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Abstract: In this paper, we classify the compact locally homogeneous non-gradient m-quasi Einstein 3-
manifolds. Along the way, we also prove that given a compact quotient of a Lie group of any dimension
that is m-quasi Einstein, the potential vector field X must be left invariant and Killing. We also classify the
nontrivial m-quasi Einstein metrics that are a compact quotient of the product of two Einstein metrics. We
also show that S1 is the only compact manifold of any dimension which admits a metric which is nontrivially
m-quasi Einstein and Einstein.
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1 Introduction

Non-gradient m-quasi Einstein manifolds are of particular interest in the study of near-horizon geometries;
see [10], [11], and [13]. In this paper, we study non-gradientm-quasi Einstein manifolds as a generalization of
Einstein manifolds, gradient m-quasi Einstein manifolds, and Ricci solitons. In order to define the m-quasi
Einstein equation, we must first give the definition of the m-Bakry Émery Ricci tensor:

Definition 1.1. Let X be a vector field on a Riemannian manifold (Mn , g). The m-Bakry Émery tensor is

RicmX := Ric+1
2 LX g −

1
m
X∗ ⊗ X∗

where LX g is the Lie derivative of g with respect to X, and X∗ : TpM → ℝ, Y 󳨃→ g(X, Y).

If X = ∇ϕ where ϕ : M → ℝ is a smooth function, the m-Bakry Émery Ricci tensor is

Ricmϕ := Ric+Hessϕ − 1
m
dϕ ⊗ dϕ,

and we call this the gradient m-Bakry Émery Ricci tensor. Note that when ϕ is a constant, the gradient m-
Bakry Émery Ricci tensor is the Ricci tensor. If m =∞, the m-Bakry Émery Ricci tensor becomes Ric+12LXg.

The∞-BakryÉmeryRicci curvaturewasfirst studiedbyLichnerowicz in 1971 in [15], andQianfirst studied
the gradient m-Bakry Émery Ricci curvature with m ̸=∞ in [23]. Bakry and Émery further studied the Bakry
ÉmeryRicci curvature in relation to diffusionprocesses in [2]. They also arise in the study of optimal transport,
Ricci flow, and general relativity. In [17], Lott gives topological consequences and relations to the measured
Gromov–Hausdorff limits to lower bounds on the Bakry Émery Ricci curvature.Wei–Wylie prove Bakry Émery
Ricci curvature analogs of the comparison theorems and the volume comparison theorem in [25]. There have
been many more papers written about the subject, too many to summarize here. Now, we are ready to define
the m-quasi Einstein equation.

Definition 1.2. A manifold (M, g) satisfies the m-quasi Einstein equation if RicmX = Ag for some constant A.
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Remark 1.3. Many authors consider only the gradient case and/or the manifolds with boundary case of the
m-quasi Einstein equation. We will assume neither condition in this paper.

The casem =∞ of them-quasi Einstein equation corresponds to the Ricci soliton equation, Ric+12LXg =
Ag. Ivey showed in [9] that compact Ricci solitonsmust be shrinking, i.e.Amust bepositive. Perelman showed
in [19] that compact shrinking Ricci solitons must be gradient. Then Petersen–Wylie showed in [21] that any
compact locally homogeneous gradient Ricci soliton is Einstein. Therefore, by Ivey, Perelman, and Petersen–
Wylie, there are no non-Einstein non-trivial locally homogeneous compact Ricci solitons.

If (M, g) is m-quasi Einstein and if X = ∇ϕ, then we call the space gradient m-quasi Einstein. If X = 0,
thenwe call the space trivial. Our first result is the following theoremandgives us a classification ofmanifolds
which are Einstein and m-quasi Einstein.

Theorem 1.4. LetMn be a compact Einstein manifold. ThenM is non-trivial m-quasi Einstein for m ̸=∞ if and
only if M is S1.

Gradient m-quasi Einstein metrics with m > 0 where first systematically considered by Case–Shu–Wei
in [4] and Kim–Kim in [12]. They show that gradient m-quasi Einstein metrics correspond to warped product
Einstein metrics. In [4, Theorem 2.1], Case–Shu–Wei prove that a compact gradient m-quasi Einstein with
constant curvature must be trivial if m > 0. Since locally homogeneous manifolds have constant scalar cur-
vature, this shows that compact locally homogeneous manifolds which satisfy Ricmϕ = Ag with m > 0 must
be trivial. The case m < 0 follows from [22, Theorem 1.9]. In [6, Theorem 1.3], He–Petersen–Wylie prove that
if (M3, g) has no boundary, satisfies Ricmϕ = Ag with m > 1, and has constant scalar curvature, then M

3 is a
quotient of S3, S2 × ℝ, ℝ3, H2 × ℝ, or H3 with the standard metric. In [7, Theorem 1.4], He–Petersen–Wylie
show that if (Mn , g) is a non-compact Ricci soliton with m > 0 and A < 0, under certain conditions, M ad-
mits a non-trivial homogeneous gradient m-quasi Einstein (Ricmϕ = Ag) one-dimensional extension. In [14,
Theorem 1.1], Lafuente proves a converse to this result.

On the other hand, Chen–Liang–Zhu construct some examples of non-gradient m-quasi Einstein mani-
folds in [5]. In [13, Corollary 4.1,4.2], Kunduri–Lucietti study the non-gradient m-quasi Einstein metrics with
m = 2 in the context of vacuum, homogeneous near-horizon geometries, which gives us motivation to study
non-gradient m-quasi Einstein metrics.

Our main theorems give us a characterization of Lie groups which have a discrete group of isometries
acting cocompactly and which satisfy RicmX = Ag.

Theorem 1.5. Let G be a Lie group and let Γ be a discrete group of isometries which acts cocompactly on G. Let
X be a vector field which is invariant under Γ. If (G, g, X) satisfies 1

2LXg −
1
mX
∗ ⊗ X∗ = q, where q and g are left

invariant, then X is left invariant. If we also assume that tr(q ∘ adX) = 0, then X is a Killing vector field.

Theorem 1.5 was proven by Chen–Liang–Zhu in [5, Theorem 1.1] in the case when G is a compact Lie
group and q = Ric. Our next theorem gives us a characterization of the product of Einstein manifolds of any
dimension which satisfy the m-quasi Einstein equation.

Theorem 1.6. Consider the compact quotient of M × N with the product metric, where M and N are simply
connected complete Einstein manifolds. Then the only nontrivial solutions to RicmX = Ag occur when eitherM is
ℝ or N isℝ.

Weapply the results above to classify them-quasi Einstein solutions for locallyhomogeneous 3-manifolds
which admit compact quotient.

Theorem 1.7. Let M3 be a compact locally homogeneous Riemannian manifold with RicmX = Ag.

(1) If m > 0 and A > 0, then there exist m-quasi Einstein solutions if and only if M3 is a compact quotient of
SU(2).

(2) If m > 0 and A = 0, then there exist solutions if and only if M3 is a compact quotient of SU(2) or ℝ3,
where the solution onℝ3 is X = 0.
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(3) If m > 0 and A < 0, then there exist solutions if and only if M3 is a compact quotient of SU(2), Nil, or
H2 ×ℝ.

