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Abstract—The crop type planting prediction map is an 

essential agro-geoinformation data source to explore and 

quantify agriculture cultivation distribution in the coming year, 

implying crop planting change tendency. This paper validates 

the feasibility of crop type prediction using a one-dimensional 

convolutional neural network (1D CNN) and decision tree 

algorithm. To construct the 1D CNN model, we encode and 

stack the historical Cropland Data Layer (CDL) into a 3D time 

series location matrix as the training dataset. According to the 

validation for the 2021 crop planting map in Cass County of 

Iowa, the prediction result owns high overall accuracy (0.927) 

and kappa coefficient (0.857). The major crop types, corn and 

soybean, have high prediction producer accuracy (0.9 – 0.95) 

and user accuracy (0.91-0.94). The minor crop alfalfa has lower 

accuracy (0.55-0.73). This approach provides an option to 

predict major crop type’s planting maps for the next year. 

Keywords— crop map prediction, one-dimensional CNN, 

CDL, decision tree 

I. INTRODUCTION  

Agriculture planting continuously feeds the population 
and provides energy and raw material for humankind’s society 
[1]–[3]. However, regional conflicts, global climate change, 
economic recession, and pandemics give some uncertainty to 
agricultural planting and grain markets. The timely crop maps 
are essential datasets for understanding the current agriculture 
planting situation – distribution and acreage that usefully 
monitor food supply security, agricultural strategy planning, 
and other domestic economic activities [4], [5].  Various Earth 
Observation satellite data, such as Landsat and ESA – Sentinel 
series imagery, are collected to illustrate the Earth’s surface 
agricultural planting changes, acting as a crucial resource in 
remote sensing agricultural crop mapping technology that 
intends to classify diverse crop types and locate crop growing 
distribution [6], [7]. 

According to the phase of mapping, crop mapping can be 
classified into three categories: pre-season, in-season, and 
post-season maps [8]. The remote sensing post-season and in-
season crop mapping technology have already been widely 
investigated by the agricultural crop type identification 
community [9], [10]: Cropland Data Layer (CDL), a well-
known annual post-season crop mapping product, is produced 
by the United States Department of Agriculture (USDA) that 

monitors the US agriculture planting and free access to the 
public [11]; the remote sensing in-season crop mapping is 
blooming explored using in-season time series satellites data 
and machine learning techniques [12]–[16], as well as, other 
in-season vegetation maps - grassland [17] related to these 
techniques. Nevertheless, pre-season remote sensing crop 
mapping techniques are frequently pioneered in agricultural 
academic communities [18]–[20]. The crop map before the 
growing season predicts planting information that includes 
potential crop type, location distribution, and acreage 
estimation, serving for food security pre-evaluation, potential 
agriculture market competition analysis, gross yield 
estimation of specific grains, and agricultural policies 
prejudgment. However, massive challenges occurred when 
remote sensing technology forecasts what types of crop will 
grow on the ground fields based on the pre-season spectral 
data. Additionally, the survey of planting ambition is a tough 
task, collecting data from farmers that depends on a huge 
human resource effort. 

The machine learning method gives us an option in 
agriculture activity prediction. Briefly, the can explore 
phenomena and discover the principle, imitating the human 
brain learning metric, which needs to accumulate experience 
from input data and distill the essential patterns of 
development or change to predict the next phase. Machine 
learning algorithms have been popularly utilized in crop yield 
forecasts [21]–[25]. Furthermore, to estimate the crop type 
and area on the specific ground in the coming growing season, 
Recurrent Neural Network and Artificial Neural Network 
were employed to predict the crop map based on the historical 
crop maps [8], [18].  

In this study, we use one-dimensional Convolutional 
Neural Network (1D CNN) machine learning framework to 
predict the crop planting map for the coming year using CDL. 
Our objective is to predict the 2021 crop map using the 
historical CDL data (2008-2020) as training data to build 1D 
CNN. We use the bool approach to encode every crop type 
training data for extremely reserving the spatial information. 
Every crop type’s planting probability map can be generated 
that will be integrated into the final prediction planting map 
by a decision tree method.  
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II. DATA AND METHOD 

A. Study area 

We select Cass County as the study area, which is located 
at the south and west of the Iowa, U.S., belongs to the Corn-
Belt region, was used to plant corn, soybean, alfalfa, hay, oat, 
triticale, sorghum, winter wheat, rye, and barley, but only the 
top three crop types (i.e., corn, soybean, alfalfa) have 
considerable amount during past decades that is the main 
reason for choosing these three crop as prediction aims in this 
case. Fig 1 shows the location of the study area. The acreage 
changes of major agriculture land for these prediction aims 
during 2008-2020 is illustrated in Fig 2. Meanwhile, the area 
of Cass County is 360774 acreages with around 80% land use 
for these three crops. All above statistics are from the 
CropScape system [26]. 

