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Communication-Efficient and Model-Heterogeneous
Personalized Federated Learning via

Clustered Knowledge Transfer
Yae Jee Cho , Jianyu Wang , Tarun Chirvolu, and Gauri Joshi , Member, IEEE

Abstract—Personalized federated learning (PFL) aims to train
model(s) that can perform well on the individual edge-devices’ data
where the edge-devices (clients) are usually IoT devices like our
mobile phones. The participating clients for cross-device settings,
in general, have heterogeneous system capabilities and limited
communication bandwidth. Such practical properties of the edge-
devices, however, are overlooked by many recent work in PFL,
which use the same model architecture across all clients and incur
high communication cost by directly communicating the model
parameters. In our work, we propose a novel and practical PFL
framework named COMET where clients can use heterogeneous
models of their own choice and do not directly communicate their
model parameters to other parties. Instead, COMET uses clustered
codistillation, where clients use knowledge distillation to transfer
their knowledge to other clients with similar data distributions.
This presents a practical PFL framework for the edge-devices to
train through IoT networks by lifting the heavy communication
burden of communicating large models. We theoretically show the
convergence and generalization properties of COMET and empir-
ically show that COMET achieves high test accuracy with several
orders of magnitude lower communication cost while allowing
client model heterogeneity compared to the other state-of-the-art
PFL methods.

Index Terms—Federated learning, communication efficiency,
model heterogeneity, knowledge transfer, clustering.

I. INTRODUCTION

F EDERATED learning (FL) [1] has enabled the use of
data on thousands of resource-constrained edge-devices

(clients) like our mobile phones to train machine learning models
without having to transfer the data to the cloud. Many recent
work in FL [2], [3], [4] focuses on training a single global
model with edge-clients via FL. However, due to the inherently
high data heterogeneity across clients [5], [6], a single model
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that is trained to perform best in expectation for the sum of
all participating clients’ loss functions may not work well for
each client [7], [8], [9]. This underwelming performance of
the single global model trained via FL is exacerbated with the
commonly used partial client selection in FL [10], [11]. Such
limited generalization properties of the conventionally trained
global models in FL calls for methods to train personalized
models that can perform well on individual clients.

Several work investigated personalized FL (PFL) including
applying meta-learning [12], training separate models on each
client with weighted aggregation of other clients’ models [13],
using the global objective as a regularizer for training individual
models at each client [14], or using model/data-interpolation
with clustering for personalization [15]. However, all of these
work impose models of identical architecture, i.e., homoge-
neous models, to be deployed across clients and require clients
to directly communicate their model parameters. Such rigid
constraints are limiting for FL with IoT devices in practice
where the system capabilities (e.g., CPU, GPU memory, wireless
resources) can be limited and heterogeneous across clients while
the cost of communicating high-dimensional models with the
server can be prohibitively high [16], [17], [18].

In this work, we relax the rigid constraints of having ho-
mogeneous models across clients and directly communicat-
ing the model parameters by proposing to train personalized
models with clustered codistillation. Codistillation [22], [23],
[24] performs distributed training across clients with reduced
communication cost by only exchanging the models’ predictions
on a common unlabeled dataset instead of the model parameters.
In conventional codistillation, a regularizing term is added to the
standard cross-entropy loss of each client to penalize the client’s
prediction from being significantly different from the average
of all clients’ predictions. In FL, however, such conventional
codistillation with the average of all clients’ predictions cannot
be directly applied since clients can have highly heterogeneous
data. Thus, forcing each client to follow the average prediction
of all clients can exacerbate its generalization by learning from
clients that have significantly different data distributions [25].

Gaining insight from the limitations of the conventional codis-
tillation methods, we propose a novel clustered codistillation
framework for PFL named COMET that utilizes data correlation
across clients. In our proposed COMET, each client uses the
average prediction of only the clients that have similar data
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TABLE I
COMPARISON OF RELATED SOTA WORK IN PFL WITH OUR PROPOSED COMET

distributions. COMET prevents clients from learning irrelvant
knowledge from the less data correlated clients via clustering.
As shown in Table I, to the best of our knowledge, our work is
the first to investigate a novel PFL framework for resource-
constrained edge-devices that i) allows model heterogeneity,
ii) improves communication-efficiency, and iii) utilizes data
correlation. We show throughout our paper that with theo-
retical guarantees, COMET is able to outperform most of the
state-of-the-art PFL methods in terms of the achieved highest
average test accuracies across clients with significantly reduced
communication cost. In summary, COMET largely improves on
the state-of-the-art PFL methods in the following ways:

1) Allows model heterogeneity across clients where the ar-
chitecture and size of the model for local training can
flexibly vary across the clients depending on their resource
capabilities. Such facilitation of model heterogeneity is
needed for scenarios in which clients participating in FL
have varying and often limited system resources [18], [26].

2) Reduces the communication cost by several orders of
magnitude via transferring logits instead of the high-
dimensional model parameters between the clients and the
server. Such communication-efficiency is proportionaly
improved by how much larger the dimension of the model
parameters is than that of the logit space.

3) Improves generalization performance for clients using
data correlation, preventing clients from learning from less
data correlated clients via clustered codistillation when
there is data heterogeneity.

We further validate COMET’s strength by presenting a theo-
retical analysis of COMET with its convergence guarantees and
generalization properties. Our analysis shows that clustering by
data correlation indeed improves the generalization properties
of individual clients that are data heterogeneous. It also shows
that each client can maximize its personalization performance
by different degrees of regularization. Our experiments show
that for both model homogeneous and model heterogeneous
environments, COMET achieves high test accuracy with several
orders of magnitude less communication compared to other
SOTA FL methods. We show an overview of our proposed
COMET’s framework in Fig. 1.

Before presenting our proposed PFL framework COMET, we
first review the background and related work in Section II, and
then elaborate in detail on our proposed method COMET in

Fig. 1. Overview of Our Proposed PFL Framework COMET.

Section III. We then provide the theoretical convergence and
generalization guarantees of COMET in Section IV, and further
demonstrate COMET’s strong empirical performance in terms of
test accuracy and communication efficiency in Section V. Lastly,
we leave concluding remarks and potential future directions in
Section VI.

II. BACKGROUND AND RELATED WORK

A. Personalized Federated Learning (PFL)

In PFL, the goal is to train a single or several model(s) that
can generalize well to each client’s test dataset. In [12], using
meta-learning for training a global model that better represents
each client’s data was proposed. A similar line of work [27] uses
the moreau envelope as a regularizer for client local training.
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Work in [13] proposed to find the optimal weighted combination
of models from clients so that each client gets a model that better
represents its target data distribution. The authors in [15] propose
general approaches that can be applied to vanilla FL for personal-
ization, including client clustering and data/model interpolation.
These previous literature however, all requires homogeneous
models and direct communication of the model parameters
across the clients and server which can be highly infeasible for
the resource-limited and system heterogeneous clients.

Several recent work [19], [21] have proposed using knowledge
distillation (KD) for training personalized models with client
model heterogeneity. However, [19] heavily relies on impractical
assumptions for cross-device FL such as full client participa-
tion or having large labeled public data. Moreover, [19], [21]
does not consider the data correlation across the clients where
each client can improve personalization with the other clients
with correlated data instead of those with largely different data
distributions. A concurrent work [20] proposes utilizing the
clients’ data correlation using a coefficient matrix. However, the
work imposes communicating high-dimensional models with an
additional cost of communicating the coefficient matrix across
clients. We show that COMET can overcome these constraints
of the previous work with competitive performance outputs.