(4) If m < 0 and A > 0, then there exist solutions if and only if M3 is a compact quotient of SU(2) or S2 ×ℝ.
(5) If m < 0 and A = 0, then there exist solutions if and only if M3 is a compact quotient of ℝ3 or S̃L2(ℝ),

where the solution onℝ3 is trivial.
(6) If m < 0 and A < 0, then there are no m-quasi Einstein solutions on M3.

Remark 1.8. In a related paper, Buttsworth [3] studied the prescribed Ricci tensor problem on these spaces.
This result when m = 2 was also proven by Kunduri–Lucietti in [13].

If Mn is a homogeneous Einstein manifold, where Ric = Ag, then if A > 0, then M is compact by Myers’
Theorem; if A = 0, then M is flat by Alekseevskii–Kimel’fel’d [1], and if A < 0, then M is not compact by
Bochner’s Theorem, which can be found in Section 5. If we compare this to Theorem 1.7, we see that this
structure does not hold form-quasi Einsteinmetrics.When A = 0, there exist solutions on (compact quotients
of) SU(2), which are not flat. Similarly, in the case A < 0 there exist solutions on compact quotients of SU(2).

In [27, Lemma 4.4], we see that if Mn is a compact manifold with infinite fundamental group satisfying
Ricmϕ = Ag where A = 0, with m = 1 − n < 0, then the universal cover has a warped product splitting. By
Theorem 1.7, there exist solutions for the compact quotient of S̃L2(ℝ) if Mn satisfies RicmX = Ag when m < 0
and A = 0. This is interesting because S̃L2(ℝ) clearly does not split.

We organize the paper in the following way. In Section 3, we give a characterization, due to Singer, of lo-
cally homogeneous 3-manifolds. We then explain our approach for the rest of the paper to compute solutions
to the m-quasi Einstein equation.

In Section 2, we introduce theory which simplifies the m-quasi Einstein equation when Mn is a unimod-
ular Lie group, and we compute the solutions in Section 4. In Section 5, we discuss using the RicmX version of
Myers’ Theorem and the Splitting Theorem in order to study the case when m > 0, A ≥ 0 as in Theorem 1.7.

In Section 6, we analyze the equation 1
2LXg −

1
mX
∗ ⊗ X∗ = λg in order to classify the m-quasi Einstein

equations of the locally homogeneous 3-manifolds that admit compact quotient which are not Lie groups.
We also classify the nontrivial m-quasi Einstein metrics that can be the product of two Einstein metrics in
Section 6. Then, we finish our classification and we also show that there are no solutions to RicmX = Ag on
compact hyperbolic manifolds of any dimension. In Section 7, we give a table which summarizes our results.

2 Unimodular Lie groups

In [5, Theorem 1.1], Chen–Liang–Zhu proved that if M is a compact Lie group with a left-invariant metric g,
and if X is a vector field on M such that RicmX = Ag for m ̸= 0, then X is a left-invariant. Furthermore, X is a
Killing vector field by [5, Theorem 2.3].

Chen–Liang–Zhu prove [5, Theorem 1.1] by first proving that X is left-invariant, and then proving that X is
Killing using properties of the Ricci tensor. We will consider 1

2LXg −
1
mX
∗ ⊗ X∗ = q where q is a left-invariant

tensor, which ismore general than Ric+12LXg−
1
mX
∗⊗X∗ = Ag. Rather than considering a compact Lie group

G, we assume G admits a discrete group of isometries Γ which acts cocompactly on G.
Next, we give the definition for adX in order to state a linear algebra fact to prove that X is Killing given

that X is a left-invariant vector field which satisfies RicmX = Ag.

Definition 2.1. If G is a Lie group and if g is the Lie algebra of G, then we define adX : g → g by adX(Y) =
[X, Y], where X, Y are vector fields in g.

IfG is a Lie groupwhich admits a discrete subgroup Γwith compact quotient, thenGmust beunimodular.
It is a linear algebra fact that if G is a unimodular Lie group, then there exists a basis {Xi}ni=1 of g, the Lie
Algebra of G, such that g(adX(Xi), Xi) = 0 for all i. We will use these facts about Lie groups to prove our main
lemmas, which are generalizations of Chen–Liang–Zhu’s [5, Theorem 1.1] and [5, Theorem 2.3].



82 | Lim, Locally homogeneous non-gradient quasi-Einstein 3-manifolds

Lemma 2.2. Let G be a connected Lie group and let Γ be a discrete group of isometries which acts cocompactly
on G. Let X be a vector field which is invariant under Γ. If (G, g, X) satisfies 1

2LXg −
1
mX
∗ ⊗ X∗ = q, where q and

g are left invariant, then X is a left-invariant vector field.

Proof. Because G is a Lie group which admits a discrete subgroup with compact quotient, G is unimodular.
Let M = G/Γ and let π : G → M. By our discussion above, we can choose a basis {Xi} of the Lie algebra of
G such that g(adX(Xi), Xi) = 0 for all i. Let X = ∑nk=1 fkXk where fk : G → ℝ. Using the technique from [5,
Theorem 1.1], for all i we obtain

1
2LXg(Xi , Xi) −

1
m
X∗ ⊗ X∗(Xi , Xi) = Xi fi +

n
∑
k=1

fkg(∇XiXk , Xi) −
1
m
f 2i

= Xi fi +
n
∑
k=1

fkg([Xi , Xk], Xi) −
1
m
f 2i = Xi fi + g(−adX(Xi), Xi) −

1
m
f 2i = Xi fi −

1
m
f 2i .

Since M is compact, there exists a maximum and a minimum of the function fi on M. Let r be a point in M
such that fi(r) is maximal and let s be a point inM such that fi(s) is minimal and let q(π(Xi), π(Xi)) = λi. Then

λi = Xi fi(r) −
1
m
f 2i (r) = −

1
m
f 2i (r) and λi = Xi fi(s) −

1
m
f 2i (s) = −

1
m
f 2i (s)

Thus f 2i (r) = f
2
i (s) = −mλi. We now rule out the case fi(r) = −fi(s) in order to show that fi must be constant.

Let c(t) be an integral curve of Xi. Then along π ∘ c(t) we have f 󸀠i (t) −
1
m f

2
i (t) = λi. Solving this equation

(see Lemma 2.3), we obtain fi(t) = √−λim, −√−λim, 0, or −√−λim tanh(√−λimm (t + C)).
Assume for the sake of contradiction that fi(t) is not constant, i.e. fi(t) = −√−λim tanh(√−λimm (t + C))

where C is a constant. Let π ∘ c(ti) be a sequence of points such that ti → ∞. Since M is compact, there
exists a subsequence of {π ∘ c(ti)} which converges to a point on M. The set {π ∘ c(t) : t ∈ ℝ} is closed, hence
fi has a maximal point tmax on this set. The supremum of the tanh function is 1, thus the maximum of fi(t)
on {π ∘ c(t) : t ∈ ℝ} is √−λim. Let b(t) be an integral curve of Xi such that b(0) = c(tmax) = √−λim and
consider the set {π ∘ b(t) : t ∈ ℝ}. Along b(t), fi(t) is either √−λim or −√−λim tanh(√−λimm (t + C)). Since the
supremum of fi(t) on {π ∘ b(t) : t ∈ ℝ} is √−λim and tanh never achieves its maximum on its domain, fi(t)
must be constantly √−λim on the set {π ∘ b(t) : t ∈ ℝ}. Finally, since {π ∘ b(t) : t ∈ ℝ} = {π ∘ c(t) : t ∈ ℝ},
fi(t) is constant on {π ∘ c(t) : t ∈ ℝ}. Then, since fi(t) is constant along every integral curve and since G is
connected, fi(t) is constant. ✷

Lemma 2.3. Let f 󸀠(t) − 1
m f

2(t) = λ, where f : ℝ→ ℝ is defined for all t inℝ and λ and m are constants.

