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Abstract

Groundwater-flow and contaminant-transport modeling rely on methods of converting a set of field observations into geologic
models that represent the subsurface structure. These geologic models also must replicate important geologic features such
as connectivity. Recently, researchers have begun to use machine learning methods such as generative adversarial networks
(GANS). This study focuses on a progressive growing GAN (PGGAN) to condition on measured data. Given a latent variable
and an array that provides field observations, the generators of the conditioned PGGAN are tasked to produce geologically
realistic images of channel aquifers that match field observations. Although largely successful, the conditioning behavior of
these networks still has some issues, and how the model performs the conditioning task across its layers is not yet fully under-
stood. To better understand this conditioning mechanism, the behavior of these networks was measured using the condition-
ing ratio, which is a novel metric that determines the magnitude of the influence of the conditioning data. The conditioning
ratio was measured across multiple layers within the generator during training, as well as with various modifications to the
network architecture. The results revealed two distinct conditioning behaviors that are based on the number of condition-
ing arrays injected into the generator. Results also showed that decreasing the starting resolution for the generator can slow
down the learning process. Overall, the numerical experiments prove the value of measuring the conditioning ratio of layers
within the generator. These approaches can be used as diagnostic tools to assist in the design of future PGGAN architectures.
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Introduction

Generating realistic geological facies models from limited,
sparse data is an important task in hydrogeology. Given a
set of core data, aquifer properties such as hydraulic con-
ductivities from well-pumping tests, and hydrogeologic
conceptual models, hydrogeologists often are tasked to
estimate the underlying geologic facies models that match
field observations and known geologic features. The geologi-
cal facies models then can be used for many applications
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such as well-field pumping optimization and contaminant-
transport predictions. Because the quality of the conclusions
using the numerical groundwater-flow and contaminant-
transport models is directly dependent on the quality of the
geological facies models, simulating reliable and realistic
geological facies becomes an important area of research in
hydrogeology.

The field of geostatistics has many methods of geostatisti-
cal simulations that can convert a small array of data points
(i.e., measurements) into a complete geologic facies model
that can imitate real geologic features (Deutsch and Journel
1992). This task is similar to spatial interpolation, but note
that such methods must be able to generate multiple solu-
tions that all respect field observations. A popular approach
called multi-point statistics (MPS) can use an initial training
image and a set of measurements to generate multiple images
that have the same geologic features and that honor the con-
ditioning data (e.g., Lochbiihler et al. 2014; Honarkhah and
Caers 2012; Mariethoz and Renard 2010). MPS generally
works by copying the patterns provided within the training
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image and placing them on the basis of where the hard data
points are located. By iteratively repeating this process,
entire geologic facies models can be generated to exhibit
geological structures similar to those in the training image,
along with conditioning on the measurements; furthermore,
MPS is also capable of generating images that exhibit non-
stationarity (Mariethoz et al. 2015).

Another technique is object-based methods (OBM). By
controlling the shapes and distribution of geometric objects,
realistic geological features can be generated (Michael et al.
2010; Hauge et al. 2007; Deutsch and Wang 1996). The use
of parameterized geometric shapes allows OBM to have a
much lower risk of accidentally generating nonrealistic geo-
logic features. The problem with OBM is that it is limited to
geologic features that can be geometrically parameterized.
The OBM method is not very general—for every type of
geologic feature, a separate object model must be designed
and tested. Conditioning with OBM also can be challenging
because it is difficult to back-calculate which object param-
eters produce results that honor observed data (Holden et al.
1998).

Because of the recent, rapid success of deep machine
learning, many of the deep learning methods are starting to
be applied to the field of hydrogeology (Shen et al. 2018).
Particularly, generative adversarial networks (GAN) intro-
duced by Goodfellow et al. (2014) has increasingly gained
popularity. GAN is composed of two neural network agents
called the generator and the discriminator. The generator
is tasked with transforming a randomly generated latent
vector into a realistic image. The job of the discriminator
is to decide whether a given image is real (an image from
the training set) or fake (an image produced by the genera-
tor). During training, both agents get progressively better at
their tasks. As the discriminator gets better at distinguishing
between real and fake images, the generator is forced to learn
how to make more realistic images to fool the discriminator.
After training, the result is a generator that is exception-
ally good at generating realistic images such as photographs
of human faces (Karras et al. 2019). Such a generator can
instead be used to generate realistic geological facies. Given
a random latent vector, a generator can transform that vec-
tor into a realistic geological model. If the latent vector is
adjusted, then the generated images also change, but they
continue to resemble a realistic geologic model. GAN can be
used essentially as a dimensionality reduction method that
can be coupled with data assimilation for parameter inver-
sion (e.g., Laloy et al. 2018; Bao et al. 2020, 2022).

Researchers have applied a variety of GAN architectures
to a range of geological modeling scenarios. Specifically,
experimenting with both unconditioned and conditioned
models, Dupont et al. (2018) used GAN to generate river
channel facies. For conditioning the model, they used a
blurred version of the measurement array to facilitate the
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use of gradient descent. Nesvold and Mukerji (2019) used
a Wasserstein GAN trained on 20,000 multispectral satel-
lite images of 40 modern river deltas. Markov Chain Monte
Carlo method of conditioning with hard and soft data was
performed with the trained model. Mosser et al. (2020)
employed GAN to, a priori, generate a geological model
for a stochastic seismic waveform inversion. Bayesian inver-
sion was performed using the Metropolis-adjusted Langevin
algorithm to find generated earth models that honor seismic
observations. The differential nature of deep neural net-
works was used to calculate the gradient for the discrepan-
cies within seismic observations. Laloy et al. (2018) applied
spatial GAN to produce two-dimensional (2D) and three-
dimensional (3D) geological facies models. The spatial
GAN is composed entirely of convolution neural networks
(CNN). The use of CNN allows for more flexibility for the
size of the generated images.

