


the headroom afforded to develop new innovative methods.

Finally, we present a virtual reality interface that enables

humans to seamlessly interact within the simulated world

and use it to gather human performance measures. EXCAL-

IBUR affords unique challenges in comparison to present-

day benchmarks and represents the next frontier for embod-

ied AI research.

1. Introduction

Humans are active learners, acquiring knowledge of the

physical world through intentional experiments with their

bodies and senses. Children as young as a few months old

learn about objects and their environment through observa-

tion and interaction [6, 24]. This sensorimotor experience,

as pointed out by Piaget [47], is critical in forming a funda-

mental understanding of reality. This is the cognitive moti-

vation for the creation of EXCALIBUR.

In contrast, machine learning models typically obtain

knowledge by passively observing web-crawled, encyclo-

pedic, or crowd-sourced static datasets [67]. This pas-

sive approach has clear limitations. For instance, ground-

ing physical concepts like heavy, large, and long requires

moving beyond passive observation. To weigh an object,

humans will often try to use different forces to move it.

To compare the sizes of objects, they move around and

perceive the objects from different angles and distances.

Although large pre-trained models have made progress in

aligning with the grounded world [41, 45], they still lack an

embodied understanding of physical concepts [59].

Todays popular active, embodied-learning benchmarks

in the Embodied AI community focus on directed task com-

pletion. These include navigating to specified GPS coor-

dinates [3], locating an object of a specified category [7],

translating commands into low-level actions [5,56], and in-

specting a scene to answer a question about the presence or

count of an object category [15, 25]. A more recent bench-

mark, Room Rearrangement [62] requires agents to explore

the scene, but the focus there is on navigation, observa-

tion, and memorization. Progress on these benchmarks has

been promising. We can now train agents that can compre-

hend goal instructions reasonably well and complete simple

tasks, particularly navigation heavy tasks. None of these

benchmarks, however, explicitly probe how these models

have learned to represent their environments, nor do they

encourage the type of free-form, undirected, experimental,

exploration performed by humans.

To encourage and evaluate the capacity of embodied

agents to openly explore their environment and interact with

objects within it, we present the EXCALIBUR1 benchmark.

EXCALIBUR is built using large procedurally generated

1Exploratory Curious Agents with Language Induced Embodied World

Understanding

houses via ProcTHOR [18]. Each episode in EXCALIBUR

consists of four phases as shown in Fig. 1. Phase I Explo-

ration – The agent must navigate to and interact with objects

in the environment. Importantly, the agent isn’t seeded with

a goal and must instead perform open-ended exploration.

Interacting with objects takes place via physics-enabled arm

manipulation. Phase II Question Answering – We probe the

agent’s understanding of the physical world through natural

language inquiries. Our questions go beyond simple prim-

itive queries, e.g. regarding object existence, and include

physical attributes (e.g. masses and materials) and visual at-

tributes (e.g. colors and shapes). Phase III Reentering – This

is a goal-directed phase, since the agent must interact with

the environment to refine its understanding of the world in

response to questions asked in the previous stage. Phase

IV Refined Question Answering – This phase repeats the

inquiries made in Phase II to query if the agent was able to

successfully acquire the required knowledge about its world

after being provided the goal question set.

Our use of question-answering in this benchmark which

focuses on interaction and exploration has several benefits.

Natural language inquiries allow us to probe the agent’s un-

derstanding of the world. They also provide a clear and ob-

jective metric for EXCALIBUR. Further, they can serve as

supervisory signals to encourage agents to interact with ob-

jects and explore the world. Finally, the introduction of lan-

guage opens the door to using pre-trained language models

in future work, given the recent rise of their use for planning

for embodied agents [2].