(1) If λ = 0, then f(t) = 0.
(2) If λm > 0, then there are no solutions f .
(3) If λm < 0, then f(t) = ±√−λm or√−λm tanh(√−λmm (t + C)).

Proof. Let λ = 0. Clearly f(t) = 0 is a solution. If f(0) is not 0, then f 󸀠(t) = f(t)2/m, hence f(t) = (C − t/m)−1

for some real number C. However, at t = mC, t blows up, which is a contradiction since f exists for all time.
Let λm > 0. Then f 󸀠(t) = f(t)

2

m + λ is never zero. Integrating and rearranging, we obtain

∫
f 󸀠(t)

f 2(t)
m + λ

dt = ∫1dt 󳨐⇒ m
λ ∫

f 󸀠(t)
1 + ( f(t)√λm )

2 dt = t + C 󳨐⇒ √
m
λ
tan−1( f(t)
√λm
) = t + C,

hence f(t) = √λm tan(√ λ
m (t + C)). Since the tan function does not exist everywhere, f(t) also does not exist

everywhere. Thus for λm > 0 there are no solutions.
Let λm < 0; then clearly f(t) = ±√−λm is a solution to the equation. Assume that f(0) is not ±√−λm. Then

we integrate and rearrange as follows:

∫
f 󸀠(t)

f 2(t)
m + λ

dt = ∫1dt 󳨐⇒ m
2√−λm

ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − f(t)
√−λm

1 + f(t)
√−λm

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= t + C 󳨐⇒

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − f(t)
√−λm

1 + f(t)
√−λm

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= e2

√−λm
m (t+C).
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If
1 − f(t)
√−λm

1 + f(t)
√−λm

= e2
√−λm
m (t+C), then f(t) = √−λm(1−e2

√−λm
m (t+C)

1+e2
√−λm
m (t+C)
) = √−λm tanh (√−λmm (t + C)). If

1 − f(t)
√−λm

1 + f(t)
√−λm

=

−e2
√−λm
m (t+C), then f(t) = √−λm(1+e2

√−λm
m (t+C)

1−e2
√−λm
m (t+C)
) and f(t) does not exist at t = −C, which is a contradiction. ✷

Lemma 2.4. Let G be a unimodular Lie group with left-invariant metric g. If X is left-invariant, tr(q ∘ adX) = 0,
and 1

2LXg −
1
mX
∗ ⊗ X∗ = q where q is left-invariant, then X is Killing.

Proof. Let {Xi} be an orthonormal basis relative to g and let X = a1X1 + a2X2 + ⋅ ⋅ ⋅ + anXn. Then, plugging in
(Xi , Xj) into q = 1

2LXg −
1
mX
∗ ⊗ X∗, we get

q(Xi , Xj) =
1
2 (
g([Xi , X], Xj) + g([Xj , X], Xi) −

1
m
g(X, Xi)g(X, Xj).

We denote the projection of Xi onto X by projX Xi. Since projX Xi =
g(X,Xi)X
|X|2 and adX(Xi) = [X, Xi], we have

q(Xi , Xj) =
1
2 (
g(adX(Xi), Xj) + g(adX(Xj), Xi)) −

|X|2

m
g(projX Xi , Xj).

Thus we have the following equation, where we view q, adX, and projX as matrices:

q = 12 (adX + ad
T
X) −
|X|2

m
projX .

We denote by “⋅" the matrix multiplication. Multiplying both sides by the matrix adX we get

q ⋅ adX =
1
2 (
adX + adTX) ⋅ adX −

|X|2

m
projX ⋅adX =

1
2 (
ad2X + ad

T
X ⋅ adX) −

|X|2

m
projX ⋅adX .

Taking the trace of both sides, we get

tr(q ⋅ adX) =
1
2 tr (ad2X + ad

T
X ⋅ adX) −

|X|2

m
tr(projX ⋅adX).

Since tr(q ⋅ adX) = 0 and tr(A2) = tr((AT)2) for any n × n matrix A, we obtain

0 = 14 tr ((adX + adTX)
2) −
|X|2

m
tr(projX ⋅adX).

Now, plugging in Xi, one of the orthonormal basis vectors into adX ⋅ projX and using that tr(AB) = tr(BA) for
any two matrices A and B, we get adX ⋅ projX(Xi) = ai

|X|2 [X, X] = 0. Thus we have 0 =
1
4 tr ((adX + ad

T
X)

2).
Since adX + adTX is symmetric, we can diagonalize adX + adTX, and we call the diagonalized matrix D.

Then tr((adX + adTX)
2) = tr(D2). Since the eigenvalues in D2 are nonnegative and tr(D2) is the sum of the

eigenenvalues of D2, we obtain 1
2 (adX + ad

T
X) = 0. Thus X is Killing. ✷

Next, we apply Lemma 2.2 to metrics which satisfy RicmX = Ag.

Theorem 2.5. Let G be a Lie group and let Γ be a discrete group of isometries which acts cocompactly on G,
where π : G → G/Γ is a covering map. If (G/Γ , g, X) satisfies RicmX = Ag, then X̃ = π

∗(X) is left invariant and
Killing.

Proof. Let g̃ = π∗(g) be the pullback metric of g. Since π is a local isometry, Ricm
X̃
= Ag̃. Since Ag̃ − Ricg̃ is

left-invariant, by Lemmas 2.2 and 2.4, X̃ is left-invariant and Killing. ✷

We immediately get the following corollary, which we will use throughout Section 4.

Corollary 2.6. If Mn is a unimodular Lie group and if RicmX = Ag with X a left-invariant vector field and g a
left-invariant metric, then X is a Killing field.

Lemma 2.7. Suppose that (Mn , g) is a Lie group which satisfies RicmX = Ag where X is nonzero, left-invariant,
and Killing. If {X1, X2, . . . , Xn} is an eigenbasis of the Ricci tensor of left invariant fields, then X is a multiple of
one of the eigenbasis vectors (i.e. there exists an m with 1 ≤ m ≤ n such that X = amXm).
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Proof. Since X is left-invariant and Killing, we have RicmX (Xi , Xj) = −
1
m aiaj for 1 ≤ i, j ≤ n and i ̸= j. Now

RicmX (Xi , Xj) = Ag(Xi , Xj) = 0 for all sets of i, j if and only if at least n − 1 sets of ak are 0. Thus, X = amXm for
some m with 1 ≤ m ≤ n. ✷

3 Preliminaries about locally homogeneous 3-manifolds

In this section, we will discuss locally homogeneous three-manifolds, which we will use to prove our main
results. We first give definitions of locally homogeneous and homogeneous, which can be found in [8].

Definition 3.1. Let (M, g) be a Riemmanian manifold. Then (M, g) is locally homogeneous if for every pair of
points x, y ∈ M, there exists neighborhoods Ux of x and Vy of y such that there is an isometry ψ mapping
(Ux , g|Ux ) to (Vy , g|Vy ), with ψ(x) = y.