 

Fig 1 Study area location – Cass County, Iowa. 

 
Fig 2 Major agriculture land use changes. 

B. Official Cropland Data Layer 

The USDA annually produces CDL for the Conterminous 
United States since 2008 to provide dozens of crops 
distribution data in a planting year. CDL is an official field-
level raster cropland map with 30m spatial resolution, 
covering the entire CONUS with 48 states since 2008, 
including all major crop types (e.g., corn, soybean, cotton, rice, 

winter wheat) and non-crop types (e.g., developed land, open 
water, wetland, forest), is currently created by the decision tree 
classifier using Landsat 8 and 9, DEIMOS-1 and UK2, the 
ISRO  ResourceSat-2 LISS-3, and Sentinel-2 satellite, is 
published to the public around February in the coming year 
after general crop growing season [11], [27]. The general 
producer accuracies of major crops in the large regions are 
greater than 80%, even in some regions reach to 90%, and the 
accuracy assessments error matrices are provided since 2008 
[27], [28]. CDL has already been used to offer the crucial 
agro-geoinformation for acreage and yield estimates [28], 
disaster monitoring like flooding and drought [29], specific 
crop identification and extraction [30], and agricultural land 
use type change detection [31]. In this study, the CDL 2008-
2020 acts as the inputting training data for the CNN machine 
learning classifier. All CDL data can be easily downloaded 
from CropScape system [26].  

C. Spatial Encoding of Time-series CDL 

  A sequence of value is set in CDL to label land use types; 
however, this is a fact that these nominal values cannot satisfy 
the machine learning method since these values lack spatial 
and temporal meaning to calculate. The original crop value of 
CDL thus should be processed spatial encoding before 
inputting the CNN workflow. The spatial encode needs to 
extremely remain geolocation property of the crop that is 
significantly to understand crop’s spatial distribution and 
temporal change for machine learning model. In this paper, 
raster location map is employed to represent every crop type’s 
distribution, separately. Every crop type has an independent 
location map that corresponds to every historical CDL. For a 
crop type location map in a certain year, setting 1 as pixel 
value if the pixel is occupied by this crop type but 0 if negative. 
Each historical CDL therefore can be encoded by three 
location maps – corn, soybean, and alfalfa. Every pixel in the 
location map corresponds to CDL pixel location either. Fig. 4 
demonstrates an example, containing corn, soybean and 
alfalfa location maps that match CDL in a certain year. 
Following this method, every crop type time series location 
maps in 2008-2021 can be generated, respectively. 

 

Fig 3 Corn, soybean, and alfalfa location maps correspond CDL. 

D. Preparing training dataset and testing dataset 

This part processes the crop type spatial encoded data into 
the training and testing dataset. To achieve them, every crop 
type’s 3D time series location matrix should be created by 
flatting and merging. Fig 4 as an example shows training set, 
label set and validation dataset process for corn. Flatting and 
merging crop type location maps in 2008-2019 into a 2D 
matrix that is converted to a 3D matrix with Axis-X, Axis-Y, 
and Axis-Z as Fig 4 (a). Axis-X and Axis-Y construct a plane 
with 121 array that represent time series crop location status 
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from 2008 to 2019, and each plane as an independent sequence 
ensures its prediction independence. Axis-Z means stacked 
planes. The 3D time series location matrix contains spatial and 
temporal information of crop type in the historical period. 
2020 crop type location maps need to be flatted to a 2D matrix, 
labeling the 3D time series location matrix as Fig 4 (b). The 
3D time series location matrix acts as training set, and 2020 
label data can be the label set. 80% of them serve to train the 
model, and the rest 20% data set serve as validation data. 

 

Fig 4 Training set, label set, and validation data process. 

E. 1D CNN model 

This study selects 1D CNN as the prediction model for the 
coming year crop planting map. 1D CNN owns a hidden 
convolutional layer to learn and predict time series variables 
that can be a big length sequence. Traditionally, the pooling 
layer follows the one-dimensional convolutional layer to 
reduce the amount of the input data, and the following flatten 
layer converts the multi-dimensional data to one-dimensional 
to flow into the fully connected layer. And in some cases, with 
huge input data, convolutional layer and pooling layer could 
be repeated and rearranged into the model structure.  

