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Abstract

Groundwater-flow and contaminant-transport modeling rely on methods of converting a set of field observations into geologic 

models that represent the subsurface structure. These geologic models also must replicate important geologic features such 

as connectivity. Recently, researchers have begun to use machine learning methods such as generative adversarial networks 

(GANs). This study focuses on a progressive growing GAN (PGGAN) to condition on measured data. Given a latent variable 

and an array that provides field observations, the generators of the conditioned PGGAN are tasked to produce geologically 

realistic images of channel aquifers that match field observations. Although largely successful, the conditioning behavior of 

these networks still has some issues, and how the model performs the conditioning task across its layers is not yet fully under-

stood. To better understand this conditioning mechanism, the behavior of these networks was measured using the condition-

ing ratio, which is a novel metric that determines the magnitude of the influence of the conditioning data. The conditioning 

ratio was measured across multiple layers within the generator during training, as well as with various modifications to the 

network architecture. The results revealed two distinct conditioning behaviors that are based on the number of condition-

ing arrays injected into the generator. Results also showed that decreasing the starting resolution for the generator can slow 

down the learning process. Overall, the numerical experiments prove the value of measuring the conditioning ratio of layers 

within the generator. These approaches can be used as diagnostic tools to assist in the design of future PGGAN architectures.
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Introduction

Generating realistic geological facies models from limited, 

sparse data is an important task in hydrogeology. Given a 

set of core data, aquifer properties such as hydraulic con-

ductivities from well-pumping tests, and hydrogeologic 

conceptual models, hydrogeologists often are tasked to 

estimate the underlying geologic facies models that match 

field observations and known geologic features. The geologi-

cal facies models then can be used for many applications 

such as well-field pumping optimization and contaminant-

transport predictions. Because the quality of the conclusions 

using the numerical groundwater-flow and contaminant-

transport models is directly dependent on the quality of the 

geological facies models, simulating reliable and realistic 

geological facies becomes an important area of research in 

hydrogeology.

The field of geostatistics has many methods of geostatisti-

cal simulations that can convert a small array of data points 

(i.e., measurements) into a complete geologic facies model 

that can imitate real geologic features (Deutsch and Journel 

1992). This task is similar to spatial interpolation, but note 

that such methods must be able to generate multiple solu-

tions that all respect field observations. A popular approach 

called multi-point statistics (MPS) can use an initial training 

image and a set of measurements to generate multiple images 

that have the same geologic features and that honor the con-

ditioning data (e.g., Lochbühler et al. 2014; Honarkhah and 

Caers 2012; Mariethoz and Renard 2010). MPS generally 

works by copying the patterns provided within the training 
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image and placing them on the basis of where the hard data 

points are located. By iteratively repeating this process, 

entire geologic facies models can be generated to exhibit 

geological structures similar to those in the training image, 

along with conditioning on the measurements; furthermore, 

MPS is also capable of generating images that exhibit non-

stationarity (Mariethoz et al. 2015).

Another technique is object-based methods (OBM). By 

controlling the shapes and distribution of geometric objects, 

realistic geological features can be generated (Michael et al. 

2010; Hauge et al. 2007; Deutsch and Wang 1996). The use 

of parameterized geometric shapes allows OBM to have a 

much lower risk of accidentally generating nonrealistic geo-

logic features. The problem with OBM is that it is limited to 

geologic features that can be geometrically parameterized. 

The OBM method is not very general—for every type of 

geologic feature, a separate object model must be designed 

and tested. Conditioning with OBM also can be challenging 

because it is difficult to back-calculate which object param-

eters produce results that honor observed data (Holden et al. 

1998).

Because of the recent, rapid success of deep machine 

learning, many of the deep learning methods are starting to 

be applied to the field of hydrogeology (Shen et al. 2018). 

Particularly, generative adversarial networks (GAN) intro-

duced by Goodfellow et al. (2014) has increasingly gained 

popularity. GAN is composed of two neural network agents 

called the generator and the discriminator. The generator 

is tasked with transforming a randomly generated latent 

vector into a realistic image. The job of the discriminator 

is to decide whether a given image is real (an image from 

the training set) or fake (an image produced by the genera-

tor). During training, both agents get progressively better at 

their tasks. As the discriminator gets better at distinguishing 

between real and fake images, the generator is forced to learn 

how to make more realistic images to fool the discriminator. 

After training, the result is a generator that is exception-

ally good at generating realistic images such as photographs 

of human faces (Karras et al. 2019). Such a generator can 

instead be used to generate realistic geological facies. Given 

a random latent vector, a generator can transform that vec-

tor into a realistic geological model. If the latent vector is 

adjusted, then the generated images also change, but they 

continue to resemble a realistic geologic model. GAN can be 

used essentially as a dimensionality reduction method that 

can be coupled with data assimilation for parameter inver-

sion (e.g., Laloy et al. 2018; Bao et al. 2020, 2022).

Researchers have applied a variety of GAN architectures 

to a range of geological modeling scenarios. Specifically, 

experimenting with both unconditioned and conditioned 

models, Dupont et al. (2018) used GAN to generate river 

channel facies. For conditioning the model, they used a 

blurred version of the measurement array to facilitate the 

use of gradient descent. Nesvold and Mukerji (2019) used 

a Wasserstein GAN trained on 20,000 multispectral satel-

lite images of 40 modern river deltas. Markov Chain Monte 

Carlo method of conditioning with hard and soft data was 

performed with the trained model. Mosser et al. (2020) 

employed GAN to, a priori, generate a geological model 

for a stochastic seismic waveform inversion. Bayesian inver-

sion was performed using the Metropolis-adjusted Langevin 

algorithm to find generated earth models that honor seismic 

observations. The differential nature of deep neural net-

works was used to calculate the gradient for the discrepan-

cies within seismic observations. Laloy et al. (2018) applied 

spatial GAN to produce two-dimensional (2D) and three-

dimensional (3D) geological facies models. The spatial 

GAN is composed entirely of convolution neural networks 

(CNN). The use of CNN allows for more flexibility for the 

size of the generated images.