Definition 3.2. Let (M, g) be a Riemmanian manifold. Then (M, g) is homogeneous if for every pair of points
x, y ∈ M, there exists an isometry ψ with ψ(x) = y.

According to Singer in [24], for every locally homogeneous geometry (M3, g), the universal cover (M̃3, g̃)
is homogeneous. If (M̃3, g̃) is a homogeneous, simply connected manifold that admits a compact quotient,
then it is one of the following:ℝ3, SU(2), S̃L2(ℝ), Nil, E(1, 1), E(2), H3, S2 ×ℝ, or H2 ×ℝ; see [8, Table 1].

Since X̃ is a left-invariant solution to Ricm
X̃
= Ag̃ if and only if dπ(X̃) is a solution to RicmX = Ag, where

π : M̃ → M is the universal coveringmap,we study these nine geometries in order to classifym-quasi Einstein
metrics on locally homogeneous threemanifolds. Of the nine geometries,ℝ3, SU(2), S̃L2(ℝ),Nil, E(1, 1), and
E(2) are Lie groups. We can also use that H2 is a Lie group to study H2 × ℝ. We will explicitly calculate the
metrics on the Lie groups which satisfy RicmX = Ag using themethods of Section 2. We will study the equation
1
2LXg −

1
mX
∗ ⊗ X∗ = λg in order to calculate the m-quasi Einstein metrics on S2 ×ℝ and H3.

Throughout this paper, we will use the following computations by Milnor:

Lemma 3.3 ([18, pages 305 and 307]). Let G be a 3-dimensional unimodular Lie group with left invariant met-
ric. If L is self-adjoint, then there exists an orthonormal basis {X1, X2, X3} consisting of eigenvectors LXi = λ∗i Xi.
We obtain the following:

[X2, X3] = λ∗1X1, [X3, X1] = λ
∗
2X2, [X1, X2] = λ

∗
3X3.

The following table gives the signs of λ∗i for SU(2), S̃L2(ℝ), E(2), E(1, 1), Nil, andℝ
3.

Lie group λ∗1 λ∗2 λ∗3
Nil λ∗1 > 0 λ∗2 = 0 λ∗3 = 0
S̃L2(ℝ) λ∗1 > 0 λ∗2 > 0 λ∗3 < 0
E(1, 1) λ∗1 > 0 λ∗2 < 0 λ∗3 = 0
E(2) λ∗1 > 0 λ∗2 > 0 λ∗3 = 0
ℝ3 λ∗1 = 0 λ∗2 = 0 λ∗3 = 0
SU(2) λ∗1 > 0 λ∗2 > 0 λ∗3 > 0

Table 1

From now on, let λi = |λ∗i |. Because X is Killing for unimodular Lie groupswithRicmX = Ag, it will be useful
to calculate LXg.

Proposition 3.4. Let X = a1X1 + a2X2 + a3X3 be a left-invariant vector field on a 3-dimensional unimodular
Lie group with left invariant metric. With the notation as in Lemma 3.3, we have LXg(Xi , Xi) = 0 for all i and

LXg(X1, X2) = −a3λ∗2 + a3λ
∗
1 , LXg(X1, X3) = −a2λ∗1 + a2λ

∗
3 , LXg(X2, X3) = −a1λ∗3 + a1λ

∗
2 .
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Proof. We have the following computation for LXg:

LXg(Xi , Xj) = g(∇Xi (a1X1 + a2X2 + a3X3), Xj) + g(∇Xj (a1X1 + a2X2 + a3X3), Xi)
=∑

k
akg(∇XiXk , Xj) + akg(∇XjXk , Xi)

=∑
k
g(∇XkXi + [Xi , Xk], Xj) + g(∇XkXj + [Xj , Xk], Xi)

=∑
k
akg([Xi , Xk], Xj) + akg([Xj , Xk], Xi) + DXkg(Xi , Xj)

=∑
k
akg([Xi , Xk], Xj) + akg([Xj , Xk], Xi).

Using Lemma 3.3 we obtain the assertion. ✷

We recall the definition of the Ricci quadratic form r(x) as introduced byMilnor in [18], and the signatures
of the Ricci forms of Nil, E(1, 1), S̃L2(ℝ), E(2),ℝ3, and SU(2) when the metric is left invariant.

Definition 3.5. The Ricci quadratic form r(X) takes vectors X ∈ TM to ℝ and is defined as g(r(X), Y) =
Ric(X, Y) for all Y ∈ TM.

The collection of signs of r(ei), namely {sign(r(ei))}ni=1, is called the signature of the quadratic form r,
where {ei}ni=1 is any orthonormal basis for the tangent space.

Lie group r(e1) r(e2) r(e3) Reference

Nil r(e1) > 0 r(e2) < 0 r(e3) < 0 [18, Corollary 4.6]
E(1, 1), S̃L2(ℝ) r(e1) > 0 r(e2) < 0 r(e3) < 0

r(e1) = 0 r(e2) = 0 r(e3) < 0 [18, Corollary 4.7]
E(2) r(e1) > 0 r(e2) < 0 r(e3) < 0 [18, Corollary 4.8]
ℝ3 r(e1) = 0 < r(e2) = 0 r(e3) < 0
SU(2) r(e1) > 0 r(e2) > 0 r(e3) > 0

r(e1) > 0 r(e2) = 0 r(e3) = 0
r(e1) > 0 r(e2) < 0 r(e3) < 0 [18, Corollary 4.5]

Table 2

4 m-quasi Einstein solutions for Nil, S̃L2ℝ, E(1, 1), E(2) and H2 ×ℝ
In this section we compute solutions to them-quasi Einstein equation for the Lie groups Nil, S̃L2(ℝ), E(1, 1),
and E(2). We also compute solutions to H2 × ℝ, using the Lie group structure of H2. We use Tables 1 and 2
and the next remark to find examples of X which give us RicmX = Ag for m > 0 and A < 0 for the space Nil.

Remark 4.1. By [18, Corollary 4.5], for any left invariant metric on Nil, the principal Ricci curvatures satisfy
|r(e1)| = |r(e2)| = |r(e3)| = |ρ|.

Proposition 4.2. Consider Nil with RicmX = Ag. If g is a left-invariant metric and if X is a left-invariant vector
field, then there exist examples of X such that RicmX = Ag if and only if A < 0 and m > 0.

Proof. Let {X1, X2, X3} be an orthonormal basis with Ric(X1, X1) = ρ, Ric(X2, X2) = −ρ, and Ric(X3, X3) =
−ρ as in Table 2 and Remark 4.1. Let X = a1X1 + a2X2 + a3X3 where a1, a2, and a3 are all constants. By
Corollary 2.6, X is a Killing field, so we set LXg(Xi , Xj) = 0 for all i, j = 1, 2, 3 as follows:

LXg(X1, X2) = a3λ1 = 0, LXg(X1, X3) = −a2λ1 = 0
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where LXg(Xi , Xj) is zero for every other combination of i, j, by definition of Nil. Thus, a2 = a3 = 0. We
compute RicmX as follows:

RicmX (X1, X1) = ρ −
1
m a

2
1, RicmX (X2, X2) = −ρ −

1
m a

2
2 = −ρ, RicmX (X3, X3) = −ρ −

1
m a

2
3 = −ρ.

