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1 Introduction

Non-gradient m-quasi Einstein manifolds are of particular interest in the study of near-horizon geometries;
see [10], [11], and [13]. In this paper, we study non-gradient m-quasi Einstein manifolds as a generalization of
Einstein manifolds, gradient m-quasi Einstein manifolds, and Ricci solitons. In order to define the m-quasi
Einstein equation, we must first give the definition of the m-Bakry Emery Ricci tensor:

Definition 1.1. Let X be a vector field on a Riemannian manifold (M", g). The m-Bakry Emery tensor is
Ric} := Ric +1 Lxg- lX* ®X*
X 278 T,
where Ly g is the Lie derivative of g with respect to X, and X* : T,M - R, Y — g(X, Y).

If X = V¢ where ¢ : M — R is a smooth function, the m-Bakry Emery Ricci tensor is
. . 1
R1C$ := Ric+Hess ¢ - Ed('b ®do,

and we call this the gradient m-Bakry Emery Ricci tensor. Note that when ¢ is a constant, the gradient m-
Bakry Emery Ricci tensor is the Ricci tensor. If m = co, the m-Bakry Emery Ricci tensor becomes Ric +%L x8.

The co-Bakry Emery Ricci curvature was first studied by Lichnerowicz in 19711in [15], and Qian first studied
the gradient m-Bakry Emery Ricci curvature with m # oo in [23]. Bakry and Emery further studied the Bakry
Emery Ricci curvature in relation to diffusion processes in [2]. They also arise in the study of optimal transport,
Ricci flow, and general relativity. In [17], Lott gives topological consequences and relations to the measured
Gromov-Hausdorff limits to lower bounds on the Bakry Emery Ricci curvature. Wei-Wylie prove Bakry Emery
Ricci curvature analogs of the comparison theorems and the volume comparison theorem in [25]. There have
been many more papers written about the subject, too many to summarize here. Now, we are ready to define
the m-quasi Einstein equation.

Definition 1.2. A manifold (M, g) satisfies the m-quasi Einstein equation if Ric} = Ag for some constant A.
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Remark 1.3. Many authors consider only the gradient case and/or the manifolds with boundary case of the
m-quasi Einstein equation. We will assume neither condition in this paper.

The case m = co of the m-quasi Einstein equation corresponds to the Ricci soliton equation, Ric +%L xg =
Ag.Ivey showed in [9] that compact Ricci solitons must be shrinking, i.e. A must be positive. Perelman showed
in [19] that compact shrinking Ricci solitons must be gradient. Then Petersen-Wylie showed in [21] that any
compact locally homogeneous gradient Ricci soliton is Einstein. Therefore, by Ivey, Perelman, and Petersen—
Wylie, there are no non-Einstein non-trivial locally homogeneous compact Ricci solitons.

If (M, g) is m-quasi Einstein and if X = V¢, then we call the space gradient m-quasi Einstein. If X = 0,
then we call the space trivial. Our first result is the following theorem and gives us a classification of manifolds
which are Einstein and m-quasi Einstein.

Theorem 1.4. Let M™ be a compact Einstein manifold. Then M is non-trivial m-quasi Einstein for m # oo if and
onlyif M is S*.

Gradient m-quasi Einstein metrics with m > 0 where first systematically considered by Case-Shu-Wei
in [4] and Kim—Kim in [12]. They show that gradient m-quasi Einstein metrics correspond to warped product
Einstein metrics. In [4, Theorem 2.1], Case-Shu-Wei prove that a compact gradient m-quasi Einstein with
constant curvature must be trivial if m > 0. Since locally homogeneous manifolds have constant scalar cur-
vature, this shows that compact locally homogeneous manifolds which satisfy Ricg = Ag with m > 0 must
be trivial. The case m < 0 follows from [22, Theorem 1.9]. In [6, Theorem 1.3], He—Petersen—-Wylie prove that
if (M3, g) has no boundary, satisfies Ricg = Ag with m > 1, and has constant scalar curvature, then M? is a
quotient of $3, S? x R, R3, H? x R, or H? with the standard metric. In [7, Theorem 1.4], He—Petersen-Wylie
show that if (M", g) is a non-compact Ricci soliton with m > 0 and A < 0, under certain conditions, M ad-
mits a non-trivial homogeneous gradient m-quasi Einstein (Ric(’; = Ag) one-dimensional extension. In [14,
Theorem 1.1], Lafuente proves a converse to this result.

On the other hand, Chen-Liang—Zhu construct some examples of non-gradient m-quasi Einstein mani-
folds in [5]. In [13, Corollary 4.1,4.2], Kunduri-Lucietti study the non-gradient m-quasi Einstein metrics with
m = 2 in the context of vacuum, homogeneous near-horizon geometries, which gives us motivation to study
non-gradient m-quasi Einstein metrics.

Our main theorems give us a characterization of Lie groups which have a discrete group of isometries
acting cocompactly and which satisfy Ric}y = Ag.

Theorem 1.5. Let G be a Lie group and let I be a discrete group of isometries which acts cocompactly on G. Let
X be a vector field which is invariant under I'. If (G, g, X) satisfies %Lxg - %X* ® X* = q, where q and g are left
invariant, then X is left invariant. If we also assume that tr(q o ady) = 0, then X is a Killing vector field.

Theorem 1.5 was proven by Chen-Liang-Zhu in [5, Theorem 1.1] in the case when G is a compact Lie
group and g = Ric. Our next theorem gives us a characterization of the product of Einstein manifolds of any
dimension which satisfy the m-quasi Einstein equation.

Theorem 1.6. Consider the compact quotient of M x N with the product metric, where M and N are simply
connected complete Einstein manifolds. Then the only nontrivial solutions to Ricy = Ag occur when either M is
RorNisR.

We apply the results above to classify the m-quasi Einstein solutions for locally homogeneous 3-manifolds
which admit compact quotient.

Theorem 1.7. Let M? be a compact locally homogeneous Riemannian manifold with Ric} = Ag.

(1) If m > 0and A > 0, then there exist m-quasi Einstein solutions if and only if M> is a compact quotient of
SU(2).

(2 If m > 0 and A = 0, then there exist solutions if and only if M? is a compact quotient of SU(2) or R3,
where the solution on R3 is X = 0.
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(3) If m > 0 and A < 0, then there exist solutions if and only if M° is a compact quotient of SU(2), Nil, or
H? xR.
(4) If m < 0and A > 0, then there exist solutions if and only if M? is a compact quotient of SU(2) or §? x RR.

