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Recent Advances in Silicon Solar Cell Research
Using Data Science-Based Learning

Rahul Jaiswal

Abstract—The application of machine learning techniques in
silicon photovoltaics research and production has been gaining
traction. Learning from the existing data has given the potential
to research labs and industries of discovering optimized process-
ing parameters, device architectures, and fabrication recipes. It
has also been utilized for defect detection and quality inspection.
The increasing computational capacities of modern computers
and abstraction of machine learning algorithms, along with the
increasing community support for open-source software libraries
has increased the accessibility of learning-based algorithms that
were perceived as complex to be implemented for interdisciplinary
research and development just a few years back. In this article,
we present a review of the efforts in the literature that have
utilized machine learning techniques for commercial silicon solar
cell devices in recent times. The emphasis is to categorize and
investigate specific learning techniques that are best suited for one
particular device or fabrication process parameter optimization.
We also provide insight into possible expansions of current research
methodologies that can further improve the prediction accuracy
while minimizing the computational costs and extract other useful
information from a machine learning model, such as prediction
uncertainty, scalability, and generalization of a particular model.

Index Terms—Classification, computer vision, machine learning
(M), regression, solar energy.

I. INTRODUCTION

ILICON solar cells continue to have the largest share in
S commercial solar energy market, therefore, efforts in re-
search to improve individual cell power conversion efficien-
cies are still being pursued. These efforts are directed toward
either improving the performance of the cell (for example,
its electrical performance like power conversion efficiencies
or optical performance like reflection losses), or improving
the fabrication processes and recipes or to reduce defects and
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Fig. 1. Number of publications indexed by the keywords “silicon,” “solar,”

“cell,” and “ML.”

losses in the device. Conventional strategies for designing and
optimizing a photovoltaic (PV) device can be inefficient in
terms of resources and manpower as they involve doing the
design of experiments and even disruption of production lines
in case of industrial research, another issue with conventional
optimization strategies is that the transition time-period between
alab prototype to large scale fabrication can be very long [1], [2].
Data driven decision making [3] provides an obvious alternative
approach for achieving this target with a better efficiency as it
can supplement the conventional knowledge about the device
with a forecast about the nature of the device. This can save
unnecessary or redundant experiments (i.e., either fabricating
physical devices or performing computational expensive sim-
ulations). Zhu et al. [4] describe one such work where the
performance of PERC cells with a thin substrate is investigated
using multilayer perceptron predictions. Fig. 1 illustrates this
trend.

Graphics processing units (GPU) use single instruction, mul-
tiple data architecture, which allows parallel computing or task
concurrency for the computations required in machine learning
(M) algorithm training and inference. This makes them more
suitable for M1 compared to CPUs. This is also reflected in the
literature by the increasing complexity of the algorithms being
implemented and the data size used for training in the recent
past.

The advances in hardware implementations suitable for
deep learning (DL) [5] have come along with advances in the
software written for machine ML. Particularly, Python is by
large the most used programming language for DL, not only
due to its object-oriented design and flexible nature, but also
because it can run on any operating system and it is open source.
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Many open-source libraries have been developed to program DL
structures that can be used in parallel programming hardware,
particularly GPUs. Theano [6] is probably the first open-source
library for MI that integrates other standard scientific libraries
as NuMpy and SciPY. Maybe the paradigm of this is
TensorFlow [7], which also include differentiable programming
tools or, in other words, the capability to automatically
compute the back propagation of complex DL structures with
autogradient techniques, which makes implementation of these
DL structures much easier. Package Keras [8] works on top
of TensorFlow to add more abstraction and compactness to
the programming. Pytorch [9] is an alternative to TensorFlow
that trades part of the TensorFlow flexibility by an easier
implementation of DL structures, which makes it suitable for
DL training. It also includes autograd and it is known to be fast.

Implementation of other ML techniques, such as ensemble
learning are also becoming accessible through open-source
implementations, such as lightGBM [10] and XGBoost [11].
Scikit-learn [12] library in Python, on the other hand, has pro-
vided a very abstract way to fast prototype multiple learning
models except DL. These tools have provided increased flexi-
bility to researchers for exploring data-based learning.

Mass produced silicon-based PVs technologies, such as alu-
minium back surface field (Al-BSF) [13], passivated emitter and
rear contact (PERC) [1], and Heterojunction with thin intrinsic
layer [14] solar cells are comparatively mature technologies
and any information gathered using learning-based techniques
to improve an existing device can be verified by incorporating
the predicted information in the device design and fabrication
processes. Compared to novel PVs technologies, this leads to
an easy validation of the prediction model on a physical device
and model prediction uncertainty can be documented when the
device is fabricated on a large scale.

This review will be covering the different learning algorithms
that have been used in the literature, their prediction accuracy
and computational complexity. Application of similar learning
algorithms in multiple articles will be compared to create an
information library that can be used for a future exploration.

The application of learning algorithms in PVs device op-
timization is often focused on optimizing a single device or
process parameter. This is achieved by identifying the critical
loss mechanisms, and then reducing these losses. Although
this is a complex task as many loss mechanisms within the
device are interrelated {15] and trying to reduce one loss may
increase another. Therefore, a major emphasis of any published
work should be to address these tradeoffs. One such example
is in Wagner-Mohnsen and Altermatt [16], where interdepen-
dent parameter bias and tradeoffs are discovered in a PERC
solar cell.

For solving this issue of finding the correlations between
different parameters that are associated with a solar cell device,
the prediction and classification mechanism of conventional Ml
implementation strategies have to be specifically tailored for a
given solar cell architecture. The uncertainty of a given predic-
tion, its scalability and the potential of generalization should also
be discussed in scholarly work. Burrati et al. [17] discuss these
points in their implementation of ensemble techniques to extract

bulk defects. Throughout this review, we will be highlighting
such efforts already implemented in the literature, and also
discussing their necessity in a published work where they have
not been discussed.

This review is divided into three main sections where ap-
plication of Ml algorithms for device optimization, process
optimization, and defect analysis will be discussed in detail.

II. APPLICATION OF ML TECHNIQUES IMPLEMENTED FOR
OPTIMIZATION OF DEVICE PERFORMANCE

Learning methods can be used to optimize either a specific
process parameter involved in device fabrication or they can be
used to optimize the design of a solar cell (which can consist of
multiple parameters and design features, such as its architecture,
material composition, or specific material property). In this
section, literary works that have utilized learning algorithms for
device optimization are discussed and are summarized in Table L.

