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Abstract—The crop type planting prediction map is an
essential agro-geoinformation data source to explore and
quantify agriculture cultivation distribution in the coming year,
implying crop planting change tendency. This paper validates
the feasibility of crop type prediction using a one-dimensional
convolutional neural network (1D CNN) and decision tree
algorithm. To construct the 1D CNN model, we encode and
stack the historical Cropland Data Layer (CDL) into a 3D time
series location matrix as the training dataset. According to the
validation for the 2021 crop planting map in Cass County of
Iowa, the prediction result owns high overall accuracy (0.927)
and kappa coefficient (0.857). The major crop types, corn and
soybean, have high prediction producer accuracy (0.9 — 0.95)
and user accuracy (0.91-0.94). The minor crop alfalfa has lower
accuracy (0.55-0.73). This approach provides an option to
predict major crop type’s planting maps for the next year.

Keywords— crop map prediction, one-dimensional CNN,
CDL, decision tree

I. INTRODUCTION

Agriculture planting continuously feeds the population
and provides energy and raw material for humankind’s society
[11-[3]. However, regional conflicts, global climate change,
economic recession, and pandemics give some uncertainty to
agricultural planting and grain markets. The timely crop maps
are essential datasets for understanding the current agriculture
planting situation — distribution and acreage that usefully
monitor food supply security, agricultural strategy planning,
and other domestic economic activities [4], [S]. Various Earth
Observation satellite data, such as Landsat and ESA — Sentinel
series imagery, are collected to illustrate the Earth’s surface
agricultural planting changes, acting as a crucial resource in
remote sensing agricultural crop mapping technology that
intends to classify diverse crop types and locate crop growing
distribution [6], [7].

According to the phase of mapping, crop mapping can be
classified into three categories: pre-season, in-season, and
post-season maps [8]. The remote sensing post-season and in-
season crop mapping technology have already been widely
investigated by the agricultural crop type identification
community [9], [10]: Cropland Data Layer (CDL), a well-
known annual post-season crop mapping product, is produced
by the United States Department of Agriculture (USDA) that
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monitors the US agriculture planting and free access to the
public [11]; the remote sensing in-season crop mapping is
blooming explored using in-season time series satellites data
and machine learning techniques [12]-[16], as well as, other
in-season vegetation maps - grassland [17] related to these
techniques. Nevertheless, pre-season remote sensing crop
mapping techniques are frequently pioneered in agricultural
academic communities [18]-[20]. The crop map before the
growing season predicts planting information that includes
potential crop type, location distribution, and acreage
estimation, serving for food security pre-evaluation, potential
agriculture market competition analysis, gross yield
estimation of specific grains, and agricultural policies
prejudgment. However, massive challenges occurred when
remote sensing technology forecasts what types of crop will
grow on the ground fields based on the pre-season spectral
data. Additionally, the survey of planting ambition is a tough
task, collecting data from farmers that depends on a huge
human resource effort.

The machine learning method gives us an option in
agriculture activity prediction. Briefly, the can explore
phenomena and discover the principle, imitating the human
brain learning metric, which needs to accumulate experience
from input data and distill the essential patterns of
development or change to predict the next phase. Machine
learning algorithms have been popularly utilized in crop yield
forecasts [21]-[25]. Furthermore, to estimate the crop type
and area on the specific ground in the coming growing season,
Recurrent Neural Network and Artificial Neural Network
were employed to predict the crop map based on the historical
crop maps [8], [18].

In this study, we use one-dimensional Convolutional
Neural Network (1D CNN) machine learning framework to
predict the crop planting map for the coming year using CDL.
Our objective is to predict the 2021 crop map using the
historical CDL data (2008-2020) as training data to build 1D
CNN. We use the bool approach to encode every crop type
training data for extremely reserving the spatial information.
Every crop type’s planting probability map can be generated
that will be integrated into the final prediction planting map
by a decision tree method.
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II. DATA AND METHOD

A. Study area

We select Cass County as the study area, which is located
at the south and west of the Iowa, U.S., belongs to the Corn-
Belt region, was used to plant corn, soybean, alfalfa, hay, oat,
triticale, sorghum, winter wheat, rye, and barley, but only the
top three crop types (i.e., corn, soybean, alfalfa) have
considerable amount during past decades that is the main
reason for choosing these three crop as prediction aims in this
case. Fig 1 shows the location of the study area. The acreage
changes of major agriculture land for these prediction aims
during 2008-2020 is illustrated in Fig 2. Meanwhile, the area
of Cass County is 360774 acreages with around 80% land use
for these three crops. All above statistics are from the
CropScape system [26].
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Fig 1 Study area location — Cass County, lowa.
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Fig 2 Major agriculture land use changes.