To generate conditioned geological models, a common 

technique is to iteratively adjust the latent vector until the 

generator produces a geologic model that matches with 

observed geological facies (Mosser et al. 2020; Nesvold 

and Mukerji 2019; Dupont et al. 2018; Laloy et al. 2018). 

Methods such as Markov Chain Monte Carlo and gradient 

descent often are used to calibrate the latent vector. The 

conditioning process generally involves iteratively generat-

ing many hypothetical geological models and recording their 

mismatch with observed data. After numerous iterations, 

enough simulation data are collected to allow determination 

of the appropriate latent vectors. Instead of directly manipu-

lating the latent vectors, researchers also have explored alter-

nate methods for incorporating conditioning data into their 

GAN architecture—for example, Chan and Elsheikh (2018) 

produced conditioned results by extending the original GAN 

with an extra network that learns to perform the conditioning 

operation. During training, the extra network learns to map 

an initial set of randomly generated unconditioned latent 

vectors into a new set of conditioned latent vectors that pro-

duce geologic models to honor conditioning data. Song et al. 

(2021a) applied progressive growing GANs for geomodel-

ling and quickly generating realistic channelized facies mod-

els. Based on that, Song et al. (2021b) proposed a framework 

called GANSim, which is a geomodelling workflow that can 

directly take sparse well facies data and global features (e.g., 

channel width) as inputs of the generator for conditioning, 

together with the original latent vector. In GANSim, input 

pipelines for different conditioning data (i.e., well data and 

global features) are designed within the architecture of the 

generator, and an extra type of condition-based loss func-

tion is introduced to enforce the consistency between the 

input conditioning data and generated geologic models. 

Song et al. (2022a) proposed to include facies probability 

maps as another input conditioning data for GANSim. Song 

et al. (2022b) recently improved GANSim in various aspects 
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and extended the method to generate 3D geologic models of 

karst cave reservoirs with good results.

Although GAN has been applied extensively in the field 

of hydrogeology and has gained a degree of success, it also 

has some issues to be resolved, in particular, for the condi-

tioning of measurements and stability of training—for exam-

ple, Song et al. (2021b) have shown that their networks can 

still produce images where the GAN ignores some of the 

conditioning points. To mitigate this, they proposed enlarg-

ing the conditioning points with the intent of increasing the 

mismatch error, a problem that is not unique to Song et al. 

(2021b). Chan and Elsheikh (2018) also mentioned a similar 

issue, and they noted that they cannot fully guarantee that 

conditioning is strictly honored, but only that it is honored 

with high probability. Aside from issues with the condition-

ing behavior of the GAN, another common problem with 

these networks is their instability. GAN is known to lose 

variety in its generated output, a behavior known as mode 

collapse. Because GAN involves two agents competing 

against each other, any flaws in the agents or the competi-

tion process can cause GAN to fail. To deal with this prob-

lem, researchers have introduced a variety of methods to 

reduce instability (Arjovsky et al. 2017; Karras et al. 2017; 

Heusel et al. 2017). Nesvold and Mukerji (2019) used a 

Wasserstein GAN because its earth mover’s distance loss 

function can yield a more stable GAN training session. Song 

et al. (2021b) used progressive growing GAN for their work 

because training GAN in successive layers, instead of all at 

once, was shown to be a more stable method (Karras et al. 

2017).

To mitigate the aforementioned issues using GAN, 

researchers have performed experiments to better understand 

how the parameters used by these networks affect their per-

formance. Song et al. (2021b) conducted an array of experi-

ments with various weights for global features and well 

facies loss terms in their loss function. Lopez-Alvis et al. 

(2020) performed experiments on variational autoencoders 

and studied how changes in the regularization weight and the 

noise distribution affect how the generator maps from one 

latent space into another. Lucic (2018) used a large array of 

numerical experiments with a variety of GAN architectures 

and found that, overall, parameters optimization is neces-

sary. They explained that because of GAN’s sensitivity to 

its parameters, researchers cannot simply assume that the 

parameters they found for their work can be applied to all 

scenarios. Even given the same machine learning model, a 

different application of the model requires researchers to 

develop their own set of optimal parameters.

To resolve issues with applying this conditioning behavior 

to these generative machine learning models, it is important 

to establish a better understanding of how these networks 

learn this conditioning behavior. When this mechanism is 

better understood, researchers can make improved decisions 

about which architecture hyperparameters must be changed 

to yield better results.

In this work, a novel metric for measuring various aspects 

of conditioned progressive growing GANs is proposed. 

Specifically, a newly defined metric called the condition-

ing ratio was calculated across the layers of a conditioned 

progressive growing GAN during training. The condition-

ing ratio determines the magnitude of the influence of the 

conditioning input. This metric is used by the discriminator 

during training as a method to reduce model collapse. How-

ever, the conditioning ratio becomes a more valuable metric 

when applied to the layers of a generator within PGGAN’s 

architecture. What makes the PGGAN architecture special 

is that it trains a generator in stages, with each stage learn-

ing to produce a higher resolution image using the output 

of the previous stage. By measuring the conditioning ratio 

at each of these stages, the growth and development of the 

conditioning behavior can be observed. Within the context 

of GANs, the conditioning ratio metric fills the gap for a 

metric that focuses on the variance of generated images and 

measures how they are influenced by conditioning input. 

This process also was repeated for various network archi-

tecture hyperparameter values to observe how these changes 

affect the networks’ learning of the conditioning behavior. 

The results of these experiments can help researchers when 

designing new conditioned GAN architectures. This is pos-

sible by using the proposed metric to measure which layers 

first learn the conditioning behavior and observe how each 

layer contributes to the overall performance of the genera-

tor. The proposed metric could also help guide the design of 

the training process by predicting the final performance of 

the generator without needing to wait for the entire training 

process to complete.