A. Prediction and Optimization of Solar Cell Electrical
Parameter

As per the International Roadmap for PVs 2021 report [18],
PERC solar cells had a market share of 80% in 2020. Al-BSF
solar cells had a market share of 18% and silicon heterojunction
(SHYJ) solar cells installation capacity was around 19%-2%. It
is projected that SHJ solar cells market share will increase
in the future. Efforts in academia and industry to optimize
the electrical performance metrics of these industrial solar cell
devices are available using conventional strategies, such as
Thirunavukkarasu et al. [19] work to use PC1D [20] simulations
for optimization of Al1-BSF solar cells. This work demonstrates
that there are tradeoffs between different electrical parameters
of the device, so any design and material change (for example,
wafer thickness and doping, respectively) has to find an opti-
mal value to maximize the final device performance by power
conversion efficiency (PCE, also denoted by 7), while allowing
the device to be scalable for production (for example, wafer
thickness less than 150 pm is resuit in better device efficiency
but handling such wafer is difficult in this case). One can use
simulation-based learning only to achieve such optimizations,
but each of these learnings will be relevant to only a singuiar
device architecture and design and it can be slow. Data-based
learning on the other hand can potentially generalize each re-
search work for other use cases while requiring less time to
execute. Such learning techniques to optimize device electrical
performance are available in the literature and are discussed as
follows.

Zhu et al. [4] investigated the performance of PERC cell
with thin substrates. Three test device designs with thin sub-
strates (100 pm) were simulated using the Quokka simulation
tool [21] and the simulation data was used to train artificial
neural networks (ANN) [22] to predict device power conversion
efficiencies. The trained MI model was used to investigate the
ranking of these thin films according to the importance of the
efficiency gain. Results show that the thickness of thin layers at
the front and rear texturing are correlated with the performance
of the PERC devices, specifically the silicon dioxide film, which
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TABLE L
SUMMARY OF SECTION 11

Dataset availabil-
ity

Features

Critical parameter
or outcome

Included in supple-
mentary data

Included in
supporting
information

Not provided
Simulation

methodology
provided

Raw data not pro-
vided

Available on re-

quest from authors

PCID simulations

Simulated {one

SVM, RF, and diode model)

Simulated (one
diode modet)

Simulated  (two
diode model)
Simulated (one
diode modetl)

Emitter, bulk, and BSF
parameters

External factors (tem-
perature, light intensity)

Ambient weather con-
dition

Wafer resistivity,
dopant profiles,
lifetime, finger

dimension, BSF depth,
passivation quality
Image (pixel level) data

Light wavelength andell
cell geometry

ARC thickness, device
thickness, rear reflec-
tion

Current—voltage profile

Current—~voltage profile

Current—voitage profile

Current --voltage profile

Front  thin  Jayer
thickness
No. of layers in ANN

SVM implementation
strategy and kemels

used
Interdependent
parameter bias and

tradeoffs

jo beneath metal fin-
ger prediction

Optimal ANN
structure
ARC thickness

I prediction accu-
racy is highest

Leaming is
transferable

PSO convergence was
faster

FA  performed  best
amongst evolutionary

Prediction  Article Cell Target Model used
domain technology
Electrical 4] PERC cells n ANN
performance
{231 Mono, muli 7 ANN
crystalline, and
amorphous
celly
[25) Cell technology ~ Pmpp SVM
not specified
{16} PERC 7 Voo,  SVM, GPR,
Prpp, Ensemble,
Vmer linear
regression
126] Monocrystalline  Voc, jo U-Net
{mc)
Optical {271 Thin film a-Si QE ANN
performance ccll
28] Cell technology ~ Optical losses ANN
not provided
Diode 129} Cell technology  Tr, Is, Rs, Multitarget
model pa- not pro- vided Rgu, N
rameters regression
trees
130] Polycrystalline  Ip,, Iy, , Rg, Bayesian
solar cells Rsu, N regularizer
and ANN
{311 Cell technology Iy, Igy, lg2, GA and
not provided Rg, Rsu PSO
[321 Flexible 1r, pr, Vpindi,  FA
amorphous Rg, Rsm, N,
silicon  solar g
cell

algorithm

provides a good passivation for the device. The authors of [4]
had justified the use of ANN by elaborating its generalization
capabilities and its superiority in handling highly correlated data.
Nevertheless, no empirical proof of performance comparison
between other learning algorithms was provided. The network
architecture of ANN and was also not discussed in work [4],
although input dataset and features were provided in detail in
supplementary material. As the dataset size used for training
was small (139 training data points and 17 test points), model
generalization also cannot be established quantitatively. This
research can be further investigated by comparing the prediction
accuracy for other learning algorithms, by evaluating if the
model has any high variance or bias and by increasing the model
generalization,

Xiao et al. 23] had also used ANN-based learning models to
predict power conversion efficiencies of the following three sil-
icon solar cell technologies: mono-crystalline, multicrystalline,
and amorphous crystalline {24]. Training data was created from
experimental solar cell samples by characterizing them under
different test conditions of incident light intensity and ambient
temperature. Out of the 72 data points, 62 points were used to
train the model, and 10 were used 1o test the model. The predic-
tion results were in agreement with conventional physics-based

studies of solar cells. The findings also included a suggestion for
recommended number of hidden layers in the ANN architecture
for the three different solar cell technologies. The importance of
the number of hidden layers in an ANN network for quality of
predictions was also discussed in detail by the authors.
Nurwaha [25] used instead support vector machines
(SVMs) [33] to predict the output power of solar cells. The
author tested four kernels [34]: radial basis kernel, sigmoid
kernel function, linear function, and polynomial kernel func-
tion. Data were collected experimentally from PV installations.
Two support vector regression (SVR) implementations had been
tested: epsilon-SVR [35] and nu-SVR [36]. Results show that the
nu-SVR with radial basis function kernel and epsilon-SVR with
polynomial kernel function had the best accuracies among the
tested kernel functions and SVR implementations. The author
has correctly pointed out that there are very few published
works in the literature that leverage SVMs for PVs research,
this work can be extended by a detailed discussion of the model
implementation and the feature values and their distributions.
Wagner-Mohnsen et al. [16] have compared the performance
of linear regression models [37], regression trees [38], SVMs,
ensemble of trees [39], and Gaussian process regression (GPR)
models [40} to predict the electrical properties of PERC solar
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cells. The training data for these Ml models was generated from
simulation that was calibrated using cell measurements. This
work shows that an ML model that has high accuracy to predict
solar cell performance can be used to generate a large volume
dataset to infer device properties and discover interdependent
relations between different parameters. The same analysis can
be very expensive in terms of computational time and resources
if done through either experimental approaches or a simulation-
based approach. Compared to similar works in the literature, the
authors have provided a detailed insight into the applicability
of a learning model to understand interdependent parameter
bias that exists in a PERC device and the correlation between
a device parameter to a performance metric of the device. The
methodology of this article can be extended to other solar cell
architectures as the learning is general and not unique to the
PERC cell.

