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Abstract— Sugarcane, a significant essential economic crop for
sugar products, bioethanol, and fiber material, is cultivated
around the world near tropical regions, such as Brazil, India,
China, and Thailand. The sugarcane spatial distribution data
efficiently supports various applications of sugarcane
management. A greater number of academic articles are heading
to address sugarcane mapping. Furthermore, various machine
learning algorithms have been used in sugarcane mapping based
on diverse Earth Observation (EO) data that achieve considerable
classification performance. This paper provides a brief review of
sugarcane mapping in recent years. Specifically, this paper aims
to: (1) summarizing and comparing remote sensing flatform
depending on the various sensors; (2) reviewing different
sugarcane mapping techniques with different machine learning
methods; (3) describing the essential challenges in sugarcane
classification under current remote sensing techniques and trying
to discover a patient method for efficient sugarcane mapping.

Keywords—remote sensing, sugarcane mapping, machine
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L INTRODUCTION

Sugarcane is an essential food and economic crop near
tropical regions, spreading in many countries of the world [1]—
[3], which provides around 70% of sweet sugar products for
human society [4], and the bagasse serves livestock feeding,
electricity generation, paper production, and ethanol creation
[1], [5], [6]. As the most efficient crop to generate biofuel
products such as ethanol [7], sugarcane is a crucial crop for
human food security, industrial development, and sustainable
energy generation. The Indian historical record from more than
three thousand years ago is the earliest one to demonstrate
sugarcane cultivation, and the discussion of initial sugarcane
cultivation regions involves Southeast Asia, Indonesia, and New
Guinea [8]. With industrialization and globalization, sugarcane
is widely cultivated in South and North America, the Caribbean,
Asia, Australasia, and Africa, such as Brazil, India, China,
Thailand, Indonesia, Melanesia, New Guinea, U.S. [8]. Brazil is
the greatest producer of sugarcane and its biofuel [6]. Since the
significance of sugarcane for human society, agriculture, and
industry decision-makers is necessary to gain trust, in-season,
low-cost, frequently updated data on sugarcane cultivation
acreage and location [9]. Satellite remote sensing has been a
cost-efficiently data to satisfy the above demands depending on
the multireflection information of the earth’s surface that
frequently covers large areas [10], [11]. Diverse remote sensing
sensors provide various spatial-temporal data, such as Sentinel-
1 Synthetic Aperture Radar, Sentinel-2 MultiSpectral
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Instrument, Light Detection and Ranging (LiDAR), and
unmanned aerial vehicle (UAV), to mapping sugarcane
distribution data products [12]-[16]. Meanwhile, machine
learning technique hugely accelerates remote sensing data
applications in crop mapping [17]-[20]. Moreover, some newly
designed machine learning approaches with satellite remote
sensing data are successfully used in sugarcane planting
mapping [21]-[24].

In this review, we briefly review three aspects of sugarcane
mapping: 1) principal sensors used for the sugarcane mapping
and relevant research; 2) machine learning-based sugarcane
mapping techniques; 3) challenges and future directions.

II. DATA SOURCE FOR SUGARCANE RESEARCH

Earth Observation (EO) can obtain massive large-scale earth
surface data that involves many crops and sugarcane spectral,
optical, and microwave information, timely and cheaply
monitoring their growing situation including location, area, and
healthy, and solving the information source of global sugar
production [10], [25]. Relevant satellite remote sensing data as
the source, since the last century, has become the principal
information carrier for mapping the crop types distribution,
detecting the growing situation, and assessing the damage,
especially, in recent decades with the sensors and satellites
increasing around the earth, huge quantities of remote sensing
data powerfully supports these tasks [10], [26], [27].

From June 2015, the Sentinel-2 satellite carried a multi-
spectral, high-resolution, and wide swath sensor, beginning to
collect the Earth’s surface images with a 5-day revisit frequency.
The sensor owns 13 spectral bands with resolution from 10 m to
60m. Because of global coverage ability and the above
characteristics, it has become a significant EO data source in
climate change and land use land cover monitoring [14], [24],
[28]. Meanwhile, Sentine-2 data is widely used in sugarcane
classification and yield prediction on a large scale across
different countries [22], [29]-[32]. Another European Space
Agency EO mission — Sentinel-1 is a C-band synthetic aperture
radar remote sensing satellite with VV and VH polarization
patterns, 10 m resolution, and high revisit frequency. Since the
ability to cross clouds, the objectives could include agriculture,
forest, and vegetation monitoring, marine environment
monitoring, sea ice observations, and so on. It is also used in
sugarcane detection and yield estimate in massive cloud cover
regions[16], [33]-[35]. Furthermore, the composition of
Sentinel-1 and Sentinel-2 works widely in these fields as well
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[23], [36]-[38]. The UAV-LiDAR data merge other optical data
to serve sugarcane biomass, canopy, height, yield prediction,
and growing mapping for the small-scale regions [16], [39]—
[42].