EXCALIBUR is the first benchmark that offers the fol-

lowing new avenues and challenges for Embodied AI re-

search: (1) It encourages open-ended exploration. (2)

Agents in EXCALIBUR have access to a rich interactive ac-

tion space that covers navigation, arm-based manipulation,

and grasping with different degrees of force. (3) The ques-

tions in this benchmark move beyond existence and count-

ing. They probe the agent on its abilities to learn phys-

ical and visual attributes of the world. (4) Our task re-

quires long-horizon planning and reasoning. Most embod-

ied benchmarks today have maximum episode lengths of up

to 250 steps. Our task has four phases that include an ex-

ploration phase of 2500 steps. (5) Our task also evaluates

the ability of an agent to refine and improve the existing

knowledge of its environment. This is an ability that hu-

mans commonly showcase in their everyday experiences.

We present baselines using state-of-the-art Embodied AI

neural models and learning methods. We also design a Vir-

tual Reality interface to enable humans to navigate and in-

teract with objects in ProcTHOR scenes in an immersive

way. This allows for a more accurate human baseline mea-

surement, which demonstrates that there remains substan-

tial room for model improvement. Finally, in Sec. 5, we

show that the failure patterns of models are distinct from
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the agent may answer accurately without any exploration

or object interaction. In EXCALIBUR, we apply two types

of supplemental randomization to PROCTHOR-10k: object

weight and size randomization. In particular, within each

house, we uniformly sample the weights of pickupable (i.e.

excluding large objects that cannot be held by the agent, e.g.

a fridge) objects to be between 0.5× and 1.5× their start-

ing values. Similarly, the size of pickupable objects (i.e.

their scale) is randomized to be with 0.8× and 1.0× of their

starting values. Note that we only downscale objects as this

prevents potential collisions between nearby objects.

Scene Graph. Before moving to question generation, we

first preprocess each house to produce a scene graph rep-

resentation of the environment. This scene graph provides

a compact summary of the objects in the house along with

their relationships and attributes. In our formulation, rooms,

objects, and agent are represented as nodes with edges be-

tween nodes representing their relationships. These re-

lationships include, for example, CONTAINEDBY, ADJA-

CENTTO, ONTOPOF. A full listing of object relationships

and node attributes can be found in the appendix.

Question Generation. To generate our question sets, we

follow the process used to generate the single-image visual

question answering (VQA) dataset CLEVR [31]. In par-

ticular, we represent questions using functional programs

whose answer values can be found by evaluating these

programs upon the above described scene graph. As for

CLEVR, we design a collection of (11) question families,

which can be composed and chained to generate questions.

This question generation process may produce degenerate

or tautological questions, we prune these using the depth-

first approach employed when constructing CLEVR. De-

tails of question generation procedure is in App. E.

Type %

Q
u
es

ti
o
n Yes-no 78.8

Count 12.3

Query 8.9

R
el

at
io

n

Color 26.7

Material 66.2

CONTAINEDBY 8.2

ADJACENTTO 39.5

ONTOPOF 0.8

HEAVIERTHAN
4 30.6

LARGERTHAN 18.9

Table 1. Dataset Distribution.

Filtering. In order to

create questions that are

challenging and whose

answers are not overly

biased to certain an-

swers, we use extensive

question filtering to

remove easy questions.

In particular, for each

candidate question q, we

compute the answer of q

across all scenes, which

produces a distribution

over answers. We filter questions to only include those

whose answer distribution is sufficiently balanced. For

more details see, App. D.

The result of such a process is an underlying dataset with

a range of difficult questions of 3 different types and 7 kinds

4HEAVIERTHAN includes LIGHTERTHAN, and LARGERTHAN includes

SMALLERTHAN, LONGERTHAN, and SHORTERTHAN

of physical properties and relations (Fig. 1) Different types

of questions are evaluated in slightly different ways: Yes-no

questions are evaluated by exact matching, count questions

are answered correctly when the prediction is only different

than the standard answer by 5%, and query questions match

prediction and the standard answer order-agnostically. In

this way, we use accuracy as an umbrella metric for all of

the questions. There are four splits in EXCALIBUR: (1) a

training set with 10k PROCTHOR scenes, (2) a validation

and a test set with 1k PROCTHOR scenes each, and (3) an-

other test set with 9 hand-crafted ARCHITECTHOR scenes5

for comparison between agents and humans.