(5) If m < 0 and A = 0, then there exist solutions if and only if M3 is a compact quotient of R3 or SL;(R),
where the solution on R is trivial.

(6) If m < 0 and A < 0, then there are no m-quasi Einstein solutions on M>.

Remark 1.8. In a related paper, Buttsworth [3] studied the prescribed Ricci tensor problem on these spaces.
This result when m = 2 was also proven by Kunduri—Lucietti in [13].

If M™ is a homogeneous Einstein manifold, where Ric = Ag, then if A > 0, then M is compact by Myers’
Theorem; if A = 0, then M is flat by Alekseevskii-Kimel’fel’d [1], and if A < 0, then M is not compact by
Bochner’s Theorem, which can be found in Section 5. If we compare this to Theorem 1.7, we see that this
structure does not hold for m-quasi Einstein metrics. When A = 0, there exist solutions on (compact quotients
of) SU(2), which are not flat. Similarly, in the case A < 0 there exist solutions on compact quotients of SU(2).

In [27, Lemma 4.4], we see that if M" is a compact manifold with infinite fundamental group satisfying
Ric(’g = Ag where A = 0, with m = 1 — n < 0, then the universal cover has a warped product splitting. By

Theorem 1.7, there exist solutions for the compact quotient of SL,(R) if M" satisfies Ric} = Agwhenm < 0
and A = 0. This is interesting because SL; (R) clearly does not split.

We organize the paper in the following way. In Section 3, we give a characterization, due to Singer, of lo-
cally homogeneous 3-manifolds. We then explain our approach for the rest of the paper to compute solutions
to the m-quasi Einstein equation.

In Section 2, we introduce theory which simplifies the m-quasi Einstein equation when M™ is a unimod-
ular Lie group, and we compute the solutions in Section 4. In Section 5, we discuss using the Ric}} version of
Myers’ Theorem and the Splitting Theorem in order to study the case when m > 0, A > 0 as in Theorem 1.7.

In Section 6, we analyze the equation %L X8 - %X *® X* = Ag in order to classify the m-quasi Einstein
equations of the locally homogeneous 3-manifolds that admit compact quotient which are not Lie groups.
We also classify the nontrivial m-quasi Einstein metrics that can be the product of two Einstein metrics in
Section 6. Then, we finish our classification and we also show that there are no solutions to Ric&" = Agon
compact hyperbolic manifolds of any dimension. In Section 7, we give a table which summarizes our results.

2 Unimodular Lie groups

In [5, Theorem 1.1], Chen-Liang—Zhu proved that if M is a compact Lie group with a left-invariant metric g,
and if X is a vector field on M such that Ricy = Ag for m # 0, then X is a left-invariant. Furthermore, X is a
Killing vector field by [5, Theorem 2.3].

Chen-Liang-Zhu prove [5, Theorem 1.1] by first proving that X is left-invariant, and then proving that X is
Killing using properties of the Ricci tensor. We will consider %L X8 - %X *® X* = g where q is a left-invariant
tensor, which is more general than Ric + %L x8— %X *®X* = Ag. Rather than considering a compact Lie group
G, we assume G admits a discrete group of isometries I' which acts cocompactly on G.

Next, we give the definition for ady in order to state a linear algebra fact to prove that X is Killing given
that X is a left-invariant vector field which satisfies Ricy = Ag.

Definition 2.1. If G is a Lie group and if g is the Lie algebra of G, then we define ady : g — g by adx(Y) =
[X, Y], where X, Y are vector fields in g.

If Gis a Lie group which admits a discrete subgroup I' with compact quotient, then G must be unimodular.
It is a linear algebra fact that if G is a unimodular Lie group, then there exists a basis {X;}}_; of g, the Lie
Algebra of G, such that g(adx(X;), X;) = 0 for all i. We will use these facts about Lie groups to prove our main
lemmas, which are generalizations of Chen-Liang-Zhu’s [5, Theorem 1.1] and [5, Theorem 2.3].
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Lemma 2.2. Let G be a connected Lie group and let I be a discrete group of isometries which acts cocompactly
on G. Let X be a vector field which is invariant under I'. If (G, g, X) satisfies %L X8 - %X *® X* = q, where q and
g are left invariant, then X is a left-invariant vector field.

Proof. Because G is a Lie group which admits a discrete subgroup with compact quotient, G is unimodular.
Let M = G/T and let 7 : G — M. By our discussion above, we can choose a basis {X;} of the Lie algebra of
G such that g(adx(X;), Xj) = O forall i. Let X = Z,’:Zl fiXi where fx : G — R. Using the technique from [5,
Theorem 1.1], for all i we obtain

1 1., o, L 1
ELXg(Xi,Xi) - =X"oX"(X;, Xi) = Xifi + kag(Vx,-Xk,Xi) - =f?
m = m

L 1 1 1
= Xifi + k;fkg([Xi, Xil, X;) - Efiz = Xifi + g(-adx(X;), X;) - Efl-z = Xifi - Efiz-
Since M is compact, there exists a maximum and a minimum of the function f; on M. Let r be a point in M
such that f;(r) is maximal and let s be a point in M such that f;(s) is minimal and let g(71(X;), 7(X;)) = A;. Then

M= Xifitn) = —f20 =~ 20 and A= Xifi(s) - —£2(5) = = f()

Thus fiz(r) = fiz(s) = —mA;. We now rule out the case fi(r) = —fi(s) in order to show that f; must be constant.

Let c(t) be an integral curve of X;. Then along 7 » ¢c(t) we have fi’ (t) - % fiz(t) = A;. Solving this equation
(see Lemma 2.3), we obtain fi(t) = vV-A;m, —/-A;m, 0, or —mtanh(@(t +0)).

Assume for the sake of contradiction that fi(t) is not constant, i.e. fi(t) = —v/-A;m tanh(@(t +0))
where C is a constant. Let 77 o c(¢;) be a sequence of points such that t; — oo. Since M is compact, there
exists a subsequence of {7 o c(t;)} which converges to a point on M. The set {rr o c(¢t) : t € R} is closed, hence
fi has a maximal point t,,4x on this set. The supremum of the tanh function is 1, thus the maximum of f;(t)
on {moc(t) : t € R} is v/-A;m. Let b(t) be an integral curve of X; such that b(0) = c(tmax) = m and
consider the set {r o b(t) : t € R}. Along b(t), fi(t) is either /—-A;m or —mtanh(@(t + C)). Since the
supremum of fi(t) on {0 b(t) : t € R} is +/=A;m and tanh never achieves its maximum on its domain, f;(t)
must be constantly v/—A;m on the set {0 b(t) : t € R}. Finally, since {mob(t): t € R} = {moc(t): t € R},
fi(t) is constant on {m o c(t) : t € R}. Then, since f;(t) is constant along every integral curve and since G is
connected, fi(t) is constant. O

Lemma 2.3. Let f'(t) - %fz(t) = A, where f : R — Ris defined for all t in R and A and m are constants.