III.  APPLICATION OF MACHINE LEARNING FOR SUGARCANE
MAPPING

In decades, machine learning techniques are widely used in
agriculture remote sensing classifications, boosting the
improvement of crop type mapping for large-scale regions. This
section reviews remote sensing sugarcane mapping articles
using multiple methods to illustrate the reality of research.

A SVM

Nihar et al. [43] combined Sentinel-1 and Sentinel-2 either
to classify the sugarcane based on random forest and SVM
classifiers. The 0.95 kappa coefficient of sugarcane
classification was claimed from the SVM classifier. Verma et
al. [44] compared unsupervised classifier-ISODATA,
supervised classifier-MLC, and a kind of decision tree
approaches based on vegetation indices to classify sugarcane
from LISS IV imagery. As a result, the decision tree method was
verified to obtain a better accuracy of 89.93% and a kappa
coefficient of 0.86. Wang et al. [22] compared four machine
learning methods (SVM, random forest, ANN, and CART-DT)
in sugarcane classification using Sentinel-2 NDVI series for
each phenology stage (seedling, elongation, harvest). The result
confirms that Polynomial-SVM, RBF-SVM, RF, and CART-
DT classifiers had producer’s and user’s accuracies greater than
91%. ANN’s accuracy was lower. Mulianga et al.[45] used
maximum likelihood classifier identifying sugarcane from
Landsat NDVI and NDWTI datasets in Kenya, separately. The
classification validation illustrates that the sugarcane map
achieved 83.3% overall accuracy from NDVI classification and
90% overall accuracy from NDWI. Kai et al. [46] used the k-
Nearest Neighbours algorithm (kNN), Support Vector Machines
(SVM), Random Forests (RF), and the Dense Neural Network
to classify sugarcane from Sentinel-2 Orthorectified images.
SVM had a precision of 99.55% followed by the neural network
(six hidden layers) with an accuracy of 99,48% and then random
forests, then finally kNN. Neto et al. [47] utilized different
methods like principal component analysis (PCA), and factorial
analyzing the way their stalks reflect light in the visible and
near-infrared range. PCA results were invalid since two of the
four sugarcane varieties overlapped. Factorial discriminant
analysis, PLS-DA, and SFDA had correct classifications of 0.81,
0.82, and 0.74, respectively. Kumar et al. [48] used the M-
statistic and Jeffries-Matusita (J-M) distance methods to find
spectral separability among crop types. The SVMs, neural
network algorithms, and maximum likelihood classification
were compared to class separability and classification accuracy.
Using Z-test and y2-test, results showed that SVMs with a
polynomial kernel of degree 6 outperformed other classification
algorithms, providing higher accuracy for agricultural crop
classification using LISS-IV data. To address the issue of
sugarcane disease and optimize crop yield, Kumar et al. [49]
used sensors to find optimal temperatures, humidity, and
moisture situations to maintain favorable conditions for crop
growth. KNN clustering and a SVM classifier identify sugarcane
infections through the 200 images. The model had an overall

accuracy of 96% on a test dataset. Villareal et al. [42] employed
orthophotos and LiDAR datasets to map sugarcane in each
growing stage based on the object-based image analysis method.
The SVM among them processes the classification. Results
showed the distribution of sugarcane across the establishment,
tillering, yield formation, and ripening stages as 6.65%, 11.61%,
13.89%, and 17.90% respectively, with corresponding
accuracies of 88%, 94.4%, 96.3%, and 91.7% for each growth
stage.

B. Random Forest

Everingham et al. [50] aimed to determine the effectiveness
of using the random forests algorithm and different predictor
variables to predict annual variations in sugarcane crop size, thus
providing valuable information for decision-making in the
industry. The random forest algorithm was able to rank the
importance of each predictor variable when building the
decision trees. Results indicate that the random forest models
had an OOB (out-of-bag) classification rate of at least 86.36%.
To overcome the strains of clouds in the sugarcane planting
regions, Jiang et al. [51], 2019, tested Sentinel-1 time series data
to produce the initial sugarcane map using random forest and
extreme gradient boosting classifiers and then removed non-
vegetation class by marker-controlled watershed segmentation
with Sentinel-2 NDVI series. The article claims their sugarcane
map products own around 86.3% overall relative accuracy.
Lozano-Garzon et al. [52] created training dataset from load
data of farms and Landsat-8, Sentinel-2 data, and used multiple
classification techniques (K Nearest Neighbors, Random Forest,
Support Vector Machine, and Neural Networks). As a result, the
random forest approach was the best, yielding 0.85 accuracy and
0.91 F1 score. Ramirez-Gi et al. [53] used random forest based
on Sentinel-2 images and spatial analysis to indirectly detect
sugarcane injury, providing an option to understand population
change of sugarcane under specific pest damage, predicting a
17% reduction from the expected yield.

