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Abstract— Sugarcane, a significant essential economic crop for 

sugar products, bioethanol, and fiber material, is cultivated 

around the world near tropical regions, such as Brazil, India, 

China, and Thailand. The sugarcane spatial distribution data 

efficiently supports various applications of sugarcane 

management. A greater number of academic articles are heading 

to address sugarcane mapping. Furthermore, various machine 

learning algorithms have been used in sugarcane mapping based 

on diverse Earth Observation (EO) data that achieve considerable 

classification performance. This paper provides a brief review of 

sugarcane mapping in recent years. Specifically, this paper aims 

to: (1) summarizing and comparing remote sensing flatform 

depending on the various sensors; (2) reviewing different 

sugarcane mapping techniques with different machine learning 

methods; (3) describing the essential challenges in sugarcane 

classification under current remote sensing techniques and trying 

to discover a patient method for efficient sugarcane mapping. 

Keywords—remote sensing, sugarcane mapping, machine 

learning, earth observation 

I. INTRODUCTION  

Sugarcane is an essential food and economic crop near 
tropical regions, spreading in many countries of the world [1]–
[3], which provides around 70% of sweet sugar products for 
human society [4], and the bagasse serves livestock feeding, 
electricity generation, paper production, and ethanol creation 
[1], [5], [6]. As the most efficient crop to generate biofuel 
products such as ethanol [7], sugarcane is a crucial crop for 
human food security, industrial development, and sustainable 
energy generation. The Indian historical record from more than 
three thousand years ago is the earliest one to demonstrate 
sugarcane cultivation, and the discussion of initial sugarcane 
cultivation regions involves Southeast Asia, Indonesia, and New 
Guinea [8]. With industrialization and globalization, sugarcane 
is widely cultivated in South and North America, the Caribbean, 
Asia, Australasia, and Africa, such as Brazil, India, China, 
Thailand, Indonesia, Melanesia, New Guinea, U.S. [8]. Brazil is 
the greatest producer of sugarcane and its biofuel [6]. Since the 
significance of sugarcane for human society, agriculture, and 
industry decision-makers is necessary to gain trust, in-season, 
low-cost, frequently updated data on sugarcane cultivation 
acreage and location [9]. Satellite remote sensing has been a 
cost-efficiently data to satisfy the above demands depending on 
the multireflection information of the earth’s surface that 
frequently covers large areas [10], [11]. Diverse remote sensing 
sensors provide various spatial-temporal data, such as Sentinel-
1 Synthetic Aperture Radar, Sentinel-2 MultiSpectral 

Instrument, Light Detection and Ranging (LiDAR), and 
unmanned aerial vehicle (UAV), to mapping sugarcane 
distribution data products [12]–[16]. Meanwhile, machine 
learning technique hugely accelerates remote sensing data 
applications in crop mapping [17]–[20]. Moreover, some newly 
designed machine learning approaches with satellite remote 
sensing data are successfully used in sugarcane planting 
mapping [21]–[24]. 

In this review, we briefly review three aspects of sugarcane 
mapping: 1) principal sensors used for the sugarcane mapping 
and relevant research; 2) machine learning-based sugarcane 
mapping techniques; 3) challenges and future directions. 

II. DATA SOURCE FOR SUGARCANE RESEARCH 

Earth Observation (EO) can obtain massive large-scale earth 
surface data that involves many crops and sugarcane spectral, 
optical, and microwave information, timely and cheaply 
monitoring their growing situation including location, area, and 
healthy, and solving the information source of global sugar 
production [10], [25]. Relevant satellite remote sensing data as 
the source, since the last century, has become the principal 
information carrier for mapping the crop types distribution, 
detecting the growing situation, and assessing the damage, 
especially, in recent decades with the sensors and satellites 
increasing around the earth, huge quantities of remote sensing 
data powerfully supports these tasks [10], [26], [27].  

From June 2015, the Sentinel-2 satellite carried a multi-
spectral, high-resolution, and wide swath sensor, beginning to 
collect the Earth’s surface images with a 5-day revisit frequency. 
The sensor owns 13 spectral bands with resolution from 10 m to 
60m. Because of global coverage ability and the above 
characteristics, it has become a significant EO data source in 
climate change and land use land cover monitoring [14], [24], 
[28]. Meanwhile, Sentine-2 data is widely used in sugarcane 
classification and yield prediction on a large scale across 
different countries [22], [29]–[32]. Another European Space 
Agency EO mission – Sentinel-1 is a C-band synthetic aperture 
radar remote sensing satellite with VV and VH polarization 
patterns, 10 m resolution, and high revisit frequency. Since the 
ability to cross clouds, the objectives could include agriculture, 
forest, and vegetation monitoring, marine environment 
monitoring, sea ice observations, and so on. It is also used in 
sugarcane detection and yield estimate in massive cloud cover 
regions[16], [33]–[35]. Furthermore, the composition of 
Sentinel-1 and Sentinel-2 works widely in these fields as well 
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[23], [36]–[38]. The UAV-LiDAR data merge other optical data 
to serve sugarcane biomass, canopy, height, yield prediction, 
and growing mapping for the small-scale regions [16], [39]–
[42]. 

