








prejudiced, or biased against various demographic

groups. Specifically, since we focus on the dynam-

ics of offensiveness, we analyze a sample of 13,000

Toxigen statements tagged as “offensive”.

3.2 Generating Likely Contexts

Following work demonstrating that LLMs can gen-

erate realistic social situations related to majority

and minority groups (Park et al., 2022), we use

GPT-3.5 to construct plausible or likely contexts

(i.e., situation, speaker identity, listener identity)

in which a statement could be made. Specifically,

we manually curate fifty statement-context pairs,

out of which we sample five for each statement as

in-context examples. Conditioned on the in-context

examples, we then sample three contexts from GPT-

3.5 for each statement. The examples of prompts

for plausible context generation are presented in

Appendix C.

Verifying Contexts We randomly sample 500

statement-context pairs and ask three annotators to

rate the plausibility of the contexts (see Appendix

A.2 for the exact questions).5 Of the 500 pairs,

only 1% were marked as completely implausible

or gibberish. 92% of the scenarios were marked as

plausible by at least two workers, and some were

marked as unlikely but technically plausible (e.g.,

A mayor in the public saying “Black people are not

humans.”) We retain these contexts since such rare

situations could still happen, making them helpful

for our analyses and modeling experiments.

3.3 Generating COBRA Explanations

Similar to context generation, we make use of

GPT-3.5’s ability to produce rich explanations of

social commonsense (West et al., 2022) to gener-

ate explanations along our seven dimensions. For

each context-statement pair, we generate one full

COBRA frame, using three randomly sampled in-

context examples from our pool of six manually

curated prompts. As shown in Table 2, this pro-

cess yields a COBRACORPUS containing 32k full

(context-statement-explanation) COBRA frames.

Verifying Explanations To ensure data quality,

we randomly sampled 567 (statement, context, ex-

planations) triples and asked three annotators to

rate how likely the explanations fit the statements

in context. Inspired by prior work (Aguinis et al.,

5On this context verification task, the agreement was
moderately high, with 75.37% pairwise agreement and free-
marginal multi-rater κ=0.507 (Randolph, 2005).

Friends Strangers Workplace Family Other

more off. 5.28% 43.09% 27.54% 2.85% 21.24%
less off. 60.06% 16.6% 5.79% 11.38% 6.17%

Table 3: Percentage of contexts occurring under each

category/scenario in COBRACORPUS-CF. Row 1 in-

dicates statements that are more offensive due to their

contexts vs Row 2 indicates those which are lesser of-

fensive in comparison

2021; Clark et al., 2021; Liu et al., 2022), we also

asked annotators to provide corrections or sugges-

tions for those they consider unlikely. 97% of ex-

planations were marked as likely by at least two

annotators (majority vote) and 84% were marked

as likely by all three annotators (unanimous).6 As

illustrated in Table 1, humans tend to have bet-

ter explanations of the implications of statements,

whereas machines sometimes re-use words from

the statement. This might explain the gap between

the majority vote and unanimously approved exam-

ples, as the annotators might have different stan-

dards for what constitutes a good explanation.

Analyzing COBRACORPUS We present some

basic statistics of the COBRACORPUS in Table 2.

The average length shows illustrates the level of nu-

ance in some of the explanations (e.g., 22 words for

cognitive reaction). Additionally, we analyze the

distribution of target groups, finding that minority

or marginalized groups like LGBTQIA+, people

with disabilities, and women are among the most

frequently targeted groups (see Figure 3a). Analyz-

ing the distribution of the free-text offensiveness

types, we find that microaggressions are the most

frequent type of offensiveness (see Figure 3b).

4 COBRACORPUS-CF: Generating

Counterfactual Contexts

To examine the limits of context-aware ex-

planations of offensiveness, we generate

COBRACORPUS-CF, a challenge set of counterfac-

tual context pairs that invert the offensiveness of

statements, inspired by adversarial and counterfac-

tual test sets in NLP (Gardner et al., 2020; Li et al.,

2020; Chang et al., 2021). Illustrated in Figure 1,

our motivating question asks, how does the toxicity

of a statement change with a different context?