Thus, RicmX = Ag if and only if X = ±√2mρX1. In this case, m > 0 and A = −ρ < 0. ✷

Now we find examples of X which satisfy RicmX = Ag for the spaces E(1, 1) and S̃L2(ℝ).

Proposition 4.3. Consider S̃L2(ℝ). If g is a left-invariantmetric and if X is a left-invariant vector field, then there
exist examples of RicmX = Ag if and only if m < 0 and A = 0.

Proof. Let g be a left-invariant metric and let X be a left-invariant vector field, where X = a1X1 + a2X2 + a3X3
with {X1, X2, X3} an orthonormal basis. By Corollary 2.6, X must be a Killing field if RicmX = Ag, so we set
LXg(Xi , Xj) = 0 for all i, j = 1, 2, 3 as follows:

LXg(X1, X2) = a3(λ1 − λ2) = 0, LXg(X1, X3) = a2(−λ1 − λ3) = 0, LXg(X2, X3) = a1(λ2 + λ3) = 0

where all other LXg(Xi , Xj) = 0 by properties of S̃L2(ℝ). By the above, we must have a1 = a2 = 0 and either
a3 = 0 or λ1 = λ2.

By Table 2, the signature for the Ricci form is (+, −, −) or (0, 0, −). If the Ricci form is (+, −, −), let
|Ric(Xi , Xi)| = ρi. Then, plugging in (Xi , Xj) where i, j = 1, 2, 3 into RicmX = Ag, we obtain

RicmX (X1, X1) = ρ1 −
1
m a

2
1 = ρ1, RicmX (X2, X2) = −ρ2 −

1
m a

2
2 = −ρ2, RicmX (X3, X3) = −ρ3 −

1
m a

2
3.

In this case, we cannot have RicmX = Ag since Ric
m
X (X1, X1) > 0 and Ric

m
X (X2, X2) < 0.

If the signature of the Ricci form is (0, 0, −), then we obtain

RicmX (X1, X1) = −
1
m a

2
1 = 0, RicmX (X2, X2) = −

1
m a

2
2 = 0, RicmX (X3, X3) = −ρ3 −

1
m a

2
3.

Then, RicmX = Ag if and only if a3 = √−mρ3, A = 0, and m < 0. ✷

Proposition 4.4. Consider E(1, 1). If g is a left-invariant metric and if X is a left-invariant vector field, then there
are no solutions to RicmX = Ag.

Proof. Let g be a left-invariant metric and let X be a left-invariant vector field, where X = a1X1 + a2X2 + a3X3
with {X1, X2, X3} an orthonormal basis. By Corollary 2.6, X must be a Killing field if RicmX = Ag, so we set
LXg(Xi , Xj) = 0 for all i, j = 1, 2, 3 as follows:

LXg(X1, X2) = a3(λ2 + λ1) = 0, LXg(X1, X3) = −a1λ2 = 0, LXg(X2, X3) = −a2λ1 = 0,

where all other LXg(Xi , Xj) = 0 by properties of E(1, 1). By the three equations above, a1 = a2 = a3 = 0. By
Table 2, the signature for the Ricci form is (+, −, −) or (0, 0, −). If the signature is (+, −, −), let |Ric(Xi , Xi)| = ρi.
Then, plugging in all pairs (Xi , Xj) with i, j = 1, 2, 3, we obtain

RicmX (X1, X1) = ρ1 −
1
m a

2
1 = ρ1, RicmX (X2, X2) = −ρ2 −

1
m a

2
2 = −ρ2, RicmX (X3, X3) = −ρ3 −

1
m a

2
3 = −ρ3.

RicmX cannot equal Ag since RicmX (X1, X1) > 0 and Ric
m
X (X2, X2) < 0.

If the signature is (0, 0, −), then we get the following set of equations:

RicmX (X1, X1) = −
1
m a

2
1 = 0, RicmX (X2, X2) = −

1
m a

2
2 = 0, RicmX (X3, X3) = −ρ3 −

1
m a

2
3.

In this case, we cannot have RicmX = Ag since Ric
m
X (X1, X1) = Ric

m
X (X2, X2) = 0 and Ric

m
X (X3, X3) < 0. ✷

Finally, we find that there are no examples of X on E(2) which give us RicmX = Ag.

Proposition 4.5. Consider E(2). If g is a left-invariant metric and if X is a left-invariant vector field, then there
are no solutions to RicmX = Ag.



Lim, Locally homogeneous non-gradient quasi-Einstein 3-manifolds | 87

Proof. Let g be a left-invariant metric and let X be a left-invariant vector field, where X = a1X1 + a2X2 + a3X3
with {X1, X2, X3} an orthonormal basis. By Corollary 2.6, X must be a Killing field if RicmX = Ag, so we set
LXg(Xi , Xj) = 0 for all i, j = 1, 2, 3 as follows:

LXg(X1, X2) = a3(λ1 − λ2) = 0, LXg(X1, X3) = −a2λ1 = 0, LXg(X2, X3) = a1λ2 = 0.

All other LXg(Xi , Xj) = 0 by properties of E(2). By the three equations above, a1 = a2 = 0 and either λ1 = λ2
or a3 = 0. By Table 2, the signature for the Ricci form is (+, −, −). Letting |Ric(Xi , Xi)| = ρi, we plug in all pairs
(Xi , Xj) with i, j = 1, 2, 3 as follows:

RicmX (X1, X1) = ρ1 −
1
m a

2
1 = ρ1, RicmX (X2, X2) = −ρ2 −

1
m a

2
2, RicmX (X3, X3) = −ρ3 −

1
m a

2
3.

RicmX cannot equal Ag since RicmX (X1, X1) > 0 and Ric
m
X (X2, X2) < 0. ✷

Proposition 4.6. Considerℝ3. If g is a left-invariant metric and if X is a left-invariant vector field, then the only
solutions of RicmX = Ag occur when m ̸= 0, A = 0, and X = 0.

Proof. Let g be a left-invariant metric and let X be a left-invariant vector field, where X = a1X1 + a2X2 + a3X3
with {X1, X2, X3} an orthonormal basis of left-invariant vector fields. By Corollary 2.6, Xmust be a Killing field
if RicmX = Ag. By [18, page 307], LXg(Xi , Xj) = 0 for all i, j = 1, 2, 3 and Ric(Xi , Xj) = 0 for all i, j = 1, 2, 3, so
we have the following sets of equations for RicmX (Xi , Xj):

RicmX (X1, X1) = −
1
m a

2
1, RicmX (X2, X2) = −

1
m a

2
2, RicmX (X3, X3) = −

1
m a

2
3.

Setting RicmX = Ag, solutions exist only when m ̸= 0, A = 0, and X = 0. ✷

Remark 4.7. Sinceℝ3 is Ricci flat, Proposition 4.6 also follows from Proposition 6.7.

Proposition 4.8. If g is a left-invariant metric on H2 ×ℝ and if X is a left-invariant vector field, then there exist
solutions to RicmX = Ag if and only if A < 0 and m > 0.

Proof. Let {X1, X2, ∂
∂r } be an orthonormal basis where {X1, X2} are in TH2 and ∂

∂r is in Tℝ. Let X = a1X1 +
a2X2 + a3 ∂

∂r . We compute the Lie derivatives as follows:

LXg(X1, X1) = 2g(∇X1X, X1) = 2g(−a2X2, X1) = 0
LXg(X2, X2) = 2g(∇X2X, X2) = 2g(−a1X2 + a2X1, X2) = −2a1
LXg( ∂∂r ,

∂
∂r ) = 0

LXg(X1, X2) = g(∇X1X, X1) + g(∇X1X, X1) = g(−a1X2 + a2X1, X1) = a2
LXg(X2, ∂

∂r ) = g(∇X2X,
∂
∂r ) + g(∇ ∂

∂r
X, X2) = 0.