C. Neural Networks and Others

Wang et al.[36] developed a pixel- and phenology-based
approach to identify sugarcane using Sentine-1, Sentinel-2, and
Landsat-7/8 data to produce the sugarcane maps. The claimed
overall accuracy in the 2018 map is 96%. Sreedhar et al. [38]
combined with Sentinel-1 Vertical Horizontal band and
Sentinel-2 NDVI time series data, employing Long Short-Term
Memory neural network, identifying sugarcane in the Western
Uttar-Pradesh region of India. A high accuracy of classification
was claimed in this article. Lee et al. [54] used farmers’ cell
phone crowdsourced geolocated crop data and satellite data to
build the training dataset, constructing supervised (1D CNN)
and unsupervised (K-means) methods to generate high-
confidence sugarcane maps with 0.67 overall accuracy.
Virnodkar et al. [29] constructed a novel dataset- CaneSat as the
training data, utilizing 2D CNN and four deep CNNs (AlexNet,
GoogLeNet, ResNet50, and DenseNet201) to identify
sugarcane. The highest accuracy achieved among these models
was 88.46% within the 2D CNN, whereas four deep networks
own more than 73% overall accuracy. Poortinga et al. [55]
aimed to map sugarcane fields in Thailand and mitigate the
occurrence of burning using a lightweight deep learning
program, as an alternative to more expensive approaches like
convolutional neural networks (CNN). The researchers
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employed MobileNetV2 and experimented with three different
methods: a pre-trained approach (RGBt), randomly initialized
weights (RGBr), and randomly initialized weights incorporating
the NIR channel (RGBN). Among them, the pre-trained model
demonstrated superior performance, achieving accuracy rates of
95.5%, 92.65%, and 90.03% respectively. Zheng et al.[56] used
a mature time-weighted dynamic time warping method
(TWDTW) to match the sugarcane NDVI series based on
Landsat 7-8 and Sentinel 2 satellite data, producing the 2016-
2019 sugarcane harvest map for Brazil. The 2018 result owns
91.47% overall accuracy. Zhou et al. [57] developed an object-
oriented classification method based on the machine learning
approach for sugarcane mapping using time series Huan-Jing 1
satellite images in Suixi County of China. The classification
model was constructed by the AdaBoost data mining algorithm
using 382 sugarcane fields from the history period. The article
illustrates overall classification-93.6% and Kappa coefficient-
0.85.

IV. CURRENT CHALLENGES AND FUTURE TRENDS

Satellite data with massive clouds has been a significant
restrict condition to process time series sugarcane classification.
Especially, most sugarcane planting regions are around tropical
regions that are covered by much more clouds than other places.
The combination of optical satellite data and C-band SAR data
is the main solution for this issue. Sugarcane ground truth data,
as the training label, is crucial to the classification quality of
machine learning models and needs massive time consumption.
Trusted pixels from historical official crop data can be a new
option for integrating the training samples [17]-[19].
Meanwhile, sugarcane owns variable planting date that limits
time series satellite image classification performance that needs
a relatively stable phenology timeline. The curve matching
techniques, such as the time-weighted dynamic time warping
method (TWDTW) [56], provide an encouraging path to ignore
growing date drift. Furthermore, this study also enlightens on a
one-class classification method using phenology curve
information for sugarcane that just needs one class training
samples, owning possible to be the next generation sugarcane
mapping technique.

V. CONCLUSIONS

This review provides a summary of the sugarcane
classification based on the current remote sensing technology.
Comparing literature, the Sentinel-2 optical data, Sentinel-1 C-
band SAR data, and Landsat series data are the famous data
source in classifications. With Al techniques development,
supervised classifiers were accepted by most researchers and
obtained encouraging results in sugarcane identification.
Among them, SVM, random forest, and neural networks act as
essential effects in these classifications and predictions.
However, there are still some challenges, such as satellite image
quality, variable phenology timeline, and training data
extraction. This paper predicts that multisource data merging
combinates with the machine learning method will be the
pragmatic development in sugarcane mapping.
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