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Abstract—Crop-specific land cover mapping is a vital applica-
tion in agro-geoinformatics with the proliferation of remote sens-
ing data and machine learning techniques. This paper presents
a novel approach to enhance the well-known Cropland Data
Layer (CDL) product by U.S. Department of Agriculture (USDA)
National Agricultural Statistics Service (NASS) using Meta’s
Segment Anything Model (SAM). The study leverages SAM’s
zero-shot generalization capability to automatically delineate
cropland fields from Sentinel-2 images. By voting for the major
crop types within each delineated land unit, a substantial number
of noisy pixels is CDL can be eliminated, leading to notable
improvements in mapping accuracy. Preliminary experimental
results across key agricultural regions in the U.S., such as
California’s Central Valley and Corn Belt, suggest that SAM
can significantly enhance the quality of the original CDL data.
This ability to refine crop-specific land cover data, like CDL,
demonstrates SAM’s practical applicability within agricultural
monitoring systems. Moreover, the result showcases the promising
potential of integrating SAM into existing crop type classification
workflows to create high-quality early- and in-season crop type
maps on a national scale with minimal effort.

Index Terms—Segment Anything Model, Cropland Data Layer,
Field Delineation, Crop Type Mapping, AI/Machine Learning

I. INTRODUCTION

With the proliferation of remote sensing data, crop-specific
land cover mapping has been a critical application in agro-
geoinformatics [1]–[3]. As the essential technology in land
use land cover (LULC) mapping, machine learning has been
proven an effective approach to classify crop types and dis-
cover intricate patterns in satellite images [4]–[6]. For exam-
ple, machine learning algorithms such as decision tree (DT)
and random forest (RF), have been widely used with Landsat
and Sentinel-2 data to generate field-level crop type maps
[7]–[10]. In our prior research activities, we utilized remote
sensing data to generate in-season and historical crop type
maps [11], [12]. As more satellite images become available
throughout the growing season, the crop type classification is
expected to improve in accuracy. However, the results from
these classifiers usually contain noises more or less because
of bad, cloudy, or mixed pixels in the raw satellite images.

∗corresponding author

To address these issues, this study will leverage cutting-edge
computer vision (CV) technology to enhance crop-specific
land cover mapping. In 2023, Meta released the Segment
Anything Model (SAM) as a new segmentation system with
zero-shot generalization to automatically segment objects in
any images without additional training [13]. It has been used
for not only segmentation from satellite images [14]–[16], but
also many other image segmentation tasks, such as medical
image analysis [17], surgical scene segmentation [18], civil
infrastructure defect assessment [19], and autonomous robotic
frameworks [20]. Leveraging SAM’s advanced capabilities in
semantic segmentation and object recognition, we employ it
to delineate cropland units from remote sensing images prior
to classification. Subsequently, the delineated cropland unit
features will be combined with the crop type classification
results to further enhance the accuracy of crop-specific land
cover mapping.

This paper aims to demonstrate promising potential in
applying SAM to crop-specific land cover mapping and
advancing agricultural monitoring systems. The rest of the
paper is organized as follows. Section II describes the data,
model, and the design of the enhancement workflow. Section
III demonstrates the experimental results in California and
Midwestern United States. The conclusions and future research
recommendations are given in Section IV.

II. METHODS

A. Data

In this study, we will apply the SAM to improve the Crop-
land Data Layer (CDL), which is a well-known crop-specific
agricultural land cover data product by U.S. Department of
Agriculture (USDA) National Agricultural Statistics Service
(NASS) [21]. It covers the entire CONUS at 30-meter spatial
resolution from 2008 to the present and some states from 1997
to 2007. Table summarizes the information about CDL data
and its derived data products. The cropland layer provides
over 140 land cover classes with around 95% accuracy for
major crop types. The crop frequency layer identifies the
specific planting frequency of four major crop types across the
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TABLE I
SUMMARY OF CDL AND ITS DERIVED DATA PRODUCTS.