B. Knowledge Transfer and Codistillation

Conventional transfer learning is used to transfer knowledge
from a model that has been trained on a larger-scale dataset to
other models for other tasks where the available data may not be
sufficient [28], [29]. Commonly used methods for transfer learn-
ing includes freezing the layers from the pretrained model and
additionally training separate layers with the task of interest [30]
or utilizing a separate dataset for distilling the knowledge from
the pre-trained model to the other model through minimizing
the distance between the models’ outputs [31]. In our work, we
focus on the latter method of knolwedge transfer well known as
knowledge distillation (KD).

KD [31] has been prominently used to transfer knowledge
from a pre-trained larger model to a smaller model [32], [33],
[34], [35], [36], [37], [38]. Extending from this conventional
KD, codistillation transfers knowledge across multiple models
that are being trained concurrently. Specifically, each model is
trained with the supervised loss with an additional regularizer
term that encourages the model to yield similar outputs to the
outputs of the other models that are also being trained.

Using codistillation for improved generalization in distributed
training has recently been proposed in several works [22], [23],
[24]. Authors of [22] have shown empirically that codistillation
indeed improves generalization for distributed learning but often
results in over-regularization, where the trained model’s perfor-
mance drops due to overfitting to the regularization term. In [23],
codistillation was suggested for communication-efficient dis-
tributed training, but not in the PFL context where data can
be highly heterogeneous across nodes and presented limited
experiments on a handful of nodes with homogeneous data
distributions across the nodes.

Codistillation in PFL presents a unique challenge in that each
client’s data distribution can be significantly different from other
clients’ distributions. Using standard codistillation with all of
the clients’ logits can lead to each client learning irrelevant
information from other clients with different data distributions.
We show this is indeed the case for PFL in both our theoretical
and empirical results. We show that using clustering to find
the clients that have similar data distributions with each other
and performing codistillation within these clusters improves the
personalized model’s performance significantly for clients.

III. PROPOSED PFL FRAMEWORK: COMET

A. Preliminaries

Consider a cross-device FL setup where K clients are con-
nected to a central server. We consider a N -class classification
task where each client k ∈ [K] has its local training dataset Bk
with |Bk| = mk data samples. We denote pk = mk/

∑K
k=1 mk

as the fraction of data for client k. Each data sample ξ is a
pair (x, y) where x ∈ Rd is the input and y ∈ [1, N ] is the
label. The dataset Bk is drawn from the local data distribution
Dk, where we denote the empirical data distribution of Bk as
D̂k. In the standard FL [1], clients aim to collaboratively find
the model w ∈ Rn that maps the input x to label y, such that
w minimizes the empirical risk F (w) =

∑K
k=1 pkFk(w). The

function Fk(w) is the local objective of client k, defined as
Fk(w) = 1

|Bk |
∑

ξ∈Bk f(w, ξ)with f(w, ξ) being the composite
loss function.

With high data heterogeneity across clients, the optimal model
parameters w∗ that minimize the global objective F (w) can
generalize badly to the clients whose local objective Fk(w)
significantly differs from F (w). Such clients may choose to
opt out of FL, and instead train their own models of their choice
wk ∈ Rnk by minimizing their local objectives. This solo local
training can work better than participating in FL for individual
clients with large number of training samples (i.e., large mk),
since D̂k becomes similar to Dk, ensuring good generalization.

If, however, clients have only a few number of training sam-
ples [39], the distributions Dk and D̂k can differ significantly,
and therefore a model wk trained only using the local dataset
Bk can generalize badly. Indeed clients with small datasets are
motivated to participate in FL, but they may not actually benefit
from FL due to the bad generalization properties coming from
other clients with significantly different data distributions. We
show that with our proposed COMET, clients with small or large
data samples both can improve generalization by being clustered
with clients with similar data distributions.

In general, clients do not need to fully customize their model
architecture, but rather make the choice out of practical cir-
cumstances such as computational memory and power that the
clients’ system capacity allows. For instance, for image classifi-
cation, the clients can simply use commonly used ResNets and
depending on their system capacity they can decide whether it
will be the smallest ResNet or a larger one. It can be possible
that the clients take one step further to fully customize the neural
network architecture by methods such as neural architecture
search [40], but this is orthogornal to COMET and is at the
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TABLE II
LIST OF KEY NOTATIONS

discretion of individual clients. For clarity of the paper we list
the notation used for the paper Table II.

B. COMET Objective

In our proposed COMET framework, we use codistillation
to train personalized models, where each client codistills with
the other clients with similar, correlated model outputs with
its own model output. Formally, clients have access to their
private dataset Bk and a public dataset P , consisting of un-
labeled data. Inspired by the successful usage of knowledge
transfer via unlabeled data [18], [31], [41] (accessible through
data generators, open-sourced repositories, or data markets), the
public dataset P is used as a reference dataset for codistillation
across clients. Note that such unlabeled public datasets used in
this work have been used commonly in previous work [17], [18],
[20], [42] in FL. The classification models wk, k ∈ [K] output
soft-decisions (logits) over the pre-defined number of classesN ,
which is a probability vector over the N classes. We refer to the
logits of modelwk over input datax in either the private or public
dataset as s(wk,x) : Rnk × (Bk ∪ P)→ ΔN , whereΔN is the
probability simplex over N . For notational simplicity, we define
sk ∈ R|P|×N as s(wk,x) ∈ R1×N , x ∈ P stacked into rows for
each x. We similarly define sk =

∑K
i=1 αk,isi.

The clients are connected via a central aggregating server.
Each client seeks to find the model parameterwk that minimizes
the empirical risk Φk(wk; sk), where Φk(wk; sk) is a sum of
the empirical risk of its own local training data Fk(wk) and the
regularization term as follows:

Φk(wk; sk) = Fk(wk) +
λk

|P|
∑
x∈P
‖sk(x)− s(wk,x)‖22︸ ︷︷ ︸
regularization term

(1)

The term sk(x) =
∑K

i=1 αk,is(wi,x) denotes the weighted av-
erage of the logits from all clients for an arbitrary set of weights
for client k, i.e., {αk,i}i∈[K] such that

∑K
i=1 αk,i = 1, ∀k ∈

[K]. The term λk modulates the weight of the regularization
term. The weight αk,i for each client i, i ∈ [K] with respect to
clientk results from clustering the logits by the �2-norm distance.
Thus clients with similar logits will have higher weights for
each others’ logits. The aggregated logit with weights, sk, is
calculated and sent by the server to the clients. Details of how

the weights αk,i, i ∈ [K] for each client k are calculated and
how the logits are communicated are elaborated in detail in
the subsequent subsections. Before going into details of the
algorithm we first give more intuition on the formulation of the
COMET objective in the next paragraphs.

Regularization Term: Without the regularization term in (1),
minimizing Φk(wk; sk) with regards to wk is analogous to
locally training in solo for minimizingFk(wk) for client k. If we
have αk,i = 1/K, ∀ k, i ∈ [K], codistillation is implemented
without clustering, using all of the clients’ knowledge. We show
in the next toy example and in a generalization bound derived for
ensemble models for personalization in Appendix B of the sig-
nificance of setting the values αk,i, k, i ∈ [K] via clustering to
improve personalization. Previous work in distributed ML [23]
has proposed to utilize a similar regularization term as in (1)
to improve communication-efficiency by only communicating
logits and improving generalization across clients. However
it does not take into account of the data heterogeneity across
the clients and fixes sk(x) to be the simple average across all
clients (i.e., αk,i = 1/K, ∀ k, i ∈ [K]). In our work, we instead
propose to utilize a weighted average across the clients to take
into account the similarities of the data distribution of the clients
for better peronalization of training the model wk, k ∈ [K]. We
further show the improvement of such weighted averaging of the
logits across the clients in the next paragraph with the example
of linear regression.