Learning from images using DL [41] and computer vision [42]
can be used in PVs research to investigate the spatial features of
a device. Kovvali et al. [26] had investigated the use of DL in
their work to infer the material quality of the solar cell device.
They had trained the Ml model to predict locally distributed dark
saturation current density (jo). The input of the prediction model
were photoluminescence (PL) images of as-cut wafers. Using
analytical expressions (1-diode model), an implied open-circuit
voltage (Voc) was also calculated from the spatial jo distribution.
The authors had to modify the U-Net convolution neural network
(CNN) [43] for doing regression analysis. This work provides a
fast way to analyze the jo values at metal contacts from the PL.
images of as-cut wafers, giving foresight into the final device
performance and with a reported prediction time of one mi-
crosecond, this methodology can be potentially used for in-line
inspection of wafers. This article fundamentally uses PL. images
as a data source to predict saturation current density values under
metal contacts. If this valued had to be calculated using experi-
mental measurements, it would require fabrication of precursor
samples. The total saturation current density in the solar cell
device is the sum of saturation current density from the emitter,
the bulk, and the rear. In order to measure the metal contact
saturation current density, two precursor samples are required,
one test sample which will have contact just on single side and as
well as a lifetime sample, which does not have contacts at either
side. From these two samples, the saturation current density
values at the emitter can be measured separately. By plotting
the fraction of the front surface metal contact against the sum
of the two emitter saturation current density values, a fit for jp
can be obtained. This ordeal of measuring the saturation current
density can take up few days as it involves the fabrication of
multiple test samples (with different fraction of metal contacts)
and disruptions of pilot line. This is in stark contrast to the work
presented in [26] that uses a wafer luminescence image (that is
part of the process flow) and predict values within seconds.

B. Prediction and Optimization of Solar Cell Optical
Performance

The optical performance of a solar cell is a precursor to
calculate the final power conversion efficiency of the device, it

can be optimized experimentally (for example, one approach can
be to fabricate cells with different antireflective layer properties
followed by doing characterization to find a fit for optimal
parameters) or by simulations (prototyping different design
changes using analytical system of formulas or numerical sim-
ulation methods, such as ray tracing or transfer matrix). Kang
et al. {44] presented an in-depth investigation of silicon nitride
antireflection coatings (ARC) using simulations. The optical
performance was evaluated using ray tracing and then the optical
profile was fed into PC1D for device simulation. Planar and tex-
ture solar cells were investigated under different encapsulations,
and the study reported optimal refractive index value for the
ARC to maximize the PCE. Although this work has provided an
extensive simulation dataset to find a fit for ARC parameters
to achieve an optimal optical performance, transferring this
knowledge for another solar cell architecture and encapsulation
materials will require performing the simulations again, which
can be time and computational power intensive (specifically
ray tracing algorithms), ML methods, on the other hand, can
utilize these kind of work in the literature as foundation and
can provide an alternative approach for device optimization.
One use-case where ML methods can be particularly useful
is when the input data (design parameters) is changed within
a range where the model was trained. Interpolation for the
target (predicted) values can be achieved with good accuracy.
Several works in the literature using data-based learning to the
optimize optical performance of solar cells are presented as
follows.

Kaya et al. [27] demonstrated a prototyping technique for
finding the optical performance of thin film solar cells using
neural networks. The training dataset was created by using the
finite-difference time-domain (FDTD) simulation methods [45].
Results showed that the neural network (NN)-based methodol-
ogy to predict the optical absorption as a function of incident
light wavelength, and the cell geometry was accurate and much
faster compared to FDTD simulations. The authors have ex-
plained why the conventional simulation approach to calculate
optical performance metrics will be slower compared to an
ML-based equivalent model that predicts this information, as the
former cannot be solved using closed form solutions and require
iterative simulations. The authors also provided insight intoc why
a learning-based approach can predict an optical parameter at a
given frequency. The decision to choose neural networks over
other algorithms was justified by the virtue of its ability to learn
functions that are nonlinear, although no empirical comparison
was provided. The authors provided information about how the
training data was generated and the reason for choosing the
quasi-Newton optimization algorithm {46]. They also provided
information about the six features of the NN input and its
three-layer architecture. This work explores the fundamental
reasons behind the ability of an ML-based surrogate model to
approximate the results of a device physics-based simulation
model. This research is a knowledge base that can be extended
further by investigating other learning-based models as, for ex-
ample, a Bayesian optimization {47] strategy to infer parameters
that can maximize the quantum efficiency (QE) of given device
architecture.
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Shivhare et al. presented a work [28] to predict the thickness of
the ARCusing ANN’s in a cell to achieve reduced optical losses.
The authors used PCID, a 1-D numerical simulation tool to
create the training database. Voltage and current points are used
as input to the model to predict the required thickness to achieve
this performance. It is indicated that the ANN was (rained for
1000 iterations, it was reported that to achieve more power output
from a solar cell the thickness of the ARC coating should be
increased. Future research can explore other physical parameters
that can affect the optical performance of the device (such as
rear reflection and device thickness). Efforts to find correlation
between just the voltage and current and ARC thickness can
also be established, this will provide further generalization of
presented work for other solar cell designs. A detailed discussion
of the exact architecture of the neural network can also be
included in such future works.

C. Prediction of Solar Cell Diode Model Parameters

Single and double diode models provide an abstract way to
prototype solar cell performance quickly. These models can also
be scaled to evaluate the module level performance. They require
fitting parameters in the diode model to match the electrical
characteristics of the cell. Fitting (linear or nonlinear) based
methodologies are available in the literature. In the one presented
by Caracciolo et al. [48], the goal was to fitone model parameter
at a time using least square methods. Another approach to
fit diode model parameters can be using ML models that can
perform multiparameter regression as multitask SVMs [49] or
multitask Gaussian processes (GPs) [50], [51], [52], [53], few
of these efforts are presented as follows.

Shah [29] used multiparameter regression methods to infer
multiple parameters of a single-diode solar cell model. Multitar-
get SVR [54], multitarget regression trees [55], and multitarget
random forest (RF) regression [56] were the three regression
algorithms applied in this work. A total of 10 000 single diode
simulations were used to create current-voltage profiles of 25
data points each using a set of 5 parameters in the simulation—
reverse saturation current (Is), light generated current (I1.), ide-
ality factor (V), series resistance (Ryg), shunt resistance (Rsu).
The current-voltage profile was used as the input to the Ml
model to predict the five parameters of the diode model. The
author compared the three regression strategies-based on the
mean absolute percentage error [57] by predicting diode model
paramelers from experimentally measured current-voltage pro-
file. The authors also provided suggestions to improve further
by using a larger training dataset and the possibility to expand
this work for a two diede model is also discussed.

Cortés et al. [30] also investigated a method to estimate
parameters of a single-diode model for a PV cell using ANNs.
The training data was generated using the single diode model,
and to address the issue of the high variance [58] in the model,
a Bayesian regularizer [59] was used by the authors. Results
show that the model has high prediction accuracy. A sensitivity
analysis (Changing a single parameter at atime and observing its
effect on the model output) for the effect of variation in model
parameters on the current—voltage curve was also performed.
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The authors have cited previous works of the literature to justify
the use of two hidden layers [60] in their ANN architecture but
this can be investigated further for the application of ANNs in
solar cell parameter predictions. One point that should be pointed
out is that out of the five input parameters used for prediction, two
sets of parameters are highly correlated: the maximum power
point ( Pypp), current at maximum power point (Iypp), and volt-
age at maximum power point (Vapp). As Pupp is adirect product
of Iyypp and Viygpp, by adding the power, authors indirectly add
additional nonlinearity to the model. Nevertheless, the effect of
using the current and the voltage only is not reported.