B. Official Cropland Data Layer

The USDA annually produces CDL for the Conterminous
United States since 2008 to provide dozens of crops
distribution data in a planting year. CDL is an official field-
level raster cropland map with 30m spatial resolution,
covering the entire CONUS with 48 states since 2008,
including all major crop types (e.g., corn, soybean, cotton, rice,

winter wheat) and non-crop types (e.g., developed land, open
water, wetland, forest), is currently created by the decision tree
classifier using Landsat 8 and 9, DEIMOS-1 and UK2, the
ISRO ResourceSat-2 LISS-3, and Sentinel-2 satellite, is
published to the public around February in the coming year
after general crop growing season [11], [27]. The general
producer accuracies of major crops in the large regions are
greater than 80%, even in some regions reach to 90%, and the
accuracy assessments error matrices are provided since 2008
[27], [28]. CDL has already been used to offer the crucial
agro-geoinformation for acreage and yield estimates [28],
disaster monitoring like flooding and drought [29], specific
crop identification and extraction [30], and agricultural land
use type change detection [31]. In this study, the CDL 2008-
2020 acts as the inputting training data for the CNN machine
learning classifier. All CDL data can be easily downloaded
from CropScape system [26].

C. Spatial Encoding of Time-series CDL

A sequence of value is set in CDL to label land use types;
however, this is a fact that these nominal values cannot satisfy
the machine learning method since these values lack spatial
and temporal meaning to calculate. The original crop value of
CDL thus should be processed spatial encoding before
inputting the CNN workflow. The spatial encode needs to
extremely remain geolocation property of the crop that is
significantly to understand crop’s spatial distribution and
temporal change for machine learning model. In this paper,
raster location map is employed to represent every crop type’s
distribution, separately. Every crop type has an independent
location map that corresponds to every historical CDL. For a
crop type location map in a certain year, setting 1 as pixel
value if the pixel is occupied by this crop type but 0 if negative.
Each historical CDL therefore can be encoded by three
location maps — corn, soybean, and alfalfa. Every pixel in the
location map corresponds to CDL pixel location either. Fig. 4
demonstrates an example, containing corn, soybean and
alfalfa location maps that match CDL in a certain year.
Following this method, every crop type time series location
maps in 2008-2021 can be generated, respectively.
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Fig 3 Corn, soybean, and alfalfa location maps correspond CDL.

D. Preparing training dataset and testing dataset

This part processes the crop type spatial encoded data into
the training and testing dataset. To achieve them, every crop
type’s 3D time series location matrix should be created by
flatting and merging. Fig 4 as an example shows training set,
label set and validation dataset process for corn. Flatting and
merging crop type location maps in 2008-2019 into a 2D
matrix that is converted to a 3D matrix with Axis-X, Axis-Y,
and Axis-Z as Fig 4 (a). Axis-X and Axis-Y construct a plane
with 12X 1 array that represent time series crop location status
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from 2008 to 2019, and each plane as an independent sequence
ensures its prediction independence. Axis-Z means stacked
planes. The 3D time series location matrix contains spatial and
temporal information of crop type in the historical period.
2020 crop type location maps need to be flatted to a 2D matrix,
labeling the 3D time series location matrix as Fig 4 (b). The
3D time series location matrix acts as training set, and 2020
label data can be the label set. 80% of them serve to train the
model, and the rest 20% data set serve as validation data.
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Fig 4 Training set, label set, and validation data process.

E. 1D CNN model

This study selects 1D CNN as the prediction model for the
coming year crop planting map. 1D CNN owns a hidden
convolutional layer to learn and predict time series variables
that can be a big length sequence. Traditionally, the pooling
layer follows the one-dimensional convolutional layer to
reduce the amount of the input data, and the following flatten
layer converts the multi-dimensional data to one-dimensional
to flow into the fully connected layer. And in some cases, with
huge input data, convolutional layer and pooling layer could
be repeated and rearranged into the model structure.

In this case, the Axis-Y of 3D location matrix indicates
time series crop type location change that can be recognized
as independent input sequence with small size: thus, the
pooling layer can be ignored. In the convolutional layer, the
size 2 kernel and the relu activation are used. To reduce the
overfitting of CNN in this case, the dropout with 0.2 is added
after convolutional layer. There are two fully connected layers
with Relu and SoftMax that will push model calculate the
probability of predicting items. At the end of the model, the
accuracy is validated by sparse categorical cross entropy
method and optimized via Adam optimization algorithm. Fig
6 illustrates the 1D CNN structure for crop planting prediction.
This study needs to separately operate 1D CNN for every crop

type.
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Fig 5 1D CNN structure

F. Producing predicted crop map

In this study, 1D CNN predicts every crop cultivation map
for 2021, separately. The output of prediction is planting
probability map whose every pixel has a probability value
from 0 to 1, converting them to crop planting map is necessary
for advanced application. Every pixel corresponds to three
crop types probability values (corn, soybean, alfalfa),
comparing them and renaming the crop type in this pixel if it
is the maximum among three probabilities. Fig 6 shows the
comparison and locking process.