Example with Linear Regression: We consider a toy example
with linear regression where we have three clients with true
models as in Fig. 2(a) where the true models 0 and 1 are similar
to each other but the true model 2 is different from the other
models. The global model trained from vanilla FedAvg does
not match well with any true models as shown in Fig. 2(a).
If we minimize (1) with respect to wk without clustering, i.e.,
αk,i = 1/K, ∀ k, i ∈ [K], the output local model also diverges
from the true model for each client, especially for client 0 and
1, due to the heterogeneity across the true models (see Fig.
2(b) (d)). Finally, if we minimize (1) with clustering so that
for client k, higher weight αk,i is given to the client i that has
a similar true model to client k, and smaller weight is given to
the other client that has a different true model, the output local
model of client k gets close to its true model. This is further
explored theoretically in our paper in the subsequent section in
Theorem IV.7. COMET is based on this motivation where we
set the weights for codistillation in sk(x) =

∑K
i=1 αk,is(wi,x)

so that each client k sets higher αk,i, i ∈ [K] for client i that
has smaller difference between s(wi,x) and s(wk,x). Details
of the setup for Fig. 2 are in Appendix B.

C. COMET Solver

We minimize (1) with respect to wk for each client k on
its own device with only communicating the logits instead of
the actual model wk, with the server. With (t, r) denoting
the communication round t and local iteration r, we define
s
(t,0)
k =

∑K
i=1 α

(t,0)
k,i s

(t,0)
i for t ∈ [0, T − 1] and r ∈ [0, τ − 1]

where s
(t,0)
k is fixed for all r and updated only for every t. The

term T and τ is the total number of communication rounds
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Fig. 2. Linear regression for given input data X ∈ R2 and local (true) models w ∈ R2×1 for three clients indexed by 0-2; (a): the true model for each client
and the global model from FedAvg. The resulting global model does not match well with clients’ true model; (b)-(d): the model for each client resulting from
minimizing (1) (i.e., KT) with and without clustering (simple average of logits). COMET (KT w/ clust.) yields the model closest to the true model for all clients.

and local iterations respectively. Note that the logit information
s
(t,0)
k is computed and sent by the server to the clients for every

communication round t. Details are in the following paragraphs
and Algorithm 1.

Client Side Update: From (1), given s
(t,0)
k from the server,

each client’s local update rule is:

w
(t,r+1)
k = w

(t,r)
k − ηt

⎡⎢⎣ 1

|ξ(t,r)k |
∑

ξ∈|ξ(t,r)k |
∇f(w(t,r)

k , ξ)

+
2λk

|P(t,r)
k |

∑
x∈P(t,r)

k

∇s(w(t,r)
k ,x)T

(
s(w

(t,r)
k ,x)− s

(t,0)
k (x)

)⎤⎥⎦
(2)

� w
(t,r)
k − ηtgk(w

(t,r)
k ; s

(t,0)
k ) (3)

The term w
(t,r)
k denotes the local model parameters of client k,

ηt is the learning rate, ξ(t,r)k is the mini-batch randomly sampled

from client k’s local dataset Bk, and P(t,r)
k is the mini-batch

randomly sampled from the public dataset from client k. We
also denote the updated local model of client k after all τ local
iterations for round t as w(t+1,0)

k = w
(t,τ)
k .

COMET uses partial client participation where for every com-
munication round t, m clients are selected with probability pk
without replacement from k ∈ [K]. We denote the set of selected
clients asS(t,0) that is fixed for all local iterations r ∈ [0, τ − 1].
If a client k ∈ [K] was most recently selected in the previous
communication round t′ < t, and selected again for the current
communication round t, we assume that w(t,0)

k = w
(t,′τ)
k . In

other words, we retrieve the most recently updated local model
for the client that is selected for the next communication round
and use that model for local training. Each client k ∈ S(t,0) takes
τ ≥ 1 local updates before sending its logits back to the server
where each local update step follows the update in (2).

Server Side Clustered Knowledge Aggregation: After the τ
local iterations, each client k ∈ S(t,0) sends the logits from
its updated local model to the server. The logits are denoted
as s(t+1,0)

k ∈ R|P|×N which is s(w(t+1,0)
k ,x) = s(w

(t,τ)
k ,x) ∈

Algorithm 1: Proposed PFL Framework: COMET.

1: Input: mini-batch size b and b′ for each private and
public data, number of clusters c

2: Output: {wk}k∈[K]

3: Initialize: {s(0,0)k }k∈S(−1,0) , set of m clients S(−1,0)
4: For t = 0, . . ., T − 1 communication rounds do:
5: Global server do:
6: Cluster {s(t,0)k }k∈S(t−1,0) by c-means clustering

7: Get centroids {c(t,0)i }i∈[c] for each cluster
8: Select m clients for S(t,0) without replacement

from [K] by the dataset ratio {pk}k∈[K]

9: Send centroids {c(t,0)i }i∈[c] to clients k ∈ S(t,0)
10: Clients k ∈ S(t,0) in parallel do:
11: Get s(t,0)k for current local model w(t,0)

k , and find

s
(t,0)
k = arg min{c(t,0)

i }i∈[c]‖c
(t,0)
i − s

(t,0)
k ‖22.

12: For r = 0, . . ., τ − 1 local iterations do:
13: Create mini-batch ξ

(t,r)
k and P(t,r)

k from sam-
pling b and b′ samples uniformly at random
from Bk and P respectively

14: Update w
(t,r+1)
k ← w

(t,r)
k − ηgk(w

(t,r)
k ; s

(t,0)
k )

15: Send s
(t+1,0)
k = s

(t,τ)
k for the updated local model

w
(t,τ)
k back to the server

R1×N stacked in to rows for each x ∈ P . The server uses
c-means clustering (also known conventionally as the k-means
clustering algorithm [43]) to cluster the received m different set
of logits, s(t+1,0)

k , k ∈ S(t) to c clusters, where c is an integer
such that 1 ≤ c ≤ m. The server also gets the next set of selected
clients S(t+1,0) and sends the centroids {c(t+1,0)

i }i∈[c] for each
cluster to the clients in S(t+1,0). Each client k′ ∈ S(t+1,0) then
determines the centroid that is closest to its current model’s logit
as follows

s
(t+1,0)
k′ = arg min{c(t+1,0)

i }i∈[c]‖c
(t+1,0)
i − s

(t+1,0)
k′ ‖22 (4)

using it for the local update in (2). Since we defined s
(t+1,0)
k′ =∑K

i=1 α
(t+1,0)
k,′i s

(t+1,0)
i , (4) gives a natural selection of α(t+1,0)

k,′i
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which gives higher weight to the s(t+1,0)
i , i ∈ S(t,0) that is closer

to client k′’s logits, i.e., s(t+1,0)
k′ . COMET can set αk,i = 0 for

certain client i if its logit is significantly different from that of
client k or if it was not included in the previous set of selected
clients. It is also worth noting that COMET can seamlessly
be applied to training a personalized model for new incoming
clients by the server finding the right cluster for the new client
and sending the centroid to the client so that it can use the logits
for regularization.