To generate conditioned geological models, a common
technique is to iteratively adjust the latent vector until the
generator produces a geologic model that matches with
observed geological facies (Mosser et al. 2020; Nesvold
and Mukerji 2019; Dupont et al. 2018; Laloy et al. 2018).
Methods such as Markov Chain Monte Carlo and gradient
descent often are used to calibrate the latent vector. The
conditioning process generally involves iteratively generat-
ing many hypothetical geological models and recording their
mismatch with observed data. After numerous iterations,
enough simulation data are collected to allow determination
of the appropriate latent vectors. Instead of directly manipu-
lating the latent vectors, researchers also have explored alter-
nate methods for incorporating conditioning data into their
GAN architecture—for example, Chan and Elsheikh (2018)
produced conditioned results by extending the original GAN
with an extra network that learns to perform the conditioning
operation. During training, the extra network learns to map
an initial set of randomly generated unconditioned latent
vectors into a new set of conditioned latent vectors that pro-
duce geologic models to honor conditioning data. Song et al.
(2021a) applied progressive growing GANs for geomodel-
ling and quickly generating realistic channelized facies mod-
els. Based on that, Song et al. (2021b) proposed a framework
called GANSim, which is a geomodelling workflow that can
directly take sparse well facies data and global features (e.g.,
channel width) as inputs of the generator for conditioning,
together with the original latent vector. In GANSim, input
pipelines for different conditioning data (i.e., well data and
global features) are designed within the architecture of the
generator, and an extra type of condition-based loss func-
tion is introduced to enforce the consistency between the
input conditioning data and generated geologic models.
Song et al. (2022a) proposed to include facies probability
maps as another input conditioning data for GANSim. Song
et al. (2022b) recently improved GANSim in various aspects
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and extended the method to generate 3D geologic models of
karst cave reservoirs with good results.

Although GAN has been applied extensively in the field
of hydrogeology and has gained a degree of success, it also
has some issues to be resolved, in particular, for the condi-
tioning of measurements and stability of training—for exam-
ple, Song et al. (2021b) have shown that their networks can
still produce images where the GAN ignores some of the
conditioning points. To mitigate this, they proposed enlarg-
ing the conditioning points with the intent of increasing the
mismatch error, a problem that is not unique to Song et al.
(2021b). Chan and Elsheikh (2018) also mentioned a similar
issue, and they noted that they cannot fully guarantee that
conditioning is strictly honored, but only that it is honored
with high probability. Aside from issues with the condition-
ing behavior of the GAN, another common problem with
these networks is their instability. GAN is known to lose
variety in its generated output, a behavior known as mode
collapse. Because GAN involves two agents competing
against each other, any flaws in the agents or the competi-
tion process can cause GAN to fail. To deal with this prob-
lem, researchers have introduced a variety of methods to
reduce instability (Arjovsky et al. 2017; Karras et al. 2017;
Heusel et al. 2017). Nesvold and Mukerji (2019) used a
Wasserstein GAN because its earth mover’s distance loss
function can yield a more stable GAN training session. Song
et al. (2021b) used progressive growing GAN for their work
because training GAN in successive layers, instead of all at
once, was shown to be a more stable method (Karras et al.
2017).

To mitigate the aforementioned issues using GAN,
researchers have performed experiments to better understand
how the parameters used by these networks affect their per-
formance. Song et al. (2021b) conducted an array of experi-
ments with various weights for global features and well
facies loss terms in their loss function. Lopez-Alvis et al.
(2020) performed experiments on variational autoencoders
and studied how changes in the regularization weight and the
noise distribution affect how the generator maps from one
latent space into another. Lucic (2018) used a large array of
numerical experiments with a variety of GAN architectures
and found that, overall, parameters optimization is neces-
sary. They explained that because of GAN’s sensitivity to
its parameters, researchers cannot simply assume that the
parameters they found for their work can be applied to all
scenarios. Even given the same machine learning model, a
different application of the model requires researchers to
develop their own set of optimal parameters.

To resolve issues with applying this conditioning behavior
to these generative machine learning models, it is important
to establish a better understanding of how these networks
learn this conditioning behavior. When this mechanism is
better understood, researchers can make improved decisions

about which architecture hyperparameters must be changed
to yield better results.

In this work, a novel metric for measuring various aspects
of conditioned progressive growing GANSs is proposed.
Specifically, a newly defined metric called the condition-
ing ratio was calculated across the layers of a conditioned
progressive growing GAN during training. The condition-
ing ratio determines the magnitude of the influence of the
conditioning input. This metric is used by the discriminator
during training as a method to reduce model collapse. How-
ever, the conditioning ratio becomes a more valuable metric
when applied to the layers of a generator within PGGAN’s
architecture. What makes the PGGAN architecture special
is that it trains a generator in stages, with each stage learn-
ing to produce a higher resolution image using the output
of the previous stage. By measuring the conditioning ratio
at each of these stages, the growth and development of the
conditioning behavior can be observed. Within the context
of GAN:Ss, the conditioning ratio metric fills the gap for a
metric that focuses on the variance of generated images and
measures how they are influenced by conditioning input.
This process also was repeated for various network archi-
tecture hyperparameter values to observe how these changes
affect the networks’ learning of the conditioning behavior.
The results of these experiments can help researchers when
designing new conditioned GAN architectures. This is pos-
sible by using the proposed metric to measure which layers
first learn the conditioning behavior and observe how each
layer contributes to the overall performance of the genera-
tor. The proposed metric could also help guide the design of
the training process by predicting the final performance of
the generator without needing to wait for the entire training
process to complete.

Methodology
Training images

In this work, a GAN was trained to generate realistic
images of channelized aquifers. To train the GAN model,
the training images were generated by cutting out sections
of a source image. For this study, the source image was
a 2500 x 2500-pixel image containing channelized aqui-
fers trending along the east—west direction (Fig. 1; Zahner
et al. 2016). The source image contained two facies: one
facies with high hydraulic conductivity in the channels, and
another with low conductivity outside the channels. The
training images were generated by randomly clipping out
128 x 128-pixel images out of the source image. To produce
a validation set of images, the randomly clipped images were
flipped horizontally to ensure the new images had never been
seen by the trained model. Horizontal flipping is sufficient
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Fig. 1 Shows the source image used to generate the training data. The
source image has a resolution of 2500 x 2500 and contains chan-
nelized facies that are oriented along the east—west direction (Zahner
et al. 2016). Training images are made by randomly clipping out

128 x 128 sections of the source image

to generate the validation set of images because convolu-
tional neural networks are known to produce results that are
not invariant to various spatial transformations such as flips
and rotation (Azulay and Weiss 2018). Data augmentation
techniques take advantage of this property by spatially trans-
forming training images to increase the size of the training
set (Hernandez-Garcia and Konig 2018). The goal of the
GAN was to generate 128 X 128 images of the same chan-
nelized aquifers in a way that imitates the channel connectiv-
ity of the source image. After training, the models were first
verified by visual inspection that the channel connectivity of
the generated images were properly imitated before starting
experiments with the conditioning ratio.