By Corollary 2.6, X must be a Killing field, so we set LXg = 0 to get that a1 = a2 = 0. We have Ric(X1, X1) =
Ric(X2, X2) = −ρg where ρ > 0, and Ric( ∂∂r ,

∂
∂r ) = 0, so we can compute RicmX as follows:

RicmX (X1, X1) = −ρ, RicmX (X2, X2) = −ρ, RicmX (
∂
∂r ,

∂
∂r ) = −

1
m a

2
3.

Thus, RicmX = Ag if and only if X = ±√ρm
∂
∂r , where A = −ρ < 0 and m > 0. ✷

We show that we can find examples of X such that RicmX = 0 on SU(2) with left-invariant metric.

Proposition 4.9. Consider SU(2). If g is a left-invariant metric and if X is a left-invariant vector field, then there
exist solutions to RicmX = Ag if and only if either m > 0 with A any real number or m < 0 with A > 0.

Proof. Let X = a1X1 + a2X2 + a3X3. By Lemma 2.7, at least two ai’s must be zero. By Corollary 2.6, X is a
Killing field, so we compute LXg using Proposition 3.4 as follows:

LXg(X1, X2) = a3(λ1 − λ2), LXg(X2, X3) = a1(λ2 − λ3), LXg(X1, X3) = a2(λ3 − λ1).
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By Table 2, the siganture of the Ricci form is either (+, +, +), (+, 0, 0), or (+, −, −). Let |Ric(Xi , Xi)) = ρi
for i = 1, 2, 3. If the signature is (+, +, +), then we have the following computations for RicmX :

RicmX (X1, X1) = ρ1 −
1
m a

2
1, RicmX (X2, X2) = ρ2 −

1
m a

2
2, RicmX (X3, X3) = ρ3 −

1
m a

2
3

Setting RicmX = Ag, if all three ai’s are zero, then X = 0 and Ric
m
X = ρg where ρ = ρ1 = ρ2 = ρ3. If a1 = a2 = 0

and a3 ̸= 0, and ρ = ρ1 = ρ2, then X = ±√m(ρ3 − ρ)X3. Similarly, if a1 = a3 = 0, and ρ = ρ1 = ρ3, then
X = ±√m(ρ2 − ρ)X2. If a2 = a3 = 0, and ρ = ρ2 = ρ3, then X = ±√m(ρ1 − ρ)X1. In these cases, RicmX = ρg,
where ρ > 0, andm can be positive or negative, depending on the sign of ρ3−ρ, ρ2−ρ, and ρ1−ρ, respectively.

If the signature is (+, 0, 0), then

RicmX (X1, X1) = ρ1 −
1
m a

2
1, RicmX (X2, X2) = −

1
m a

2
2, RicmX (X3, X3) = −

1
m a

2
3.

The solutions to the above equations are X = ±√ρmX1 and RicmX = 0. In this case, m must be positive.
If the signature is (+, −, −), then

RicmX (X1, X1) = ρ1 −
1
m a

2
1, RicmX (X2, X2) = −ρ2 −

1
m a

2
2, RicmX (X3, X3) = −ρ3 −

1
m a

2
3.

Setting RicmX = Ag, the solutions are X = ±√m(ρ + ρ1)X1, where ρ = ρ2 = ρ3. In this case, Ric
m
X = −ρg and m

must be positive. ✷

5 Relations to the Splitting Theorem, Myers’ Theorem and
Bochner’s Theorem

By Khuri–Woolgar–Wylie [11, Theorem 2], the Splitting Theorem holds for RicmX if m > 0. We also recall that
if (M, g) is a noncompact homogenous space, then it contains a line. Using the RicmX version of the Splitting
Theorem and the fact about noncompact homogeneous spaces, we show that of the 9 geometries which are
3-dimensional and homogeneous, the ones which do not split do not have solutions if m > 0 and A ≥ 0.

Proposition 5.1. H3, S̃L2ℝ, Nil,E(2), H2 × ℝ, and E(1, 1) do not admit metrics such that RicmX = Ag for m > 0
and A ≥ 0.

Proof. H3, S̃L2ℝ,Nil,E(2), and E(1, 1) all admit lines and do not split as N ×ℝ. Thus, the proposition follows
by the Bakry Émery Ricci version of the Splitting Theorem by Khuri–Woolgar–Wylie.

In the case of H2 × ℝ, by the Splitting Theorem, RicmX ≥ 0 with m > 0 if and only if Ric
m
X ≥ 0 with m > 0

on H2. Now H2 admits lines and does not split as N ×ℝ, so the proposition follows. ✷

In [23, Theorem5], Qianproves thatMyers’ Theoremholds for the gradientm-Bakry ÉmeryRicci curvature
when m > 0. Limoncu showed in [16, Theorem 1.2] that Myers’ Theorem holds for the non-gradient m-Bakry
Émery Ricci curvature when m > 0. In [10] Khuri–Woolgar use Limoncu’s version of Myers’ Theorem to study
Near Horizon Geometries. Using this version of Myers’ Theorem, we see that since S2 × ℝ and ℝ3 are both
noncompact, S2 × ℝ and ℝ3 do not admit metrics such that RicmX = Ag for m > 0 and A > 0. In fact, since
SU(2) is the only compact simply connected three-dimensional geometry, it is the only one that can admit a
metric such that RicmX = Ag for m > 0 and A > 0.

Wediscuss the casem < 0,A < 0 of them-quasi Einsteinmetric. Bochner proved that if (M, g) is compact,
oriented and if Ric < 0, then there are no nontrivial Killing fields; see [20, Theorem 36]. This leads to

Proposition 5.2. If Mn is a compact locally homogeneous Riemannian manifold, and if Mn is a compact quo-
tient of a Lie group G, then there are no solutions to RicmX = Ag if m < 0 and A < 0.

Proof. By Lemma 2.5, X̃ is Killing on G. Then,Ric = Ag̃+ 1m X̃
∗⊗ X̃∗ which is negative, giving us a contradiction

by Bochner’s Theorem. ✷

Corollary 5.3. If M3 is a compact locally homogeneous Riemannian manifold which satisfies RicmX = Ag with
m < 0 and A < 0, then M3 cannot be a compact quotient ofℝ3, SU(2), S̃L2(ℝ), Nil, E(1, 1), H2 ×ℝ, or E(2).
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6 The m-quasi Einstein equation on geodesics
Our next definition and proposition deal with analyzing the equation 1

2LXg −
1
mX
∗ ⊗ X∗ = Ag, which we will

use to findm-quasi Einstein solutions to S2 ×ℝ and H3. We will also prove theorems for more general spaces
using this analysis.

Definition 6.1. Let γ(t) be a unit speed geodesic. We define φγ(t) as g(Xγ(t), γ̇(t)). Note that φγ(t) is well de-
fined for all t such that γ(t) is defined. If it is clear which γ(t)we are using to define φγ(t), then we write φ(t)
rather than φγ(t).

