing, the genome of the child model is created by randomly copying the fractures (the genetic bases) from each of
the parent models. Doing this randomly allows fracture parameter distributions such as fracture orientation to be preserved during the creation of the child model. To ensure the
population performance improves with each generation, the parent models are generally high-fitness members of the population.

set to a constant. The proposed method also does not rely on a constant
porosity, so it can be extended to handle distributions where porosity
does become a function of aperture. After the velocity field is solved,
the particle paths can be calculated by numerically integrating the
trajectory equation for each particle. At the intersection of fractures, it
is assumed that complete mixing occurs. This means when a traveling
particle meets an intersection, a flux-weighted stochastic method is
used to determine whether or not the particle stays within the fracture
plane or would flow into the intersecting fracture plane. Because of
the stochastic nature of flow through fracture intersections, the general
flow structure of the entire fracture network can be studied by using
many tracer particles or with multiple runs of the transport simulation.

2.3. Genetic algorithm for fracture networks

Genetic algorithms refer to a class of optimization algorithms in
which a family of optimal solutions is found by iteratively applying
the process of natural selection. In this work, we show that genetic
algorithms can be used to tune a DFNM where the genetic algorithm
is tasked with finding the correct distribution of fractures such that
it produces simulated tracer test results that match with observations.
The process begins with generating an initial population of potential
solutions to an optimization problem. Each member of the population is
ranked with a fitness function. A fitness function is a function designed
to convert the performance of single candidate solution into a single
number. This fitness function is used to rank members of the population
(candidate solutions) by their ability to perform the task. Solutions
that do a superior job of optimizing the given problem will receive a
high fitness score, while solutions that do a poor job solving the opti-
mization problem are given a low fitness score. Below a certain fitness
threshold, solutions with a lower fitness score are removed from the
population. The remaining solutions then are used to generate a new
generation of potential solutions. This is done by selecting high-fitness
parents and mixing their genetic information to produce new children
solutions with a greater chance of yielding a high-performance score.
After repeating this process for multiple generations, the population
evolves into a family of high-fitness solutions that effectively solve the
optimization problem.

One important factor in a successful genetic algorithm is having
a well-designed method for encoding the solutions as a genetic code.
If done correctly, the genetic mixing process can properly explore
the solution space and quickly find the optimal solution. Within the
context of discrete fracture networks, this study proposes to represent
each fracture as a single genetic base within the complete genetic
code of a discrete fracture network model (Fig. 1). For example, a
discrete fracture network with 300 fractures will have a genetic code
that is 300 bases long. To create new discrete fracture networks, the
genetic code of the child discrete fracture network will be composed
of the genetic bases (fractures) randomly sampled from the genetic
code of high-fitness parent discrete fracture networks. The key idea

is that this method of genetic mixing preserves the distributions of
the fracture parameters. That means if the genetic algorithm process
begins with a fracture network model population that was all generated
with the same parameter distribution, then after multiple generations of
applying the genetic algorithm, the final population will have the same
fracture parameter distribution. The main difference between the initial
and final generation is that the final population of discrete fracture
networks will be able to produce simulated flow behaviors that best
match with field observations.

Note that the genetic mixing process does not create new frac-
tures. After many iterations of the genetic algorithm, the population
becomes filled with copies of the same genetic code. Although the
genetic algorithm process will converge quickly, it will also have a high
risk of converging prematurely and stopping at a suboptimal solution.
To prevent the genetic algorithm from halting at a locally optimum
solution, new fractures must be added to the population. The new
fractures must be added in a way that does not change the parameter
distribution of the fractures. This is done by adding newly generated
fracture networks midway through the process. These new fracture
networks are generated using the same parameter distributions as were
used to generate the initial population. If these new fracture network
models were simply added to the population, then these models would
be removed quickly from the population because of a low fitness value
that could not compete with models that have already evolved. To force
the genetic influence of the newly added models, the genetic mixing
process allows the combination of genetic code between high fitness
models and newly generated models. By controlling the size and fre-
quency the freshly generated models that are added to the population,
the user can increase the likelihood that the genetic algorithm would
converge to the global optimum.