(1) IfA =0, then f(t) = 0.
(2) If Am > 0, then there are no solutions f.
(3) IfAm < 0, then f(t) = +V-Am or V-Am tanh(—“"/l‘m(t +0)).

Proof. Let A = 0. Clearly f(t) = 0 is a solution. If f(0) is not 0, then f'(t) = f(t)>/m, hence f(t) = (C - t/m)™"
for some real number C. However, at t = mC, t blows up, which is a contradiction since f exists for all time.
2
Let Am > 0. Then f'(t) = ﬂ% + A is never zero. Integrating and rearranging, we obtain

JH6) B m F(0) B m 1/ B
J—m+Adt_Jldt e Tjri(_i)zdt_t-‘-c End \than (W)—t+C,
" Am

hence f(t) = VAm tan( \/g (t+C )). Since the tan function does not exist everywhere, f(t) also does not exist
everywhere. Thus for Am > 0 there are no solutions.

Let Am < 0; then clearly f(t) = +V-Am is a solution to the equation. Assume that f(0) is not +vV-Am. Then
we integrate and rearrange as follows:

£ mo L -
Ifz(t) dt=J1dt = \/A_lnl \/f‘(?|:t+c - |—;(V?’262*T’"(t+c).
SntA 2V-Am 114 S 1+ L0



DE GRUYTER Lim, Locally homogeneous non-gradient quasi-Einstein 3-manifolds = 83

1- SO - - __fo
If I 25RO, then fi) = \/_—Am(l—ij) = V-Amtanh (¢ + 0)). 1f Y
1+ == 1+e2~m - (* 1+ L9
VAm VAm
2 Y=Am (¢ Z‘ 1+e2 ‘/;,T”'(HC) . . . o ps "
27w O then f(t) = V—Am(*ez?m) and f(t) does not exist at t = —C, which is a contradiction. O
1-e?~m U+

Lemma 2.4. Let G be a unimodular Lie group with left-invariant metric g. If X is left-invariant, tr(q - adx) = 0,
and 1 Lxg - LX* ® X* = q where q is left-invariant, then X is Killing.

Proof. Let {X;} be an orthonormal basis relative to g and let X = a1 X1 + a> X, + - - - + a,X;,. Then, plugging in
(Xi, Xj) into g = 3Lxg - 2 X* ® X*, we get
1 1
q(X;, Xj) = E(g([Xin],Xj) +8([Xj, X1, Xi) - Eg(X, Xi)g(X, Xj).

We denote the projection of X; onto X by projy X;. Since projy X; = g“l‘;lif)x and adx(X;) = [X, X;], we have

X|?
a(Xi, X) = 2 (8ladx(Xp, X;) + gladx(X,), X) ~ 1 g(projy Xi, ;).

Thus we have the following equation, where we view g, adx, and projy as matrices:
1 X2 .
q= z(adx +ad}) - . broix.
We denote by “-" the matrix multiplication. Multiplying both sides by the matrix adx we get
1 X|? 1 X|?
q-adyx = E(adx + ad)T() -ady - % projy -adx = E(ad)Z( + ad)T( -ady) - % projy -ady.
Taking the trace of both sides, we get
1 2 T X2 .
tr(q - ady) = 5 tr (ady + ady - adx) - . tr(projy -ady).

Since tr(q - adx) = 0 and tr(A?) = tr((AT)?) for any n x n matrix A, we obtain

1 12, KX :
0= 7 tr ((adx + ady)?) - e tr(projy -ady).

Now, plugging in X;, one of the orthonormal basis vectors into ady - projy and using that tr(AB) = tr(BA) for
any two matrices A and B, we get ady - projx(X;) = l)‘(’—l"z[X, X] = 0. Thus we have 0 = % tr ((adx + ad}T()z).
Since ady + ad)T( is symmetric, we can diagonalize adyx + ad)T(, and we call the diagonalized matrix D.
Then tr((adx + ad})?) = tr(D?). Since the eigenvalues in D? are nonnegative and tr(D?) is the sum of the
eigenenvalues of D?, we obtain %(adx + ad)T() = 0. Thus X is Killing. O

Next, we apply Lemma 2.2 to metrics which satisfy Ric}' = Ag.

Theorem 2.5. Let G be a Lie group and let I' be a discrete group of isometries which acts cocompactly on G,
where m : G — G/I'is a covering map. If (G/T, g, X) satisfies Ric)’zl = Ag, then X = m*(X) is left invariant and
Killing.

Proof. Let g = m*(g) be the pullback metric of g. Since 7 is a local isometry, Ric%l = Ag. Since Ag — Ricg is
left-invariant, by Lemmas 2.2 and 2.4, X is left-invariant and Killing. m|

We immediately get the following corollary, which we will use throughout Section 4.

Corollary 2.6. If M" is a unimodular Lie group and if Ricy = Ag with X a left-invariant vector field and g a
left-invariant metric, then X is a Killing field.

Lemma 2.7. Suppose that (M", g) is a Lie group which satisfies Ric} = Ag where X is nonzero, left-invariant,
and Killing. If {X1, X», . .., Xy} is an eigenbasis of the Ricci tensor of left invariant fields, then X is a multiple of
one of the eigenbasis vectors (i.e. there exists an m with 1 < m < n such that X = anXn).



84 —— Lim, Locally homogeneous non-gradient quasi-Einstein 3-manifolds DE GRUYTER

Proof. Since X is left-invariant and Killing, we have Ric¥ (X;, X;) = —%aiaj forl1 <i,j<nandi # j. Now
Ric{(X;, X;) = Ag(X;, X;) = 0 for all sets of i, j if and only if at least n — 1 sets of ay are 0. Thus, X = a;, Xy, for
some mwith1l <m < n. O

3 Preliminaries about locally homogeneous 3-manifolds

In this section, we will discuss locally homogeneous three-manifolds, which we will use to prove our main
results. We first give definitions of locally homogeneous and homogeneous, which can be found in [8].