IV. THEORETICAL ANALYSIS OF COMET

In this section, we analyze the convergence and generaliza-
tion properties of COMET, highlighting the effect of clustered
codistillation to the generalization performance.

A. Convergence Analysis

Here, we present the convergence guarantees of COMET with
regards to the objective function Φk(w

(t,0)
k ; s

(t,0)
k ) as t→∞

with τ = 1. We use the following assumptions for our analysis:
Assumption IV.1: The composite loss function f(w, ξ) is

Lipschitz-continuous and Lipschitz-smooth for all w, ξ, and
therefore F1(w), . . ., Fk(w) are all Lf -continuous and Lp-
smooth for all w.

Assumption IV.2: Each F1, . . ., Fk is bounded below by a
scalar Fk,inf over its domain for k ∈ [K].

Assumption IV.3: For the mini-batch ξk uniformly sampled at
random from Bk, the resulting stochastic gradient is unbiased,
that is, E[ 1

|ξk |
∑

ξ∈ξk ∇f(wk, ξ)] = ∇Fk(wk).
Assumption IV.4: The stochastic gradient’s expected squared

norm is uniformly bounded, i.e., E‖ 1
|ξk |
∑

ξ∈ξk ∇f(wk, ξ)‖2 ≤
G2 for k = 1, . . .,K.

Assumption IV.5: s(w,x) isLs−continuous andLg−smooth
for all w and x.

Now we present the convergence guarantees for COMETin
Theorem IV.6 below:

Theorem IV.6: With Assumption IV.1-Assumption IV.5, after
running COMET(Algorithm 1) for t = T iterations on client
k ∈ [K] with K total clients participating, with the learning rate
satisfying

∑∞
t=0 ηt =∞,

∑∞
t=0 η

2
t <∞, we have that the norm

of the gradient of Φk(w
(t,0)
k ; s

(t,0)
k ) with respect to w

(t,0)
k given

s
(t,0)
k goes to zero with probability 1 as T →∞, i.e., for every

client k,

lim
t→∞‖∇w

(t,0)
k

Φk(w
(t,0)
k ; s

(t,0)
k )‖ = 0 (5)

The proof for Theorem IV.6 is deferred to Appendix A. Theo-
rem IV.6 shows that our proposed algorithm COMET converges
to a first-order stationary point with respect to wk given sk
where the norm of the gradient of our main objective function
Φk(wk; sk) with respect to wk is 0.

B. Generalization Performance

Now, we show the theoretical grounds for clustered codistilla-
tion in regards to the generalization performance for PFL in the
problem of linear regression. We also present a generalization

bound for ensemble models in the context of personalization in
Appendix B. For K clients, we consider a Bayesian framework
as in [14] for linear regression where we have θ uniformly
distributed on Rd, and each client has its data distributed with
parameters wk = θ + ζk where ζk ∼ N (0, υ2

kId) and Id is the
d× d identity matrix and υk is unique to the client’s task which
is analogous to data heterogeneity in FL. Suppose we have
yk = Xkwk + z, k ∈ [K] where yk ∈ Rn, Xk ∈ Rn×d, and
z ∈ Rn such that z ∼ N (0, σ2Id).

Each client k has its empirical loss function as Fk(wk) =
‖Xkwk − yk‖22 with ŵk = (XT

kXk)
−1XT

k yk being a noisy
observation of wk with additive covariance σ2(XT

kXk)
−1

since ŵk ∼ N ((XT
kXk)

−1XT
k yk, σ

2(XT
kXk)

−1). Then with
Lemma 2 [14], with the following definitions:

Σk := σ2(XT
kXk)

−1 + υ2
kId (6)

Σ\k :=

⎛⎝ ∑
i∈[K],i�=k

Σ−1i

⎞⎠−1 (7)

θ\k := Σ\k
∑

i∈[K],i�=k

Σ−1i ŵi (8)

given {Xi,yi}i∈[K],i�=k we have that

θ = θ\k + γ (9)

where γ ∼ N (0,Σ\k). Further, if we let

Σ̃k := Σ\k + υ2
kId (10)

Σk :=
(
(Σ̃k)

−1 + (σ2(XT
kXk)

−1)−1
)−1

(11)

given {Xi,yi}i∈[K], we have

wk = Σk(σ
2(XT

kXk)
−1)−1ŵk +Σk(Σ̃k)

−1θ\k + ϑk (12)

whereϑk ∼ N (0,Σk). The term forwk in (12) uses the fact that
ŵk is a noisy observation ofwk with additive noise of zero mean
and covariance σ2(XT

kXk)
−1, and θ\k is a noisy observation of

θ with covariance Σ\k. Given all training samples from the K
clients, wk in (12) is Bayes optimal.

With COMET, following (1), we solve the objective:

min
wk

‖Xkwk − yk‖22 + λk‖sk − s(wk)‖22 (13)

where λk is the regularization term as in (1) and sk and s(wk)
each is comparative to the sk(x) and s(wk,x) in (1) for a
single public data point x. Note that in the setting of linear
regression we can set s(wk) = Pwk where P ∈ R1×d is the
public data (without loss of generality, we assume single data
point for the public data for simplicity). Accordingly, we set
sk =

∑K
i=1 αk,is(ŵi) for an arbitrary set of weights αk,i, i ∈

[K] for client k. Then we have that the local empirical risk
minimizer for (13) is

w̃k = (XT
kXk + λkP

TP)−1

+

(
XT

kXkŵkλkP
TP

K∑
i=1

αk,iŵi

)
(14)
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Finally, we present the optimal λ∗k andα∗k,i for any clientk ∈ [K]
given the linear regression problem.

Theorem IV.7: Assuming XT
kXk = βId and PTP = νId for

some constant β, ν, the λ∗k and α∗k,i, i ∈ [K] that minimizes the
test performance on client k, k ∈ [K] i.e.,

λ∗k, α
∗
k,i, i ∈ [K] = arg minλk,αk,i,i∈[K]E[Fk(w̃k)|ŵk, θ\k]

(15)

we have that

λ∗k = σ2/υ2
kν, α

∗
k,i =

Bk

σ2 + βυ2
i

(16)

with Ak =
(∑

i∈[K],i�=k
1

σ2+βυ2
i

)−1
, Bk =

Ak(σ
2+βυ2

k)

σ2+Akβυ2
k

.

The proof for Theorem IV.7 is deferred to Appendix B.
Theorem IV.7 shows the optimal weights {α∗k,i}i∈[K] and λ∗k
for each client k ∈ [K] given the objective function (13) and the
corresponding minimizer (14), to maximize generalization with
COMET. We elaborate on the implications of Theorem IV.7 in
the subsequent paragraphs.

Clustering with Data Correlation: With data heterogeneous
clients where υk, k ∈ [K] is unique to each client k ∈ [K],
we have that the optimal weights α∗k,i =

Bk

σ2+βυ2
i

for clients

i ∈ [K] are inversely proportional to υi. Intuitively, since larger
υi leads to a larger divergence from the original θ for client
i due to wi = θ + ζi, ζi ∼ N (0, υ2

i Id), giving a lower weight
αk,i to this client i, improves generalization of the personalzied
model for client k. This gives new insight into codistillation
for PFL since previous work [19], [23] only consider scenarios
where the weights do not consider data correlation, i.e., αi,k =
1/K, ∀ i, k ∈ [K] for a non-personalized FL setting. This result
corroborates COMET’s motivation for clustered codistillation
with data correlation for improved generalization performance
of the personalized models.