A complete description of the discrete fracture genetic algorithm
used in this study begins with generating a population of discrete
fracture network models. For this study, a population of 20 models was
maintained. Each of the fracture network models was generated with
the same parameter distribution for the fracture radius and fracture
orientation. A fitness value then was calculated for each member of the
population. For this study, fitness was determined by how well a given
fracture network could recreate the time-versus-concentration curves of
a tracer transport test measured on a reference fracture model. The in-
dividuals of the population then were ranked by their fitness value and
a certain fraction of the lowest performing individuals was removed
from the population. To maintain the size of the population, newly
generated discrete fracture models then were added to the population.
Some of these new models were generated using the same parameter
distributions as the initial generation. Other new models were gener-
ated by randomly selecting two parent models, then randomly copying
the genetic code from each of the parent models to produce the genetic
code for the child model. The length of the genetic code of the child
model (the number of fractures in the child model) was set randomly
as a number between the number of fractures for each of the parent
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Fig. 2. An example of a generated discrete fracture model. For each generated model, 2100 discrete fractures were randomly placed within a cubic model domain with a side
length of 15 m. The fracture orientations were determined by sampling the three-dimensional von Mises-Fisher distribution. Two wells were vertically inserted along the diagonal
of the model. Water was injected into the model through the red well and was extracted from the model through the blue well. The number of fractures was selected to ensure
that a randomly generated fracture network would be likely to have the two wells hydraulically connected through the discrete fracture network.

models. For example, for parent models with 180 and 200 fractures,
then the generated child model could have anywhere from 180 to 200
fractures. Newly generated models were added until the number of
models was equal to the set population number. As an example, for
a current generation of 20 models, the next generation could contain
ten copies of the best models from the previous generation, six new
models generated using genetic mixing, and four models generated
from sampling the same parameter distribution as used to generate
the initial population. The fitness of the new generation then was
calculated and the entire process can be repeated multiple times to
create many generations. The entire loop then could be halted when
the fitness of subsequent generations no longer improved. A complete
summary of the genetic algorithm is presented in Algorithm 1. A
flowchart of the process is also presented on Fig. 4.

2.4. Synthetic fracture model experiment

For this study, the discrete fracture genetic algorithm was tested
on a synthetic fracture model in which tracer particles were injected,
simulated to flow through the fracture network, and extracted through
two wells (Fig. 2). The domain of the fracture model was in the
form of a cube with a side length of 15 m. All the sides of the
domain were set to a no-flow boundary condition. There was also
no water exchange between the fractures and the matrix. Water only
flows through the fractures. Water was only allowed to enter and
exit the model through two wells that intersect the model domain.

The two wells were vertically oriented, centered along the diagonal
of the model, and spaced 14 meters apart. To create flow, the wells
were set with a constant pressure difference of 4.0 x 10° Pascals.
To generate the discrete fracture network within the model domain,
the DFNGen function (which uses FRAM and LaGriT) of DFNWorks
was used. In the geometric model, fractures were modeled as two-
dimensional octagons with their radius and orientation determined
by sampling defined parameter distributions. The fracture radius was
sampled from a truncated power law distribution using a maximum
fracture radius of r, = 5.0 meters, a minimum fracture radius of r, = 1.0
meters, and an exponent of « = 2.6 that defines the shape of the power
law distribution. The fracture orientation was sampled using the three-
dimensional von Mises-Fisher distribution with the mean orientation
vector u set to a vertically oriented normal vector, and the orientation
variance set to x = 1.0. The aperture of the fractures was set to a
constant width of 1.0 x 107 meters. Note that a constant fracture
aperture is a valid simplification for this study. This work aims to test
how a genetic algorithm can handle discrete fracture network models
where the flow is mainly governed by how the fractures are connected
to each other. To focus on this mechanism, all fractures were given a
constant width. The proposed method can handle variations in fracture
aperture, but this simplification is valid for initial tests of the proposed
method. DFNGen was instructed to randomly insert 2100 fractures into
the model domain. This number of fractures was determined by the
computational time and resources available for this work. For the given
model dimension and constraints, this was the minimum number of
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Fig. 3. An example of a transport simulation running on a generated discrete fracture model. Tracer particles were first injected into the model through the red injection well.
Ten particles were placed at every point a fracture intersected the injection well. After the tracer particles moved through the fracture network, they were collected from the blue
extraction well. Shown are some of the paths the particles took through the fracture network, with their color indicating the time spent within the network. At each fracture
intersection, the next path the particles took was a stochastic process weighted by the local flux. After tracer particles arrived at the blue extraction well, their total travel time