Progressive growing GAN

A progressive growing GAN architecture was used for this
study. PGGAN is a GAN architecture first introduced by
Karras et al. (2017) as a method to improve stability dur-
ing training of GAN. PGGAN works by first training the
generator and discriminator in creating and discriminating
images that are of a very low resolution, such as a 4 x 4
image. The training images for this first training session are
just the original training images downsampled until they are
at the matching training resolution. After the networks have
learned to generate realistic 4 X 4 pixel images, an additional
layer is added to both networks. The networks then begin
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to learn how to produce realistic 8 X 8 images. To ease the
training process, the output of the first layer is resampled
to the new resolution before being sent to the newly added
layer. Thus, for the generator, the 4 X 4 images generated by
the first layer then are upsampled into 8 X 8 images before
being sent into the new layer. To further ease the training
process, the generator first outputs just the upsampled output
of the first layer, without using the newly appended layer.
As training progresses, the influence of the new layer is lin-
early increased until, by the end of the training stage, the
generator’s output is the upsampled image of the first layer
that has been modified by the new second layer. When the
networks have mastered the second stage with 8 X 8 images,
the training moves to the next stage with a greater resolution.
For this work, each successive stage doubled the number of
pixels along the edges of the images (4 then 8 then 16, and
so on). This process continued until the networks could gen-
erate realistic images of the same resolution as the original
training images. the final resolution was a 128 x 128 image
for this study. As the networks are grown during training,
the networks first learn to replicate broad features that can
be seen in low-resolution versions of the training images.
As the training resolution increases, the networks learn to
replicate finer and finer details until the original resolution
is achieved. Experiments by Karras et al. (2017) showed
that this progressive architecture not only produces more
stable results but also yields realistic images of much greater
resolution than previously achieved.

Original GAN architectures were known to have problems
with the lack of variety of the generated images (Lala et al.
2018). The generator would produce realistic images, but
only a few types of images, instead of the full variety avail-
able in the training set. To remedy this, Karras et al. (2017)
incorporated a technique called minibatch discrimination
into the PGGAN architecture (Salimans et al. 2016). Mini-
batch discrimination begins with calculating the standard
deviation for each spatial location across all the images in
the batch sent to the discriminator. The average of the stand-
ard deviations is calculated, yielding a single value. This
value then is broadcasted into an array of the same dimen-
sions as one of the images. Finally, this array of the mean
of standard deviations is appended to each of the images
in the batch as a new feature. This mean of standard devia-
tions is used as a metric for mode collapse. If the mean is
small, then the variety of the generated images has dropped
and mode collapse has occurred. If the mean is large, then
the generated images have a great variety and the generator
has trained properly. Appending this feature to the images
allows the discriminator to quickly learn and identify when
mode collapse is taking place. To trick the discriminator,
the generator is forced to learn a new mapping that does not
have any mode collapse.
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Conditioned PGGAN

To have the PGGAN generate realistic images that are condi-
tioned to well data, this work uses the GANSim architecture
introduced by Song et al. (2021b). A minor difference in the
architecture used by this study is how the conditioning data
is introduced into the generator. In the original GANSim
architecture introduced by Song et al. (2021b), the condi-
tioning data was introduced into the network as a two-layer
array. For this work, conditioning data is instead introduced
as a single-layer array. The conditioning data are formatted
as a 2D array that contains the location of the wells and
the facies type known at those points. For this study, the
elements of the array could take one of three possible val-
ues: ‘1’ represents the high conductivity facies, ‘—1’ repre-
sents the low conductivity facies, and ‘0’ represents areas
where the facies type is unknown. The conditioning array is
injected into the generator of the PGGAN by downsampling
the conditioning array, convolving the result with a small
convolutional layer, and appending the resulting block to
the blocks within the generator’s architecture. Because the
generator contains a set of blocks responsible for convolving
images at each resolution stage, a downsampled and con-
volved conditioning array is appended to the blocks of each
resolution stage. The downsampling method used for the
conditioning layers is the average pooling method. With the
conditioning data introduced at various resolutions, the gen-
erator is given the opportunity to learn how to incorporate
the data, from broad structures down to the fine structures
of the images. Figure 2 shows the structure of the generator
within the PGGAN architecture and shows how information
from the conditioning array is incorporated into the gener-
ated image.

To generate the conditioning arrays used for training
and validation, conditioning masks are used. Conditioning
masks are sparse, 2D arrays filled mostly with zeros except
for locations where a conditioning point is located. To cre-
ate these conditioning masks, the process starts by creating
a 128 x 128 array filled with a random, uniform distribu-
tion of ones and zeros. This array is multiplied element-wise
with another random array created in the same way. After
several iterations of multiplying with another random array,
the result is a conditioning mask array that contains a sparse
distribution of ones in an array filled with zeroes. This con-
ditioning mask then can be multiplied element-wise with a
training image of a channelized aquifer to create a condi-
tioning array that can be used by the generator. To change
the overall density of the conditioning points, increasing the
number of multiplication iterations increases the sparsity
of the points. For this study, 10 iterations were used. This
method for generating the conditioning masks allows the
spatial distribution and the number of conditioning points to

be randomized. This was done to ensure the generator does
not learn to rely on these attributes of the conditioning array.

Loss functions and training procedure

The discriminator is tasked with converting an image chan-
nelized aquifer into a numerical score that reflects how
realistic the image is, with more realistic images yielding
larger values. The goal of the optimizer is to adjust the dis-
criminator until it yields high scores for images from the
training set and low scores for images made by the generator.
The optimizer does this by adjusting the parameters of the
discriminator in a way that minimizes the value of the loss
function. The loss function used to train the discriminator in
the PGGAN is similar to the loss function used for WGAN-
GP architecture (Gulrajani et al. 2017).