3. Human Baseline with VR Interface

One challenge of comparing human performance fairly

with that of our agents is that our agents are extensively

trained on houses from our dataset while human annotators,

on the other hand, are only exposed to a small handful of

training episodes. It is therefore important to create a real-

istic environment where real-life experience and knowledge

can be easily transferred to the simulated environment. For

this, we create a VR interface to EXCALIBUR and ask hu-

man annotators to complete tasks while virtually embodied

as the agent. In our experiments, human participants used

the Meta Quest 2 VR headset6 and were evaluated using the

same metric as our agents. Concretely, to make the expe-

rience interactive and immersive, we ensured that our VR

experience satisfied the following requirements.

• Flexible Head Movement: The head movement of the

human annotators is smoothly reflected as camera move-

ment in the VR environment, so that the information-

seeking behavior of the human annotators can be easily

transferred to the simulated environment.

• Intuitive Arm Movement: Human annotators should be

able to intuitively manipulate the robotic, 6 DOF Kinova-

like, the arm of the MANIPULATHOR agent used in EX-

CALIBUR. As the robotic arm has greater degrees of free-

dom than a human arm (ignoring human fingers) this means

that special attention must be paid to ensure that humans

need not worry about the rotation of joints of the arm, but

only the position and orientation of the gripper.

• Gripping With Force: We leveraged the pressure on the

grip button of the Meta Quest 2 controller to map it to the

grasp force in the environment so annotators can use differ-

ent magnitudes of forces to grip objects.

• Open/Close: We also facilitated the user to open and

close various objects in the VR environment, to make the

experience more immersive and allow the user to explore

the house in greater depth.

For more details on VR interface, training and evaluating

5One ARCHITECTHOR scene is used for training human annotators.
6https://www.meta.com/quest/products/quest-2/

14935



human annotators, see App. A.

4. Reinforcement Learning Baselines

EXCALIBUR requires a model to actively plan, ex-

plore the houses, manipulate objects, memorize its his-

tory, and answer questions. In this work, and as is com-

mon across modern embodied benchmarks, we train re-

inforcement learning models as our baselines. Recurrent

neural networks (RNNs) are frequently used as generic

models for encoding language instructions, historical ob-

servations, and actions, into belief states for embodied

agents [18, 21, 32, 62–64]. Following this prior work, we

use a GRU [13] to encode the history of observations seen

and actions taken by the agent to produce, at every time step

t ≥ 0, a vector belief state bt corresponding to the output of

the RNN at that timestep. We extend this practice by feed-

ing the belief states as input to an actor-critic policy head

as well as to a question answering module. To understand

whether questions answering serves as a good stimulation

for encourging exploration, we consider three training sig-

nals: a (1) coverage-based reward, (2) QA reward, and (3)

QA cross-entropy loss. Our goal in the following exper-

iments is to show that modern Embodied AI models and

training techniques can achieve some level of success on

EXCALIBURwith the goal of inspiring future work to build

upon these results.

Actor-critic policy The belief state is fed into an MLP

with one hidden layer, which we call the actor-head, and

decoded into logits, one logit for each discrete action avail-

able to the agent (recall Sec. 2.1). By passing these log-

its through a softmax we produce the agent’s policy (i.e.

a distribution over agent actions). To enable training with

PPO [52,63], we also must produce an estimate of the value

of the agent’s current state. To do this, we feed the belief

state through another similar MLP, the critic-head, which

returns a 1-dimensional output.

Question answering To make full use of existing large,

pretrained, language models, we follow [60] and propose to

convert belief states into continuous prefix tokens using a

prefix generator MLP with two hidden layers f
prefix

θ
. These

prefix tokens are preprepended to with the question tokens

and fed into the encoder of pre-trained T5 [49]. We then use

the, pretrained, T5 decoder module to produce a (distribu-

tion over) natural-language answers to the given question.

Note that the T5 model has its parameters frozen and so is

not trained in our experiments.