Creating COBRACORPUS-CF One of the diffi-

culties of collecting counterfactual data is finding

6Our annotation agreement is moderately high, on average,
with 89.10% pairwise agreement and κ=0.782.
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Intent Target group Power Dynamics Implication Emotional React. Cognitive React. Offensiveness Average

BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE

Small 46.3 58.1 20.2 52.6 51.7 67.2 29.5 37.9 22.9 28.8 17.1 24.2 30.9 48.8 31.2 45.4

Base 48.7 60.3 22.8 55.8 52.3 67.2 31.3 40.2 20.4 29.2 18.5 25.3 31.9 48.3 32.3 46.6

Large 52.3 63.2 29.2 59.3 55.9 70.3 35.1 43.1 23.0 31.9 19.4 26.8 32.2 50.2 35.3 49.2

XL 54.6 64.7 32.5 60.4 54.5 70.2 36.3 44.2 23.0 31.5 18.7 26.8 30.2 48.8 35.7 49.5

XXL 55.6 65.3 36.1 61.2 54.0 69.9 36.7 44.7 23.2 32.6 18.3 27.1 29.8 47.5 36.2 49.8

Table 4: Performance of different model sizes measured with automatic evaluation metrics, broken down by

explanation dimension. The best result is bolded. We also calculate the BERTScore (Zhang et al., 2020) for each

model size, which shows similar trends (see Appendix B.2). Takeaway: unsurprisingly, the best-performing model

is often CHARM (XXL), but XL follows closely behind.

5 Experiments

We investigate the role that context plays when

training models to explain offensive language on

both COBRACORPUS and COBRACORPUS-CF. Al-

though GPT-3.5’s COBRA explanations are highly

rated by human annotators (§3.3), generating them

is a costly process both from a monetary9 and en-

ergy consumption perspective (Strubell et al., 2019;

Taddeo et al., 2021; Dodge et al., 2022). There-

fore, we also investigate whether such high-quality

generations can come from more efficient neural

models.

We train CHARM (§5.1), with which we first

empirically evaluate the general performance of

our models in generating COBRA explanations. We

then investigate the need for context in generat-

ing COBRA explanations. Finally, we evaluate

both GPT-3.5’s and our model on the challenging

COBRACORPUS-CF context-statement pairs.

5.1 COBRA Model: CHARM

We introduce CHARM, a FLAN-T5 model (Chung

et al., 2022) finetuned on COBRACORPUS for pre-

dicting COBRA frames. Given a context-statement

pair (C, S), CHARM is trained to generate a set

of explanations E along all seven COBRA dimen-

sions. Note that while there is a range of valid

model choices when it comes to modeling COBRA,

we choose FLAN-T5 based on its strong reasoning

abilities in many language generation tasks.

As illustrated in Fig. 4, both the source

and the target are linearized sequences of CO-

BRA frame elements. The source sequence

concatenates the situation, speaker, listener,

and statement into a sequence in the follow-

ing format: “This is a conversation

between [speaker] and [listener] in

[situation]: [statement]”, and the target

9Each COBRA explanation costs approximately $0.01
when using GPT-3.5.

sequence is a concatenation of tagged expla-

nation dimensions, e.g., “<intent> [intent]

</intent>”, “<targetGroup> [targetGroup]

</targetGroup>.”. We train the model with the

standard cross-entropy loss.

We randomly split COBRACORPUS into train-

ing (31k), and evaluation sets (1k) ensuring that

no statement is present in multiple splits, with

COBRACORPUS-CF serving as an additional eval-

uation set (we use the small-scale, highly curated

172 statement-context pairs in §4).

We train different variants of CHARM, namely,

they are CHARM Small (80M), Base (250M),

Large (780M), XL (3B), XXL (11B), to explore

how the model’s explanation generation abilities

differ across sizes. We use the same hyperparame-

ters across different modeling variants. Unless oth-

erwise mentioned, CHARM refers to XL, which

we use as our default based on the combination

of competitive performance and efficiency. Dur-

ing inference, we use beam search decoding with

beam_size=4. Additional experimental details are

provided in Appendix B.1.

5.2 Evaluation

We evaluate our models in the following ways. For

automatic evaluation of explanation generation, we

use BLEU-2 and Rouge-L to capture the word

overlap between the generations and references

(Hashimoto et al., 2019). For human evaluation,

we use the same acceptability task as in §3.3, us-

ing the unanimous setting (i.e., rated likely by all

three annotators). For the counterfactual automatic

evaluation, we convert the offensiveness dimension

into a binary label based on the existence of certain

phrases (e.g., “not offensive”, “none”, “harmless”).

How good are different CHARM models? As

shown in Table 4, we observe all variants of our

model have relatively high BLEU and ROUGE

scores. As the model size increases, the average

performance increases accordingly. It is interesting
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Statement Situation Speaker Listener GPT-3.5 CHARM Human

CAN YOU HEAR ME?