Proposition 6.2. Let (M, g) be a complete Riemannian manifold and let γ : (−∞,∞) → M be a unit speed
geodesic. Suppose the equation

1
2
LXg(γ̇, γ̇) −

1
m
g(X, γ̇)g(X, γ̇) = λg(γ̇, γ̇)

is satisfied at every point on γ.

(1) If λ = 0 for m ̸= 0 at every point along γ, then φ(t) = 0.

(2) If λm > 0 at every point along γ, then there are no complete solutions to 1
2LXg −

1
mX
∗ ⊗ X∗ = λg.

(3) If λm < 0 along a geodesic, then

φ(t) = √−λm tanh(
√−λm
m
(t + C)) or φ(t) = ±√−λm.

Proof. We have the following set of equations:

d
dt
(φ(t)) = 12LXg(γ̇, γ̇) =

1
m
(X∗ ⊗ X∗)(γ̇, γ̇)) + λg(γ̇, γ̇) = 1

m
g(X, γ̇)2 + λ = 1

m
φ2(t) + λ.

The proposition follows from Lemma 2.3. ✷

Remark 6.3. If Mn is a compact manifold, then we can prove Proposition 6.2(2) using the Divergence Theo-
rem. Taking the trace of both sides of 1

2LXg −
1
mX
∗ ⊗ X∗ = λg, we get div(X) − 1

m |X|
2 = λn. Integrating both

sides over M, we get
∫
M

|X|2 = −∫
M

λmn = −λmn vol(M).

Either X = 0 and λ = 0 or the left hand side is positive which implies that λm must be negative.

Now we provide an example of a manifold which satisfies RicmX = λg with λm < 0.

Example 6.4. Let M = S1 with the usual metric, with basis vector { ∂∂θ }. Let X = √−λm
∂
∂θ with λm < 0. Since

X is Killing and S1 is Ricci flat, we get RicmX = λg.

Next, we give a global analysis of 1
2LXg −

1
mX
∗ ⊗ X∗ = λg when λm < 0. In order to do this, we first state

a definition of critical point originally defined by Grove–Shiohama; see also [20].

Definition 6.5 ([20]). Fix p ∈ M. A point q is a critical point of the distance function to p (or is a critical point
to p) if for every vector V ∈ TqM, there is a minimal geodesic γ with γ(0) = p, γ(d(p, q)) = q such that
g(γ̇(d(p, q)), V) ≤ 0.

Lemma 6.6. [20, Corollary 43] Suppose that there are no critical points of the distance function to p in the
annulus {q : a ≤ d(p, q) ≤ b}. Then B(p, a) is homeomorphic to B(p, b), and B(p, b) deformation retracts onto
B(p, a). Moreover, if there are no critical points of p in M, then M is diffeomorphic toℝn.

Using techniques similar to those of Wylie in the proof of [26, Proposition 1], we look for spaces which
admit 1

2LXg −
1
mX
∗ ⊗ X∗ = λg with λm < 0 everywhere. We find that the only possibility is S1 if the space is

compact.
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Proposition 6.7. If M is a compact manifold which satisfies 1
2LXg −

1
mX
∗ ⊗ X∗ = λg with X ̸= 0 and λm < 0

along every geodesic, then M = S1.

Proof. Since M is compact, the function f(p) = |X(p)|2 achieves a maximum and a minimum value. At a
minimum, 0 = DX f = DXg(X, X) = 2LXg(X, X). Then

1
2
LXg(X, X) −

1
m
(X∗ ⊗ X∗)(X, X) = λg(X, X) 󳨐⇒ − 1

m
|X|4 = λ|X|2.

Thus either |X|2 = −λm or |X|2 = 0 at a minimum point. By a similar argument, |X|2 = −λm or |X|2 = 0 at a
maximum point. Hence either |X|2 = −λm for every point onM, or there exists a point p ∈ M where X(p) = 0.

If |X|2 = −λm for every point inM, then taking the trace of 12LXg−
1
mX
∗⊗X∗ = λg, we getdiv(X)− |X|

2

m = λn.
Plugging in |X|2 = −λm, we obtain div(X) = λ(n − 1). Taking the integral of both sides over M and using the
Divergence Theorem, we get that λ(n −1) vol(M) = 0. If λ = 0 then X = 0 by Proposition 6.2(1), so n is 1. Since
M is compact, this means that M = S1.

In the case where there exists a point p ∈ M such that X(p) = 0, we prove that there are no critical points
to p in M and we use Lemma 6.6 to show that M must beℝn.

By Definition 6.5, we want to show that there exists a vector V such that every geodesic γ with γ(0) = p,
γ(d(p, q)) = q satisfies g(γ̇(d(p, q), V) > 0. Consider the case whenm < 0. Let γ(t) be a geodesic with γ(0) = p
and let V = X. If φ(t) = g(Xγ(t), γ̇(t)), then since X(p) = 0, φ(0) must be 0, so φ(t) cannot be constantly
nonzero. Then by Proposition 6.2,

φ(t) = √−λm tanh(
√−λm
m

t).

If φ(t) = √−λm tanh(√−λmm t), then φ(t) > 0 when t > 0, so by Lemma 6.6 we have M = ℝn. This is a
contradiction because M is compact.

Ifm > 0, thenwe again let γ(t) be a geodesic with γ(0) = p. We let V = −X so that the differential equation
we have to solve is − ddtφ(t) =

1
mφ

2(t) + λ. The solutions are

φ(t) = √−λm tanh(−
√−λm
m

t) or φ(t) = ±√−λm.

φ(t) cannot be ±√−λm as in the case m < 0. If φ(t) = √−λm tanh(−√−λmm t), then φ(t) is positive for t > 0,
giving us a contradiction by Lemma 6.6. ✷

Proposition 6.8. On H3, Ric = −ρg where ρ > 0. Moreover, RicmX = Ag if and only if A + ρ = 0 and X = 0.

Proof. If (A+ ρ)m > 0, then by Proposition 6.2, there are no solutions. If (A+ ρ)m < 0, then by Proposition 6.7
there are no solutions. If A + ρ = 0, then by Proposition 6.2 we have X = 0. ✷

Corollary 6.9. There are no solutions to RicmX = Ag with A > 0 on a compact hyperbolic manifold.

Next, we give an example of a space (M, g) which is non-Euclidean, m-quasi Einstein and Einstein, and
X is not trivial.

Example 6.10. Consider H2 with the metric g = dr2 + e2rdx2 and let X = −m ∂
∂r . Then we have the following:

∇ ∂
∂r

∂
∂x
=
∂
∂x

, ∇ ∂
∂x

∂
∂x
= −e2r ∂

∂r
, ∇ ∂

∂r

∂
∂r
= 0.

Then, we have the following computations for the Ricci curvature:

Ric( ∂∂r ,
∂
∂x ) = 0, Ric( ∂∂r ,

∂
∂r ) = −1, Ric( ∂∂x ,

∂
∂x ) = −e

2r ,

so we see that our metric satisfies Ric = −1g. We have the following computations for RicmX :

RicmX (
∂
∂r ,

∂
∂x ) = 0, RicmX (

∂
∂r ,

∂
∂r ) = −1 −

1
m (−m)

2 = −1 − m, RicmX (
∂
∂x ,

∂
∂x ) = e

2r(−1 − m),

so we see that RicmX = (−1 − m)g.
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We are now ready to solve the m-quasi Einstein equation for Sj ×ℝ when j ≥ 2.