Regularization Weights: The optimal regularization weights
are equal to λ∗k = σ2/(υ2

kν), k ∈ [K], where σ2 and ν are
constant across clients. This shows that clients with large υk can
improve its generalization performance by having a smaller reg-
ularization weight. Since clients with larger υk have larger data
distribution discrepancies with other clients, having a smaller
λk can prevent them from assimilating irrelevant knowledge
from the other clients. This gives insight into how to set the
regularization weight dependent on the client’s data discrepancy
to other clients. Although in our experiments we use identical
λk for k ∈ [K], interesting future directions include varying λk

of across clients dependent on their data and training progress.

V. EXPERIMENTS

We demonstrate the efficacy of COMET in terms of the
average test accuracy across all clients with the communication
cost defined as the total number of parameters communicated
across server/clients during the training process including uplink
and downlink. All experiments are conducted on 3 different
random seeds, and the standard deviations across trials are shown
in the parentheses. Further details of the experimental setup are
in Appendix B.

Fig. 3. (a) Proportion of the models architectures deployed across clients for
the model heterogeneity scenario; (b) data distribution with α = 0.01 for all
clients where larger circle indicates larger dataset size for CIFAR10.

A. Experimental Setup

Datasets and models: We evaluate COMET with two different
image classification tasks: i) CIFAR10 as the training dataset
with CIFAR100 as the public dataset and ii) CIFAR100 [44] as
the training data with TinyImagenet [45] as the public dataset.
For the training data, we partition data heterogeneously amongst
clients using the Dirichlet distribution DirK(α) [46] (smaller
α leads to higher data size imbalance and degree of label
skew across clients) with α = 0.01 to emulate realistic FL with
large data heterogeneity (see Fig. 3(b) in Appendix B). For the
public dataset, for each task, we only use 2000 of unlabeled
data samples that are sampled uniformly at random without
replacement from the entire public dataset prior to beginning
training. We fix the image size to be 32× 32 for all tasks. We
evaluate COMET with two different scenarios: model homoge-
neous and heterogeneous. For the model homogeneous scenario,
VGG11 [47] is used for all clients. For the model heterogeneous
scenario, we sample one of the VGG13/VGG11/CNN model
architecture for each client with the probability of a larger model
getting assigned to a client is proportional to the client’s dataset
size (see Fig. 3(a) in Appendix B).

Baselines: We compare COMET with SOTA FL algorithms
designed to train either (i) a non-personalized single global
model at the server (e.g. FedAvg, FedProx, Scaffold, FedDF)
or (ii) personalized model(s) either at the server side as a
global model (GM) or client side as a local model (LM)
(e.g., Per-FedAvg, Ditto, KT-pFL, DS-FL, FedMD, FedFomo,
HypCluster). We do a grid search over the hyperparameters to
find the best performing parameters accordingly (see Appendix
B). For FedMD which requires training directly on a labeled
public dataset, we use the available labels in the corresponding
public dataset. For fair comparison across different benchmarks,
we do not apply any momentum acceleration or weight decay
to local training.

B. Experimental Results

Communication-Efficiency of COMET1: In Table III, we
show the performance of COMET compared with the other

1Downloading the public dataset is a one-time cost handeled prior to beginning
of training. This is a rather small cost (only 2000 unlabeled samples with image
size 32× 32), compared to the cost of communicating both uplink and downlink
the model parameters for every communication round.
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TABLE III
AVERAGE TEST ACCURACY OF ALL CLIENTS AND TOTAL COMMUNICATION COST (NUMBER OF PARAMETERS COMMUNICATED IN TOTAL)

FOR THE MODEL-HOMOGENEOUS SCENARIO (VGG11) AND TRAINING DATA CIFAR10 WITH PUBLIC DATA CIFAR100

TABLE IV
AVERAGE TEST ACCURACY ACROSS ALL CLIENTS AND TOTAL COMMUNICATION COST (NUMBER OF PARAMETERS COMMUNICATED IN TOTAL)

FOR THE MODEL-HETEROGENEOUS (VGG13/VGG11/CNN) SCENARIO FOR 200 COMMUNICATION ROUNDS WITH

TOTAL NUMBER OF CLIENTS K = 100 AND SELECTED PORTION OF CLIENTS C = 0.10 EXCEPT FOR FEDMD WHICH ONLY SUPPORTS C = 1.0

SOTA algorithms in regards to the achieved highest test accu-
racy and communicated number of parameters between server
and client with different fraction of selected clients per round
(C ∈ {0.1, 0.15}). For C = 0.1, COMET achieves high test
accuracy of 74.31% at the number of clusters c = 3, with
small communication cost compared to other algorithms (saving
at maximum ×750). FedFomo achieves a slightly higher test
accuracy performance with 74.62%, but the communication
cost spent (3900× 107 parameters) is significantly larger than
COMET (5.2× 107 parameters). Similarly, KT-pFL is able to
achieve a comparable test accuracy of 72.59%, but with sig-
nificantly larger communication cost than COMET (× 414).
Algorithms that train a non-personalized single global model
performs strictly worse than all personalized algorithms show-
ing that the traditional FL framework does not perform well

to individual clients in the setting of high data heterogeneity.
For C = 0.15, COMET also achieves a comparable high test
accuracy of 76.74% with only a small communication cost
of 7.2× 107 parameters (saving at maximum ×813) where
FedFomo achieves a slightly higher accuracy of 77.56% with
larger communication cost of 5850× 107 parameters.

Client Model Heterogeneity: We also demonstrate the per-
formance of COMET when clients have heterogeneous models
dependent on their dataset size (see Fig. 3(a) in Appendix
B) in Table IV. Note that this is a realistic setting of FL
where clients can have smaller or larger models dependent on
their dataset size or system capabilities. KT-pFL, DS-FL, and
FedMD allows client model heterogeneity amongst the SOTA
PFL algorithms which we set as baselines. With client model
heterogeneity, COMET achieves the highest test accuracy
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of 72.25% and 48.59% for training/public dataset CI-
FAR10/CIFAR100 and CIFAR100/TinyImagenet respectively,
with the communication cost being each 4.8× 107 and 10×
107. Specifically, COMET outperforms KT-pFL by around 1%
while saving at maximum ×371 on communication cost. The
test accuracy of COMET with model heterogeneity is close to
that of COMET with model homogeneity, showing that while
model heterogeneity increases the feasibility of COMET, it does
not largely hurt the local performance of the clients.

Data Correlation Within the Clusters: COMET performs
clustering at the server side to cluster the logits received from
different clients by a number of clusters c ≥ 1. For c > 1, the log-
its from similar data distributions are aggregated as the centroid
for each cluster. The degree of data correlation imposed within
each cluster is in fact modulated by the number of clusters c in
COMET, where c = 1 equals to leveraging no data correlation.
By varying c for COMET, we evaluate how the data correlation
within the clusters effects COMET’s performance. For both
C = 0.1 and C = 0.15 in Table III, c = 3 achieves the best
test accuracy performance, and with increased c > 3 the test
accuracy drops with higher communication cost. This shows that
while increasing data correlation within each cluster helps to a
certain extent, exceeding a certain threshold hurts generalization
since we are decreasing the diversity of information included
within each cluster. Similar effect of c on the performance of
COMET is observed in Table IV.

a) Determining the Number of Clusters c: Although the
number of clusters c can be treated as a hyperparameter that
can be tuned on validation datasets, we provide some insight
into how to decide the number of clusters. Specifically, in
scenarios where we know roughly how the data distribution is
heterogeneously distributed across clients, we can set c as the
number of clusters where clients can be roughly grouped by their
data distributions. In scenarios where we do not now how the data
distribution is distributed across clients but know the intensity of
the data heterogeneity across clients, we can set c in proportion
to such instensity where if the data distribution is homogeneous
across clients setting c = 1 will intuitively be the most effective
while if the data distribution is largely heterogeneous across
clients setting 1 << c < CK will be effective where C is the
portion of clients selected every communication round and K is
the total number of clients.