A conversation over
the phone Caller

Recipient
of the call


 
 


A group of people having
a meeting in person

Male
manager

Female
subordinate

þ þ þ

Bounce, shine, and softness
are the key to sexy hair.

At a party
Male

stranger
Female
stranger

þ þ þ

Advice on how to
style their hair

Female
friend

Female
friend

þ 
 


Wow! You’re so articulate!!
Professional setting

White
person

Black
person

þ þ þ

Class Professor Student þ 
 


Thats a good girl.
Praising their daughter Parent Daughter þ þ 


A professional setting Male boss
Female

employee
þ þ þ

Table 5: Examples of GPT-3.5 and CHARM’s prediction on COBRACORPUS-CF. 
 = harmless, þ = toxic.

to see that CHARM (Large) achieves the best per-

formance in the power dynamics and offensiveness

dimension, which indicates that increasing model-

ing size does not guarantee improvement in every

explanation dimension in COBRA.

Training

w/ context

Inference

w/ context
BLEU ROUGE Human*

× × 33.0 47.6 66.54

✓ × 31.0 45.0 70.82

✓ ✓ 35.7 49.5 75.46

Table 6: Automatic and human evaluations of context-

aware and context-agnostic versions of CHARM (XL).

Human evaluations are done on the same random subset

(100) on all three variations. Takeaway: context signifi-

cantly improves CHARM both in training and inference

on COBRACORPUS.

How important context is for CHARM? We

examine how context influences CHARM’s abil-

ity to generate explanations. In context-agnostic

model setups, the source sequence is formatted as

“This is a statement: [statement]”, omitting

the speaker, listener, and situation. As shown in

Table 6, incorporating context at training and infer-

ence time improves CHARM’s performance across

the automatic and human evaluation. This is consis-

tent with our hypothesis that context is important

for understanding the toxicity of statements.

How well do models adapt to counterfactual con-

texts? We then investigate how well our model,

as well as GPT-3.5 ,10 identifies the offensiveness

10
text-davinci-003 Jan 13th 2022

Accuracy Recall Precision F1

All Toxic 50.0 100.0 50.0 67.8

GPT-3.5 55.2 99.4 52.7 68.9

XL WoC 50.0 72.3 50.0 59.1

XL 66.5 98.84 60.0 74.7

XXL 71.4 96.5 64.2 77.1

Table 7: Accuracy, derived from binarizing the “of-

fensiveness” explanation, for different models on

COBRACORPUS-CF (WoC means Without Context).

All Toxic means predicting every statement as toxic.

Takeaway: CHARM adapts to counterfactual con-

texts better than GPT-3.5 (text-davinci-003 Jan 13th

2022).

of statements when the context drastically alters

the implications. We then compare different mod-

els’ ability to classify whether the statement is of-

fensive or not given the counterfactual context in

COBRACORPUS-CF.

Surprisingly, although our model is only trained

on the GPT-3.5-generated COBRACORPUS, it out-

performs GPT-3.5 (in a few-shot setting as de-

scribed in §3.3) on COBRACORPUS-CF (Table

7). Table 5 shows some example predictions on

the counterfactual context pairs. GPT-3.5 tends to

“over-interpret” the statement, possibly due to the

information in the prompts. For example, for the

last statement in Table 5, GPT-3.5 infers the impli-

cation as “It implies that people of color are not

typically articulate”, while such statement-context

pair contains no information about people of color.

In general, counterfactual contexts are still chal-

lenging even for our best-performing models.
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teristics that could affect the implications of toxi-

city of statements. This often resulted in generic

identity labels such as “a white person” or “A Black

woman” being generated without social roles. This

risks essentialism, i.e., the assumption that all mem-

bers of a demographic group have inherent qual-

ities and experiences, which can be harmful and

perpetuate stereotypical thinking (Chen and Ratliff,

2018; Mandalaywala et al., 2018; Kurzwelly et al.,

2020). Future work should explore incorporating

more specific identity descriptions that circumvent

the risk of essentializing groups.

English Only We only look at a US-centric per-

spective in our investigation. Obviously, online

hate and abuse is manifested in many languages

(Arango Monnar et al., 2022), so we hope future

work will adapt our frames to different languages

and different cultures.