III. APPLICATION OF MACHINE LEARNING FOR SUGARCANE 

MAPPING 

In decades, machine learning techniques are widely used in 
agriculture remote sensing classifications, boosting the 
improvement of crop type mapping for large-scale regions. This 
section reviews remote sensing sugarcane mapping articles 
using multiple methods to illustrate the reality of research. 

A. SVM 

Nihar et al. [43] combined Sentinel-1 and Sentinel-2 either 
to classify the sugarcane based on random forest and SVM 
classifiers. The 0.95 kappa coefficient of sugarcane 
classification was claimed from the SVM classifier. Verma  et 
al. [44] compared unsupervised classifier-ISODATA, 
supervised classifier-MLC, and a kind of decision tree 
approaches based on vegetation indices to classify sugarcane 
from LISS IV imagery. As a result, the decision tree method was 
verified to obtain a better accuracy of 89.93% and a kappa 
coefficient of 0.86. Wang  et al. [22] compared four machine 
learning methods (SVM, random forest, ANN, and CART-DT) 
in sugarcane classification using Sentinel-2 NDVI series for 
each phenology stage (seedling, elongation, harvest). The result 
confirms that Polynomial-SVM, RBF-SVM, RF, and CART-
DT classifiers had producer’s and user’s accuracies greater than 
91%. ANN’s accuracy was lower. Mulianga et al.[45] used 
maximum likelihood classifier identifying sugarcane from 
Landsat NDVI and NDWI datasets in Kenya, separately. The 
classification validation illustrates that the sugarcane map 
achieved 83.3% overall accuracy from NDVI classification and 
90% overall accuracy from NDWI. Kai  et al. [46] used the k-
Nearest Neighbours algorithm (kNN), Support Vector Machines 
(SVM), Random Forests (RF), and the Dense Neural Network 
to classify sugarcane from Sentinel-2 Orthorectified images. 
SVM had a precision of 99.55% followed by the neural network 
(six hidden layers) with an accuracy of 99,48% and then random 
forests, then finally kNN. Neto et al. [47] utilized different 
methods like principal component analysis (PCA), and factorial 
analyzing the way their stalks reflect light in the visible and 
near-infrared range. PCA results were invalid since two of the 
four sugarcane varieties overlapped. Factorial discriminant 
analysis, PLS-DA, and SFDA had correct classifications of 0.81, 
0.82, and 0.74, respectively. Kumar et al. [48] used the M-
statistic and Jeffries-Matusita (J-M) distance methods to find 
spectral separability among crop types. The SVMs, neural 
network algorithms, and maximum likelihood classification 
were compared to class separability and classification accuracy. 
Using Z-test and χ2-test, results showed that SVMs with a 
polynomial kernel of degree 6 outperformed other classification 
algorithms, providing higher accuracy for agricultural crop 
classification using LISS-IV data. To address the issue of 
sugarcane disease and optimize crop yield, Kumar et al. [49] 
used sensors to find optimal temperatures, humidity, and 
moisture situations to maintain favorable conditions for crop 
growth. KNN clustering and a SVM classifier identify sugarcane 
infections through the 200 images. The model had an overall 

accuracy of 96% on a test dataset. Villareal et al. [42] employed 
orthophotos and LiDAR datasets to map sugarcane in each 
growing stage based on the object-based image analysis method. 
The SVM among them processes the classification. Results 
showed the distribution of sugarcane across the establishment, 
tillering, yield formation, and ripening stages as 6.65%, 11.61%, 
13.89%, and 17.90% respectively, with corresponding 
accuracies of 88%, 94.4%, 96.3%, and 91.7% for each growth 
stage. 

B. Random Forest 

Everingham et al. [50] aimed to determine the effectiveness 
of using the random forests algorithm and different predictor 
variables to predict annual variations in sugarcane crop size, thus 
providing valuable information for decision-making in the 
industry. The random forest algorithm was able to rank the 
importance of each predictor variable when building the 
decision trees. Results indicate that the random forest models 
had an OOB (out-of-bag) classification rate of at least 86.36%.  
To overcome the strains of clouds in the sugarcane planting 
regions, Jiang et al. [51], 2019, tested Sentinel-1 time series data 
to produce the initial sugarcane map using random forest and 
extreme gradient boosting classifiers and then removed non-
vegetation class by marker-controlled watershed segmentation 
with Sentinel-2 NDVI series. The article claims their sugarcane 
map products own around 86.3% overall relative accuracy. 
Lozano-Garzon  et al. [52] created training dataset from load 
data of farms and Landsat-8, Sentinel-2 data, and used multiple 
classification techniques (K Nearest Neighbors, Random Forest, 
Support Vector Machine, and Neural Networks). As a result, the 
random forest approach was the best, yielding 0.85 accuracy and 
0.91 F1 score. Ramirez-Gi et al. [53] used random forest based 
on Sentinel-2 images and spatial analysis to indirectly detect 
sugarcane injury, providing an option to understand population 
change of sugarcane under specific pest damage, predicting a 
17% reduction from the expected yield. 