was recorded and then compiled to create the breakthrough curve for a given model.

fractures needed to study how the genetic algorithm would perform
when tuning a discrete fracture network model. The proposed tech-
nique can be scaled to handle models with a larger number of fractures.
This number of fractures was also chosen to ensure that any randomly
generated fracture model would be likely to hydraulically connect the
two wells. To run the particle transport simulation, the flow simulation
was run first until it reached steady state. Afterward, tracer particles
were added to the model through the injection well (Fig. 3). Ten tracer
particles were added to every point where a fracture intersected the
wells. DFNTrans then calculated the trajectory of the particles. As the
transport simulation progressed, DFNTrans recorded the time it took
for each particle to reach the extraction well. The transport simulation
ended when all particles reached the extracting well. The recorded
arrival times then could be used to create the breakthrough curves for
the given model. Note that the breakthrough curve derived using arrival
times of simulated particles can be used as a proxy for the cumulative
molar amount of tracer recovered at the extraction well recorded over
time. For example, recovering 25 out of 50 simulated tracer particles
collected over the span of one simulated week would be the same as
recovering 0.5 moles out 1.0 moles of an injected tracer compound
collected over a span of a week.

To select the reference model, one of the randomly generated
fracture models was chosen as the reference model. The goal of the
genetic algorithm is to look for a discrete fracture model that produces
the same breakthrough curves as the reference model. To do this, the

genetic algorithm needs a fitness function that can rank how well each
of the breakthrough curves matches with the breakthrough curves of
the reference model. This is done by first calculating the quantiles of
the arrival times of the tracer particles. For this study, 11 quantiles
were calculated: 0%, 10%, 20%, and so on up to 100%. This converts
the breakthrough curve into an 11-dimensional vector. To calculate the
fitness function, the L2 distance is calculated between the quantile vec-
tor of the tested model and the reference model. This means taking the
difference between the quantile vectors for the two models, summing
the squares of all the elements of the new difference vector, and finally
taking the square root of this final sum. Note that this metric is an error
value. Models that yield a low value are the best fit with the reference
model and so are most likely to be kept in the population. Conversely,
models with a high value poorly match the reference model, so they
are most likely to be removed from the population. After the fitness
of each model is evaluated, half of the population’s worst-performing
models are removed from the population. Newly generated models
then are added until the number of models in the population is the
same as the starting population. For this study, the population was
initialized with 20 models. With each new generation, ten models
are copies of the previous generation’s best models, nine are newly
generated from genetic mixing of models from the previous generation,
and one model is generated using the same parameter distribution as
was used to create the initial population. During model generation,
heavy emphasis was placed on genetic mixing because this ensures the
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Fig. 4. A flowchart for the work flow of applying genetic algorithms to calibrating discrete fracture networks. The genetic algorithm begins by first generating a population of
possible solutions. These solutions are a series of randomly generated discrete fracture network models where each model has a different placement, geometry and number of
fractures (Fig. 4.1). After preparing the population of models, each model is evaluated using a simulated tracer test (Fig. 4.2). Using PFLOTRAN, tracer particles are added through
the injection well and removed from the extraction well. By recording the time it takes for each particle to move from the injection well to the extraction well, a breakthrough curve
can be generate for each model. After breakthrough curves have been calculated for all models, all models with breakthrough curves that are too different from the breakthrough
curve calculated using the ground truth model are removed from the population (Fig. 4.3). The remaining models in the population have curves that best match with the simulated
observed data from the ground truth model. Note that the ground truth model is a defined discrete fracture model that remains constant throughout the experiment. Running
the simulated particle tracer test on the ground model yields a breakthrough curve declared to be the simulated observation data. After keeping the models with curves that best
match the simulated observed data, new models are generated using the current population of the best models (Fig. 4.4). These models are generated using genetic algorithm
techniques such as crossover (Fig. 1) and mutations applied to the fractures of the network. Once a new generation of models is prepared, the entire workflow repeats until there
is no improvement in the fitting quality of the models. At the end of the loop, this process yields a population of discrete fracture network models that produce breakthrough
curves that best match the simulated observed breakthrough curves of the ground-truth model.