L(D) = E,, {DIG@)]} — Ey.p, [DX)] + AEgp, [(IVzDR)I], — 1)*]
ey
The loss function shown in Eq. (1) uses the outputs of the
discriminator D and the generator G evaluated using images
X and latent vectors z. For this study, the latent vectors have
a length of 128. The discriminator loss function is composed
of three main terms. The first two terms are responsible for
adjusting the discriminator so that it outputs a small score for
images made by the generator and a large score for images
taken from the training set. The last term is the gradient pen-
alty term. It is responsible for ensuring that the discriminator
does not change too much to the point of causing instabil-
ity in the GAN training process. In the last term, A sets the
weight for the gradient penalty term; it was set to 4 = 10
for this study. X is a random linear interpolation between an
image made by the generator (X;) and an image sampled
from the training set (x). X is defined as X = ex + (1 — €)xg
where € is a weight with its value randomly sampled from a
uniform distribution between zero and 1 [¢ ~uniform(0, 1)].
The loss function used by this study is the same as what
was presented by Song et al. (2021b). Because the PGGAN
training process operates in stages of different resolutions,
the loss function must be modified such that it can be evalu-
ated in different resolutions.

{DIG@)]} + In([[{U[G(2)] — X } O II,)
@
The discriminator loss function is composed of two main
terms. The first term in the loss function is responsible for
adjusting the generator such that it produces images that
maximize the corresponding score given by the discrimina-
tor. This term essentially encourages the generator to pro-
duce images that fool the discriminator into thinking the
images are real and are from the training set. The second
term in the loss function is responsible for ensuring the

LG) = -E

z~p,
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Fig.2 Expanded view of the generator side of the conditioned
PGGAN architecture. The architecture is the same as the GANSim
architecture introduced by Song et al. (2021b). The generator begins
with a randomly generated latent variable. The latent variable is
sent through a fully connected neural network (FCN) with its result
reshaped into the n X n X 128 dimensions. This generator begins with
a starting resolution of 2 X 2 (this parameter is varied in the experi-
ments). Concatenated with this 128-block is a n X n X 4 block that
contains information from the initial conditioning array. This gen-
erator uses four conditioning layers for its conditioning blocks (this
parameter is varied in the experiments). This 4-block is made by first
downsampling (DS) the initial array many times until it produces an
image that matches the n X n dimensions of the blocks. The down-
sampling method used for the conditioning arrays is the average pool-
ing method. This downsampled image then is sent through two con-

generator learns to produce images that respect the condi-
tioning data. The images made by the generator are first
upsampled so that the resulting image is the same 128 X 128
resolution as the training images [U(G(z))]. The upsampling
method used for this is the nearest neighbor. The generated
and upsampled images are compared to the reference images
(X.¢) used to generate the conditioning arrays. The differ-
ence between the two arrays then is multiplied element-
wise (©) with the conditioning mask I. This makes sure the
sum of errors only considers differences at sites where the
conditioning data are given. After calculating the L2 norm,
a natural logarithm was applied to the result to ensure the
value of this term does not grow too large to the point of
causing trouble with the training process. Including the natu-
ral logarithm to the original loss function presented by Song
et al. (2021b) is a minor modification intended to improve
stability during the training process.

The optimization method called Adam (Kingma and Ba
2014) was used to train both the generator and discriminator.
The Adam optimizer was used with g, =0, g, = 0.99, and
€ = 10_8, which are standard values used by Karras et al.
(2017) and Song et al. (2021b). Unlike previous PGGAN,
the generator and discriminator used two different learning
rate values, instead of using the default value of Ir = 0.001
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secutive convolutional neural networks using a 3 X 3 kernel (“Two
CNN 3 x 37). After the 128-block and the conditioning 4-block are
concatenated together to form a n X n X 132 block, the result then is
upsampled (US) using the nearest-neighbor method to double the res-
olution to form a 2n X 2n X 132 block, the final block produced from
this resolution stage. For the next resolution stage, the final 132-block
output from the previous stage is sent through another set of convolu-
tion neural networks to produce a new 128-block for the resolution
stage. The process repeats for many more stages until the final 132-
block has the same side dimensions of the final image (128 x 128 for
this example). The final 132-block is sent through a single convolu-
tion neural network layer to produce the final generated images. For
this work, a minor change was made where the conditioning input
was introduced using only one layer instead of using two layers as
outlined by Song et al. (2021b) on the original GANSim architecture

for each. The learning rate for the generator was Irg = 0.001,
but the learning rate for the discriminator was reduced to
Ir5 = 0.00002. The concept of having the generator and dis-
criminator use two different learning rates was first inves-
tigated by Heusel et al. (2017). They found that having two
separate learning rates allows the GAN system to approach
a Nash equilibrium and therefore improve the stability of the
GAN training process. Because this study involves perform-
ing a set of experiments that changes the architecture of the
networks, the training method must be set up such that it
can train a wide variety of architectures without needing to
change the training hyperparameters.

The PGGAN training procedure involves multiple stages,
one for each training resolution. Given training resolutions
of 4 X 4 up to a resolution of 128 x 128, there are up to
6 training stages. In each stage, the GAN transitions from
performing its tasks from the current resolution to the next
higher output resolution. For this study, the entire GAN
training process goes through 200,000 iterations, so about
33,000 iterations are distributed evenly to each of the train-
ing stages. In each iteration, the networks train through a
batch of 32 images. Within each training stage, the generator
only outputs an upscaled version of the image produced by
the previous layer. But as training progresses, the weight
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for the new convolution layer linearly increases such that by
the end of the training stage, the generator outputs an image
produced by the new layer. A summary of the entire training
procedure for PGGAN is shown in Algorithm 1.

Measurement of the conditioning ratio

The generator of the conditioned PGGAN architecture has
two main inputs: the latent vector, and the conditioning
array. Previous works have studied the influence the latent
vector has on the output (Mosser et al. 2020; Nesvold and
Mukerji 2019; Dupont et al. 2018). This means to pro-
duce a range of images that respects observations, only
the latent vector can be manipulated to achieve this. But
the conditioned PGGAN architecture has two inputs, the
latent vector and the conditioning input. The latent vector
can be used to generate variability in the images, while the
conditioning input ensures the generated images respect
observation data. This study focuses more on the influence
the conditioning array has on the output image. The gen-
erator is designed to use the conditioning array to produce
conditioned images, but this performance must be meas-
ured. This measurement is done by using a process similar
to minibatch discrimination. To evaluate the conditioning
behavior of a trained generator, the generator transforms
a batch of 50 latent vectors and conditioning arrays into
a batch of realistic images. In this batch, all the latent