Definition 3.1. Let (M, g) be a Riemmanian manifold. Then (M, g) is locally homogeneous if for every pair of
points x, y € M, there exists neighborhoods Uy of x and V), of y such that there is an isometry 1) mapping

(Ux, 8lu,) to (Vy, glv,), with (x) = y.

Definition 3.2. Let (M, g) be a Riemmanian manifold. Then (M, g) is homogeneous if for every pair of points
X,y € M, there exists an isometry i with (x) = y.

According to Singer in [24], for every locally homogeneous geometry (M?>, g), the universal cover (I\p/f§ ,8)
is homogeneous. If (M?, g) is a homogeneous, simply connected manifold that admits a compact quotient,
then it is one of the following: R3, SU(2), SL>(R), Nil, E(1, 1), E(2), H3, S? x R, or H? x R; see [8, Table 1].

Since X is a left-invariant solution to Ric}l? = Ag if and only if dm(X) is a solution to Ric} = Ag, where
7 : M — Mis the universal covering map, we study these nine geometries in order to classify m-quasi Einstein
metrics on locally homogeneous three manifolds. Of the nine geometries, R3, SU(2), Smli), Nil, E(1, 1), and
E(2) are Lie groups. We can also use that H? is a Lie group to study H? x R. We will explicitly calculate the
metrics on the Lie groups which satisfy Ric} = Ag using the methods of Section 2. We will study the equation
1Lxg - 2 X* ® X* = Ag in order to calculate the m-quasi Einstein metrics on S? x R and H>.

Throughout this paper, we will use the following computations by Milnor:

Lemma 3.3 ([18, pages 305 and 307]). Let G be a 3-dimensional unimodular Lie group with left invariant met-
ric. If L is self-adjoint, then there exists an orthonormal basis {X1, X2, X3} consisting of eigenvectors LX; = A} X;.
We obtain the following:

(X2, X531 =A1X1, [X3,X1] =A%y, [X1,X2] =A5X5.

The following table gives the signs of A} for SU(2), SL>(R), E(2), E(1, 1), Nil, and R3.

Liegroup Aj A A3

Nil A;>0 A3=0 A3=0

SLIR)  AI>0 A;>0 A3<0
E1,1) A]>0 A3<0 A;=0

E(2) A;>0 23>0 A;=0
R’ A;=0 A3=0 A;=0
SU(2) A1>0 A;>0 23>0
Table 1

Fromnow on, let A; = |A}|. Because X is Killing for unimodular Lie groups with Ric)r? = Ag, it will be useful
to calculate £xg.

Proposition 3.4. Let X = a1X; + a> X, + as X3 be a left-invariant vector field on a 3-dimensional unimodular
Lie group with left invariant metric. With the notation as in Lemma 3.3, we have Lxg(X;, X;) = O for all i and

Lxg(X1, X)) = —azA; + asA], Lxg(X1,X3) =-aA] + axA;, Lxg(Xz,X3) = —ai1A] + aiA3.
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Proof. We have the following computation for £xg:

Lx8(Xi, Xj) = g(Vx,(a1X1 + a2Xa + a3X3), Xj) + 8(Vx; (a1 X1 + a2 X2 + a3 X3), Xi)
= z ax8(Vx, Xk, Xj) + axg(Vx; Xk, Xi)
3

=Y 8(Vx Xi + [Xi, Xil, X)) + g(Vx, X; + [Xj, Xi], X;)
X

= Z arg([Xi, Xil, X;) + axg([Xj, X, Xi) + DXrg(X;, X;j)
X

= Z arg([Xi, Xil, Xj) + arg([Xj, Xil, Xi).
3

Using Lemma 3.3 we obtain the assertion. m]

We recall the definition of the Ricci quadratic form r(x) as introduced by Milnor in [18], and the signatures
of the Ricci forms of Nil, E(1, 1), Sm), E(2), R3, and SU(2) when the metric is left invariant.

Definition 3.5. The Ricci quadratic form r(X) takes vectors X € TM to R and is defined as g(r(X), Y) =
Ric(X, Y)forall Y € TM.
The collection of signs of r(e;), namely {sign(r(e,-))}lf’zl, is called the signature of the quadratic form r,

where {ei};1 , is any orthonormal basis for the tangent space.

Lie group r(eq) r(ez) r(es) Reference
Nil r(e1) >0 r(e;) <0 r(e3) <0 [18, Corollary 4.6]
E(1,1), SL,(R) r(e) >0  r(e) <0 r(e3)<0

r(e1) =0 r(e) =0 r(es) <0 [18, Corollary 4.7]
E(2) r(ey) >0 r(ez) <0 r(es) <0 [18, Corollary 4.8]
R3 r(e1)=0< r(ez)=0 r(e3)<0
SU(2) r(ey) >0 r(e2) >0 r(e3)>0

r(eq) >0 r(e2) =0 r(e3)=0

r(e1) >0 r(ez) <0 r(es) <0 [18, Corollary 4.5]
Table 2

4 m-quasi Einstein solutions for Nil, SL, R, E(1, 1), E(2) and H?> x R

In this section we compute solutions to the m-quasi Einstein equation for the Lie groups Nil, SL, (R), E(1, 1),
and E(2). We also compute solutions to H? x R, using the Lie group structure of H2. We use Tables 1 and 2
and the next remark to find examples of X which give us Ric}f} = Ag form > 0and A < 0 for the space Nil.

Remark 4.1. By [18, Corollary 4.5], for any left invariant metric on Nil, the principal Ricci curvatures satisfy
Ir(e)l = |r(e2)| = Ir(es)l = Ipl.

Proposition 4.2. Consider Nil with Ric§ = Ag. If g is a left-invariant metric and if X is a left-invariant vector
field, then there exist examples of X such that Ricy = Agif and only if A < 0 and m > 0.

Proof. Let {X1, X2, X3} be an orthonormal basis with Ric(X1, X1) = p, Ric(X,, X») = —p, and Ric(X3, X3) =
—p as in Table 2 and Remark 4.1. Let X = a1X; + a,X, + a3 X5 where a;, a,, and as are all constants. By
Corollary 2.6, X is a Killing field, so we set Lxg(X;, X;) = O forall i, j = 1, 2, 3 as follows:

Lxg(X1,X2) =asA =0, Lxg(X1,X3)=-aA;1 =0
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where Lxg(Xi, Xj) is zero for every other combination of i, j, by definition of Nil. Thus, a, = a3 = 0. We
compute Ric¥ as follows:

a=-p, Ric}(X3,X3)=-p- xa}=-p.

m

Ricy(X1,X1) =p - &ai, Ric¥(X2,X2)=-p- 4
Thus, Ric)’? = Agifand only if X = +1/2mpX;. In thiscase,m > 0and A = —-p < 0. ]
Now we find examples of X which satisfy Ric)’? = Ag for the spaces E(1, 1) and Sm).