Methodology

Training images

In this work, a GAN was trained to generate realistic 

images of channelized aquifers. To train the GAN model, 

the training images were generated by cutting out sections 

of a source image. For this study, the source image was 

a 2500 × 2500-pixel image containing channelized aqui-

fers trending along the east–west direction (Fig. 1; Zahner 

et al. 2016). The source image contained two facies: one 

facies with high hydraulic conductivity in the channels, and 

another with low conductivity outside the channels. The 

training images were generated by randomly clipping out 

128 × 128-pixel images out of the source image. To produce 

a validation set of images, the randomly clipped images were 

flipped horizontally to ensure the new images had never been 

seen by the trained model. Horizontal flipping is sufficient 
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to generate the validation set of images because convolu-

tional neural networks are known to produce results that are 

not invariant to various spatial transformations such as flips 

and rotation (Azulay and Weiss 2018). Data augmentation 

techniques take advantage of this property by spatially trans-

forming training images to increase the size of the training 

set (Hernández-García and König 2018). The goal of the 

GAN was to generate 128 × 128 images of the same chan-

nelized aquifers in a way that imitates the channel connectiv-

ity of the source image. After training, the models were first 

verified by visual inspection that the channel connectivity of 

the generated images were properly imitated before starting 

experiments with the conditioning ratio.

Progressive growing GAN

A progressive growing GAN architecture was used for this 

study. PGGAN is a GAN architecture first introduced by 

Karras et al. (2017) as a method to improve stability dur-

ing training of GAN. PGGAN works by first training the 

generator and discriminator in creating and discriminating 

images that are of a very low resolution, such as a 4 × 4 

image. The training images for this first training session are 

just the original training images downsampled until they are 

at the matching training resolution. After the networks have 

learned to generate realistic 4 × 4 pixel images, an additional 

layer is added to both networks. The networks then begin 

to learn how to produce realistic 8 × 8 images. To ease the 

training process, the output of the first layer is resampled 

to the new resolution before being sent to the newly added 

layer. Thus, for the generator, the 4 × 4 images generated by 

the first layer then are upsampled into 8 × 8 images before 

being sent into the new layer. To further ease the training 

process, the generator first outputs just the upsampled output 

of the first layer, without using the newly appended layer. 

As training progresses, the influence of the new layer is lin-

early increased until, by the end of the training stage, the 

generator’s output is the upsampled image of the first layer 

that has been modified by the new second layer. When the 

networks have mastered the second stage with 8 × 8 images, 

the training moves to the next stage with a greater resolution. 

For this work, each successive stage doubled the number of 

pixels along the edges of the images (4 then 8 then 16, and 

so on). This process continued until the networks could gen-

erate realistic images of the same resolution as the original 

training images. the final resolution was a 128 × 128 image 

for this study. As the networks are grown during training, 

the networks first learn to replicate broad features that can 

be seen in low-resolution versions of the training images. 

As the training resolution increases, the networks learn to 

replicate finer and finer details until the original resolution 

is achieved. Experiments by Karras et al. (2017) showed 

that this progressive architecture not only produces more 

stable results but also yields realistic images of much greater 

resolution than previously achieved.

Original GAN architectures were known to have problems 

with the lack of variety of the generated images (Lala et al. 

2018). The generator would produce realistic images, but 

only a few types of images, instead of the full variety avail-

able in the training set. To remedy this, Karras et al. (2017) 

incorporated a technique called minibatch discrimination 

into the PGGAN architecture (Salimans et al. 2016). Mini-

batch discrimination begins with calculating the standard 

deviation for each spatial location across all the images in 

the batch sent to the discriminator. The average of the stand-

ard deviations is calculated, yielding a single value. This 

value then is broadcasted into an array of the same dimen-

sions as one of the images. Finally, this array of the mean 

of standard deviations is appended to each of the images 

in the batch as a new feature. This mean of standard devia-

tions is used as a metric for mode collapse. If the mean is 

small, then the variety of the generated images has dropped 

and mode collapse has occurred. If the mean is large, then 

the generated images have a great variety and the generator 

has trained properly. Appending this feature to the images 

allows the discriminator to quickly learn and identify when 

mode collapse is taking place. To trick the discriminator, 

the generator is forced to learn a new mapping that does not 

have any mode collapse.

Fig. 1  Shows the source image used to generate the training data. The 
source image has a resolution of 2500 × 2500 and contains chan-
nelized facies that are oriented along the east–west direction (Zahner 
et al. 2016). Training images are made by randomly clipping out 
128 × 128 sections of the source image
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Conditioned PGGAN

To have the PGGAN generate realistic images that are condi-

tioned to well data, this work uses the GANSim architecture 

introduced by Song et al. (2021b). A minor difference in the 

architecture used by this study is how the conditioning data 

is introduced into the generator. In the original GANSim 

architecture introduced by Song et al. (2021b), the condi-

tioning data was introduced into the network as a two-layer 

array. For this work, conditioning data is instead introduced 

as a single-layer array. The conditioning data are formatted 

as a 2D array that contains the location of the wells and 

the facies type known at those points. For this study, the 

elements of the array could take one of three possible val-

ues: ‘1’ represents the high conductivity facies, ‘–1’ repre-

sents the low conductivity facies, and ‘0’ represents areas 

where the facies type is unknown. The conditioning array is 

injected into the generator of the PGGAN by downsampling 

the conditioning array, convolving the result with a small 

convolutional layer, and appending the resulting block to 

the blocks within the generator’s architecture. Because the 

generator contains a set of blocks responsible for convolving 

images at each resolution stage, a downsampled and con-

volved conditioning array is appended to the blocks of each 

resolution stage. The downsampling method used for the 

conditioning layers is the average pooling method. With the 

conditioning data introduced at various resolutions, the gen-

erator is given the opportunity to learn how to incorporate 

the data, from broad structures down to the fine structures 

of the images. Figure 2 shows the structure of the generator 

within the PGGAN architecture and shows how information 

from the conditioning array is incorporated into the gener-

ated image.

To generate the conditioning arrays used for training 

and validation, conditioning masks are used. Conditioning 

masks are sparse, 2D arrays filled mostly with zeros except 

for locations where a conditioning point is located. To cre-

ate these conditioning masks, the process starts by creating 

a 128 × 128 array filled with a random, uniform distribu-

tion of ones and zeros. This array is multiplied element-wise 

with another random array created in the same way. After 

several iterations of multiplying with another random array, 

the result is a conditioning mask array that contains a sparse 

distribution of ones in an array filled with zeroes. This con-

ditioning mask then can be multiplied element-wise with a 

training image of a channelized aquifer to create a condi-

tioning array that can be used by the generator. To change 

the overall density of the conditioning points, increasing the 

number of multiplication iterations increases the sparsity 

of the points. For this study, 10 iterations were used. This 

method for generating the conditioning masks allows the 

spatial distribution and the number of conditioning points to 

be randomized. This was done to ensure the generator does 

not learn to rely on these attributes of the conditioning array.