For fitting parameters in atwo diode model, Dali et al. [31] ap-
plied a genetic algorithm (GA) [61] and particle swarm optimiza-
tion (PSO) [62]. The training data was produced from the two
diode model equation and the squared error cost function [63]
was used to minimize learning model hyperparameters [64]. The
authors reported that both algorithms had high accuracy but PSO
had a faster convergence.

Louzazni et al. [32] also proposed a methodology to predict
electrical parameters for an amorphous silicon solar cell model
using the firefly algorithm (FA) [65]. Eight model parameters
were extracted: photo-current (I1), the thickness of intrinsic
layer (d;), average mobility-lifetime product for election and
hole (u.), built-in field voltage over the i-layer (Vy), diode
reverse saturation current (1), diode ideality factor NV, the series
and the parallel resistances ( R, Rsy). The authors reported that
their methodology was validated from experimental data and
the accuracy was better than other evolutionary algorithms [66].
Although it was reported that this type of solar cells are more
difficult to model than a crystalline silicon (c-Si) cell. Future
research work can potentially compare this work with conven-
tional Ml techniques that can potentially improve the prediction
accuracy further.

1II. APPLICATION OF ML TECHNIQUES IMPLEMENTED FOR
PROCESS OPTIMIZATION

Fabrication of solar cells requires multiple processing steps,
to achieve the best theoretically estimated device performance,
each of these processing steps in a fabrication should be opti-
mized. Similar to device design and architecture optimization,
process optimization conventionally can be performed via ex-
perimental approaches or process simulations.

Process control and optimization is a complex task given the
vast number of chemical and physical mechanisms governing
the outcome of that processing step. Li et al. [67] demonstrated
optimization of Boron tribromide tube diffusion processes in
silicon. A process simulation model was designed first and then
calibrated and verified with experimental data. This work pro-
vided a meticulous analysis of the different factors (for example,
the effect of oxygen and dopant concentration on diffusion
kinetics) affecting the diffusion process. Although this work
provides an accurate way to model the process, it is complex
and resource intensive to replicate for other use cases, given
the vast amount of manual tuning that was required to achieve
a calibrated model. This makes the model too complex to be
reused in a conventional way, but instead it can be abstracted
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TABLEII
SUMMARY OF SECTION [11

Prediction  Article  Cell tech-  Target Model Dataset avail-  Feafures Critical parameter or out-
domain nology used ability come
Individual 169} PERC POCI3 GPR TCAD Diffusion step and oxida-  Phosphorous profile control pa-
process diffusion process simulation used  tion step time and em-  rymeters can be predicied
to generate data  peratures
{74) Siticon in-  Cz growth O ANN Raw data not 43 (fixed, process and Prediction accuracy is
gots provided monitored parameters) effected mostly by monitored
parameters
[76] SHJ cells HPT process pas-  BO Available on re-  H2 pressure and flow rate, BO is faster than random search
sivation quality quest from au-  RF power, and electrode  for optimized parameters
thors distance, 7o
[77] Silicon in-  Lapping process ANN Raw data not Rotational speed, lapping  Lapping process control to
gots for uniform provided pressures, and duration achieve consistent thickness us-
thickness ing ML predictions
Fabrication  {78] Al-BSF n (process varia- RF, SVM, Sourcecodeand 47 parameters from 10 ANN has highest reported
recipe cells tions) AB, ANN  dataare available  processing steps accuracy
publically
[79) PERC 1 variation by  Statistical TCAD simula-  Time (Production) Root cause analysis for effi-
tool throughput modeling tions ciency variations modeled
[80] ptype Cz  Hourly trend ingp  Decision Rescarch  data 329 (13 clusters) Impact of different features on
Si cells trees are not shared. temporal performance
[81] plype me Hourly trend iny GPR,Monte- TCAD Simula-  Rear passivation quality, 3 material parameters respon-
Si cells variation in pro- carlo sim-  tion bulk doping, texturing,  sible for 80% cificiency varia-
duction line ulations front mictal shading tions were identified

to train an Ml model that can predict the model performance
with an acceptable accuracy. One hypothesis can be to treat
the model as a black box and statistically vary only six pa-
rameters (deposition temperature, drive-in temperature, pos-
toxidation temperature, deposition duration, drive-in duration,
and postoxidation duration) and observe the resulting diffusion
profile. This combination of six parameters can act as input
features for an ML model and the resulting diffusion profile can
be the prediction target. A trained ML model can then accurately
interpolate and extrapolate the result of a complex numerical
simulation model providing exponentially faster prototyping
time.

This section explores the various efforts in the literature that
implemented data science techniques to optimize either a single
processing step or an entire fabrication recipe. A summary of
this section is provided in Table II.

A. Application of ML to Improve the Individual Processing
Steps

Emitter diffusion profiles have a direct impact on the final
device performance [68]. Wagner-Mohnsen et al. [69] used ML
techniques and GA to optimize the POCl; diffusion processing in
PERC solar cells. Training data was generated by running 2400
Sentaurus simulations [70], including both process and device
simulations. A GPR model with rational quadratic kernel [71]
was used as the ML algorithm. To find the required process
parameters to achieve the highest power conversion efficien-
cies, mutation, and tournament selection algorithm [72] were
implemented. Results show that process parameters to achieve a
phosphorus diffusion profile can be estimated using the ML and
GA techniques. This work provides a way to optimize individual
process parameters required to achieve a certain device effi-
ciency, future research can extend this work by emphasizing on

the correlation between individual process parameter variations
and final device efficiency.

Interstitial oxygen in a solar cell material is a major factor
for degradation of minority carrier lifetime [73], evaluation and
control of this impurity concentration during crystal growth
therefore can be one way to optimize the final device perfor-
mance. Kutsukake et al. [74] presented a way to predict intersli-
tial oxygen concentration (O;) in Czochralski (Cz) grownssilicon
crystal using neural networks. Training data was collected from
450 ingots grown in the same furnace and the O; concentration
was measured using Fourier transform infrared spectroscopy.
From an initial set of 100 features, the authors did a correlation
analysis and reduced the features to 43. The model was a fully
connected feed-forward NN [75] with 3 layers and 47 nodes in
each layer and the model was trained for 20000 epochs. Results
show that the trained model can make predictions for test data
with high coefficient of determination (R? score). This work
provides a thorough discussion on the possibility of use of Ml
algorithms in process control where conventional simulation and
modeling techniques cannot be efficient. For example, certain
variations inside the crucible cannot be modeled in a traditional
way. The authors have also classified input features into the
following three categories: fixed parameters, process param-
eters, and monitored parameters. This classification narrows
the domain of control over the crystal growth. The possibil-
ity to improve upon this current model is also discussed by
proposing use of past data from time series of an ingot growth.
This work is one of a kind and can be a fundamental block
for approaching control of other processes using data science
techniques.