Proposition 6.11. Consider Sj × ℝ with the product metric and j ≥ 2, endowing Sj with a constant curvature
metric of Ricci curvature ρ, and ℝ with the flat metric. Then there exists a nontrivial m-quasi Einstein metric,
RicmX = Ag if and only if A = ρ and m < 0.

Proof. Let {X1, X2, ∂
∂r } be an orthonormal basis where {X1, X2} is in TS2 and { ∂∂r } is in Tℝ.

First, consider the case A − ρ = 0. Let γS2 be a great circle on S2 since the geodesics on S2 are the great
circles. We apply Proposition 6.2 (1). This says that X restricted to S2 must be 0. Letting γℝ be a unit speed
geodesic inℝ, we have

1
2
LXg(γ̇ℝ, γ̇ℝ) −

1
m
X∗ ⊗ X∗(γ̇ℝ, γ̇ℝ) = A = ρ.

If A − ρ = 0 and m < 0, then by Proposition 6.2(3), φγℝ (t) is either

√−ρm or √−ρm tanh(√
−ρm
m
(t + C))

which implies

X = √−ρm ∂
∂r

or √−ρm tanh(√
−ρm
m
(t + C)) ∂∂r

.

If A − ρ = 0 and m > 0, then by Proposition 6.2(2) there are no solutions.
If (A − ρ)m > 0, then applying Proposition 6.2(2) to γS2 in a similar fashion, we get that there are no

solutions.
Consider the case (A − ρ)m < 0. Since S2 has dimension greater than 1, we can choose γS2 perpendicular

to X at 0 so that φγS2 (0) = 0 and we apply Proposition 6.2(3) to γS2 ∈ S
2. Then φS2 (t) is either

±√−(A − ρ)m or √−(A − ρ)m tanh(
√(A − ρ)m

m
(t + C)).

φS2 (t) cannot be√−(A − ρ)m tanh(√(A−ρ)mm (t+C)) since γS2 must beperiodic andφS2 (t) cannot be√−(A − ρ)m
since φγS2 (0) = 0. This is a contradiction, so there are no solutions in this case as well. ✷

Now we generalize Proposition 6.11 to compact quotients of manifolds of the form M × N where M and
N are Einstein manifolds. We prove this in a different way from Proposition 6.11 because we cannot use the
argument that φ(t)must be periodic on Sj.

Lemma 6.12. Consider a compact quotient of M × N with the product metric where M is an Einstein manifold.
If there is a nontrivial m-quasi Einstein solution on such a space, then either X|M = 0 or M is one-dimensional.

Proof. Without loss of generality, we can assume thatM and N are simply connected because if either space
is not simply connected, then we can lift it to the universal cover. Let π : M ×N → (M × N)/Γ be the universal
covering map and let RicM = ρMgM. Let γM(t) be a unit speed geodesic in M. Then we have

1
2LXg(γ̇M , γ̇M) −

1
m
X∗ ⊗ X∗(γ̇M , γ̇M) = A − ρM .

We aim to show that either A − ρM = 0 orM = ℝ. IfM is notℝ thenM is not one-dimensional, so we can
choose γM to be perpendicular to X at 0. In this case, φγM (0) is zero, so φγM (t) cannot be constantly nonzero.
If (A − ρM)m > 0, then by Proposition 6.2(2), there are no complete solutions. If (A − ρM)m < 0, then by
Proposition 6.2(3) φγM (t) is

√−(A − ρM)m tanh(
√(A − ρM)m

m
(t + C)).

To show that φγM (t) cannot be √−(A − ρM)m tanh(√(A−ρM)mm (t + C)), we will use an argument similar to the
proof of Lemma 2.2.

Consider the set {π ∘ γM(t) : t ∈ ℝ}. Since this set is closed, φγM (t) has a maximal point tmax on this set.
Because the supremum of the tanh function is 1, we know that the maximum of φγM (t) on {π ∘ γM(t) : t ∈ ℝ}
is√−(A − ρM)m.
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Let β(t) be a geodesic of X with β(0) = γM(tmax) = √−(A − ρM)m and consider the set {π ∘ β(t) : t ∈ ℝ}.
Along β(t), φβ(t) is either √−(A − ρM)m or −√−(A − ρM)m tanh(√−(A−ρM)mm (t + C)). Since the supremum of
φβ(t) on {β(t) : t ∈ ℝ} is √−(A − ρM)m and the tanh function never achieves its maximum on its domain,
φβ(t)must be constantly√−(A − ρM)m on the set {π∘β(t) : t ∈ ℝ}. Since {π ∘ β(t) : t ∈ ℝ} = {π ∘ γM(t) : t ∈ ℝ},
φγM (t) is constant on {π ∘ γM(t) : t ∈ ℝ}. Thus, φγM (t) is constant. Since φγM (0) = 0, φγM (t) cannot be
±√−(A − ρM)m, and so we have arrived at a contradiction.

Thus either M = ℝ or A − ρM = 0. If A − ρM = 0, then φγM = 0 by Proposition 6.2(1), which implies that
X|M = 0. ✷

Now we can prove Theorem 1.6.

Proof of Theorem 1.6. Let π : M × N → (M × N)/Γ be the universal covering map and let RicM = ρMgM
and RicN = ρNgN . Let γM(t) be a unit speed geodesic in M and let γN(t) be a unit speed geodesic in N. By
Lemma 6.12,M is either one-dimensional or X|M = 0 and A − ρM = 0. By symmetry, either A − ρN = 0 and X|N
is zero, or N = ℝ.

Suppose without loss of generality that N = ℝ. Then

1
2LXg(γ̇N , γ̇N) −

1
m
X∗(γ̇N)X∗(γ̇N) = Ag.

By Proposition 6.2, A = 0, hence X = 0. If Am > 0, then there are no solutions, and if Am < 0, then

X = √−λm tanh(
√−λm
m
(t + C)) ∂∂r

or X = ±√−λm ∂
∂r

.

If we consider the set {π ∘ γN(t) : t ∈ ℝ} and use the same argument as above, we see that

X = √−λm tanh(
√−λm
m
(t + C)) ∂∂r

is not a solution. Thus, the only solutions are X = 0 when A = ρM = ρN ̸= 0, and X = ±√−Am ∂
∂r when either

N = ℝ or M = ℝ. ✷

7 Summary

In the following table, we summarize the solutions of locally homogeneous compact three-manifolds M3

which have quasi-Einstein metrics. In the first column, named “Manifold", we have the manifolds which act
cocompactly onM3. In the other columns we consider the different signs of m and A in our m-quasi Einstein
equation RicmX = Ag. If there are no solutions to the compact quotient of “Manifold", we write None. If the
only solutions are when X = 0, then we say Trivial, and if there are nontrivial solutions, then we say Exists.

Manifold m > 0 m > 0 m > 0 m < 0 m < 0 m < 0
A > 0 A = 0 A < 0 A > 0 A = 0 A < 0

ℝ3 None Trivial None None Trivial None
SU(2) Exists Exists Exists Exists None None
S̃L2(ℝ) None None None None Exists None
Nil None None Exists None None None
E(1, 1) None None None None None None
E(2) None None None None None None
H2 ×ℝ None None Exists None None None
S2 ×ℝ None None None Exists None None
H3 None None Trivial None None Trivial
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