genetic algorithm can converge quickly toward optimal solutions. The
genetic evolution process was repeated until no further improvement
was observed from subsequent generations. In this study, the process
continued for 40 generations. For this study, it took 11 days to complete
the entire experiment, with DFNWorks running single-threaded on
an AMD Ryzen 3900X processor. The runtime for this method can
be significantly reduced by running multiple parallel processes when
calculating the breakthrough curves for each of the candidate solutions
(Fig. 4.2). Since genetic algorithms are a method that can easily take
advantage of parallel processing, this method can computational scale
as well as other methods.

3. Results

During the genetic algorithm loop, the performance of the models
within each generation was recorded. Fig. 5 plots the distribution of the
model performances within each generation of 20 models. The graph
includes the 10%, 50%, and 90% quantiles of the distribution. The
model error value is the value from the fitness functions. Recall that
this fitness function is based on the differences in the tracer arrival time
quantiles between the tested reference model. The graph shows that
starting with a median model error of 3.5, successive iterations of the
genetic algorithm led to a population of models with a median model
error of 0.75. The population reached this value by 15 generations.
Beyond 15 generations, the population performance did not improve
but instead remained at this performance level. Fig. 6 shows that the
variance of a population’s model performances also evolved throughout
the iterations of genetic evolution. At the start, the initial generated
models had a model error variance of 0.4. Then during the genetic
algorithm process, each iteration yielded a very different variance
value. Although the variance of the model error fluctuated widely from
generation to generation, overall the population’s variance trended

downward. The downward trend stopped at generation 15, the same
generation that the median model error reached its steady state value.
After 15 generations, the variance no longer decreased but instead
stayed at a value of 0.09. The volatility of the model error variance
also decreased substantially beyond 15 generations.