Proposition 4.3. Consider SL>(R). If g is a left-invariant metric and if X is a left-invariant vector field, then there
exist examples of Ric} = Agifandonlyifm <0and A = 0.

Proof. Let g be a left-invariant metric and let X be a left-invariant vector field, where X = a1 X1 + a,X> + as X3
with {X1, X5, X3} an orthonormal basis. By Corollary 2.6, X must be a Killing field if Ric)’? = Ag, so we set
Lxg(Xi, X;) =0foralli,j=1,2, 3 as follows:

Lxg(X1,X2) =az3(A1 —2A3) =0, Lxg(X1,X3) =ax(-A1 -A3) =0, Lxg(X2,X3)=ai(Ay+A3) =

where all other Lxg(X;, Xj) = 0 by properties of SL>(R). By the above, we must have a; = a, = 0 and either
as = 001’A1 = /12.
By Table 2, the signature for the Ricci form is (+, —, -) or (0, 0, —). If the Ricci form is (+, —, -), let
| Ric(X;, Xi)| = p;. Then, plugging in (X;, X;) where i,j = 1, 2, 3 into Ric)’? = Ag, we obtain
Ric(X1,X1) =p1 - =aj =p1, RicP(X2,X2) =-psr - ta3=-p,, RicP(X3,X3)=-p3-La3.
In this case, we cannot have Ric} = Ag since Ric§ (X1, X1) > 0 and Ric{(X>, X,) < 0.

If the signature of the Ricci form is (0, 0, —), then we obtain

RicY (X1, X1) = —a] =0, Ricg(Xp, Xy) = -ja5 =0, Ric (X3, X3) = —p3 - %a3.

m m
Then, Ric)’? = Agifand onlyif as = \/—=mp3, A = 0,and m < 0. O

Proposition 4.4. Consider E(1, 1). If g is a left-invariant metric and if X is a left-invariant vector field, then there
are no solutions to Ric§ = Ag.

Proof. Let g be a left-invariant metric and let X be a left-invariant vector field, where X = a1 X1 + a»X> + as X3
with {X1, X», X3} an orthonormal basis. By Corollary 2.6, X must be a Killing field if Ric)’? = Ag, so we set
Lxg(Xi, X;) =0foralli,j=1,2, 3 as follows:

Lxg(X1,X2) =as3(A2+A1) =0, Lxg(X1,X3)=-a1A; =0, Lxg(X2,X3)=-aA1=0

where all other £xg(X;, Xj) = 0 by properties of E(1, 1). By the three equations above, a; = a; = as = 0. By
Table 2, the signature for the Ricci form is (+, -, =) or (0, 0, —). If the signatureis (+, —, -), let | Ric(X;, X;)| = p;.
Then, plugging in all pairs (X;, X;) with i,j = 1, 2, 3, we obtain

RicR(X1,X1) =p1 - tal =p1, RicF(X2,X2)=-p2-2a3=-py, Ricj(X3,X3)=-p3-2a3=-ps.

Ric§ cannot equal Ag since Ric¥ (X1, X1) > 0 and Ric¥ (X, X;) < 0.
If the signature is (0, 0, —), then we get the following set of equations:

RicY (X1, X1) = —a] =0, Ric{(Xp, X5) = -ja5 =0, Ric (X3, X3) = —p3 - %a3.

m m
In this case, we cannot have Ricy = Ag since Ric¥ (X1, X1) = Ric§ (X5, X») = 0 and Ric¥ (X3, X3) < 0. O
Finally, we find that there are no examples of X on E(2) which give us Ric)’? = Ag.

Proposition 4.5. Consider E(2). If g is a left-invariant metric and if X is a left-invariant vector field, then there
are no solutions to Ric§ = Ag.
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Proof. Let g be a left-invariant metric and let X be a left-invariant vector field, where X = a1 X1 + a, X, + az X3
with {X1, X,, X3} an orthonormal basis. By Corollary 2.6, X must be a Killing field if Ric}} = Ag, so we set
Lxg(Xi, Xj) =0foralli,j=1,2,3 as follows:

Lxg(X1,X2) =a3(M1 -2A3) =0, Lxg(X1,X3)=-axA1 =0, Lxg(Xs,X3)=a;1A; =0.

All other Lxg(X;, Xj) = 0 by properties of E(2). By the three equations above, a; = a, = 0 and either A; = A,
or as = 0. By Table 2, the signature for the Ricci form is (+, —, —). Letting | Ric(X;, X;)| = pi, we plug in all pairs
(Xi, X;) with i,j = 1, 2, 3 as follows:

Ric(X1,X1) =p1 - 2af =p1, RicF(X2,X2) =—p2— a3, RicP(X3,X3)=-p3 - Lal.
Ric}f cannot equal Ag since Ricy (X1, X1) > 0 and Ric} (X, X») < 0. O

Proposition 4.6. Consider R3. If g is a left-invariant metric and if X is a left-invariant vector field, then the only
solutions of Ric} = Ag occur whenm + 0, A =0,and X = 0.

Proof. Let g be a left-invariant metric and let X be a left-invariant vector field, where X = a1 X1 + a> X5 + a3 X3
with {X1, X, X5} an orthonormal basis of left-invariant vector fields. By Corollary 2.6, X must be a Killing field
if Ricy = Ag. By [18, page 307], Lxg(X;, X;) = Oforall i, j = 1, 2, 3 and Ric(X;, X;) = O foralli,j =1, 2, 3, so
we have the following sets of equations for Ric}" (Xi, Xj):

Ricf (X1, X1) = —%a%, Ric¥ (X,, X,) = —%a%, Ric¥ (X3, X3) = —%a%.
Setting Ricg'; = Ag, solutions exist only when m # 0, A =0, and X = 0. O

Remark 4.7. Since IR? is Ricci flat, Proposition 4.6 also follows from Proposition 6.7.

Proposition 4.8. If g is a left-invariant metric on H?> x R and if X is a left-invariant vector field, then there exist
solutions to Riclf{ = Agifandonlyif A <0andm > 0.