C. Neural Networks and Others 

Wang et al.[36] developed a pixel- and phenology-based 
approach to identify sugarcane using Sentine-1, Sentinel-2, and 
Landsat-7/8 data to produce the sugarcane maps. The claimed 
overall accuracy in the 2018 map is 96%. Sreedhar et al. [38] 
combined with Sentinel-1 Vertical Horizontal band and 
Sentinel-2 NDVI time series data, employing Long Short-Term 
Memory neural network, identifying sugarcane in the Western 
Uttar-Pradesh region of India. A high accuracy of classification 
was claimed in this article. Lee et al. [54] used farmers’ cell 
phone crowdsourced geolocated crop data and satellite data to 
build the training dataset, constructing supervised (1D CNN) 
and unsupervised (K-means) methods to generate high-
confidence sugarcane maps with 0.67 overall accuracy. 
Virnodkar et al. [29] constructed a novel dataset- CaneSat as the 
training data, utilizing 2D CNN and four deep CNNs (AlexNet, 
GoogLeNet, ResNet50, and DenseNet201) to identify 
sugarcane. The highest accuracy achieved among these models 
was 88.46% within the 2D CNN, whereas four deep networks 
own more than 73% overall accuracy. Poortinga et al. [55] 
aimed to map sugarcane fields in Thailand and mitigate the 
occurrence of burning using a lightweight deep learning 
program, as an alternative to more expensive approaches like 
convolutional neural networks (CNN). The researchers 
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employed MobileNetV2 and experimented with three different 
methods: a pre-trained approach (RGBt), randomly initialized 
weights (RGBr), and randomly initialized weights incorporating 
the NIR channel (RGBN). Among them, the pre-trained model 
demonstrated superior performance, achieving accuracy rates of 
95.5%, 92.65%, and 90.03% respectively. Zheng  et al.[56] used 
a mature time-weighted dynamic time warping method 
(TWDTW) to match the sugarcane NDVI series based on 
Landsat 7-8 and Sentinel 2 satellite data, producing the 2016-
2019 sugarcane harvest map for Brazil. The 2018 result owns 
91.47% overall accuracy. Zhou et al. [57] developed an object-
oriented classification method based on the machine learning 
approach for sugarcane mapping using time series Huan-Jing 1 
satellite images in Suixi County of China. The classification 
model was constructed by the AdaBoost data mining algorithm 
using 382 sugarcane fields from the history period. The article 
illustrates overall classification-93.6% and Kappa coefficient-
0.85. 

IV. CURRENT CHALLENGES AND FUTURE TRENDS 

Satellite data with massive clouds has been a significant 
restrict condition to process time series sugarcane classification. 
Especially, most sugarcane planting regions are around tropical 
regions that are covered by much more clouds than other places. 
The combination of optical satellite data and C-band SAR data 
is the main solution for this issue. Sugarcane ground truth data, 
as the training label, is crucial to the classification quality of 
machine learning models and needs massive time consumption. 
Trusted pixels from historical official crop data can be a new 
option for integrating the training samples [17]–[19]. 
Meanwhile, sugarcane owns variable planting date that limits 
time series satellite image classification performance that needs 
a relatively stable phenology timeline. The curve matching 
techniques, such as the time-weighted dynamic time warping 
method (TWDTW) [56], provide an encouraging path to ignore 
growing date drift. Furthermore, this study also enlightens on a 
one-class classification method using phenology curve 
information for sugarcane that just needs one class training 
samples, owning possible to be the next generation sugarcane 
mapping technique. 

V. CONCLUSIONS 

This review provides a summary of the sugarcane 
classification based on the current remote sensing technology. 
Comparing literature, the Sentinel-2 optical data, Sentinel-1 C-
band SAR data, and Landsat series data are the famous data 
source in classifications. With AI techniques development, 
supervised classifiers were accepted by most researchers and 
obtained encouraging results in sugarcane identification. 
Among them, SVM, random forest, and neural networks act as 
essential effects in these classifications and predictions. 
However, there are still some challenges, such as satellite image 
quality, variable phenology timeline, and training data 
extraction. This paper predicts that multisource data merging 
combinates with the machine learning method will be the 
pragmatic development in sugarcane mapping.  
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