Loss functions and training procedure

The discriminator is tasked with converting an image chan-

nelized aquifer into a numerical score that reflects how 

realistic the image is, with more realistic images yielding 

larger values. The goal of the optimizer is to adjust the dis-

criminator until it yields high scores for images from the 

training set and low scores for images made by the generator. 

The optimizer does this by adjusting the parameters of the 

discriminator in a way that minimizes the value of the loss 

function. The loss function used to train the discriminator in 

the PGGAN is similar to the loss function used for WGAN-

GP architecture (Gulrajani et al. 2017).

The loss function shown in Eq. (1) uses the outputs of the 

discriminator D and the generator G evaluated using images 

x̂ and latent vectors z . For this study, the latent vectors have 

a length of 128. The discriminator loss function is composed 

of three main terms. The first two terms are responsible for 

adjusting the discriminator so that it outputs a small score for 

images made by the generator and a large score for images 

taken from the training set. The last term is the gradient pen-

alty term. It is responsible for ensuring that the discriminator 

does not change too much to the point of causing instabil-

ity in the GAN training process. In the last term, � sets the 

weight for the gradient penalty term; it was set to � = 10 

for this study. x̂ is a random linear interpolation between an 

image made by the generator ( �
�

 ) and an image sampled 

from the training set ( x ). x̂ is defined as x̂ = 𝜀x + (1 − 𝜀)�
�

 

where � is a weight with its value randomly sampled from a 

uniform distribution between zero and 1 [ � ∼uniform(0, 1)].

The loss function used by this study is the same as what 

was presented by Song et al. (2021b). Because the PGGAN 

training process operates in stages of different resolutions, 

the loss function must be modified such that it can be evalu-

ated in different resolutions.

The discriminator loss function is composed of two main 

terms. The first term in the loss function is responsible for 

adjusting the generator such that it produces images that 

maximize the corresponding score given by the discrimina-

tor. This term essentially encourages the generator to pro-

duce images that fool the discriminator into thinking the 

images are real and are from the training set. The second 

term in the loss function is responsible for ensuring the 

(1)

�(�) = ��∼��
{�[G(�)]} − ��∼��

[�(�)] + 𝜆��̂∼��̂
[(‖∇�̂�(�̂)‖2

− 1)2]

(2)

�(�) = −��∼��
{�[�(�)]} + ln(‖{�[�(�)] − ����}⊙ �‖�)
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generator learns to produce images that respect the condi-

tioning data. The images made by the generator are first 

upsampled so that the resulting image is the same 128 × 128 

resolution as the training images [ �(�(z))]. The upsampling 

method used for this is the nearest neighbor. The generated 

and upsampled images are compared to the reference images 

( �
ref

 ) used to generate the conditioning arrays. The differ-

ence between the two arrays then is multiplied element-

wise ( ⊙ ) with the conditioning mask I . This makes sure the 

sum of errors only considers differences at sites where the 

conditioning data are given. After calculating the L2 norm, 

a natural logarithm was applied to the result to ensure the 

value of this term does not grow too large to the point of 

causing trouble with the training process. Including the natu-

ral logarithm to the original loss function presented by Song 

et al. (2021b) is a minor modification intended to improve 

stability during the training process.

The optimization method called Adam (Kingma and Ba 

2014) was used to train both the generator and discriminator. 

The Adam optimizer was used with �
1
= 0 , �

2
= 0.99 , and 

�
1
= 10

−8 , which are standard values used by Karras et al. 

(2017) and Song et al. (2021b). Unlike previous PGGAN, 

the generator and discriminator used two different learning 

rate values, instead of using the default value of lr = 0.001 

for each. The learning rate for the generator was lr
G
= 0.001 , 

but the learning rate for the discriminator was reduced to 

lr
G
= 0.00002 . The concept of having the generator and dis-

criminator use two different learning rates was first inves-

tigated by Heusel et al. (2017). They found that having two 

separate learning rates allows the GAN system to approach 

a Nash equilibrium and therefore improve the stability of the 

GAN training process. Because this study involves perform-

ing a set of experiments that changes the architecture of the 

networks, the training method must be set up such that it 

can train a wide variety of architectures without needing to 

change the training hyperparameters.

The PGGAN training procedure involves multiple stages, 

one for each training resolution. Given training resolutions 

of 4 × 4 up to a resolution of 128 × 128, there are up to 

6 training stages. In each stage, the GAN transitions from 

performing its tasks from the current resolution to the next 

higher output resolution. For this study, the entire GAN 

training process goes through 200,000 iterations, so about 

33,000 iterations are distributed evenly to each of the train-

ing stages. In each iteration, the networks train through a 

batch of 32 images. Within each training stage, the generator 

only outputs an upscaled version of the image produced by 

the previous layer. But as training progresses, the weight 

Fig. 2  Expanded view of the generator side of the conditioned 
PGGAN architecture. The architecture is the same as the GANSim 
architecture introduced by Song et al. (2021b). The generator begins 
with a randomly generated latent variable. The latent variable is 
sent through a fully connected neural network (FCN) with its result 
reshaped into the n × n × 128 dimensions. This generator begins with 
a starting resolution of 2 × 2 (this parameter is varied in the experi-
ments). Concatenated with this 128-block is a n × n × 4 block that 
contains information from the initial conditioning array. This gen-
erator uses four conditioning layers for its conditioning blocks (this 
parameter is varied in the experiments). This 4-block is made by first 
downsampling (DS) the initial array many times until it produces an 
image that matches the n × n dimensions of the blocks. The down-
sampling method used for the conditioning arrays is the average pool-
ing method. This downsampled image then is sent through two con-

secutive convolutional neural networks using a 3  ×  3 kernel (“Two 
CNN 3 × 3”). After the 128-block and the conditioning 4-block are 
concatenated together to form a n × n × 132 block, the result then is 
upsampled (US) using the nearest-neighbor method to double the res-
olution to form a 2n × 2n × 132 block, the final block produced from 
this resolution stage. For the next resolution stage, the final 132-block 
output from the previous stage is sent through another set of convolu-
tion neural networks to produce a new 128-block for the resolution 
stage. The process repeats for many more stages until the final 132-
block has the same side dimensions of the final image ( 128 × 128 for 
this example). The final 132-block is sent through a single convolu-
tion neural network layer to produce the final generated images. For 
this work, a minor change was made where the conditioning input 
was introduced using only one layer instead of using two layers as 
outlined by Song et al. (2021b) on the original GANSim architecture
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for the new convolution layer linearly increases such that by 

the end of the training stage, the generator outputs an image 

produced by the new layer. A summary of the entire training 

procedure for PGGAN is shown in Algorithm 1.