VI. LIMITATIONS AND CONCLUDING REMARKS

Data and system heterogeneity across the resource-limited
clients in FL are critical factors to be considered for devising
PFL algorithms. Many previous work have imposed clients to
have homogeneous models with direct communication of their
model parameters which can incur heavy communication cost.
Our proposed COMET caters to the clients’ data and system
heterogeneity with clustered codistillation, allowing heteroge-
neous models on clients without the direct communication of the
model parameters. Accordingly, COMET achieves competitive
performance against SOTA FL methods with smaller communi-
cation cost. Along with these advantages, COMET entails few
key limitations such as requiring a small label space and public

data that is relevant to the training task in order for it to be
communication-efficient and effective in personalization. For
instance, having a too large label space such as the Glink360 K
dataset [48] may make COMET no longer communication ef-
ficient. Moreover, a public data that is entirely out-of-domain
of the task of interest may not improve the generalization per-
formance of the clients. Future directions include tackling such
limitations and also understanding the privacy implications of
COMET and the optimal degree of data correlation to maximize
the performance of the clients’ personalized models.

APPENDIX

A. Proof for Theorem IV.6

In this section we present the proof for Theorem IV.6. We
follow the techniques presented by [23] for the proof. For
notational simplicity, we notate all super subscript (t, 0) as (t)
throughout the proof, dropping the local iteration index. We
define the followingσ-algebra on the set that contains the history
of the model updates for all clients with w(t) = [w

(t)
1 . . .w

(t)
K ]

and s(t) = [s
(t)
1 . . .s

(t)
K ] as

Ht = σ({w(i), s(i)} | i ≤ t) (17)

and recall

gk(w
(t)
k ; s

(t)
k ) � 1

|ξ(t)k |
∑
ξ∈ξ(t)k

∇f(w(t)
k , ξ)

+
2λ

|P(t)
k |

∑
x∈P(t)

k

∇s(w(t)
k ,x)T

(
s(w

(t)
k ,x)− s

(t)
k (x)

)
(18)

1) Additional Lemmas: We first present Lemmas and their
proofs which we use for the intermediate steps in the main proof
for Theorem IV.6.

Lemma A.1: The gradient of the second term inΦk(w
(t)
k ; s

(t)
k )

with respect to w
(t)
k is Lipschitz continuous, and therefore

with Assumption IV.1,Φk(w
(t)
k ; s

(t)
k ) is also a Lipschitz-smooth

function with factor Lp.
Proof: With dropping the iteration index t for the upper script

for simplicity, let’s define the second term in Φk(wk; sk) as

q(wk; sk) �
λ

|P|
∑
x∈P
‖s(x)− s(wk,x)‖22 (19)

Then we have

∇wk
q(wk; sk) =

2λ

|P|
∑
x∈P
∇s(wk,x)

T (s(wk,x)− sk(x))

(20)

For an arbitrary ek in q(·; sk) for x ∈ P , we have

‖∇s(wk,x)
T

× (s(wk,x)− sk(x))−∇s(ek,x)T

× (s(ek,x)− sk(x))‖2 ≤ 3‖∇s(wk,x)
T

× (s(wk,x)− sk(x))
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−∇s(wk,x)
T (s(ek,x)− sk(x)) ‖2 + 3‖

× ∇s(wk,x)
T (s(ek,x)

− sk(x))−∇s(ek,x)T (s(ek,x)− sk(x)) ‖2 (21)

≤ 3‖∇s(wk, x)‖2‖s(wk, x)− s(ek, x)‖2 + 3‖∇s(wk, x)

−∇s(ek, x)‖2‖s(ek, x)− sk(x)‖2 (22)

≤ 3L4
s‖wk − ek‖2 + 6L2

g‖wk − ek‖2 (23)

= (3L4
s + 6L2

g)‖wk − ek‖2 (24)

where (21) uses Jensen’s inequality for the �2-norm for
three terms, (22) uses the submultiplicativity of the norm,
and the LHS of (23) uses Assumption IV.5. Therefore
we can conclude that ‖∇s(wk,x)

T (s(wk,x)− sk(x))−
∇s(ek,x)T (s(ek,x)− sk(x))‖2 for any x is Lipschitz-
continuous, and hence ∇wk

q(wk; sk) is also Lipschitz-
continuous. �

Lemma A.2: We have that E[gk(w
(t)
k ; s

(t)
k )|Ht] = ∇w

(t)
k

Φk

(w
(t)
k ; s

(t)
k ) and E[‖gk(w

(t)
k ; s

(t)
k )‖22] ≤ 2G2 + 16λ2L2

s and

‖∇
w

(t)
k

Φk(w
(t)
k ; s

(t)
k )‖ and ‖gk(w

(t)
k ; s

(t)
k )‖ is each bounded by

constant M1 ≥ 0 and M2 ≥ 0.
Proof: By definition of the gradient we have

E[gk(w
(t)
k ; s

(t)
k )|Ht] = E

⎡⎢⎣ 1

|ξ(t)k |
∑
ξ∈ξ(t)k

∇f(w(t)
k , ξ)

+
2λ

|P(t)
k |

∑
x∈P(t)

k

∇s(w(t)
k ,x)T (s(w

(t)
k ,x)− s

(t)
k (x))|Ht

⎤⎥⎦
(25)

= ∇Fk(w
(t)
k ) +

2λ

|P|
∑
x∈P
∇s(w(t)

k ,x)T (s(w
(t)
k ,x)− s

(t)
k (x))

(26)

= ∇
w

(t)
k

Φk(w
(t)
k ; s

(t)
k ) (27)

finishing the proof for the first part of Lemma A.2. Next, we
prove the second part of Lemma A.2 showing that

E[‖gk(w
(t)
k ; s

(t)
k )‖2] = E

⎡⎢⎣‖ 1

|ξ(t)k |
∑
ξ∈ξ(t)k

∇f(w(t)
k , ξ)

+
2λ

|P(t)
k |

∑
x∈P(t)

k

∇s(w(t)
k ,x)T (s(w

(t)
k ,x)− s

(t)
k (x))‖2

⎤⎥⎦
(28)

≤ 2E

⎡⎢⎣‖ 1

|ξ(t)k |
∑
ξ∈ξ(t)k

∇f(w(t)
k , ξ)‖2

⎤⎥⎦

+2E

⎡⎢⎣‖ 2λ

|P(t)
k |

∑
x∈P(t)

k

∇s(w(t)
k ,x)T (s(w

(t)
k ,x)−s(t)k (x))‖2

⎤⎥⎦
(29)

≤ E

⎡⎢⎣ 8λ2

|P(t)
k |

∑
x∈P(t)

k

‖∇s(w(t)
k ,x)T (s(w

(t)
k ,x)−s(t)k (x))‖2

⎤⎥⎦
+ 2G2 (30)

≤ 8λ2

|P|
∑
x∈P

E
[
‖∇s(w(t)

k ,x)‖2‖s(w(t)
k ,x)− s

(t)
k (x)‖2

]
+2G2

(31)

≤ 2G2 + 16λ2L2
s (32)

where (29) is due to the Cauchy-Schwarz inequality and AM-
GM inequality, (30) is due to Assumption IV.4 and Jensen’s
inequality, (31) is due to the submultiplicativity of the norm, and
(32) is due to Assumption IV.5 and that the maximum �2-norm
distance between two probability vectors is

√
2.