SHI solar cell power conversion efficiency is significantly
affected by the carrier selective contacts. The main objective
of these contacts is to efficient charge separation and to re-
duce carrier recombination. Miyagawa et al. [76] have pre-
sented a data science-based approach to optimize the hydrogen
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plasma treatment (HPT) for improving the passivation qualily of
heterostructure between titanium oxide and c-Si. Optimization
of the HPT process conditions is required to achieve the best
passivation quality. In this work, the authors have used Bayesian
optimization (BO) rather than relying on conventional random or
grid search for parameters. The six parameters (or ML features)
that are being optimized are process temperature, process time,
hydrogen (H?2) pressure and flow rate, radio frequency (RF)
power, and electrode distance. Effective carrier lifetime (7err)
was the parameter used to qualitatively assess the passivation
quality. Using the upper confidence bound of the uncertainty of
a GPR model, the acquisition function [47] of BO was defined.
The training data was generated from 10 samples, on which HPT
treatment was performed. Using the exploration—exploitation
approach [47] required experimentation points were determined.
Results show that this approach inferred the optimized values of
the six parameters much faster than the random search approach.
The authors have also explained in detail their findings and
their correlation with device physics. This work presents a very
efficient way of process optimization, one which minimizes
redundant experimentation and computational resources, while
also providing a degree of uncertainty for each prediction (as
the underlying methodology for acquisition function is GPR, a
probabilistic learning methodology).

Silicon ingots grown from Cz process are conventionally
cut into wafers using a diamond wafer saw, but this cutting
methodology creates irregularities on the wafer surfaces thatlead
to defect formation. The lapping process is used, therefore, tore-
move the thickness variations after cutting the ingots into wafers,
this helps in maintaining a flat surface on the wafer as well as
to minimize any necessity of polishing later. Surface roughness
(Ra) can be used to qualitatively assess the lapping process. An
abrasive slurry mixture like aluminium oxide (AI203) is used
in the lapping process, and long operations using this slurry
mixture can be expensive, which is one key disadvantage of the
lapping process. Ozturk et al. [77] presented a way to reduce the
extent of this inherent disadvantage by optimizing the process
parameters associated with lapping: abrasive slurry flow rate,
the particle size of abrasive material used in slurry, application
pressure, the rotation speed of wafer on cast iron plate. The
authors also gave an insight into an existing literature where non-
Mi-based methodologies are applied to address this optimization
and pointed out that the number of studies in this domain are
very limited. To train an ANN model 218 different data points
were measured, rotation speeds, lapping duration, and lapping
pressures were model input and measured Ra values were the
model output. The neural network used was a feed-forward fully
connected network with three layers and ten neurons in the mid-
dle hidden layer. This network was trained for 1000 epochs with
a learning rate of 0.01. Using this ANN prediction the authors
were able to confirm a few theories about the lapping process, for
example, extending lapping duration over 35 min in all rotation
speeds has no significant advantage. This work highlights the
core advantages of including data science techniques in process
engineering, mainly the use of existing data future results can
be optimized with minimal disruption of the entire fabrication
process.
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B. Application of Ml to Improve a Fabrication Recipe

Instead of focusing on a single process step, multiple pro-
cesses, or the entire fabrication recipe can be optimized, us-
ing conventional modeling or experimental approaches, the
number of variables (process conditions and/or mathematical
variables in case of analytical/numerical modeling) involved
in optimization can exponentially increase making the process
time and resource expensive. Data science-based approaches
can be useful in such cases as learning on a large number of
variables is feasible. Buratti et al. [78] have addressed the issue
of natural variations in production lines and proposed an ML-
based approach to optimize multiple processes simultaneously.
Another goal that the authors had was to keep improving the
efficiency to cost ratio. The authors used several ML methods:
SVR, RFs {82], adaptive boosting (AB) [83], and NNs to predict
the cell efficiency based on process conditions and then a GA
was used to identify the combination of input process parameters
than can maximize the cell efficiency. The demonstration was
done on Al-BSF solar cell production line. A total of 47 process
parameters {rom ten processing steps were used as the features
of the ML models, and a five fold cross validation {84] was used
to test the model accuracy. The optimized process parameters
obtained from GA were further tested using the PC1D simula-
tion tool. RMSE [85] and R? score were used to quantify the
model accuracy, and it was reported by the authors that NN
provided the best accuracies for larger datasets (with more than
1000 training data points). This work provides a meta-heuristic
approach [86] to address the issue of multiprocess optimization
of solar cell production lines without increasing the complexity
exponentially. This work can be extended in future research by
exploring different implementation strategies of the ML model,
for example, tuning the structure of the ANN architecture.

To understand the effect of a fabrication tool throughput on
the final cell efficiency, Altermatt et al. [79] proposed a statistics-
based approach, where the performance of every individual tool
involved in the fabrication of 552000 PERC solar cells in a
production line were investigated over 2 weeks. The efficiency
distribution of the produced cells was also recorded. Then, a
technology computer aided design (TCAD) simulation for these
cells was used to achieve the baseline measured efficiency by sta-
tistically varying the input parameters of the simulation model.
The effect of individual processing steps was inferred on the final
device efficiency. Modeling of semiconductor devices involves
the description of the transport of charge carriers under the
influence of potential distributions, properties of semiconductor
material, and doping distributions. These basic equations are
Poison, current continuity, and transport equations. These are
partial differential equations (PDE) in nature,which are coupled
together, and they are defined in a n dimensional space (1-3),an
analytical solution for these equations is not possible, so they are
solved by numerical methods which have high-time complexity
attached. An Ml model can predict the results of these simulation
models as the inference is different compared to solving PDE’s.
For example, if a three layer trained neural network model is
used for regression, it starts by creating linear functions at the
first layer (between different connected nodes), the second layer
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basically combines these multiple linear functions into multiple
nonlinear functions. The third layer combines these further to
create further nonlinear functions. The inference is faster as the
weights associated with each node (variable of these nonlinear
functions) are precalculated during the training stage.