During the experiment, the breakthrough curves for each of the
models for each generation were recorded. Fig. 7 shows the break-
through curves recorded for the first generation, the final generation,
and the reference model. The breakthrough curves are jagged in ap-
pearance because of the relatively small number of tracer particles
used. Such simulated breakthrough curves are expected to be more
smooth with the use of more tracer particles. Note that for the initial
population of generated models, the majority of the models had an
early breakthrough curve, with the median of the curves having their
50% point at 2.4 x 1073 years. To test the genetic algorithm’s ability
to generate models with behaviors outside of the initial generated
distribution, note that the selected reference model has a breakthrough
curve with a 50% point at 8.4 x 1073 years. After 40 generations of
applying the genetic algorithm, the final population of models suc-
cessfully shifted right, toward the breakthrough curve of the reference
model. After 40 generations, the median of the curves had their 50%
point occur at 8.5 x 103 years, which is essentially the same as the
breakthrough curve for the reference model. Although the final curves
fit well at the 50% point, the slope of the final breakthrough curves
did not match well with the curves of the reference model. At the
particle recovery amount of 10%, the reference model’s breakthrough
curve reached this point at 2.8 x 1073 years, yet after 40 generations
the median of breakthrough curves reached this point at 4.0 x 1073
years. For the tracer recovery percentage of 90%, the reference model’s
breakthrough curve reached this percentage at 3.7 x 1072 years, yet
after 40 generations the median of breakthrough curves reached this
percentage at 2.4 x 1072 years.
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Fig. 5. A plot of the general performance of the model population over multiple generations. The y-axis is the overall model error, a metric based on how close a given model
could generate a breakthrough curve that matched the breakthrough curve of the reference model. Plotted are three quantiles of the population’s performance: 10%, 50%, and
90%. These curves show that as the discrete fracture genetic algorithm progressed, the overall error of the population of models reduced until it reached a limit of 0.75 after 15
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Fig. 6. A plot of the model error variance of the population through the generations. The plot shows that through successive generations, the genetic algorithm reduced the
variance of the population until it reached a minimum value of 0.09 after 15 generations. Note that before generation 15, the model error variance moved erratically as the
general trend progressed downward. After generation 15, the model error variance fluctuated slightly around the plateau value.

4. Discussion

Overall the results show that the genetic algorithm was able to
successfully evolve the population to produce discrete fracture mod-
els with tracer breakthrough curves that matched with an observed
breakthrough curve. Fig. 5 shows that the algorithm was able to reach
convergence to a set of optimal solutions within 15 generations by mod-
ifying a population of 20 models. Note that the population model error
decreased until it reaches a limit of 0.75. Recall that with hundreds
of fractures, and with each fracture having its own set of parameters,
the overall discrete fracture model was heavily parameterized. This
means that the genetic algorithm theoretically should have the ability
to produce discrete fracture models with breakthrough curves that

perfectly match the curve of the reference model and achieve a model
error of zero, yet the algorithm only achieved a minimum of 0.75.
One reason why the genetic algorithm failed to achieve a lower model
error is that the simulation of particle transport was not completely
deterministic. If the particle transport simulation were run twice on the
same discrete fracture model, it would yield slightly different results.
The reason is that, at every fracture intersection, the path the particle
would take is a stochastic process with its likelihoods weighted by flux.
Because the fitness function was calculated by using the results of the
particle transport simulation, the fitness function adopted its stochastic
value. So evaluating the fitness function on the same model multiple
times produced different results. The uncertainty of the function limited
the genetic algorithm’s ability to find the most optimal model, so the
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Fig. 7. A plot of the breakthrough curves for the initial population, the final population, and the reference model (ground truth). The breakthrough curves were calculated by
recording the travel times for each of the tracer particles, then presenting the data as the percentage of total particles recovered, plotted over time. The curves were plotted on
a logarithmic time scale. The red line shows the breakthrough curve of the reference model with a 50% recovery time of 8.4 x 1073 years. The light gray lines show the initial
population of breakthrough curves with a median 50% recovery time of 2.4 x 10~ years. The dark gray lines show the breakthrough curves of the populations after 40 generations
of the genetic algorithm, with a 50% recovery time of 8.5 x 1073 years. Note that the genetic algorithm was able to successfully shift the breakthrough curves of the population
to match the overall arrival times of the curves of the reference model, but it struggled to match the slope of the breakthrough curve of the reference model.

genetic algorithm generated a population of models that had a high
likelihood of producing a good fitness score. The uncertainty associated
with the transport simulation can be reduced by either increasing the
number of particles added to the simulation or by running the transport
simulation multiple times and recording the average result. Another
reason why model error did not reach zero is because of forcing the
genetic mixing between high fitness models and models that are newly
generated. Recall that to prevent the genetic algorithm from prema-
turely stopping at a local optimum, genetic diversity was introduced to
the population by forcing the high-fitness models to genetically mix
with models that were newly generated when producing new child
models. As a population of optimal models evolves, the genetic vari-
ation of the models gets reduced. And at every step, genetic diversity
is injected into the population from newly generated discrete fracture
models. At a certain point, the reduction in genetic diversity caused by
removing the least fit models is equal to the genetic diversity added
by the newly generated models, and so the genetic diversity reaches a
steady state. The aforementioned reasons also explain why the variance
of the model error did not reach zero (Fig. 6). The stochastic nature of
the fitness function and the consistent addition of genetic diversity to
the population prevented the variance of the model error from reaching
zero.