Moreover,

‖∇
w

(t)
k

Φk(w
(t)
k ; s

(t)
k )‖ (33)

= ‖ 2λ|P|
∑
x∈P
∇s(w(t)

k ,x)T (s(w
(t)
k ,x)− s

(t)
k (x)) (34)

+∇Fk(w
(t)
k )‖

≤ 2λ

|P|‖
∑
x∈P
∇s(w(t)

k ,x)T (s(w
(t)
k ,x)− s

(t)
k (x))‖ (35)

+ ‖∇Fk(w
(t)
k )‖

≤ Lf + 2λ
∑
x∈P
‖∇s(w(t)

k ,x)T (s(w
(t)
k ,x)− s

(t)
k (x))‖ (36)

≤ Lf + 2λ
∑
x∈P
‖∇s(w(t)

k ,x)‖‖(s(w(t)
k ,x)− s

(t)
k (x))‖ (37)

≤ Lf + 2
√
2λLs|P| = M1 (38)

and therefore ‖∇
w

(t)
k

Φk(w
(t)
k ; s

(t)
k )‖ is bounded by M1 ≥ 0.

With similar steps we can show that ‖gk(w
(t)
k ; s

(t)
k )‖ ≤M2 for

a certain constant M2 ≥ 0. �

B. Main Proof for Theorem IV.6

Using Lemma A.1 and Lemma A.2 we have that

E[Φk(w
(t+1)
k ; s

(t)
k )|Ht] (39)

= E[Φk(w
(t)
k − ηtgk(w

(t)
k ; s

(t)
k )); s

(t)
k )|Ht] (40)

≤ Φk(w
(t)
k ; s

(t)
k ) +

η2tLp

2
E[‖gk(w

(t)
k ; s

(t)
k )‖2|Ht] (41)

− ηt∇w
(t)
k

Φk(w
(t)
k ; s

(t)
k )T E[gk(w

(t)
k ; s

(t)
k )|Ht]
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≤ Φk(w
(t)
k ; s

(t)
k )− ηt‖∇w

(t)
k

Φk(w
(t)
k ; s

(t)
k )‖2

+
η2tLp

2
(2G2 + 16λ2L2

s) (42)

Assuming
∑∞

t=0 η
2
t <∞ and

∑∞
t=0 ηt =∞, and applying

Robbins-Siegmund Theorem (Theorem B.1. in [49]) on (42),
we have that with probability 1,

∞∑
t=1

ηt‖∇w
(t)
k

Φk(w
(t)
k ; s

(t)
k )‖2 <∞ (43)

Now we can show

‖∇Φk(w
(t+1)
k ; s

(t)
k )‖2 − ‖∇Φk(w

(t)
k ; s

(t)
k )‖2 (44)

= (‖∇Φk(w
(t+1)
k ; s

(t)
k )‖+ ‖∇Φk(w

(t)
k ; s

(t)
k )‖) (45)

× (‖∇Φk(w
(t+1)
k ; s

(t)
k )‖ − ‖∇Φk(w

(t)
k ; s

(t)
k )‖)

≤ 2M1(‖∇Φk(w
(t+1)
k ; s

(t)
k )‖ − ‖∇Φk(w

(t)
k ; s

(t)
k )‖) (46)

≤ 2M1‖∇Φk(w
(t+1)
k ; s

(t)
k )−∇Φk(w

(t)
k ; s

(t)
k )‖ (47)

≤ 2M1‖ηtgk(w
(t)
k ; s

(t)
k )‖ ≤ 2M1M2ηt (48)

Finally, using Proposition 2 in [50] we have that for t→∞,
‖∇

w
(t)
k

Φk(w
(t)
k ; s

(t)
k )‖ → 0 with probability 1.

APPENDIX B

A. Proof for Theorem IV.7

We have that (13) is equal to:

w̃k =
1

1 + λν/β
ŵk +

1

1 + β/λν

K∑
i=1

αk,iŵi (49)

and the Bayes optimal wk in (12) becomes

wk =
1

1 + σ2/βυ2
k

ŵk +
Akσ

2

σ2 +Akβυ2
k

K∑
i=1

1

σ2 + βυ2
i

ŵi + ςk

(50)

where Ak = (
∑

i∈[K],i�=k
1

σ2+βυ2
i
)−1 and ςk ∼ N (0, ( β

Ak+βυ2
k

+ β
σ2 )
−1). If we aim to find the λk and αk,i, i ∈ [K] that mini-

mizes E[Fk(w̃k)] given ŵk and θ\k, in other words,

λ∗k, α
∗
k,i, i ∈ [K]

= arg minλk,αk,i,i∈[K]E[Fk(w̃k)|ŵk, θ\k] (51)

= arg minλk,αk,i,i∈[K]E[‖Xkw̃k − (Xkwk + z)‖22|ŵk, θ\k]
(52)

= arg minλk,αk,i,i∈[K]E[‖Xk(w̃k −wk)‖22|ŵk, θ\k] (53)

= arg minλk,αk,i,i∈[K]E[‖w̃k −wk‖22|ŵk, θ\k] (54)

then taking (49) and (50) into (54) we have that

λ∗k = σ2/υ2
kν (55)

α∗k,i =
Bk

σ2 + βυ2
i

(56)

where Bk =
Ak(σ

2+βυ2
k)

σ2+Akβυ2
k

.

APPENDIX C
GENERALIZATION BOUND FOR ENSEMBLE MODELS IN

PERSONALIZATION

As defined in Section III-A, we have the true data distribution
of client k defined as Dk, and the empirical data distribution
associated with the client‘s training dataset defined as D̂k. For
a multi-class classification problem with a finite set of classes,
we have that the data’s domain is defined by the input space
x ∈ X and the output space y ∈ Y . For the generalization bound
analysis we consider hypotheses that maps h : X → Y , and H
is defined as the hypotheses space such that h ∈ H. The loss
function l(h(x), y) measures the classification performance of
h for a single data point (x, y) and we define the expected
loss over all data points that follow distribution D as LD(h) =
E(x,y)∼D[l(h(x), y)]. We assume that L(·) is convex, and is in
the range [0,1]. We define the minimizer of the expected loss
over the data that follows the distribution Dk and D̂k as each
hk = arg minhLDk

(h) and ĥk = arg minL
̂Dk
(h). Note that for

sufficiently large training dataset, we will have hk � ĥk.
Our goal is to show the generalization bound for client k such

that LDk
(
∑K

i=1 αk,iĥDi
), where h

̂Di
represents the hypothesis

trained from client i’s training dataset and αk,i represents the
weight for the hypothesis of client i for client k. For client
i ∈ [K], h

̂Di
will be the optimal hypothesis with respect to

the training dataset for each client participating in FL, and the
generalization bound for LDk

(
∑K

i=1 αk,iĥDi
) will show how

the weighted average of different hypothesis from the other
clients with respect to αk,i, i ∈ [K] helps the generalization of
an individual client k with respect to its true data distribution.
Before presenting the generalization bound, we present several
useful lemmas.