Layer Availability Coverage Spatial Resolution Data Type

Cropland Layer 1997 to present CONUS (2008-2022), Some states (1997-2008) 30-meter Categorical (crop type)
Crop Frequency Layer 2008 to present CONUS 30-meter Continuous (percentage)
Confidence Layer 2008 to present CONUS 30-meter Continuous (year count)
Cultivated Layer 2013 to present CONUS 30-meter Categorical (crop mask)

CONUS, corn, cotton, soybeans, and wheat, based on CDL
from 2008 to the present. The confidence layer represents
the percentage (0-100) of confidence for each cropland pixel.
The cultivated layer is a crop mask map with pixels that are
identified as cultivated in at least two out of the most recent
five years of CDL data.

The satellite images explored in this study are the Sentinel-2
data. The Copernicus Sentinel-2 mission is operated by Euro-
pean Space Agency (ESA), which consists of two twin polar-
orbiting satellites. The Sentinel-2A satellite was launched in
June 2015, and the Sentinel-2B was launched in March 2017.
They provide the higher temporal resolution of revisiting
every five days under the same viewing angles and a higher
spatial resolution of 10-60 m. The main instrument of the
Sentinel-2 mission, the MultiSpectral Instrument (MSI), covers
13 spectral bands ranging from visible and near-infrared to
shortwave infrared wavelengths.

Both CDL and Sentinel-2 data are open geospatial
data products and easy to access. The CropScape (https:
//nassgeodata.gmu.edu/CropScape) is the most common way
to explore and download CDL data [22]. The ESA Coperni-
cus Open Access Hub (https://scihub.copernicus.eu/) provides
open access to Sentinel-2 data. On the other hand, the Google
Earth Engine (GEE) data catalog has archived the complete
volume of CDL and Sentinel-2 data.

B. Segment Anything Model (SAM)

The Segment Anything Model [13], or SAM, is a new
segmentation model that was released by Meta in April 2023.
Trained on over 11 million images and 1.1 billion segmen-
tation masks, Sam has been considered a foundation model
for image segmentation, analogous to BERT and OpenAI’s
“GPT-n” series for natural language processing (NLP). During
its creation, this model was tasked with generating a set of
“valid masks” for an input image (similar to the NLP task
of producing a coherent output in text completion). It also
includes an option to prompt the model in the form of a
bounding box or set of points on the image. SAM is primarily
used for object detection, and its application extends to image
enhancements, real-time masks generated for video feeds, and
Augmented Reality (AR)/Virtual Reality (VR) advancements
powered by accurate segmentation.

For the purposes of our experiment, SAM was allowed to
automatically segment every recognized object in the satellite
imagery. The Segment Anything 1 Billion (SA-1B) dataset on
which SAM was trained does not appear to include remotely-
sensed imagery, meaning that the main feature of SAM that we

leveraged was its ability to perform zero-shot generalization.
Because of this feature, there were no explicit pre-training
steps taken before segmentation was performed on the satellite
data.

C. Enhancing Crop Type Mapping with SAM

Crop mapping via remotely-sensed images is growing in-
creasingly important in agriculture. Oftentimes machine learn-
ing is employed to expedite the creation of these maps. How-
ever, the results of traditional machine learning approaches,
such as DT and RF, can be noisy. These methods are applied
to satellite imagery pixel-by-pixel and thus can result in
misclassified pixels within a cropland unit. To address this
issue, we propose the incorporation of the latest CV-based
image segmentation approach into the postprocessing phase,
thereby enhancing the quality of crop type mapping results.
As shown in Figure 1, the proposed workflow utilizes the
SAM to automatically segment the original satellite image, the
delineated boundaries of each cropland field can be identified
and used to clean up the image.

Our experiment goes through each segmented area, finding
the mode of the cropland values and reclassifying erroneous
pixels to this value. To assess its effectiveness of the model,
our experiment is performed on two key agricultural regions
in the United States, one in California’s San Joaquin Valley
and the other in the U.S. Corn Belt.