Proof. Let {X1, X, £} be an orthonormal basis where {X1, X,} are in TH? and £ isin TR. Let X = a1 X; +
a»X, + as %. We compute the Lie derivatives as follows:

Lxg(X1, X1) = 28(Vx, X, X1) = 2g(-a2X>,X1) =0

Lx8(X2, X2) = 28(Vx, X, X3) = 28(-a1Xa + a2 X1, X3) = -2a4

Lxg(2,2)=0

Lxg(X1,X2) = g(Vx, X, X1) + 8(Vx, X, X1) = g(-a1 Xy + a2 X1, X1) = az

Lxg(X2, &) = g(Vx,X, 2) +8(Vo X, Xz) = 0.

By Corollary 2.6, X must be a Killing field, so we set Lxg = 0 to get that a; = a, = 0. We have Ric(X1, X;) =

Ric(X,, X;) = -pg where p > 0, and Ric(%, %) = 0, SO we can compute Ric}’? as follows:

Ric¥ (X1, X1) = -p, Ric} (X2, X2) = -p, RiC;'?(a%, %) = —%aﬁ.
Thus, Ric} = Agifand only if X = J_r«/pm%, where A = —p <0Oand m > 0. O
We show that we can find examples of X such that Ric}{ = 0 on SU(2) with left-invariant metric.

Proposition 4.9. Consider SU(2). If g is a left-invariant metric and if X is a left-invariant vector field, then there
exist solutions to Ricy' = Ag if and only if either m > O with A any real number or m < O with A > 0.

Proof. Let X = a1X; + a,X, + azX3. By Lemma 2.7, at least two a;’s must be zero. By Corollary 2.6, X is a
Killing field, so we compute £xg using Proposition 3.4 as follows:

Lxg(X1,X2) =as(M - A2), Lxg8(X2,X3)=a1(Ay -23), Lxg(X1,X3)=a(A3-A).
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By Table 2, the siganture of the Ricci form is either (+, +, +), (+, 0, 0), or (+, —, ). Let | Ric(X;, X;)) = p;
fori=1, 2, 3.If the signature is (+, +, +), then we have the following computations for Ric:

Ricy (X1, X1) = p1 — a3, R} (X2, X2) = p2 - a5, Rick(X3,X3) = p3 — ;a3

Setting Ric} = Ag, if all three a;’s are zero, then X = 0 and Ric} = pg wherep =p1 =py =p3.1fa; =a, =0

and a3 # 0,and p = p; = p,, then X = +/m(p3 — p)X3. Similarly, if a; = a3 = 0, and p = p; = p3, then

X = +\/m(p, —p)X,.If ay = a3 = 0, and p = p, = p3, then X = ++/m(p1 — p)X;. In these cases, Ric} = pg,

where p > 0, and m can be positive or negative, depending on the sign of p5 —p, p> —p, and p;1 —p, respectively.
If the signature is (+, 0, 0), then

Ricj (X1, X1) =p1 - af, Ric§(Xy,X2)=-1aj, Ric(X3,X3)=-%a3.

The solutions to the above equations are X = ++/pmX; and Ricg(" = 0. In this case, m must be positive.
If the signature is (+, —, —), then

RicR (X1, X1) =p1 - a?, Ricf(X2,X2) =-p2— 2a35, Ricy(X3,X3) =-p3 - Lal.

Setting Ricy = Ag, the solutions are X = ++/m(p + p1)X1, where p = p, = ps3. In this case, Ricy = -pgand m
must be positive. O

5 Relations to the Splitting Theorem, Myers’ Theorem and
Bochner’s Theorem

By Khuri-Woolgar-Wylie [11, Theorem 2], the Splitting Theorem holds for Ric¥ if m > 0. We also recall that
if (M, g) is a noncompact homogenous space, then it contains a line. Using the Ric§ version of the Splitting
Theorem and the fact about noncompact homogeneous spaces, we show that of the 9 geometries which are
3-dimensional and homogeneous, the ones which do not split do not have solutions if m > 0 and A > 0.

Proposition 5.1. H>, SL, R, NiLE(2), H? x R, and E(1, 1) do not admit metrics such that Ric} = Ag form > 0
and A > 0.

Proof. H3,SL, R, Nil,E(2), and E(1, 1) all admit lines and do not split as N x R. Thus, the proposition follows
by the Bakry Emery Ricci version of the Splitting Theorem by Khuri-Woolgar-Wylie.

In the case of H? x R, by the Splitting Theorem, Ric%" > 0 with m > 0 if and only if Ric%" >0withm >0
on H?. Now H? admits lines and does not split as N x R, so the proposition follows. O

In [23, Theorem 5], Qian proves that Myers’ Theorem holds for the gradient m-Bakry Emery Ricci curvature
when m > 0. Limoncu showed in [16, Theorem 1.2] that Myers’ Theorem holds for the non-gradient m-Bakry
Emery Ricci curvature when m > 0. In [10] Khuri-Woolgar use Limoncu’s version of Myers’ Theorem to study
Near Horizon Geometries. Using this version of Myers’ Theorem, we see that since S? x R and R3 are both
noncompact, S? x R and R? do not admit metrics such that Ricg(" = Agform > 0and A > 0. In fact, since
SU(2) is the only compact simply connected three-dimensional geometry, it is the only one that can admit a
metric such that Ricf = Ag form >0and A > 0.

We discuss the case m < 0, A < 0 of the m-quasi Einstein metric. Bochner proved that if (M, g) is compact,
oriented and if Ric < 0, then there are no nontrivial Killing fields; see [20, Theorem 36]. This leads to

Proposition 5.2. If M" is a compact locally homogeneous Riemannian manifold, and if M™ is a compact quo-
tient of a Lie group G, then there are no solutions to Ricy = Agifm <0and A < 0.

Proof. By Lemma 2.5, X is Killing on G. Then, Ric = Ag+ - X* ®X* which is negative, giving us a contradiction
by Bochner’s Theorem. O

Corollary 5.3. If M> is a compact locally homogeneous Riemannian manifold which satisfies Ricy = Ag with
m < 0and A < 0, then M> cannot be a compact quotient of R3, SU(2), SL,(R), Nil, E(1, 1), H> x R, or E(2).
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6 The m-quasi Einstein equation on geodesics

Our next definition and proposition deal with analyzing the equation %L X8 - %X *® X* = Ag, which we will
use to find m-quasi Einstein solutions to S? x R and H>. We will also prove theorems for more general spaces
using this analysis.

Definition 6.1. Let y(t) be a unit speed geodesic. We define ¢, (t) as g(Xy (), y(t)). Note that ¢, (t) is well de-
fined for all ¢ such that y(¢t) is defined. If it is clear which y(t) we are using to define ¢, (t), then we write ¢(t)
rather than ¢, (t).