vectors are randomly generated. But for the conditioning
arrays, the first 25 arrays are all the same, while the last 25
arrays are all different. The last 25 conditioning arrays are
randomly generated and a new set of conditioning arrays
are generated every time the conditioning ratio is recal-
culated. This is done to reduce the artifacts that may be
introduced by any single batch of conditioning inputs. For
each set of 25 images, the mean of the pixel-wise vari-
ance is calculated using the same process as minibatch
discrimination. If the generator has been trained correctly,
then the mean variance for the images that used the same
conditioning array should be lower than the mean vari-
ance for the images that used different conditioning arrays.
Dividing the mean variance for images that used the same
conditioning array by the mean variance for images that
used different conditioning arrays yields a useful metric
defined as the “conditioning ratio”. A summary of the con-
ditioning ratio metric is presented in Algorithm 2. Figure 3
shows example batches of generated images with a high
and low value for the conditioning ratio. A condition-
ing ratio less than one means that the generator has the
expected behavior of reducing the variance of generated
images due to the introduction of conditioning data. To
get a stable value for the conditioning ratio, the genera-
tor evaluates 1,000 batches and then reports the average
value across all the batches as the final conditioning ratio
for a given generator. Since the conditioning ratio uses the

Set: n = The total number of iterations

Set: m = The total number of resolution stages
Calculate number of iterations per stage: k = -
begin

fori=1,2,---,ndo

Evaluate D(x)
Calculate the loss function for the discriminator L(D):

Evaluate G(x)
Calculate the loss function for the generator L(G):
L(G) = —Ez~p,DIG(z)] + In[{U[G(2)] — Xrer} O 1ll2)

if i mod k = 0 then
L Upgrade GAN architecture to next resolution stage:

Linearly transition from old to new stage while training:
_ (i _mod k+1)

@ = 3

D =D x (I —a)+ Dpew x (@)

G=Gx (1 —a) + Gpew X (@)

L end

Prepare the discriminator D initialized at the lowest resolution stage
Prepare the generator G initialized at the lowest resolution stage

Prepare a batch of images x containing samples of images from the dataset

L(D) = E;p,DIG@)] — Ex~p, [DX)] + AEz [( ViDRE) [, —1)?]
Perform backpropagation through L(D) and update parameters for the discriminator D
Prepare a batch of latent vectors z with elements sampled from A/(0, 1)

Perform backpropagation through L(G) and update parameters for the generator G

- Append new CNN layers to D input to increase input resolution, creating Dyey
- Append new CNN layers to G output to increase output resolution, creating Dyey

Return G as the trained generator operating at the final resolution stage

Algorithm 1 Training procedure for a progressive growing GAN
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mean of the pixel-wise variance of the generated images,
the standard errors of the means could be computed by
using the standard deviation of the pixel-wise variance.
However, this standard error was found to quickly vanish
because of the large number of pixels used. For example,
8 x 8 images generate 50 times already yields a sample
size of 3,200. Variations from simply retraining the GAN
model produce a larger variance on the metric than from
the inherent variances from calculating the metric. Note
that the conditioning ratio measures the influence condi-
tioning data has on the variance of the generated images.
It does not measure the proportion of correctly produced
point data among all input point data.

One of the advantages of using the conditioning ratio
is that it can be evaluated regardless of the resolution at
which the generator operates. When using pixel-wise vari-
ance maps, comparisons become difficult to interpret when
comparing between variance maps of different dimensions.
The conditioning ratio resolves this issue by summarizing
the variance of generated images with a single normalized
value, thereby allowing comparison of variance maps with
different resolutions. This allows the conditioning ratio to
be evaluated not only for a completely trained generator, but
also for the generators throughout the entire training process,
giving insight into how the conditioning behavior of the gen-
erator changes throughout the training process. Because the
generator of the PGGAN process is composed of layers that
generate images at different resolutions, the conditioning
ratio also can be evaluated for different layers within a sin-
gle generator. The conditioning behavior can be monitored
as information propagates through the generator’s network.
Note that the conditioning ratio still has its utility, even when
evaluated during later stages of training where early low
resolution CNN layers are no longer required to produce
realistic and conditioned images. Studying the changes of

the conditioning ratio of these early layers can yield insight
into how the PGGAN learns its conditioning task and how
the performance of early layers influences the performance
of later layers.

Network architecture experiments

When investigating the conditioning behavior of the genera-
tor from a PGGAN process, the conditioning layers within
the generator become an important network component to
study. Song et al. (2021b) used 16 conditioning layers for
each stage with the generator. This study explores a range of
values for the number of conditioning layers. A range from
4 to 128 layers was explored. The number of layers can be
important because it can change the conditioning behavior
of the generator. If the number of conditioning layers is too
small, then the generator might not be able to learn how to
use the conditioning array to generate conditioned outputs.
If the number of conditioning layers is too large, then the
generator might rely too much on the conditioning array and
lose the variety introduced by the latent vector.

Another important architectural component of the gen-
erator network is the starting resolution for the PGGAN
process. Song et al. (2021b) used 4 X 4 as their starting
resolution but did not explore other starting resolutions. This
study investigates the effects of changing the starting reso-
lution and how it competes with other network architecture
parameters. Intuitively, having a larger starting resolution
would make the generator have a harder time learning to
replicate broad-scale structures. These experiments were
designed to test whether this intuition remains true in prac-
tice. This study will experiment with starting resolutions
of 4 X 4 and 8 X 8. This study will also investigate how
changing the starting resolution will affect the number of

Let: n = Batch size (Used n = 25 for this study)

Let: z = A latent vector randomly generated from the N (0, 1) distribution
Let: z, = An array of n latent vectors randomly generated from the N (0, 1) distribution

Let: ¢ = A randomly generated conditioning input image

Let: ¢, = An array of n randomly generated conditioning input images

Let: ¢, = An array of a single conditioning input image duplicated n times

Let: G(z,, ¢,) = An array of n images generated using z, and ¢,
Let: G(z,, ¢,) = An array of n images generated using z, and ¢,

Let: Var(G) = Pixel-wise variance of generated images. Output dimension same as output images
Let: Mean() = Mean element value of a given array. Output is a single scalar value

Calculate the conditioning ratio for the generator G:

__ Mean{Var[G(z,,¢&:)1}
CR(G) = NeanNVariGz, o]

Algorithm 2 Calculating the conditioning ratio metric
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Fig.3 Example batches of generated images with different condi-
tioning ratios. For each batch (a-b), the first 25 images (above the
center red dividing line) were generated with different latent vectors
but the same conditioning array. However, for the second 25 images
(below the center red dividing line), the images were generated with
different latent vectors and different conditioning arrays. The two
25-image batches were placed on top of each other (with the middle
row containing a five images from batch 1 and b five images from
batch 2) to highlight any visual similarities or differences between the
two batches. Note that for large conditioning ratios, such as in sec-
tion ‘Trends across the number of conditioning layers’, this means
the generator will produce realizations with a variance that does not
significantly change, even when the conditioning data is held con-
stant while the latent variable is varied. Visually, this means the two
batches will look like each other and the boundary between the two
batches is difficult to distinguish. When the conditioning ratio is close
to zero, such as in section ‘Trends across the number of conditioning
layers’, the generator will produce realizations with variances lower
than what the conditioning data allows. Visually, this means the two
batches will be easy to distinguish since one of the batches will look
like copies of the same image

conditioning layers necessary to produce a properly trained
conditioned GAN.

Results

Trends across the number of conditioning layers
Several PGGAN models were trained with a range of values
for the number of conditioning layers. Values ranging from 4

to 128 conditioning layers were explored. A starting resolu-
tion of 4 X 4 and 8 X 8 also was explored. Figure 4 shows

the result of plotting the conditioning ratio against a varying
number of conditioning layers, including the conditioning
ratio plot for a4 X 4 and an 8 X 8 starting resolution. For
both starting resolutions, the generators sharply transitioned
from a high conditioning ratio to a low ratio as the number of
conditioning layers increased. However, the transition for the
8 X 8 series occurs sooner than the transition for the 4 X 4
series transitions at. The 4 X 4 series begins to transition
at 48 conditioning layers, while the 8 X 8 series begins to
transition at only 12 conditioning layers. After the transition,
the conditioning ratio for the 8 X 8 series begins to increase
as the number of conditioning layers increases.

Figure 5 shows batches of images generated by various
generators trained within the 4 X 4 series in Fig. 4. Focus
is placed on the transition period that occurs at 48, 56, and
64 conditioning layers. As the conditioning ratio drops, the
variance of the generated conditioned images is reduced. All
three batches were given the same number of conditioning
points, so the conditioning array is not responsible for the
drop in image variance.

Trends across training iterations

As the networks went through the PGGAN training pro-
cess, the conditioning ratio was calculated for each reso-
lution within the generator. For the series of generators
with a 4 X 4 starting resolution, the conditioning ratio
plots were made for the 8 x 8, 16 X 16, 32 X 32, 64 X 64,
and 128 x 128 outputs of the generator. The conditioning
ratios were calculated throughout the 200,000-iteration
process. Figure 6 shows this set of conditioning ratio plots
for the 4 X 4 starting resolution generators with 8, 16, 32,
and 64 conditioning layers. Figure 6 shows trends that are
common across all four conditioning ratio plots. During
the start of the training session, the conditioning ratios for
each of the resolution stages drop in sequence. Training
begins with the 8 x 8 stage dropping to a low conditioning
ratio before the rest of the stages follow suit. For the gen-
erators with 8 and 16 conditioning layers (Fig. 6a,b), the
conditioning ratios for most of the resolution stages remain
close to one, while the 4 X 4 and 8 X 8 resolution stages
have their conditioning ratios widely vary throughout the
training. Figure 6¢ shows the 32 X 32 conditioning layer
generator with most of the stages sharing very similar con-
ditioning ratios throughout the training session. Except for
the 8 X 8 resolution stage, the conditioning ratios of the
remaining stages began by dropping down close to zero
before bouncing back up and approaching the final value.
For Fig. 6d, all resolution stages approached zero, except
for the 4 x 4 stage, which became unstable and produced
conditioning ratios well above 1.

For the 4 X 4 starting resolution series, Fig. 6 shows that
the conditioning ratio transitions from high to low between
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32 and 64 conditioning layers. To better understand this tran-
sition, additional tests were done at 48 and 56 conditioning
layers. Figure 7 shows the additional set of conditioning ratio
plots for this transition period. The plots of Fig. 7 show that
as the number of conditioning layers increases, the variation
between the conditioning ratios increases. In Fig. 7a, except
for 8 X 8 stages, all other stages have their conditioning
ratios closely following each other throughout the U-shaped
trend, with differences no greater than 0.2. However, in
Fig. 7c, the cluster of stages expands to the point of having
a maximum difference of 0.4. The final generator produces a
range of conditioning ratios, with higher conditioning ratios
corresponding to higher output resolutions.

As with Fig. 6, Fig. 8 shows the conditioning plots for
the series of generators with an 8 X 8 starting resolution.
Figure 8 shows the plots for generators trained with 8, 16,
32, and 64 conditioning layers. The figures show that for
generators with 16 conditioning layers or greater, the major-
ity of the stages begin with an initial conditioning ratio of
one, then sharply trend down toward zero before rising back
up toward the final value. This trend of having an initial drop
is similar to what was found for the 4 X 4 starting resolution
generators (Fig. 7, although the drops were not as sharp as
what was found for the 8 X 8 starting resolution generators
in Fig. 8. The 8 X 8 series begin their initial drops sooner, at
40,000 iterations, as compared to the 4 X 4 series with their
initial drops that start at 60,000 iterations. During the slow
upward trend in the conditioning ratio, there is a small but
consistent bump at 170,000 iterations for the final resolution
stage of 128 x 128. At the end of the training session, the
conditioning ratio of the trained generator varies, based on
the output resolution of the stage, with higher resolutions
yielding higher conditioning ratios. Note that this trend is
consistent with what was found in Fig. 7c.

For the 8 x 8 starting resolution series, Fig. 9 shows
that the conditioning ratio transitions from high to low
between 8 and 16 conditioning layers. To better under-
stand this transition period, additional models were trained
with 12 and 14 conditional layers. Figure 9 shows the set
of additional conditioning ratio plots for this transition
period. The plots of Fig. 9 show that as the number of
conditioning layers increases, the magnitude of the ini-
tial drop of the conditioning number increases. With eight
conditioning layers (Fig. 9a), the 16 X 16 stage only dips
as low as 0.5, while the rest of the higher resolution stages
remain close to one. With 12 conditioning layers (Fig. 9b),
the 16 X 16 stage dips down farther to 0.45, while the rest
of the higher resolution stages continue to remain close
to one. However, with 14 conditioning layers (Fig. 9c),
the rest of the high-resolution stages finally perform the
distinct drop of the conditioning ratio X iteration 60,000.
Compared to the transition slope for the 4 X 4 starting
resolution series, the transition slope for the 8 X 8 series is

@ Springer

much steeper. Even with the additional experiments, there
was no 8 X 8 series model that yielded a conditioning ratio
between 0.4 and 0.6.