III. EXPERIMENTAL RESULTS

A. Experiment Setup

Our experiment used GEE as the primary computing plat-
form. Using the segment-geospatial module of the geemap
library [23], we were able to set certain parameters of the
model, such as “foreground” and “unique”. The former was
set to false to avoid SAM categorizing the satellite imagery
of crops as “background”, which could be because that is the
case in most of its training data [24]. The latter was set to true,
because in the absence of this change the model seems to tend
towards grouping nearby crops in one mask. This processing
was performed in Google Colab, upon which the resulting
GeoTIFF mask files would be uploaded as assets in GEE and
used for processing as per the workflow.

B. Experimental Result 1: California’s Central Valley

The first study area is chosen from the San Joaquin Valley
of California’s Central Valley, located in Riverdale of Fresno
County. The major crop types grown here are mainly veg-
etables and fruits, such as lettuce, onions, garlic, tomatoes,
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Fig. 1. Workflow diagram for enhancing USDA NASS CDL data using SAM.

almonds, safflower, peaches, nectarines, citrus and olives.
According to the USDA NASS [25], the largest share of yields
from 2022 for the entire county were from tomatoes, corn, and
cotton. In Figure 2a, one can see that the original CDL imagery
on the left is quite noisy. While there are a few ambiguous
cropland units with many different pixel colors, most units
have a clear majority, such as the two adjacent almond fields
with quite a few pixels misclassified as pistachios near the
top left. It is these errors that SAM seems to have the greatest
potential to correct, allowing the accuracy of CDL to be further
enhanced. Overall, a total of 17.11% of the pixels in this
image were reclassified, quantifying the improvements that
SAM stands to contribute to existing agricultural data.

C. Experimental Result 2: U.S. Corn Belt

The second study area is chosen from U.S. Corn Belt,
located in Qulin of Butler County, Missouri. The major crop
types grown here are soybeans, corn, and rice according to
the USDA NASS [25]. Figure 2b illustrates how the accuracy
of the CDL varies depending on the study area; as compared
to Fig. 2a, it is less noisy and visually closer to the Sentinel
image, although there is still a significant amount of error.
In particular, the cropland unit in the center contains many
pixels misclassified as cotton instead of the majority, which
is soybeans. Again, SAM performs relatively well in such
scenarios where a clear majority is already visually apparent
and the main output is removal of erroneous pixels that
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Fig. 2. Comparison of original CDL (left) and enhanced CDL with SAM (right) .
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previously brought down accuracy. However, the particularly
noisy cropland unit near the bottom left of the image also
demonstrates a drawback of this approach: without ground-
truth data, it is difficult to resolve ambiguity in cases where
there is only a slight majority. For this study area, only 8.01%
of pixels were reclassified, although that may be due to less
initial noise than in the San Joaquin Valley study area.

IV. CONCLUSIONS AND FUTURE WORKS

This paper illustrated the preliminary results of enhancing
crop-specific land cover map with CV-based segmentation
approach. Based on the feature of zero-shot generalization to
unfamiliar objects and images without the need for additional
training, SAM can automatically delineate cropland units from
high-resolution satellite images. By voting for the major crop
types within each land unit, noisy pixels can be removed
from the remote-sensing-based crop type mapping results.
The preliminary experimental results suggested that SAM can
significantly improve the quality of the original CDL data
in key agricultural regions in U.S., including Central Valley
California and Corn Belt. During this process, it was noted
that in a number of scenarios SAM undersegmented the image,
resulting in a mask layer that did not accurately segment every
one of the cropland units visible in the image. However, this
is likely to improve with pre-training in future studies.

In the next phase, we will apply SAM to further improve the
crop type maps for the entire CONUS [26], the prediction of
crop mapping [27], and the in-season crop mapping results for
the foreign agricultural regions [28]. By integrating SAM into
these classification workflows, high-quality crop type maps
can be potentially generated at the national scale with minimal
effort. Meanwhile, crop yield can be estimated more accurately
at the early growing stage.
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