The breakthrough curves of Fig. 7 also show that the genetic algo-
rithm was able to adjust the models successfully so that they produced
curves that better followed what was produced by the reference model.
After 40 generations, the breakthrough curves shifted toward the right,
meaning that the tracer particles arrived at the extraction well later
than earlier generations of models. The genetic algorithm achieved this
by adjusting populations of fracture parameters until the bulk hydraulic
conductivity of the fracture network was increased. This led to a lower
overall flow rate and so a later arrival time for the particles. Fig. 5 also
shows that the average slope of the breakthrough curves of the final
generation did not match the slope of the breakthrough curve of the
reference model. For the first 10% of the arriving particles, the particles
in the final generation models arrived later than the particles for the

reference models. For the last 10% percent of the arriving particles,
the particles in the final generation models arrived earlier than the
particles for the reference model. This behavior can be attributed to
the uncertainty of the fitness function. During the start of the genetic
algorithm, the fitness functions could produce an error signal that
was much greater than the uncertainty of the fitness function. This
allowed the genetic algorithm to quickly distinguish which members
of the population were high-performing. At this stage, errors such as
the temporal shift of the breakthrough curve could be fitted quickly.
But as evolution progressed, the fitness function produced smaller
error signals until, finally, the error signal was smaller than the noise
generated by the fitness function. At that stage, the slopes between
breakthrough curves became difficult to distinguish from each other,
thereby inhibiting further improvement.

One limitation for the results of these experiments is that there is
no guarantee that the calibrated models will generalize beyond the
specific placement of the test wells during the calibration process. This
means that if a tracer test was performed on the calibrated model with
the test wells in a new orientation, then the resulting breakthrough
curve may be different than the breakthrough curves from applying the
tracer test on the ground truth model with the same new orientation
of the test wells. Since information about the hydraulic structure of the
fractures comes solely from hydraulic tests with the wells, the tracer
tests essentially become blind to any regions in the fracture network
that are not hydraulically connected to the wells. A similar limitation
applies to fracture networks which are anisotropic. If tracer tests were
performed on wells that were installed in an anisotropic fracture matrix
in only a single orientation, rotating the wells by 90 degrees would
yield a different breakthrough curve. To reduce the risk of discrete
fracture models overfitting to the biases introduced by well placement,
multiple wells can be installed in multiple orientations. This allows for
a more comprehensive measurement of the hydraulic structure of the
fracture network and helps to mitigate the limitations of wells installed
in a single orientation.
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Algorithm 1: Genetic Algorithm for Discrete Fracture Networks

Set: N,, = The total number of models in the population
Set: N_,iiaren = Number of models generated by genetic crossover
Set: Ngenerated =
Number of models generated by sampling a parameter
distribution Ensure: Ny, > Nepitgren > Ngenerated
Define: F(m) = Error of a given model m. To be minimized
Define: N, ,cures(m) = Number of fractures in model m
Define: round(r) = Round number r to the nearest integer
begin
Generate a population of N, models

while Stopping Criteria Not Met do

Evaluate F(m) for all models in population

Sort population of models m by their error F(m)
Remove Njiiaren + Ngenerarea models from the population

with the highest error

for i =1,2,, Nyeyergrea 4O )
Generate a model m by sampling a parameter

distribution
| Add model m to the population
fori=1,2,, Nopitgren 4O
Randomly select models m;, m, from the population
such that m; # m,
Prepare empty model m;
Let: v = Random rational number between 0 and 1
for i =1,2,, N seryres(my) X round(u) do
Select a random fracture f in m; such that f does
not exist in my
Add a copy of fracture f to mj
for i = 1,2, N pperures(my) X (round(1 — u)) do
Select a random fracture f in m, such that f does
not exist in my
Add a copy of fracture f to mj
| Add model m; to the population