Featurizing agent observations We experiment with two

different visual feature extractors for the agent’s egocen-

tric RGB observations: (1) a pre-trained CLIP ResNet50

model [32, 48] and (2) a MaskRCNN [29] model finetuned

on our training scenes. Visual features and an embedding

of the agent’s last action are concatenated and passed as in-

put to the above RNN. After Phase II, the agent additionally

ProcTHOR Test Set ArchitecTHOR Test Set

Accexp Accref T3 ExQA Accexp Accref T3 ExQA

Random 41.7 41.7 - 41.7 39.1 39.1 - 39.1

Language 53.5 53.5 - 53.5 49.2 49.2 - 49.2

QA 58.5 60.2 131.2 60.0 52.4 56.0 159.1 55.7

Novelty 54.2 56.5 99.6 56.4 49.9 54.5 125.7 54.1

Novelty+QA 58.7 63.1 203.2 62.4 53.5 56.3 211.7 55.9

Human w/o replay - - - - 63.6 87.1 759.4 79.4

Human w/ replay - - - - 81.3 94.3 782.1 90.1

Table 2. Human and baseline performance across two test sets. We

bold best metric values among AI systems.

conditions the question embeddings from the T5 encoder as

input to the RNN, which is also concatenated to observation

and question embeddings.

Training Our training loss equals the unweightd sum of

the standard PPO RL loss [52] and LQA, a cross-entropy

loss for question answering defined as

LQA =

T
X

t=1

X

(q,a)∈Q

− log pT5(a | [f prefix

θ
(ht), f

emb(q)]),

(2)

where pT5 is the probability of answer a produced by a T5

encoder-decoder, and f emb is the embedding layer of the T5

encoder, and Q is the set of question-answer pairs associ-

ated with an episode.

Rewards We consider two kinds of rewards in this paper:

(1) a QA reward and (2) a novelty-based reward. The QA

reward is calculated by comparing the answers generated

through beam search from T5 and the ground truth answers:

r
QA
t =

1

|Q|

X

(q,a)∈Q

⇣

I(a = T5t(q))− I(a = T5t−1(q))
⌘

,

(3)

where T5t(q) = T5(f decoder
θ

(ht), f
emb(q)) denotes the out-

put of the T5 model when using beam search decoding.

Note that r
QA
t can only be non-zero when the agent’s an-

swer to a question changes between time steps t − 1 and

t. Our novelty reward encourages the agent to exhaustively

navigate and observe novel objects, in particular, we let

r
novelty
t =

Oseen
t −Oseen

t−1

Oall

+
At −At−1

Areachable

, (4)

where Oseen
t denotes the number of objects seen till time

step t, Oall denotes number of objects in H, At denotes the

area covered by time step t, and Areachable denotes the total

reachable area in H.

5. EXCALIBUR Human and Agent Evaluation

To gain insight into the gap between humans’ and state-

of-the-art embodied AI models’ performance on EXCAL-

IBUR we first must train such embodied models. To this
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end, we train several variants of the reinforcement learning

baseline described in Sec. 4 on the training split of EXCAL-

IBUR. In particular, we train three variants denoted QA,

Novelty, and Novelty+QA; as suggested by their names, the

QA agent is only given the QA reward signal, the Novelty

agent has access to the novelty reward, and the Novelty+QA

is given the sum of both rewards at every timestep. For all

of these agents, cross entropy loss is used for optimizing the

prefix generator. Beyond these RL baselines, we also in-

clude non-interactive Random and Language baselines; the

Random baseline simply chooses answers at random from

among plausible answers when conditioned on the question

type while the Language model is trained to answer ques-

tions given only question text, which helps indentifying ar-

tifects in question generation.

To make cross-model and human-agent comparisons

we evaluate our embodied models on two test sets: (1)

the procedurally generally PROCTHOR-10k testing scenes

and (2) the set of, human-designed, ARCHITECTHOR test

houses [18]. We evaluate humans only in the ARCHITEC-

THOR houses as the ARCHITECTHOR test houses were

meticulously crafted to closely imitate real-world houses

and represent a smaller domain shift for human participants.

The results of these evaluations can be found in Table 2.