Proposition 6.2. Let (M, g) be a complete Riemannian manifold and let y : (-co, 0c0) — M be a unit speed
geodesic. Suppose the equation

1 o1 ) . .
5Lx8(, ) = 8, V)g(X. y) = Ag(y, V)
is satisfied at every point on y.

(1) IfA =0 for m # 0 at every point along y, then ¢(t) = 0.
(2) If Am > 0 at every point along y, then there are no complete solutions to %L X8 — %X o X* =Ag.

(3) If Am < 0 along a geodesic, then

@(t) = V-Am tanh( _Am(t+ C)) or @) =+V-Am.

m

Proof. We have the following set of equations:

d 1 oL 1 oo T | 2 1,
21 P0) = 5Lx8(,y) = (X" X)), 1)) + A8, ¥) = —8(X, )7 + A= —@(t) + A,
The proposition follows from Lemma 2.3. i

Remark 6.3. If M" is a compact manifold, then we can prove Proposition 6.2(2) using the Divergence Theo-
rem. Taking the trace of both sides of 1 £xg - £ X* ® X* = Ag, we get div(X) — = |X|?> = An. Integrating both
sides over M, we get

J IX|? = - J Amn = —~Amn vol(M).

M M
Either X = 0 and A = 0 or the left hand side is positive which implies that Am must be negative.

Now we provide an example of a manifold which satisfies Ricy' = Ag with Am < 0.

Example 6.4. Let M = S! with the usual metric, with basis vector {aa_e}- Let X = \/—Am% with Am < 0. Since
X is Killing and S* is Ricci flat, we get Ric}f = Ag.

Next, we give a global analysis of %L X8 - %X *® X* = Ag when Am < 0. In order to do this, we first state
a definition of critical point originally defined by Grove—Shiohama; see also [20].

Definition 6.5 ([20]). Fix p € M. A point q is a critical point of the distance function to p (or is a critical point
to p) if for every vector V. e T,M, there is a minimal geodesic y with y(0) = p, y(d(p, q)) = g such that
g(y(d(p,q), V) <0.

Lemma 6.6. [20, Corollary 43] Suppose that there are no critical points of the distance function to p in the
annulus {q : a < d(p, q) < b}. Then B(p, a) is homeomorphic to B(p, b), and B(p, b) deformation retracts onto
B(p, a). Moreover, if there are no critical points of p in M, then M is diffeomorphic to R".

Using techniques similar to those of Wylie in the proof of [26, Proposition 1], we look for spaces which
admit %L X8 - %X *® X* = Ag with Am < 0 everywhere. We find that the only possibility is S! if the space is
compact.



90 —— Lim, Locally homogeneous non-gradient quasi-Einstein 3-manifolds DE GRUYTER

Proposition 6.7. If M is a compact manifold which satisfies %Lxg - %X* ®X* =AgwithX # 0Oand Am < O
along every geodesic, then M = S.

Proof. Since M is compact, the function f(p) = |X(p)|*> achieves a maximum and a minimum value. At a
minimum, O = Dxf = Dxg(X, X) = 2Lxg(X, X). Then

LX) - (X e XKD = Ag,KX) =~ IX|* = X2,

Thus either [X|> = —Am or |X|?> = 0 at a minimum point. By a similar argument, |X|2 = -Am or |X|2 = O ata
maximum point. Hence either | X|?> = —Am for every point on M, or there exists a point p € M where X(p) = 0.

If |X|?> = —~Am for every point in M, then taking the trace of $ Lxg— - X*®X* = Ag, we get div(X)— % =An.
Plugging in |X|> = —Am, we obtain div(X) = A(n — 1). Taking the integral of both sides over M and using the
Divergence Theorem, we get that A(n — 1) vol(M) = 0. If A = 0 then X = 0 by Proposition 6.2(1), so n is 1. Since
M is compact, this means that M = S.

In the case where there exists a point p € M such that X(p) = 0, we prove that there are no critical points
to p in M and we use Lemma 6.6 to show that M must be R".

By Definition 6.5, we want to show that there exists a vector V such that every geodesic y with y(0) = p,
y(d(p, q)) = q satisfies g(y(d(p, q), V) > 0. Consider the case when m < 0. Let y(t) be a geodesic with y(0) = p
and let V = X. If ¢(t) = g(Xy, y(t)), then since X(p) = 0, ¢(0) must be 0, so ¢(t) cannot be constantly
nonzero. Then by Proposition 6.2,

o(t) = V=Am tanh( mt).
m
If p(t) = mtanh(@t), then ¢(t) > 0 when t > 0, so by Lemma 6.6 we have M = R". This is a
contradiction because M is compact.
If m > 0, then we again let y(¢) be a geodesic with y(0) = p. Welet V = —X so that the differential equation
we have to solve is —%(p(t) = %(pz(t) + A. The solutions are

@(t) = V-Am tanh(_ ’;/\m t) or o(t) = +V-Am.

¢(t) cannot be +V—-Am as in the case m < 0. If ¢(t) = V-Am tanh(‘—“;l"m t), then ¢(t) is positive for ¢t > 0,
giving us a contradiction by Lemma 6.6. O

Proposition 6.8. On H>, Ric = —pg where p > 0. Moreover, Ric}f = Agifand onlyif A+p =0and X = 0.

Proof. If (A+p)m > 0, then by Proposition 6.2, there are no solutions. If (A + p)m < 0, then by Proposition 6.7
there are no solutions. If A + p = 0, then by Proposition 6.2 we have X = 0. O

Corollary 6.9. There are no solutions to Ricy} = Ag with A > 0 on a compact hyperbolic manifold.

Next, we give an example of a space (M, g) which is non-Euclidean, m-quasi Einstein and Einstein, and
X is not trivial.

Example 6.10. Consider H? with the metric g = dr? + e?"dx? and let X = -m£.. Then we have the following:

00 g0 o
5ox  ox’ Fox

Then, we have the following computations for the Ricci curvature:

Ric(5, ) =0, Ric(Z, 5)=-1, Ric(z, &)=,
so we see that our metric satisfies Ric = —1g. We have the following computations for Ric':
Ricg(2,2)=0, Ric(L,2)=-1-1(-m?=-1-m, Ricg(L,2)=e¥(-1-m),

so we see that Ric} = (-1 - m)g.
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We are now ready to solve the m-quasi Einstein equation for S x R when j > 2.