Subjectivity in Offensiveness Not everyone

agrees that things are offensive, or has the same

interpretation of offensiveness (depending on their

own background and beliefs; Sap et al., 2022). Our

in-context prompts and qualification likely make

both our machine-generated explanations and hu-

man annotations prescriptive (Röttger et al., 2021),

in contrast to a more descriptive approach where

we would examine different interpretations. We

leave that up for future work.

Dual Use We aim to combat the negative effects

and harms of discriminatory language on already

marginalized people (Sap et al., 2019b; Davidson

et al., 2019). It is possible however that our frames,

dataset, and models could be used to perpetuate

harm against those very people. We do not endorse

the use of our data for those purposes.

Risk of Suppressing Speech Our frames, dataset,

and models are built with content moderation in

mind, as online spaces are increasingly riddled with

hate and abuse and content moderators are strug-

gling to sift through all of the content. We hope

future work will examine frameworks for using

our frames to help content moderators. We do not

endorse the use of our system to suppress speech

without human oversight and encourage practition-

ers to take non-censorship-oriented approaches to

content moderation (e.g., counterspeech (Tekiroğlu

et al., 2022)).

Harms of Exposing Workers to Toxic Content

The verification process of COBRACORPUS and

COBRACORPUS-CF is performed by human anno-

tators. Exposure to such offensive content can be

harmful to the annotators (Liu et al., 2016). We

mitigated these by designing minimum annotation

workload, paying workers above minimum wage

($7-12), and providing them with crisis manage-

ment resources. Our annotation work is also super-

vised by an Institutional Review Board (IRB).
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Intent Target group Power Dynamics Implication Emotional React. Cognitive React. Offensiveness Average

Small 0.936 0.929 0.932 0.900 0.886 0.877 0.889 0.907

Base 0.939 0.933 0.932 0.907 0.892 0.880 0.890 0.910

Large 0.944 0.939 0.938 0.916 0.898 0.887 0.897 0.917

XL 0.947 0.940 0.938 0.917 0.897 0.886 0.899 0.918

XXL 0.948 0.939 0.937 0.918 0.898 0.887 0.895 0.917

Table 8: BERTScore of different model sizes measured with automatic evaluation metrics, broken down by

explanation dimension.

A Crowd-sourcing on MTurk

In this paper, human annotation is widely used in §3.2, §3.3, §4, §4, §5.2, and §5.2. We restrict our

worker candidates’ location to U.S. and Canada and ask the workers to optionally provide coarse-grained

demographic information. Among 300 candidates, 109 workers pass the qualification tests. Note that

we not only give the workers scores based on their accuracy in our tests, but also manually verify their

provided suggestions for explanations. Annotators are compensated $12.8 per hour on average. The data

collection procedure was approved by our institution’s IRB.

A.1 Annotator demographics

Due to the subjective nature of toxic language (Sap et al., 2022), we aim to collect a diverse set of

annotators. In our final pool of 109 annotators, the average age is 36 (ranging from 18 to 65). For political

orientation, we have 64/21/24 annotators identified as liberal/conservative/neutral, respectively. For gender

identity, we have 61/46/2 annotators identify as man/woman/non-binary, respectively. There are also 40

annotators that self-identified as being part of a minority group.

A.2 Annotation interface and instructions

As recommended by (Aguinis et al., 2021), we design the MTurk interface with clear instructions,

examples with explanations. The annotation snippet of collecting plausible scenarios (§3.2) is in Figure

5. The annotation snippet of collecting explanations (§3.3) is in Figure 6. The annotation snippet of

collecting adversarial examples (§4) is in Figure 7.

B CHARM experiment details

B.1 Training details

With the HuggingFace’s Transformers library11, different variants of FLAN-T5, small, base, large, XL

and XXL, are finetuned on the COBRA training set for two epochs with AdamW optimizer with a learning

rate of 1e−4 and batch size of 16. We use beam search as the decoding algorithm and all reported results

are based on a single run. We also train a XL model using the same architecture and hyperparameters

but without the context information. The sizes of CHARM range from 80M to 11B, the largest of which

takes 10 hours to train in FP32 on 5 A6000 GPUs with NVLink, and can do inference in FP16 on a single

A6000 GPU. We used HuggingFace evaluate package to evaluate the BLEU-2 and ROUGE-L scores.

B.2 Evaluation details

See Table 8 for the BERTScore metrics across different model sizes.

C GPT-3 prompts used in this paper

The example prompts for generating likely contexts are in Figure 8. The example prompts for generating

adversarial contexts are in Figure 9. The example prompts for generating the likely explanations are in

Figure 10.

11https://github.com/huggingface/transformers
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