Discussion

Some of the trends in the results are reasonable and can
be intuitively explained. One example is the trend where,
during training, all conditioning ratios begin at a value of
one before dropping down and then rising back up to their
final value. At the start of the training sessions, the genera-
tor begins at a conditioning ratio of one because the later
stages have not yet learned how to use the conditioning
array or even learn how to produce realistic images yet,
so the initial images are essentially randomly generated
images with no influence by the conditioning array. As
training continues, the conditioning ratio drops because
the generator quickly learns that it can yield a lower value
for the loss function, through the second term of Eq. (2),
if it incorporates the conditioning array into the output of
the generator. Afterward, the conditioning ratios begin to
rise because the variance between the generated images
increases as the resolution of the generated images also
increases. This explains why the conditioning ratio of the
fully trained generator increases with the resolution of
the output image (see iteration 200,000 of Fig. 8d). The
specific paths the conditioning ratio takes during training
will vary, based on the resolution stage and other hyper-
parameters, but the general U-shaped trend holds true for
the majority of the tested models. The U-trend indicates
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Fig.4 The conditioning ratio plotted against the number of condi-
tioning layers. There are two data series, one for generators with a

4 X 4 starting resolution and one for generators with an 8 X 8 starting
resolution. Both series show the conditioning ratio decreasing as the
number of conditioning layers increases. Note that the 8 X 8 series
transitions at a lower number of conditioning layers than where the

4 X 4 series transitions
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Fig. 5 Example batches made by generators with different amounts of
conditioning layers. As the number of conditioning layers increases,
the conditioning ratio drops. This figure showcases how this drop of
the conditioning ratio changes the generated images during this tran-

that, at least for the conditioned PGGAN architecture, the
generator prefers to first learn to copy data from the con-
ditioning array into output; then it learns how to adjust
the output to be more realistic and imitate the variance

(a) 4x4 Starting Resolution, 8 Conditioning Layers

sition period. The batches are generated with the same method shown
in Fig. 3. As the conditioning number drops, the variance of the con-
ditioned images drops. This is true even when all three image batches
are given the same amount of conditioning points

of the training images. This initial dependence on the
conditioning array could explain why Song et al. (2021b)
found issues with “local pixel noise” in which the genera-
tor produces images with outstanding pixels that match the

(b) 4x4 Starting Resolution, 16 Conditioning Layers

Fig.6 The conditioning ratio

versus training iteration plots 1.00

for PGGANS that use a start- 2 W '\ ] /F"‘

ing resolution of 4 x 4. Each 80.751 ! . / 1 ! :"\‘ PN\ o

subfigure shows the plot for a o \ R ! H A w ‘\._.—I‘.
generator trained with a given é 0.50 \ ! \‘. g i i “ /

number of conditioning layers. 2 i ," \ ,F w .\ ," \ ,"

Within each plot, each series is S 4,254 ﬁ\‘ i & / '.‘ !

a set of conditioning ratios for a S \ LN R ;'

given output resolution within 0.004 . -u-8

the generator

(c) 4x4 Starting Resolution, 32 Conditioning Layers (d) 4x4 Starting Resolution, 64 Conditioning Layers

1.001 »-®

0.501

0.254

Conditioning Ratio

Ll B L g

0.001

._l..,..'—l—l—l-l".

0 50000

-#- 8x8

100000
Training lterations

50000 100000 150000 200000
Training Iterations

150000 200000 O

16x16 -e- 32x32 —¥— 64x64 —o— 128x128

@ Springer



Hydrogeology Journal

conditioning data but do not match the surrounding geo-
logic facies. The generator learns to ignore the influence
of the conditioning as it seeks to produce more realistic
images. To fix this, Song et al. (2021b) proposed enlarging
the conditioning points with the intent of increasing the
mismatch error. Another method to explore is training the
discriminator to be more sensitive to these outstanding
conditioning points.

Although the experiments reveal trends that are easily
explainable, the results also show trends that are not intui-
tive. The most substantial example is the plot shown in
Fig. 4. The intuition behind the experiments was that hav-
ing a lower starting resolution gives the generator a better
opportunity to learn how to replicate these broad-scale fea-
tures in the images and to learn how to incorporate condi-
tioning data into these large-scale features. Having another
resolution stage also provides an additional path to inject
conditional data into the generator. Both of these reasons
indicate that a generator with a 4 X 4 starting resolution
should require fewer conditioning layers in order to have the

(a) 4x4 Starting Resolution, 32 Conditioning Layers

same performance as an 8 X 8 starting resolution generator.
Yet the results in Fig. 4 shows the opposite result, with the
8 X 8 starting resolution generators transitioning from a high
to low conditioning ratio at a smaller number of condition-
ing layers than the 4 X 4 transition. A possible explanation
for why this occurs is that the early stages of the generator
can become a burden if the resolution is too small. Note
that many of the plots for the 4 X 4 starting resolution series
show the first stage (8 X 8) following trends that are differ-
ent from what the rest of the higher resolution stages follow.
Figure 9c shows the first two stages reaching a conditioning
ratio of zero. Plots from the 8 X 8 starting resolution series
(Fig. 9a—c) only show divergent behaviour from the first
stage of the generator, which has an 8 X 8 resolution. Note
that conditioning ratios above 1 have the same meaning as
the conditioning ratio equal to 1, which means the model is
producing outputs that are not properly constrained by con-
ditioning inputs. A conditioning ratio of more than 1 rarely
occurs and is most likely to occur with very low resolution
images (such as 4 X 4) where a small pixel count is most

(b) 4x4 Starting Resolution, 48 Conditioning Layers
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Fig.7 The conditioning ratio versus training iteration plots for the
generators that use a starting resolution of 4 X 4. Each subfigure
shows the plot for a generator trained with a given number of condi-
tioning layers. Within each plot, each series is a set of conditioning
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ratios for a given output resolution within the generator. These plots
focus on when the final output of the generator transitions from a
high to low conditioning ratio between 32 and 64 conditioning layers
(Fig. 4)
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(a) 8x8 Starting Resolution, 8 Conditioning Layers

(b) 8x8 Starting Resolution, 16 Conditioning Layers
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Fig.8 The conditioning ratio versus training iteration plots for
PGGANES that use a starting resolution of 8 X 8. Each subfigure shows
the plot for a generator trained with a given number of conditioning

likely to produce a set of values that yields a conditioning
ratio value greater than 1. This case is unlikely to occur with
images of larger resolutions. In Fig. 9c, the first stage even
climbs upward like the rest of the stages, unlike the first
stage in Fig. 7a. The burden of the early stages also shows in
the delay of the initial drop of the conditioning ratio during
training. The 8 X 8 series begin their initial drops sooner,
at 40,000 iterations, compared to the 4 X 4 series with their
initial drops starting at 60,000 iterations.