Measurement of the conditioning ratio

The generator of the conditioned PGGAN architecture has 

two main inputs: the latent vector, and the conditioning 

array. Previous works have studied the influence the latent 

vector has on the output (Mosser et al. 2020; Nesvold and 

Mukerji 2019; Dupont et al. 2018). This means to pro-

duce a range of images that respects observations, only 

the latent vector can be manipulated to achieve this. But 

the conditioned PGGAN architecture has two inputs, the 

latent vector and the conditioning input. The latent vector 

can be used to generate variability in the images, while the 

conditioning input ensures the generated images respect 

observation data. This study focuses more on the influence 

the conditioning array has on the output image. The gen-

erator is designed to use the conditioning array to produce 

conditioned images, but this performance must be meas-

ured. This measurement is done by using a process similar 

to minibatch discrimination. To evaluate the conditioning 

behavior of a trained generator, the generator transforms 

a batch of 50 latent vectors and conditioning arrays into 

a batch of realistic images. In this batch, all the latent 

vectors are randomly generated. But for the conditioning 

arrays, the first 25 arrays are all the same, while the last 25 

arrays are all different. The last 25 conditioning arrays are 

randomly generated and a new set of conditioning arrays 

are generated every time the conditioning ratio is recal-

culated. This is done to reduce the artifacts that may be 

introduced by any single batch of conditioning inputs. For 

each set of 25 images, the mean of the pixel-wise vari-

ance is calculated using the same process as minibatch 

discrimination. If the generator has been trained correctly, 

then the mean variance for the images that used the same 

conditioning array should be lower than the mean vari-

ance for the images that used different conditioning arrays. 

Dividing the mean variance for images that used the same 

conditioning array by the mean variance for images that 

used different conditioning arrays yields a useful metric 

defined as the “conditioning ratio”. A summary of the con-

ditioning ratio metric is presented in Algorithm 2. Figure 3 

shows example batches of generated images with a high 

and low value for the conditioning ratio. A condition-

ing ratio less than one means that the generator has the 

expected behavior of reducing the variance of generated 

images due to the introduction of conditioning data. To 

get a stable value for the conditioning ratio, the genera-

tor evaluates 1,000 batches and then reports the average 

value across all the batches as the final conditioning ratio 

for a given generator. Since the conditioning ratio uses the 

Algorithm 1  Training procedure for a progressive growing GAN
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mean of the pixel-wise variance of the generated images, 

the standard errors of the means could be computed by 

using the standard deviation of the pixel-wise variance. 

However, this standard error was found to quickly vanish 

because of the large number of pixels used. For example, 

8 × 8 images generate 50 times already yields a sample 

size of 3,200. Variations from simply retraining the GAN 

model produce a larger variance on the metric than from 

the inherent variances from calculating the metric. Note 

that the conditioning ratio measures the influence condi-

tioning data has on the variance of the generated images. 

It does not measure the proportion of correctly produced 

point data among all input point data.

One of the advantages of using the conditioning ratio 

is that it can be evaluated regardless of the resolution at 

which the generator operates. When using pixel-wise vari-

ance maps, comparisons become difficult to interpret when 

comparing between variance maps of different dimensions. 

The conditioning ratio resolves this issue by summarizing 

the variance of generated images with a single normalized 

value, thereby allowing comparison of variance maps with 

different resolutions. This allows the conditioning ratio to 

be evaluated not only for a completely trained generator, but 

also for the generators throughout the entire training process, 

giving insight into how the conditioning behavior of the gen-

erator changes throughout the training process. Because the 

generator of the PGGAN process is composed of layers that 

generate images at different resolutions, the conditioning 

ratio also can be evaluated for different layers within a sin-

gle generator. The conditioning behavior can be monitored 

as information propagates through the generator’s network. 

Note that the conditioning ratio still has its utility, even when 

evaluated during later stages of training where early low 

resolution CNN layers are no longer required to produce 

realistic and conditioned images. Studying the changes of 

the conditioning ratio of these early layers can yield insight 

into how the PGGAN learns its conditioning task and how 

the performance of early layers influences the performance 

of later layers.

Network architecture experiments

When investigating the conditioning behavior of the genera-

tor from a PGGAN process, the conditioning layers within 

the generator become an important network component to 

study. Song et al. (2021b) used 16 conditioning layers for 

each stage with the generator. This study explores a range of 

values for the number of conditioning layers. A range from 

4 to 128 layers was explored. The number of layers can be 

important because it can change the conditioning behavior 

of the generator. If the number of conditioning layers is too 

small, then the generator might not be able to learn how to 

use the conditioning array to generate conditioned outputs. 

If the number of conditioning layers is too large, then the 

generator might rely too much on the conditioning array and 

lose the variety introduced by the latent vector.

Another important architectural component of the gen-

erator network is the starting resolution for the PGGAN 

process. Song et al. (2021b) used 4 × 4 as their starting 

resolution but did not explore other starting resolutions. This 

study investigates the effects of changing the starting reso-

lution and how it competes with other network architecture 

parameters. Intuitively, having a larger starting resolution 

would make the generator have a harder time learning to 

replicate broad-scale structures. These experiments were 

designed to test whether this intuition remains true in prac-

tice. This study will experiment with starting resolutions 

of 4 × 4 and 8 × 8. This study will also investigate how 

changing the starting resolution will affect the number of 

Algorithm 2  Calculating the conditioning ratio metric
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conditioning layers necessary to produce a properly trained 

conditioned GAN.