Return population of models as final result
end

5. Conclusion

This study introduces a method for generating a population of
discrete fracture models that produce simulated results that match with
field observations. The method can achieve this model-tuning capabil-
ity without changing the distribution of the fracture parameters. This
allows the method to not only produce models with flow characteristics
that match field pumping tests but to do so in a way that creates a
population of fractures that can match fracture distribution parameters
observed by field seismic surveys. Note that this study does not use
any data from a seismic survey. The key idea is that if there is prior
knowledge about the distribution of a fracture parameter, then the
proposed method can generate possible solutions that preserve this
distribution. This prior knowledge of parameter distributions may come
from analysis of seismic surveys but can also come from other methods.
The method used in this study is the genetic algorithm modified in a
way that can handle discrete fracture networks. This was done by en-
coding every model’s fracture as a genetic base in the model’s genome.
During genetic mixing, the child model is generated by randomly
copying genetic bases from each of the parent models. This process
allows the fracture parameter distribution of the child model to be
the same as the distribution of the parent models. To test how well a
genetic algorithm modified for discrete fracture networks can perform,
the genetic algorithm was applied to a synthetic case in which the goal
was to find a population of discrete fracture models that, when run
with particle transport simulations, can produce breakthrough curves
that match the observed breakthrough curve from a reference model.

The results show that the genetic algorithm was able to successfully
produce a population of discrete fracture models with breakthrough
curves that closely match the reference model’s breakthrough curve.
Within the span of 15 generations, the genetic algorithm reduced
the model error and variance to a minimum that was bounded by
the uncertainty of the fitness function and by the algorithm injecting
genetic diversity into the population. The genetic algorithm was found
to excel at adjusting the fracture network’s bulk hydraulic conductivity
to temporally shift the breakthrough curve until it closely matched
the breakthrough curve of the reference model. The genetic algorithm
changed the bulk hydraulic conductivity of the model by adjusting the
number of fractures, the orientation of the fractures, the orientation
of the fractures and the location of the fractures. By changing these
parameters, the connectivity of the fractures changes, thereby changing
the bulk hydraulic conductivity of the model. The genetic algorithm
also was found to struggle with adjusting the population’s breakthrough
curves to match the slope of the reference breakthrough curve. Many
issues caused by the uncertainty of the fitness function can be resolved
by increasing the number of particles used in the transport simulation
or by re-running the simulation and using the average simulation result.

Future work for this study includes testing the discrete fracture
genetic algorithm on models with a different fracture parameter distri-
bution. For example, this study involved fractures that have a relatively
even distribution of orientations. But there are subsurface reservoirs
with fractures that are heavily biased toward one or two orientations.
Such fracture models with multiple families of fracture orientations
might change the effectiveness of the genetic algorithm. Another path
of study is the development and testing of new fitness functions that are
based on different pumping or tracer tests. Because this study found
that the performance can be bounded by the uncertainty associated
with the fitness function, future work could focus on developing bet-
ter fitness functions for applications with discrete fracture networks.
Related work also could involve development of better genetic mixing
strategies. The current strategy randomly selects fractures to be copied
over to the child model. This method ignores all the other fractures con-
nected to the copied fracture, and so that connectivity information can
be destroyed during the genetic mixing process. Future work could help
develop a better genetic mixing scheme that considers the hydraulic
connections made by adjacent fractures. Any future improvement of
the discrete fracture genetic algorithm could help researchers quickly
and more efficiently solve the important problem of inverse modeling
of fractured subsurface reservoirs.
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