On top of revealing nonintuitive learning behaviors within
the training of conditioned PGGAN generators, the condi-
tioning ratio has proven to be a useful metric for tuning the
parameters of these generators. Figure 5 showcases this tun-
ing process using the conditioning ratio metric. Recall that a
generator with a large conditioning ratio will produce a vari-
ety of realistic images that do not respect the conditioning
data. A generator with a small conditioning ratio produces
images that respect conditioning data, but at the cost of pro-
ducing images with low variance. Therefore, the ideal gen-
erator that produces realistic conditioned images with high

150000 200000 O

-o-- 32x32

50000 100000 150000 200000
Training Iterations

—¥— 64x64 —eo— 128x128

layers. Within each plot, each series is a set of conditioning ratios for
a given output resolution within the generator

variance will have a conditioning ratio that is between these
two extremes, whereby the lower extreme is O and the upper
extreme is 1. In practice, these extremes can be verified by
measuring the conditioning ratio of the conditioned GAN
model when it exhibits one of two types of training failure.
If there is almost no variance in the generated images when
the conditioning input is held constant, even while the latent
variable is varied, then the measured conditioning ratio will
be close to zero. However, if the variance of the generated
images does not reduce when the conditioning input is held
constant versus when the conditioning input is varied, then
the conditioning ratio will be one. For some architecture
parameters, such as the number of conditioning layers, a
simple binary search using the conditioning ratio metric can
quickly find the optimal value for these parameters. When
tuning the parameter, the target value for the conditioning
ratio is 0.5. A conditioning ratio of 0.5 means that the gen-
erator is able to properly produce images that respect the
conditioning input but does so in way that does not severely
reduce the variance of the generated images beyond what
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(a) 8x8 Starting Resolution, 8 Conditioning Layers

(b) 8x8 Starting Resolution, 12 Conditioning Layers
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Fig.9 The conditioning ratio versus training iteration plots for gen-
erators that use a starting resolution of 8 X 8. Each subfigure shows
the plot for a generator trained with a given number of conditioning
layers. Within each plot, each series is a set of conditioning ratios for

the conditioning input can justify. To use the conditioning
ratio for tuning parameters, first select the tuning parameter
of interest. For the case of Fig. 5, the parameter of interest is
the number of conditioning layers in the GAN architecture.
Next, run the GAN model with various values for the tuned
parameter and calculate the conditioning ratio of the model’s
output for each of these runs. Some parameter values will
yield a GAN with a conditioning ratio close to one, while
other parameter values will make the GAN have a condi-
tioning ratio close to zero. Since the conditioning ratio is
continuous, then there must exist a parameter value such that
it will produce a GAN with a conditioning ratio of 0.5. This
parameter value can be found using the binary search algo-
rithm. At the conditioning ratio of 0.5, the model produces
images that respect the conditioning input. Also at 0.5, the
model does not over rely on the conditioning input to the
point where the model only produces one image when the
conditioning input is varied, even when the latent variable
is varied. For the example shown in Fig. 5, a binary search
with the conditioning ratio will find 56 conditioning layers
to be close to the optimal value.
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a given output resolution within the generator. These plots focus on
when the final output of the generator transitions from a high to low
conditioning ratio between 8 and 16 conditioning layers (Fig. 4)

Conclusions

This study introduces a set of experiments that focus on
investigating the performance of conditioned progressive
growing generative adversarial networks (PGGANSs). The
generators of these PGGANSs are tasked with converting a
latent variable and a conditioning array into images of geo-
logically realistic channelized aquifers that match with point
data from well observations. Conditioning data are injected
into the generator by downsampling the conditioning array
and appending additional conditioning layers to the existing
layers within the generator. Focus was placed on investigat-
ing the conditioning performance of these networks and how
their performance changes in response to alterations of the
network architecture. To measure the conditioning perfor-
mance of the network, a metric called the conditioning ratio
was defined. The conditioning ratio is essentially the vari-
ance of images generated with the same conditioning data
divided by the variance of images generated with different
conditioning data. Low conditioning ratios indicate strong or
excessive conditioning behavior and high ratios mean little
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to no conditioning. By measuring the conditioning ratio, the
experiments can provide information about how the condi-
tioning behavior changes across many different scenarios.
The conditioning ratio was measured on each of the resolu-
tion stages within the generator while it was training. This
measurement process also was done for varying numbers of
conditioning layers and with different starting resolutions.

The experiments and measurements of the conditioning
ratio yielded plots that provide great insight into how the
conditioning behavior arises within these networks. The
results revealed a common U-shaped trend where, during
training, the conditioning ratio starts at a high ratio and
then quickly drops before climbing back up toward the final
value. The results also show that PGGANSs with lower start-
ing resolutions can require more conditioning layers than
generators with a higher starting resolution. Overall, the
experiments demonstrated that measuring the conditioning
ratios within layers of the generators provides a valuable
method for monitoring the performance of these networks.
Researchers can reduce the computational demands of
exploring new GAN architectures by using the condition-
ing ratio to trim off redundant high-resolution layers of the
progressive GAN process or by stopping the training process
early when the conditioning ratios detect a trend that predicts
a failure at the end of training.

Future applications for these experiments include using
conditioning ratios across PGGAN generator layers as diag-
nostic tools useful for the design of future GAN architectures
that produce images of higher dimensions or can receive a
wider variety of conditioning data. The techniques intro-
duced in this work also can be extended to GAN architec-
tures designed to find mappings between state and param-
eters space, thereby helping in the design of more efficient
surrogates for groundwater models.
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