Results

Trends across the number of conditioning layers

Several PGGAN models were trained with a range of values 

for the number of conditioning layers. Values ranging from 4 

to 128 conditioning layers were explored. A starting resolu-

tion of 4 × 4 and 8 × 8 also was explored. Figure 4 shows 

the result of plotting the conditioning ratio against a varying 

number of conditioning layers, including the conditioning 

ratio plot for a 4 × 4 and an 8 × 8 starting resolution. For 

both starting resolutions, the generators sharply transitioned 

from a high conditioning ratio to a low ratio as the number of 

conditioning layers increased. However, the transition for the 

8 × 8 series occurs sooner than the transition for the 4 × 4 

series transitions at. The 4 × 4 series begins to transition 

at 48 conditioning layers, while the 8 × 8 series begins to 

transition at only 12 conditioning layers. After the transition, 

the conditioning ratio for the 8 × 8 series begins to increase 

as the number of conditioning layers increases.

Figure 5 shows batches of images generated by various 

generators trained within the 4 × 4 series in Fig. 4. Focus 

is placed on the transition period that occurs at 48, 56, and 

64 conditioning layers. As the conditioning ratio drops, the 

variance of the generated conditioned images is reduced. All 

three batches were given the same number of conditioning 

points, so the conditioning array is not responsible for the 

drop in image variance.

Trends across training iterations

As the networks went through the PGGAN training pro-

cess, the conditioning ratio was calculated for each reso-

lution within the generator. For the series of generators 

with a 4 × 4 starting resolution, the conditioning ratio 

plots were made for the 8 × 8, 16 × 16, 32 × 32, 64 × 64, 

and 128 × 128 outputs of the generator. The conditioning 

ratios were calculated throughout the 200,000-iteration 

process. Figure 6 shows this set of conditioning ratio plots 

for the 4 × 4 starting resolution generators with 8, 16, 32, 

and 64 conditioning layers. Figure 6 shows trends that are 

common across all four conditioning ratio plots. During 

the start of the training session, the conditioning ratios for 

each of the resolution stages drop in sequence. Training 

begins with the 8 × 8 stage dropping to a low conditioning 

ratio before the rest of the stages follow suit. For the gen-

erators with 8 and 16 conditioning layers (Fig. 6a,b), the 

conditioning ratios for most of the resolution stages remain 

close to one, while the 4 × 4 and 8 × 8 resolution stages 

have their conditioning ratios widely vary throughout the 

training. Figure 6c shows the 32 × 32 conditioning layer 

generator with most of the stages sharing very similar con-

ditioning ratios throughout the training session. Except for 

the 8 × 8 resolution stage, the conditioning ratios of the 

remaining stages began by dropping down close to zero 

before bouncing back up and approaching the final value. 

For Fig. 6d, all resolution stages approached zero, except 

for the 4 × 4 stage, which became unstable and produced 

conditioning ratios well above 1.

For the 4 × 4 starting resolution series, Fig. 6 shows that 

the conditioning ratio transitions from high to low between 

Fig. 3  Example batches of generated images with different condi-
tioning ratios. For each batch (a–b), the first 25 images (above the 
center red dividing line) were generated with different latent vectors 
but the same conditioning array. However, for the second 25 images 
(below the center red dividing line), the images were generated with 
different latent vectors and different conditioning arrays. The two 
25-image batches were placed on top of each other (with the middle 
row containing  a five images from batch 1 and b five images from 
batch 2) to highlight any visual similarities or differences between the 
two batches. Note that for large conditioning ratios, such as in sec-
tion ‘Trends across the number of conditioning layers’, this means 
the generator will produce realizations with a variance that does not 
significantly change, even when the conditioning data is held con-
stant while the latent variable is varied. Visually, this means the two 
batches will look like each other and the boundary between the two 
batches is difficult to distinguish. When the conditioning ratio is close 
to zero, such as in section ‘Trends across the number of conditioning 
layers’, the generator will produce realizations with variances lower 
than what the conditioning data allows. Visually, this means the two 
batches will be easy to distinguish since one of the batches will look 
like copies of the same image
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32 and 64 conditioning layers. To better understand this tran-

sition, additional tests were done at 48 and 56 conditioning 

layers. Figure 7 shows the additional set of conditioning ratio 

plots for this transition period. The plots of Fig. 7 show that 

as the number of conditioning layers increases, the variation 

between the conditioning ratios increases. In Fig. 7a, except 

for 8 × 8 stages, all other stages have their conditioning 

ratios closely following each other throughout the U-shaped 

trend, with differences no greater than 0.2. However, in 

Fig. 7c, the cluster of stages expands to the point of having 

a maximum difference of 0.4. The final generator produces a 

range of conditioning ratios, with higher conditioning ratios 

corresponding to higher output resolutions.

As with Fig. 6, Fig. 8 shows the conditioning plots for 

the series of generators with an 8 × 8 starting resolution. 

Figure 8 shows the plots for generators trained with 8, 16, 

32, and 64 conditioning layers. The figures show that for 

generators with 16 conditioning layers or greater, the major-

ity of the stages begin with an initial conditioning ratio of 

one, then sharply trend down toward zero before rising back 

up toward the final value. This trend of having an initial drop 

is similar to what was found for the 4 × 4 starting resolution 

generators (Fig. 7, although the drops were not as sharp as 

what was found for the 8 × 8 starting resolution generators 

in Fig. 8. The 8 × 8 series begin their initial drops sooner, at 

40,000 iterations, as compared to the 4 × 4 series with their 

initial drops that start at 60,000 iterations. During the slow 

upward trend in the conditioning ratio, there is a small but 

consistent bump at 170,000 iterations for the final resolution 

stage of 128 × 128. At the end of the training session, the 

conditioning ratio of the trained generator varies, based on 

the output resolution of the stage, with higher resolutions 

yielding higher conditioning ratios. Note that this trend is 

consistent with what was found in Fig. 7c.