Among AI systems, we see that the Novelty+QA agent per-

forms best across the Accexp,Accref, and ExQA metrics

with the QA model close behind. This suggests that the nov-

elty reward may provide only marginal benefits and, indeed,

the Novelty agent obtains results only slightly above those

of the Langauge model which, at best, simply reproduces

the biases in our question-answer pairs.

For our human evaluations, we consider two experimen-

tal conditions Human w/o replay and Human w/ replay. In

the Human w/ replay trials, unlike in Human w/o replay, hu-

mans are allowed to view a video of their behavior in Phase

I and Phase III when answering questions in Phase II and IV,

respectively. Hence participants in the Human w/ replay tri-

als are relieved of the burden of needing to remember all of

the details of their exploration. While humans outperform

the AI systems in both experimental conditions, the gap be-

tween AI and human performance is far narrower (gap of

+10.1 Accexp for Human w/o replay v.s. a gap of +27.8 for

Accexp Human w/o replay). This suggests that memoriza-

tion is a significant bottleneck for humans. Note that, in the

Human w/ replay condition, humans achieve an extremely

high Accref value (94.3) showing clearly that EXCALIBUR

is, in principle, solvable by intelligent systems.

Further analysis of our results as well as descriptive met-

rics of agent exploration behavior can be found in App. H.

6. Related Work

The domain of embodied AI has seen an explosion of

attention in recent years [17, 19]. Here, we review three

sub-areas of this community most relevant to this work.

6.1. Exploration, Execution and Manipulation

Tab. 3 summarizes recent embodied AI benchmarks

and evaluation frameworks comparing our EXCALIBUR

benchmark with those including those designed for ques-

tion answering, instruction following, rearrangement, and

visual navigation. We say that an embodied benchmark or

framework requires: open-ended exploration if the agent

must act before being given fully specified goal informa-

tion, goal-driven execution if the agent must act after be-

ing given the task definition, and manipulation if the agent

must directly interact with objects, either with a physically

simulated arm (e.g., [21,36,58]) to complete its goal or with

a higher-level abstraction (e.g., in [62], the agent picks up

objects by specifying their semantic category). We can see

that most benchmarks emphasize either exploration or exe-

cution and manipulation. Most similar to EXCALIBUR are

the BEHAVIOR [57] and AI2-THOR Rearrangement [62]

benchmarks. BEHAVIOR requires agents to complete ac-

tivities, defined using predicate logic, using rich interac-

tion and object manipulation but, unlike EXCALIBUR, does

not emphasize open-ended exploration and experimenta-

tion. AI2-THOR rearrangement, on the other hand, includes

an exploration component but this exploration requires only

memorizing object states, unlike EXCALIBUR which re-

wards agents who directly interact with objects. In total,

EXCALIBUR is the first benchmark that explicitly evaluates

agents’ understanding of the physical world after agents ex-

plore, and manipulate objects within, virtual homes. As ar-

gued previously, EXCALIBUR requires that agents under-

stand scenes with their body, form a representation that can

be used to answer symbolic questions, and apply the knowl-

edge acquired from exploration to execution.

6.2. Visual Exploration

The task of visual exploration in embodied and robotics

contexts has a long history of study with a rich diversity

in perspectives. This diversity exists, in part, as the mean-

ing of “exploration” is ambiguous: is an agent successful

in exploration if it visits many locations, if it interacts with

many objects, or something else entirely? The excellent sur-

vey of Ramakrishnan, et al. [51] divides space of existing

exploration strategies into four groups: curiosity (seeking

unexpected states), novelty (seeking unseen states), cover-

age (looking to visual reveal large areas), and reconstruction

(seeking states that aid in predicting other unseen states).

Some recent works that have touched on these areas in-

clude, curiosity [38, 42,46, 54], novelty [8, 9, 20, 43], cover-

age [11, 12, 64], and reconstruction [30, 33, 50]. Of course

not all work falls cleanly into these categories, for instance

Eysenbach et al. perform skill discovery (i.e. exploration)

by maximizing information theoretic quantities [22] and
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