Wasmer et al. [80] introduced an ML-based approach to
solving the same problem. The author’s goal was to understand
the global hourly time trends of solar cell efficiency seen in a
1-week dataset. An ensemble of decision trees [87] with feature
subsampling [88] was the ML model used in this work. The
training data was collected from 500 000 solar cells using inline
measurements over a period of 1 week. The total number of
features was 329, and the authors clustered these large sets of
features in groups with sizes varying from 1 to 13. The reasoning
given was that many of these features might be highly correlated.
Although instead of using a technique like principal compo-
nent analysis (PCA) [89], the authors proposed a hierarchical
clustering technique [90] to group the features. Their reasoning
to do this was that in PCA it will be unclear, which features
were joined. In the proposed hierarchical clustering techniques,
features were grouped based on their similarity with respect to
their impact on a cell performance metric. The designed Ml
model was used to perform temporal predictions (time as one of
the features) of the solar cell efficiency. It was proposed that,
as the prediction accuracy was very high, this methodology
could be implemented for actual production lines. A unique and
innovative aspect of this work is that the focus is not to achieve
an MI model with high prediction accuracy. Instead, the focus is
to use ML as a tool to understand the impact of different features
of solar cell production on the temporal evolution of produced
solar cell performance.

Another approach to model the power conversion efficien-
cies from a production line using meta-modeling (the author
refers to M1 models that can predict simulation model results)
and Monte Carlo simulations [91] is presented in Wasmer and
Greulich [81]. In this work, first in line measurements and
device characterization are done to collect the measurement
database, then a numerical simulation model for the solar cell
is designed, next a GPR MI model is created to interpolate
the simulation results (i.e., efficiency), after that, using Monte
Carlo approximation input parameter set in a range is created
and finally a sensitivity analysis is performed for these input
parameters. The authors were able to identify three material
parameters that are responsible for 80% of the variations in the
efficiency and propose that if these parameters are optimized the
baseline efficiency will improve. This work provides an efficient
way to utilize the massive measurements database created during
solar cell production by combining characterization techniques,
numerical simulations, probabilistic modeling, and sensitivity
analysis to improve upon the baseline efficiency of a given
production line.

IV. APPLICATION OF ML TECHNIQUES IMPLEMENTED FOR
SURFACE DEFECTS (CRACKS AND MICROCRACKS USING
LUMINESCENCE IMAGING) AND MATERIAL BULK DEFECTS

One major bottleneck for any mass-produced silicon solar
cell technology to achieve and sustain peak power conversion

efficiencies are defects. These defects can occur during the man-
ufacturing itself or they can occur during the device operation.
There are also multiple mechanisms that can introduce defects
in a solar cell device at different stages of the lifetime of the
solar cell, for example, defects in the bulk are mainly introduced
during the material growth while cracks and microcracks can be
introduced in the device during and after manufacturing.

There are conventional methodologies illustrated in the liter-
ature to identify, avoid, and mitigate defects in a solar cell like
the work presented by Michl et al. [92], where they investigated
different loss mechanisms in solar cells. This work demonstrates
that for investigating a single loss mechanism, for example,
surface recombination, multiple data sources can be used like
PL images or surface recombination velocity values, and these
different sources are correlated to an extent. This provides a
possibility to combine these different sources of learning via
an ML model. In this section, our focus is on those efforts,
which have used ML-based methodologies to identify and rectify
defects on the surface and in the bulk. A summary of this section
is provided in Table III.

A. Learning Methodologies to Investigate Surface Defects

The implementation of a CNN [104], [105] based classifier to
detect surface defects is presented in detail by Akram etal. [93],
where the authors have used electroluminescence (EL) imag-
ing to extract features (EL images with and without defects).
They cited the advantages of EL imaging in distinguishing
cracks/microcracks within a solar cell. Previous similar attempts
in the literature using Ml techniques and luminescence imaging
are also discussed and the need for their own implementation is
given. The authors have also discussed the advantages of CNN
over a fully connected NN in detail for image-based learning.
For training a CNN first, the EL images were annotated manually
for different kinds of defects (materials, cracks, finger defects,
and others). Then, different CNNs were tested and finally, their
classification performance was evaluated against a test dataset.
Different VGG-based [106] deep architectures were tested and
it was found that a six-layer network (that includes two fully
connected layers) performs the best. It was also reported that
the addition of batch normalization and regularization helped in
reducing overfitting. The images used for training and testing
were of resolution 100 x 100 and were grey scaled. Their
result showed that the CNN network misclassified background
as defects for polycrystalline solar cells and in mono crystalline
solar cells minor defects were misclassified. Emphasis was given
during this research to keeping the model lightweight (in terms
of the computational requirements). This is advantageous as the
authors claimed that the model can run on lower end consumer
grade computing equipment. This is ideal for an in line industrial
inspection use case.

Defects in polycrystalline solar cells are difficult to investigate
compared to mono-c-Si solar cells as crystallographic anomalies
can be falsely classified as cracks/microcracks. Zhang et al. [94]
proposed a way to counter this issue by using transfer learn-
ing [107]. In their work, a model that was trained for labeled
mono-crystalline EL images was used as the base model for
inference on unlabeled polycrystalline solar cell EL images. To
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TABLE Il
SUMMARY OF SECTION IV
Prediction  Article Cell Target Model used Dataset avail-  Features Critical parameter or
domain technology ability outcome
Surface 193} Mono, multi  Crack, finger, and VGG Publicly avail-  Manually Accuracy of 91.02%, Scal-
defecty crystalline solar  material defects able labeled EL  able on low end hardware
cells images

[94]  Poly crystalline  Cracks and microcracks DAN
solar cell

Not  publicly EL images la- Transferred leaming from
accessible beled with de-  mono to poly crystalline
fect probability  golar celt

{95) Mono, multi Finger interruptions, SVM & CNN Publicly avail- Module EL im-  Scalability of CNN &

crystalline solar  material defect, able ages (Individual  SVM from mobile to high
cells inter-connection cells labeled) performance hardware
degradation, cracks &
insulation fauits
[96)  Polycrystalline Defect regions CNN with RPN Not  publicly  Gray scale im-  Boundary boxes for de-
solar cell (boundary boxes) (U-Net) accessible ages fect regions with RPN
implementation
1971 PERC Empirical digital twin  DenseNet Research  data  EL images, IR Issue of crroncous data
for manual defect are not shared images, and re-  labeling in luminescence
classification flectance values  jmages is solved
[98] Mono, multi micro and large scale  Deep Siamese  Public  access  EL images (Di-  This model can work on
crystalline solar  cracks CNN provided in  vided symmet- nonuniforraly captured
cells scparate article  rically at center  jmages
half)
{99}  Multi- Finger  interruption, CAN Publicly avail-  EL images Ability to filter out back-
crystalline cracks and black core able ground information
solar cells defects
[100] Silicon wafers Pixel level mapping of RAM Not  publicly PL images Prediction of cell perfor-
(me- Si) Voc CNN-based re-  accessible mance at bare wafer level
{101} PERC FF, Voc. Jse. 1 gression No raw data Pl images Model prediction is robust
Deep  CNN,  provided inlage manipulations
[102]  No specific cell 7 bins AB, RF Not  publicly EL images Mode! can work on both
technology available full and half cut cells

Bulk de- [103], Not specific to o, op, Ni, Ngops Bt ANN,
fecls {171  one technology

SVM, ada, and  able profiles

RF, Publicly avail- Carrier lifetime  Model was robust even
when noise was added to

grad boosting input data

reduce the loss in learning when the model is transferred, and to
avoid model overfitting on mono-crystalline solar cell images,
the authors have used a deep adaptation network (DAN) [108]
using the multiple kernel variant of maximum mean discrep-
ancies [109). The test dataset contained 2886 mono-crystalline
cells and 2154 polycrystalline cell grey-scale EL images with a
resolution of 300x 300 pixels. Results show that the prediction
accuracy for polycrystalline cells was around 77%, and the
authors acknowledged the need to perform better data prepro-
cessing (to remove data defects and mislabeled data). This work
lays the groundwork for domain adaptation and transfer learning
from source to target tasks in PVs.