For the 8 × 8 starting resolution series, Fig. 9 shows 

that the conditioning ratio transitions from high to low 

between 8 and 16 conditioning layers. To better under-

stand this transition period, additional models were trained 

with 12 and 14 conditional layers. Figure 9 shows the set 

of additional conditioning ratio plots for this transition 

period. The plots of Fig. 9 show that as the number of 

conditioning layers increases, the magnitude of the ini-

tial drop of the conditioning number increases. With eight 

conditioning layers (Fig. 9a), the 16 × 16 stage only dips 

as low as 0.5, while the rest of the higher resolution stages 

remain close to one. With 12 conditioning layers (Fig. 9b), 

the 16 × 16 stage dips down farther to 0.45, while the rest 

of the higher resolution stages continue to remain close 

to one. However, with 14 conditioning layers (Fig. 9c), 

the rest of the high-resolution stages finally perform the 

distinct drop of the conditioning ratio × iteration 60,000. 

Compared to the transition slope for the 4 × 4 starting 

resolution series, the transition slope for the 8 × 8 series is 

much steeper. Even with the additional experiments, there 

was no 8 × 8 series model that yielded a conditioning ratio 

between 0.4 and 0.6.

Discussion

Some of the trends in the results are reasonable and can 

be intuitively explained. One example is the trend where, 

during training, all conditioning ratios begin at a value of 

one before dropping down and then rising back up to their 

final value. At the start of the training sessions, the genera-

tor begins at a conditioning ratio of one because the later 

stages have not yet learned how to use the conditioning 

array or even learn how to produce realistic images yet, 

so the initial images are essentially randomly generated 

images with no influence by the conditioning array. As 

training continues, the conditioning ratio drops because 

the generator quickly learns that it can yield a lower value 

for the loss function, through the second term of Eq. (2), 

if it incorporates the conditioning array into the output of 

the generator. Afterward, the conditioning ratios begin to 

rise because the variance between the generated images 

increases as the resolution of the generated images also 

increases. This explains why the conditioning ratio of the 

fully trained generator increases with the resolution of 

the output image (see iteration 200,000 of Fig. 8d). The 

specific paths the conditioning ratio takes during training 

will vary, based on the resolution stage and other hyper-

parameters, but the general U-shaped trend holds true for 

the majority of the tested models. The U-trend indicates 

Fig. 4  The conditioning ratio plotted against the number of condi-
tioning layers. There are two data series, one for generators with a 
4 × 4 starting resolution and one for generators with an 8 × 8 starting 
resolution. Both series show the conditioning ratio decreasing as the 
number of conditioning layers increases. Note that the 8 × 8 series 
transitions at a lower number of conditioning layers than where the 
4 × 4 series transitions
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that, at least for the conditioned PGGAN architecture, the 

generator prefers to first learn to copy data from the con-

ditioning array into output; then it learns how to adjust 

the output to be more realistic and imitate the variance 

of the training images. This initial dependence on the 

conditioning array could explain why Song et al. (2021b) 

found issues with “local pixel noise” in which the genera-

tor produces images with outstanding pixels that match the 

Fig. 5  Example batches made by generators with different amounts of 
conditioning layers. As the number of conditioning layers increases, 
the conditioning ratio drops. This figure showcases how this drop of 
the conditioning ratio changes the generated images during this tran-

sition period. The batches are generated with the same method shown 
in Fig. 3. As the conditioning number drops, the variance of the con-
ditioned images drops. This is true even when all three image batches 
are given the same amount of conditioning points

Fig. 6  The conditioning ratio 
versus training iteration plots 
for PGGANs that use a start-
ing resolution of 4 × 4. Each 
subfigure shows the plot for a 
generator trained with a given 
number of conditioning layers. 
Within each plot, each series is 
a set of conditioning ratios for a 
given output resolution within 
the generator
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conditioning data but do not match the surrounding geo-

logic facies. The generator learns to ignore the influence 

of the conditioning as it seeks to produce more realistic 

images. To fix this, Song et al. (2021b) proposed enlarging 

the conditioning points with the intent of increasing the 

mismatch error. Another method to explore is training the 

discriminator to be more sensitive to these outstanding 

conditioning points.

Although the experiments reveal trends that are easily 

explainable, the results also show trends that are not intui-

tive. The most substantial example is the plot shown in 

Fig. 4. The intuition behind the experiments was that hav-

ing a lower starting resolution gives the generator a better 

opportunity to learn how to replicate these broad-scale fea-

tures in the images and to learn how to incorporate condi-

tioning data into these large-scale features. Having another 

resolution stage also provides an additional path to inject 

conditional data into the generator. Both of these reasons 

indicate that a generator with a 4 × 4 starting resolution 

should require fewer conditioning layers in order to have the 

same performance as an 8 × 8 starting resolution generator. 

Yet the results in Fig. 4 shows the opposite result, with the 

8 × 8 starting resolution generators transitioning from a high 

to low conditioning ratio at a smaller number of condition-

ing layers than the 4 × 4 transition. A possible explanation 

for why this occurs is that the early stages of the generator 

can become a burden if the resolution is too small. Note 

that many of the plots for the 4 × 4 starting resolution series 

show the first stage (8 × 8) following trends that are differ-

ent from what the rest of the higher resolution stages follow. 

Figure 9c shows the first two stages reaching a conditioning 

ratio of zero. Plots from the 8 × 8 starting resolution series 

(Fig. 9a–c) only show divergent behaviour from the first 

stage of the generator, which has an 8 × 8 resolution. Note 

that conditioning ratios above 1 have the same meaning as 

the conditioning ratio equal to 1, which means the model is 

producing outputs that are not properly constrained by con-

ditioning inputs. A conditioning ratio of more than 1 rarely 

occurs and is most likely to occur with very low resolution 

images (such as 4 × 4) where a small pixel count is most 

Fig. 7  The conditioning ratio versus training iteration plots for the 
generators that use a starting resolution of 4  ×  4. Each subfigure 
shows the plot for a generator trained with a given number of condi-
tioning layers. Within each plot, each series is a set of conditioning 

ratios for a given output resolution within the generator. These plots 
focus on when the final output of the generator transitions from a 
high to low conditioning ratio between 32 and 64 conditioning layers 
(Fig. 4)
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likely to produce a set of values that yields a conditioning 

ratio value greater than 1. This case is unlikely to occur with 

images of larger resolutions. In Fig. 9c, the first stage even 

climbs upward like the rest of the stages, unlike the first 

stage in Fig. 7a. The burden of the early stages also shows in 

the delay of the initial drop of the conditioning ratio during 

training. The 8 × 8 series begin their initial drops sooner, 

at 40,000 iterations, compared to the 4 × 4 series with their 

initial drops starting at 60,000 iterations.