Proposition 6.11. Consider S’ x R with the product metric and j > 2, endowing S’ with a constant curvature
metric of Ricci curvature p, and R with the flat metric. Then there exists a nontrivial m-quasi Einstein metric,
Ricf = Agifandonlyif A=pandm < 0.

Proof. Let {X1, X5, a%} be an orthonormal basis where {X1, X,} is in TS? and {%} isin TR.

First, consider the case A — p = 0. Let ys» be a great circle on S since the geodesics on S? are the great
circles. We apply Proposition 6.2 (1). This says that X restricted to S> must be 0. Letting yr be a unit speed
geodesic in R, we have

1 o 5
ELXg()/]R, YR) — ZX ®X*(yr, yr) = A = p.
If A - p = 0and m < O, then by Proposition 6.2(3), ¢y, (t) is either
-pm  or  \[-pm tanh( —V_n/;m(t + (;))

which implies

X = d—pm% or \/—pmtanh( —pm(H C))%.

m
If A-p =0andm > 0, then by Proposition 6.2(2) there are no solutions.
If (A - p)m > 0, then applying Proposition 6.2(2) to ys: in a similar fashion, we get that there are no
solutions.
Consider the case (A — p)m < 0. Since S? has dimension greater than 1, we can choose ys: perpendicular
to X at 0 so that ¢y, (0) = 0 and we apply Proposition 6.2(3) to ys € S2. Then @s:(t) is either

+\—-(A-p)m or \[—(A —p)mtanh(%(t + C)).

¢s2(t) cannotbe /—(A — p)m tanh(—V(A;f)m(HC)) since ys2 must be periodic and ¢s: (t) cannot be \/—(A — p)m
since ¢y, (0) = 0. This is a contradiction, so there are no solutions in this case as well. O

Now we generalize Proposition 6.11 to compact quotients of manifolds of the form M x N where M and
N are Einstein manifolds. We prove this in a different way from Proposition 6.11 because we cannot use the
argument that ¢(t) must be periodic on .

Lemma 6.12. Consider a compact quotient of M x N with the product metric where M is an Einstein manifold.
If there is a nontrivial m-quasi Einstein solution on such a space, then either X|; = 0 or M is one-dimensional.

Proof. Without loss of generality, we can assume that M and N are simply connected because if either space
is not simply connected, then we can lift it to the universal cover. Let 1 : M x N — (M x N)/I be the universal
covering map and let Ricy = pygu. Let yu(t) be a unit speed geodesic in M. Then we have

1 o R
ELXg(YM,YM) . EX @ X*(ym, ym) = A —-pu.

We aim to show that either A — pyr = 0 or M = R. If M is not R then M is not one-dimensional, so we can
choose y) to be perpendicular to X at 0. In this case, ¢,,(0) is zero, so ¢y, (f) cannot be constantly nonzero.
If (A - ppr)m > 0, then by Proposition 6.2(2), there are no complete solutions. If (A — py)m < 0, then by

Proposition 6.2(3) @y, (t) is
N —pM)mtanh(—V(A_r:"“'"(t +0)).

To show that ¢y, (t) cannot be /—(4 — par)m tanh(—v(‘q_"’f“‘)'"(t + C)), we will use an argument similar to the
proof of Lemma 2.2.

Consider the set {m o yy(t) : t € R}. Since this set is closed, ¢y, (t) has a maximal point ¢,y on this set.
Because the supremum of the tanh function is 1, we know that the maximum of ¢y, (t) on {mo yu(t) : t € R}

is V-(A - pm)m.
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Let B(t) be a geodesic of X with S(0) = ym(tmax) = V—(A — py)m and consider the set {rr o f(t) : t € R}.
Along B(t), pp(t) is either \/—(A — pyr)m or —y/—(A — py)m tanh(—“(‘qrf’”)’"(t + C)). Since the supremum of
@p(t) on {B(t) : t € R}is /—(A — py)m and the tanh function never achieves its maximum on its domain,
@p(t) must be constantly /~(A — py)m on the set {of(t) : ¢ € R}. Since{mo f(t) : t € R} = {moyy(t) : t € R},
@y, (t) is constant on {meyy(t) : t € R}. Thus, ¢, (t) is constant. Since ¢,, (0) = 0, ¢y, (t) cannot be
++/=(A — py)m, and so we have arrived at a contradiction.

Thus either M = Ror A — py = 0. If A — pyr = 0, then ¢,,, = 0 by Proposition 6.2(1), which implies that
X|m = 0. m]

Now we can prove Theorem 1.6.

Proof of Theorem 1.6. Let m : M x N — (M x N)/T be the universal covering map and let Ricyy = pygum
and Ricy = pnygn. Let yu(t) be a unit speed geodesic in M and let yy(t) be a unit speed geodesic in N. By
Lemma 6.12, M is either one-dimensional or X|y = 0 and A — py; = 0. By symmetry, either A — py = O and X|y
is zero, or N = R.

Suppose without loss of generality that N = R. Then

1 o 1w o
Eﬁxg(yw,yw)—EX (yn)X*(yn) = Ag.

By Proposition 6.2, A = 0, hence X = 0. If Am > 0, then there are no solutions, and if Am < 0, then

X=\/—/1mtanh( _n}:m(t+C))a% or X=i\/—/1m%.

If we consider the set {mm o yy(t) : t € R} and use the same argument as above, we see that

X = mtanh( m(n C))

0
m or
is not a solution. Thus, the only solutions are X = 0when A = py = py # 0,and X = + —Am% when either
N=RorM=R. O

7 Summary

In the following table, we summarize the solutions of locally homogeneous compact three-manifolds M3
which have quasi-Einstein metrics. In the first column, named “Manifold", we have the manifolds which act
cocompactly on M>. In the other columns we consider the different signs of m and A in our m-quasi Einstein
equation Ricy = Ag. If there are no solutions to the compact quotient of “Manifold", we write None. If the
only solutions are when X = 0, then we say Trivial, and if there are nontrivial solutions, then we say EXxists.

Manifold m>0 m>0 m>0 m<0 m<0 m<0
A>0 A=0 A<O A>0 A=0 A<O0

R3 None Trivial None None Trivial None
SU(2) Exists Exists Exists Exists None None
SL(R) None  None None None  Exists None
Nil None None Exists None None None
E(1,1) None None None None None None
E(2) None None None None None None
H? xR None None Exists  None None None
SZx R None None None Exists None None

H3 None None Trivial None None Trivial
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