Lemma C.1 (Domain adaptation [51]): With two true distri-
butions DA and DB , for ∀ δ ∈ (0, 1) and hypothesis ∀h ∈ H,
with probability at least 1− δ over the choice of samples, there
exists:

LDA
(h) ≤ LDB

(h) +
1

2
d(DA,DB) + ν (57)

where d(DA,DB) measures the distribution discrepancy be-
tween two distributions [51] and ν = infh LDA

(h) + LDB
(h).

Lemma C.2 (Generalization with limited training samples):
For ∀ k ∈ [K], with probability at least 1− δ over the choice of
samples, there exists:

LDk
(h

̂Dk
) ≤ L

̂Dk
(h

̂Dk
) +

√
log 2/δ

2mk
(58)

where mk is the number of training samples of client k. This
lemma shows that for small number of training samples, i.e.,
small mk, the generalization error increases due to the discrep-
ancy between Dk and D̂k.

Proof: We seek to bound the gap between LDk
(hD̂k

) and
LD̂k

(hD̂k
). Observe that LDk

(hD̂k
) = E[LD̂k

(hD̂k
)], where the

expectation is taken over the randomness in the sample draw
that generates D̂k, and that LD̂k

(hD̂k
) is an empirical mean
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over losses l(h(x), y) that lie within [0, 1]. Since we are simply
bounding the difference between a sample average of bounded
random variables and its expected value, we can directly apply
Hoeffding’s inequality to obtain

P
[
LD̂k

(hD̂k
)− LDk

(hD̂k
) ≥ ε

]
≤ 2e−2mε2 . (59)

Setting the right hand side to δ and rearranging gives the desired
bound with probability at least 1− δ over the choice of samples:

LDk
(hD̂k

) ≤ LD̂k
(hD̂k

) +

√
log 2/δ

2mk
.

�
We now present the generalization bound for
LDk

(
∑K

i=1 αk,iĥDi
) as follows:

LDk

(
K∑
i=1

αk,iĥDi

)
≤
(c)

K∑
i=1

αk,iLDk
(h

̂Di
)

≤
(d)

K∑
i=1

αk,i[LDi
(h

̂Di
) +

1

2
d(Di,Dk) + νi] (60)

where νi = infh LDi
(h) + LDk

(h), (c) is due to the convexity
of L, and (d) is due to Lemma C.1. We can further bound (60)
using Lemma C.2 as

LDk

(
K∑
i=1

αk,iĥDi

)
≤

K∑
i=1

αk,iL̂Di
(h

̂Di
) (61)

+

K∑
i=1

αk,i

√
log 2/δ

2mk
+

1

2

K∑
i=1

αk,id(Di,Dk) +

K∑
i=1

αk,iνi

=
K∑
i=1

αk,iL̂Di
(h

̂Di
) +

√
log δ−1

K∑
i=1

αk,i√
mk

+
1

2

K∑
i=1

αk,id(Di,Dk) +

K∑
i=1

αk,iνi (62)

From (62), with L
̂Di
(h

̂Di
) in general being small for ∀i ∈ [K]

as it is the minimum loss, and mi being similar to other
mi′ , i

′ ∈ [K], the only way to minimize the generalization error
ofLDk

(
∑K

i=1 αk,iĥDi
) is to set the weights αk,i so that the third

term 1
2

∑K
i=1 αk,id(Di,Dk) is minimized. Note that it is difficult

to know the value of νi, making it impractical to minimize the
fourth term in practice. This generalization results strengthens
our motivation to use to find the weightsαk,i, i ∈ [K] that mini-
mizes 1

|P|
∑

x∈P ‖
∑K

i=1 αk,isi(wi,x)− s(wk,x)‖22 in regards
to the objective function we have in (1).

Appendix Details of Experimental Setup and Additional Re-
sults

Codes for the results in the paper are presented in the supple-
mentary material.

C. Description for Toy Example - Fig. 2

For Fig. 2, we design a linear regression problem where the
true local model for each client is generated as wi = θ + ζi, i ∈

TABLE V
ADDITIONAL RESULTS FOR VARYING c FOR HYPCLUSTER ALGORITHM FOR

EXPERIMENT IN TABLE I

[3] where θ ∈ R2×1 is a non-informative prior which elements
are uniformly distributed U(−10, 10) and the elements of ζi
follows the normal distributionN (0, σi), σ1 = 2, σ2 = 5, σ3 =
200. The discrepancy across the variance denotes the data-
heterogeneity across the clients. The range for x is [−10, 10]
for all elements. We assume all clients have identical dataset
size. For implementing COMET for the toy example, we set the
public data range as identical to the input data range, and set
λ = 50. For KT w/o clustering, the codistillation term uses a
simple average of all the logits from the clients for regularizing
while for KT with clustering the weights are set so that clients
with similar true local models have higher weights for each other.
This setting is also consistent with the generalization analysis
presented in Section IV-B.

D. Description for Image Classification Experiments

a) Data Partitioning: The partitioning of each individual
client’s data to training/validation/test dataset is done as follows:
after partitioning the entire dataset by the Dirichlet distribution
DirK(α) with α = 0.01 across clients, we partition each client
dataset by a {0.1, 0.3, 0.4}/0.1/0.5 ratio where the ratio for
the training dataset is chosen by random from {0.1, 0.3, 0.4}
for each client. Such partitioning simulates a more realistic
FL setting where individual clients may not have sufficient
labeled data samples for training that represents the test dataset’s
distribution.

b) Local Training and Hyperparameters: For the local-
training hyperparameters, we do a grid search over the learn-
ing rate: η ∈ {0.1, 0.05, 0.01, 0.005, 0.001}, batchsize: b ∈
{32, 64, 128}, and local iterations: τ ∈ {10, 30, 50} to find the
hyper-parameters with the highest test accuracy for each bench-
mark. For all benchmarks we use the best hyper-parameter for
each benchmark after doing a grid search over feasible parame-
ters referring to their source codes that are open-sourced. For the
knowledge distillation server-side hyperparameters, we do a grid
search over the public batch size: b′ ∈ {32, 64, 128}, regulariza-
tion weight λ ∈ {0.05, 0.1, 0.5, 1, 2, 4} to find the best working
hyperparameters. The best hyperparameters for COMET we use
is η = 0.001, b = 64, τ = 50, b′ = 128, λ = 2.

c) Model Setup: For the model configuration, for the CNN
we have a self-defined convolutional neural network with 2 con-
volutional layers with max pooling and 4 hidden fully connected
linear layers of units [120,100,84,50]. The input is the flattened
convolution output and the output is consisted of 10 or 100 units
each of one of the 0-9 or 0-99 labels. For the VGG, we use the
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open-sourced VGG net from Pytorch with torchvision ver.0.4.1
presented in Pytorch without pretrained as False and batchnorm
as True.

d) Platform: All experiments are conducted with clusters
equipped with one NVIDIA TitanX GPU. The number of clus-
ters we use vary by C, the fraction of clients we select. The
machines communicate amongst each other through Ethernet
to transfer the model parameters and information necessary for
client selection. Each machine is regarded as one client in the
federated learning setting. The algorithms are implemented by
PyTorch.
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