On top of revealing nonintuitive learning behaviors within 

the training of conditioned PGGAN generators, the condi-

tioning ratio has proven to be a useful metric for tuning the 

parameters of these generators. Figure 5 showcases this tun-

ing process using the conditioning ratio metric. Recall that a 

generator with a large conditioning ratio will produce a vari-

ety of realistic images that do not respect the conditioning 

data. A generator with a small conditioning ratio produces 

images that respect conditioning data, but at the cost of pro-

ducing images with low variance. Therefore, the ideal gen-

erator that produces realistic conditioned images with high 

variance will have a conditioning ratio that is between these 

two extremes, whereby the lower extreme is 0 and the upper 

extreme is 1. In practice, these extremes can be verified by 

measuring the conditioning ratio of the conditioned GAN 

model when it exhibits one of two types of training failure. 

If there is almost no variance in the generated images when 

the conditioning input is held constant, even while the latent 

variable is varied, then the measured conditioning ratio will 

be close to zero. However, if the variance of the generated 

images does not reduce when the conditioning input is held 

constant versus when the conditioning input is varied, then 

the conditioning ratio will be one. For some architecture 

parameters, such as the number of conditioning layers, a 

simple binary search using the conditioning ratio metric can 

quickly find the optimal value for these parameters. When 

tuning the parameter, the target value for the conditioning 

ratio is 0.5. A conditioning ratio of 0.5 means that the gen-

erator is able to properly produce images that respect the 

conditioning input but does so in way that does not severely 

reduce the variance of the generated images beyond what 

Fig. 8  The conditioning ratio versus training iteration plots for 
PGGANs that use a starting resolution of 8 × 8. Each subfigure shows 
the plot for a generator trained with a given number of conditioning 

layers. Within each plot, each series is a set of conditioning ratios for 
a given output resolution within the generator
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the conditioning input can justify. To use the conditioning 

ratio for tuning parameters, first select the tuning parameter 

of interest. For the case of Fig. 5, the parameter of interest is 

the number of conditioning layers in the GAN architecture. 

Next, run the GAN model with various values for the tuned 

parameter and calculate the conditioning ratio of the model’s 

output for each of these runs. Some parameter values will 

yield a GAN with a conditioning ratio close to one, while 

other parameter values will make the GAN have a condi-

tioning ratio close to zero. Since the conditioning ratio is 

continuous, then there must exist a parameter value such that 

it will produce a GAN with a conditioning ratio of 0.5. This 

parameter value can be found using the binary search algo-

rithm. At the conditioning ratio of 0.5, the model produces 

images that respect the conditioning input. Also at 0.5, the 

model does not over rely on the conditioning input to the 

point where the model only produces one image when the 

conditioning input is varied, even when the latent variable 

is varied. For the example shown in Fig. 5, a binary search 

with the conditioning ratio will find 56 conditioning layers 

to be close to the optimal value.

Conclusions

This study introduces a set of experiments that focus on 

investigating the performance of conditioned progressive 

growing generative adversarial networks (PGGANs). The 

generators of these PGGANs are tasked with converting a 

latent variable and a conditioning array into images of geo-

logically realistic channelized aquifers that match with point 

data from well observations. Conditioning data are injected 

into the generator by downsampling the conditioning array 

and appending additional conditioning layers to the existing 

layers within the generator. Focus was placed on investigat-

ing the conditioning performance of these networks and how 

their performance changes in response to alterations of the 

network architecture. To measure the conditioning perfor-

mance of the network, a metric called the conditioning ratio 

was defined. The conditioning ratio is essentially the vari-

ance of images generated with the same conditioning data 

divided by the variance of images generated with different 

conditioning data. Low conditioning ratios indicate strong or 

excessive conditioning behavior and high ratios mean little 

Fig. 9  The conditioning ratio versus training iteration plots for gen-
erators that use a starting resolution of 8 × 8. Each subfigure shows 
the plot for a generator trained with a given number of conditioning 
layers. Within each plot, each series is a set of conditioning ratios for 

a given output resolution within the generator. These plots focus on 
when the final output of the generator transitions from a high to low 
conditioning ratio between 8 and 16 conditioning layers (Fig. 4)
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to no conditioning. By measuring the conditioning ratio, the 

experiments can provide information about how the condi-

tioning behavior changes across many different scenarios. 

The conditioning ratio was measured on each of the resolu-

tion stages within the generator while it was training. This 

measurement process also was done for varying numbers of 

conditioning layers and with different starting resolutions.

The experiments and measurements of the conditioning 

ratio yielded plots that provide great insight into how the 

conditioning behavior arises within these networks. The 

results revealed a common U-shaped trend where, during 

training, the conditioning ratio starts at a high ratio and 

then quickly drops before climbing back up toward the final 

value. The results also show that PGGANs with lower start-

ing resolutions can require more conditioning layers than 

generators with a higher starting resolution. Overall, the 

experiments demonstrated that measuring the conditioning 

ratios within layers of the generators provides a valuable 

method for monitoring the performance of these networks. 

Researchers can reduce the computational demands of 

exploring new GAN architectures by using the condition-

ing ratio to trim off redundant high-resolution layers of the 

progressive GAN process or by stopping the training process 

early when the conditioning ratios detect a trend that predicts 

a failure at the end of training.

Future applications for these experiments include using 

conditioning ratios across PGGAN generator layers as diag-

nostic tools useful for the design of future GAN architectures 

that produce images of higher dimensions or can receive a 

wider variety of conditioning data. The techniques intro-

duced in this work also can be extended to GAN architec-

tures designed to find mappings between state and param-

eters space, thereby helping in the design of more efficient 

surrogates for groundwater models.
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