Deitsch et al. [95] explored two approaches for defect detec-
tion in solar cells using images captured at the module level.
Those two approaches were explored different learning algo-
rithms based on the degree to which they can utilize hardware-
based acceleration for training and inference of the model. SYMs
were trained on the features of the EL images, while CNN used
information of individual image pixel for a cell, For training an
SVM model, luminescence images of a module were segmented
at individual cell level and local descriptors were extracted,
which were combined then to compute a global representation,
which can classify a cell as defective or functioning. Two kernels
were used, namely linear and RBF {40]. The concept of mask-
ing was introduced to separate background information of the

module (like bus bars). An VGG-19 network was modified to
design a deep CNN, with a single neural at the last layer provid-
ing defect probability. The dataset for training was composed
of 1968 samples. Results show that the CNN performs better
than the SVM by a margin of 6%. Although the difference in
prediction accuracy is not significant, the key points to take from
the analysis presented are the time complexities associated with
the two learning algorithms. Mainly, the SVM can efficiently
utilize and scale to a diverse set of hardware devices, taking
significantly less time for model training. Although CNN’s
can provide faster inference. SVM models are CPU intensive
while CNN’s can perform best on a GPU. This result can help
future result to establish a tradeoff between unique use cases,
available hardware resource and training and inference time
budget available.

Han et al. {96] proposed segmentation of defects in poly-
crystalline solar cells using CNNs. They have addressed the
issue of information content in industrial luminescence imaging
(as compared to natural images, which have clear semantic
boundaries, industrial images are usually in grey-scale and lack
semantic boundaries). They have designed a defect region pro-
posal mechanism using region proposal networks (RPN) (see,
e.g., [110]), where an RPN provides binary classification as
well as regression of boundary boxes around the defect regions.
The dataset contained 106 defective images with a resolution

Authorized licensed use fimited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 15,2023 at 15:24:16 UTG from IEEE Xplore. Restrictions apply.




JAISWAL et al.: RECENT ADVANCES IN SILICON SOLAR CELL RESEARCH USING DATA SCIENCE-BASED LEARNING I

1024 x 1024. The authors also experimented by changing the
patch size of images for training and found that the highest patch
size (256 x 256) had the most optimal results. A modified ver-
sion of U-Net architecture was used in this work and when com-
pared against the base U-Net model, FCN-8 s, and DeepLabv2,
it was found that the proposed methodology outperformed these
methods.

Kunze et al. [97] presented an interesting idea of address-
ing the issue related to data annotations and labeling in ML
models that learn from luminescence images of solar cells.
These issues range from erroneous data labeling and the time
complexity associated with manual annotations. They have pre-
sented concept of an empirical digital twin (EDT), which require
minimal human intervention. The initial training was done on
reflectance values of different solar samples and their EL and
infrared images. Using a regression layer attached at the end of
a CNN, cell quality parameters like cell V. can be established.
An argument was made to support the fact that the EDT has
already learnt different defect classes and a minimal dataset for
a particular defect type can be used to train a subset of EDT
models using active learning (with human intervention). This
training will be performed iteratively (training data is divided
into batches to reduce the error in training prediction). The
training dataset showcased consisted of 1600 ¢-Si PERC solar
cells. The DenseNet [111] base network was modified for this
use case. A ground true value (defect information) was attached
with each individual sample and the precision, recall, and F1
scores were established using true positive, false negative, and
false positive classification of defects. Results show that the
proposed learning approach has better prediction accuracy than
conventional supervised learning approaches, with FI score for
defect class finger interruption of more than 0.99.

A novel way of improving the prediction accuracy of defect
classification by learning the left and right half of an EL image
was presented by Acharya et al. [98], where they have used
deep Siamese CNN’s [112]. As solar cells are symmetric across
their surface, the authors proposed using left and right half of
the EL image as two separate inputs to the two branches of the
Siamese CNN. Prior to feeding the EL images to the CNN, they
were preprocessed (geometrically transformed). This article ex-
plained the model implementation in detail. As the goal of this
work was to predict four different kinds of defects (microcrack
defects, large-scale defects, defects with low resolution, and
no defects), a multiclassification was performed by the neural
network. A comparison between the results of this work, i.e.,
accuracy of confusion matrix, the area under curve and that of
earlier published results was also performed. This work can be
helpful for industrial use cases, especially for ficld inspection of
solar modules, where EL images may not be uniformly captured
(for example, they may have different light exposure on the left
and right sides of the images).

Another innovative approach to detect defects more accu-
rately by suppressing background noise in an EL image using a
complementary attention network (CAN) [113] was presented
by Su et al. [99]. The authors have explained the capability
of channel-wise attention to discard background information.
Particularly, this is used to justify the use of CAN with RPNs.

Demant et al. [100] investigated deep CNNs and PL imaging
for regression analysis, they were predicting the electrical per-
formance of the solar cell, and they also introduced mapping of
open-circuit voltage (Vo) using regression activation mapping
(RAM) [114]. PL images of 3000 wafers were used to train a
CNN, and testing was done on wafers from different silicon
bricks, it is claimed that as the testing is done on data that the
model has not seen during the training stage and still performs
efficiently (MAE was the metric for checking the prediction
quality), the model can be generalized. Results show that in-
ference using the model is done in milliseconds, efficiency,
and V. are predicted with lower MAE, while prediction of
short-circuit current density (Js) is less accurate. This article
provides an innovative way to forecast the performance of a
solar cell manufactured from a given wafer, mapping of V. over
the wafer using RAM is also helpful to understand the wafer
quality, and the authors have also compared it to jo images for
verification. Measures to improve the model are also proposed,
mainly increasing the resolution of the RAM mapping of V.
and by additional feature vectors like brick lifetime.

Another end-to-end prediction model was proposed by De-
mant et al. [101], which utilizes a CNN-based regression model
to predict electrical parameters—efficiency, open-circuit volt-
age, short-circuit current, and fill factor (FF) from PERC solar
cell PL images. The authors have focused on increasing the
generalization capabilities of their model by curating material
data of 7300 wafers sourced from 10 different manufacturers. In
order to augment the training data { 115] for further model robust-
ness improvement, the images were randomly cropped at both
borders, flipped, and rotated. To assess the model generalization
and check for possible biases, testing was done for different
scenarios, where the authors tested the prediction quality of
the model for unknown bricks and unknown manufacturers (in
other words, data that the model has not seen during its training
and validation stages). Results show that the highest prediction
accuracy was achieved for the prediction of Vi, followed by 5
or Ji, and, FE. The authors have acknowledged the limitation
of the model caused by insufficient information captured by
PL images (when multiple surface defects are present). They
proposed that the inclusion of additional measurement data can
complement the visual data in PL images and accuracies can be
further improved.