The above process can generate crop type in most pixels;
however, some pixel has two or three equal probabilities could
not lock crop type that need to employ a simple neighborhood
decision tree method to tackle further. For a pixel with equal
probabilities in some crop types can be named confusing pixel,
the spatial and temporal selector will be operated. Firstly, the
pixel spatial connecting eight neighborhoods will be made
category statistics and comparisons. The crop type with max
count will be locked in the pixel as Fig 7 (a). Secondly, the
pixel will be recognized as other or noise if there are no
available neighborhoods as Fig 7 (b). Thirdly, if these crop
types in the neighborhoods have the same count, the temporal
selector will be switched on - the higher frequency crop type
in 2008-2020 will be locked in this pixel as Fig 7 (c). Finally,
the 2021 crop map is predicted by these workflow steps. The
confusion matrix between prediction and CDL will be
calculated to validate the accuracy.
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Fig 6 Crop type probability comparing and locking process.
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Fig 7 Confusing pixel process (the red pixel is confusing pixel,
dark blue and slight blue color means different crop types, the
white color pixel is other land use types).
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III.  RESULTS AND DISCUSSIONS

This section describes and validates the 2021 crop map
prediction in Cass County. The 1D CNN model is constructed
by 2008-2020 historical training dataset, which predicting
2021 crop type map based on 2009-2020 3D time series
location matrix. Fig 8 illustrates the prediction result and
corresponding 2021 CDL for corn, soybean, and alfalfa in
Cass County, as well as the difference map between two maps.

2021 Prediction (corn, soybean, alfalfa)

2021 CDL (corn, soybean, alfalfa)
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Fig 8 Prediction map, CDL 2021 in Cass County, and difference
map between two maps (corn, soybean, alfalfa).

To assess the accuracy of the prediction, we use CDL 2021
as the reference data and randomly select 48107 points to
calculate the confusion matrix of prediction map — Table I.
The corn and soybean own higher producer and user accuracy
that are greater than 0.9. Alfalfa shows lower accuracy in these
two aspects. In summary, the prediction map has 0.927 overall
accuracy and 0.857 kappa coefficient. The corn and soybean
occupy massive agriculture land, but alfalfa grow on small
size of fields from 2008 to 2020 in CASS county that can be
seen in Fig.2. This bias time series crop cultivation pattern
directly impacts quantity of each crop type’s training data in
our 1D CNN prediction model that is the probable reason for
unbalance prediction accuracy in corn, soybean, and alfalfa.
These phenomena confirm that the approach can be used to
predict major crop types planting map for the coming year.

TABLE L CONFUSION MATRIX BETWEEN PREDICTION AND CDL

Corn | Soybean | Alfalfa | Total | U Accuracy | Kappa
Corn 23846 2067 149 26062 0.915
Soybean 1037 20432 119 21588 0.946
Alfalfa 80 43 334 457 0.731
Total 24963 22542 602 48107
P_Accuracy | 0.955 0.906 0.555 0.927
Kappa 0.857

This paper uses the location maps to encode the crop types
distribution of historical CDL that are constructed into 3D
time series location matrix, extremely containing spatial and
temporal information of the crop types history cultivation. At
the same time, however, it increases the complexity of the
input data for the machine learning model. Moreover, the
training dataset inherits all properties from historical CDL that
still includes some misclassification and adds uncertainty to
the learning process [10]. Therefore, the further refinement of
CDL is one of the improvement aspects of prediction
approach, previous relevant studies provide some valuable
material [10], [32]-[34]. 1D CNN for time series prediction in
this paper owns simple structure without pooling layer and fast
fitting speed. Every crop type prediction needs to separately
operate 1D CNN model, probably pushing efficiency
decrement to some certain extent with increment of crop type.
In addition, other environmental factors should be considered
in the prediction process. For example, soil moisture could
represent soil water storage for crop growth [35] and be
transferred into quantitative format to join in the neural
network calculation.

IV. CONCLUSION

This paper innovatively encodes historical CDL crop types via
location map and stacks them into the 3D time series location
matrix to calculate the spatial and temporal pattern of crop
type cultivation using 1D CNN. The corn, soybean, and alfalfa
2021 distribution map in Cass County of lowa was predicted.
According to the confusion matrix with 2021 CDL, prediction
result owns high overall accuracy and kappa coefficient. The
single crop type prediction accuracy probably depends on the
quantity of historical planting area. In this case, corn and
soybean have high prediction accuracy (> 0.9). This approach
provides an option with reasonable accuracy to predict major
crop types (corn, soybean) planting map in the next year.
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