Buratti et al. [102] presented an interesting use case of end-
to-end prediction modeling with regression-based final output
using deep CNN’s. The goal of this proposed work was to
predict and bin solar cell efficiencies. A total of 30 000 full cells
were used to capture EL images and the corresponding electrical
parameters were measured for training and validating the model.
A 0.2% efficiency bin size was chosen. The authors tested
the following five different CNN architectures: AlexNet [116],
ResNet [117], DenseNet, VGG, and SqueezeNet apart from a
custom-built CNN architecture. For binning (regression) also,
multiple ML algorithms were tested: RF {118], AdaBoost, gra-
dient boost [119], and ANN. The model were tested on full size
cells as well as half cut cells. Results showed that the custom
built CNN architecture was the best performing algorithm, and
AdaBoost was the best algorithm (with R square score of above
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Fig.2. Hierarchy of data science-based silicon solar cell research (NA: Not available).

99.8%) for binning. It was also shown that as the bin sizes are
extremely small, the accuracies were affected by it, and many
incorrect binning was done only in the neighboring bins. This
work lays can be used as a fundamental module to build binning
algorithms for cell quality inspection in an industrial use-case.

B. Learning Methodologies to Investigate Material Bulk
Defects

The power conversion efficiency of asolar cell is also affected
by bulk defects, Buratti et al. [103] presented a regression-
based strategy to extract defect parameters that directly affect
the temperature- and injection-dependent lifetime spectroscopy.
The authors simulated more than 100 000 by varying the
different parameters: Defect energy level (Ey), Capture-cross
sections (o3, op), defect density (IVy), doping density (Nuop),
excess carrier concentration (An), and temperature (T, these
parameters affect the lifetime spectroscopy. Then, 500 features
were used to design a regression model that is targeted to predict
E\4, 04, and 0. The authors decided to separate the training of
the ML model for defect energies that are in the upper band
gap from the ones in the lower band gaps. The regression model
was based on an ensemble algorithm: RFs. The coefficient of
determination score was used to judge the prediction quality and
it was more than 0.96 for all the prediction models. The findings
also establish that the ML algorithm was able to predict defect
parameters without prior knowledge of the Shockley-read-hall
(SRH) equation.

Buratti et al. [ 17] described their idea further in another article,
where different Ml models (RF, AB, gradient boosting, NN, and

SVM) were compared, and it was shown that all the ML models
were able to back predict parameters like E; without explicit
definition physics-based models. An interesting experiment was
presented where random Gaussian noise was added to SRH
lifetime profiles and it was shown that the ML models were
able to predict defect parameters with accuracy not dropping.
Simulated data generation and MI training methodology was
presented along with directions to recreate this work in detail.
This research provides a novel alternative approach to detect
bulk defects compared to traditional characterization approaches
and prove that Ml models are even robust to noise in input
data, which is promising factor to extend this concept to other
directions. As in most cases experimental data is noisy, an ML
model trained on simulated data can be used for inference over
this noisy data.

V. CONCLUSION

This article presents a comprehensive overview of data sci-
ence methodologies applied to PV research in its three main
branches, which are device optimization, process optimization,
and defect analysis on surfaces and inside the bulk of solar cells.
A hierarchy of this review is shown in Fig. 2.

A common trend amongst the reviewed articles is that data
science-based approaches, such as Ml and meta-heuristic al-
gorithms can potentiaily accelerate research in the PV domain.
This improvement can be in terms of time, as multiple conceptual
device architectures and process recipes can be prototypes much
more rapidly than conventional experimental approaches, defect
analysis is also accelerated using learning approaches, such
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as computer vision and DL on images. In addition to faster
research output, ML approaches also significantly cut down the
resources needed in a research. These resources can range from
the person/hours invested to the computational to the material
resources required.

The number of published efforts in the domain of applied ML
in PV research is increasing over the years. These publications
are the foundations on which future explorations in the domain
of applied data science-based PVs research will be performed.

Frequently, the detailed description of the devices, fabrica-
tion processes, or simply the methodologies for acquiring the
necessary data leaves low room for the information necessary
to recreate the research from the point of view of the artificial
intelligence applied in these works. Indeed, in order to fully
describe any M1 methodology, it needs to be broken into the used
structure, the chosen optimization criterion, and the particular
algorithm that implements said criterion over the structure. The
structures need to be fully described for the experiments to be
repeated. Forexample, an NN or any deep structure as a CNN has
a variety of structural parameters fixed before the experiments
are run, such as the number of layers, the dimensions of the
kernels, and so on. In many cases, the training criterion is im-
plicitly understood when the type of technique is mentioned, as,
for example, in GP (where maximum a posterior is used) or SM
(that uses maximum margin), but in other situations, the criteria
are multiple. This can also be said about the algorithms used
for the optimization. Besides, these algorithms have parameters
that need to be optimized and intrinsic quantities and procedures
that have to be mentioned, as for example, the fractions of data
used for training, validation and test and others. A detailed
description of all the above is of paramount importance for
proper reproduction of the presented procedures and to boost the
already increasing efficiency of data science-based approaches
even further.

Another oversight observed in many reviewed articles is an
effort to make the implemented ML model more generalized.
A common issue with training ML models is the bias-variance
tradeoff, when the model has a high bias toward the training data,
adding more training data will not improve the model prediction
performance for test data, instead of increasing model accuracy,
decreasing regularization, or boosting can help in reducing the
bias. When the model has high variance, increasing training data,
reducing the model complexity, and increasing regularization
or bagging can help. In order to ensure that an ML model
implementation has good generalization properties, it must be
evaluated. This can even help in transferring the learning from a
trained Ml model to another research work, without coming up
with a novel model architecture.

With the increasing accessibility of cloud-based computing,
computational capacity of modern CPU’s and GPU’s and in-
creasing efficiency of software frameworks, there is a very
high probability that the restrictions in MI tasks with respect
to memory and compute capacity as of now will be removed
in the near future. This will be particularly helpful in DL and
compuiter vision algorithms for image-based learning. These im-
provements will result in faster introductions of novel research
ideas, as well as lead to increased implementations in a mass

fabrication industrial environment as real-time Ml predictions
will allow in-line characterization of cells and modules.

Possibilities of introduction of newer methods of using learn-
ing methods in PVs research are inherently dependent on this
work being done in this domain, as these current literary works
act like fundamental building blocks for further improvements.
Therefore, a comprehensive introduction to the methodologies
that have been implemented in their research work by authors is
a fundamental necessity.
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