In this case, the Axis-Y of 3D location matrix indicates 
time series crop type location change that can be recognized 
as independent input sequence with small size: thus, the 
pooling layer can be ignored. In the convolutional layer, the 
size 2 kernel and the relu activation are used. To reduce the 
overfitting of CNN in this case, the dropout with 0.2 is added 
after convolutional layer. There are two fully connected layers 
with Relu and SoftMax that will push model calculate the 
probability of predicting items. At the end of the model, the 
accuracy is validated by sparse categorical cross entropy 
method and optimized via Adam optimization algorithm. Fig 
6 illustrates the 1D CNN structure for crop planting prediction. 
This study needs to separately operate 1D CNN for every crop 
type. 

 

Fig 5 1D CNN structure 

F. Producing predicted crop map 

In this study, 1D CNN predicts every crop cultivation map 
for 2021, separately. The output of prediction is planting 
probability map whose every pixel has a probability value 
from 0 to 1, converting them to crop planting map is necessary 
for advanced application. Every pixel corresponds to three 
crop types probability values (corn, soybean, alfalfa), 
comparing them and renaming the crop type in this pixel if it 
is the maximum among three probabilities. Fig 6 shows the 
comparison and locking process.  

The above process can generate crop type in most pixels; 
however, some pixel has two or three equal probabilities could 
not lock crop type that need to employ a simple neighborhood 
decision tree method to tackle further. For a pixel with equal 
probabilities in some crop types can be named confusing pixel, 
the spatial and temporal selector will be operated. Firstly, the 
pixel spatial connecting eight neighborhoods will be made 
category statistics and comparisons.  The crop type with max 
count will be locked in the pixel as Fig 7 (a). Secondly, the 
pixel will be recognized as other or noise if there are no 
available neighborhoods as Fig 7 (b).  Thirdly, if these crop 
types in the neighborhoods have the same count, the temporal 
selector will be switched on - the higher frequency crop type 
in 2008-2020 will be locked in this pixel as Fig 7 (c). Finally, 
the 2021 crop map is predicted by these workflow steps. The 
confusion matrix between prediction and CDL will be 
calculated to validate the accuracy. 

 

Fig 6 Crop type probability comparing and locking process. 

 
Fig 7 Confusing pixel process (the red pixel is confusing pixel, 

dark blue and slight blue color means different crop types, the 

white color pixel is other land use types). 
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III. RESULTS AND DISCUSSIONS 

This section describes and validates the 2021 crop map 
prediction in Cass County. The 1D CNN model is constructed 
by 2008-2020 historical training dataset, which predicting 
2021 crop type map based on 2009-2020 3D time series 
location matrix. Fig 8 illustrates the prediction result and 
corresponding 2021 CDL for corn, soybean, and alfalfa in 
Cass County, as well as the difference map between two maps.  

 

Fig 8 Prediction map, CDL 2021 in Cass County, and difference 

map between two maps (corn, soybean, alfalfa). 

To assess the accuracy of the prediction, we use CDL 2021 
as the reference data and randomly select 48107 points to 
calculate the confusion matrix of prediction map – Table I. 
The corn and soybean own higher producer and user accuracy 
that are greater than 0.9. Alfalfa shows lower accuracy in these 
two aspects. In summary, the prediction map has 0.927 overall 
accuracy and 0.857 kappa coefficient. The corn and soybean 
occupy massive agriculture land, but alfalfa grow on small 
size of fields from 2008 to 2020 in CASS county that can be 
seen in Fig.2. This bias time series crop cultivation pattern 
directly impacts quantity of each crop type’s training data in 
our 1D CNN prediction model that is the probable reason for 
unbalance prediction accuracy in corn, soybean, and alfalfa. 
These phenomena confirm that the approach can be used to 
predict major crop types planting map for the coming year. 

TABLE I.  CONFUSION MATRIX BETWEEN PREDICTION AND CDL 

 Corn Soybean Alfalfa Total U_Accuracy Kappa 

Corn 23846 2067 149 26062 0.915  

Soybean 1037 20432 119 21588 0.946  

Alfalfa 80 43 334 457 0.731  

Total 24963 22542 602 48107   

P_Accuracy 0.955 0.906 0.555  0.927  

Kappa      0.857 

This paper uses the location maps to encode  the crop types 
distribution of historical CDL that are constructed into 3D 
time series location matrix, extremely containing spatial and 
temporal information of the crop types history cultivation. At 
the same time, however, it increases the complexity of the 
input data for the machine learning model.  Moreover, the 
training dataset inherits all properties from historical CDL that 
still includes some misclassification and adds uncertainty to 
the learning process [10]. Therefore, the further refinement of 
CDL is one of the improvement aspects of prediction 
approach, previous relevant studies provide some valuable 
material [10], [32]–[34]. 1D CNN for time series prediction in 
this paper owns simple structure without pooling layer and fast 
fitting speed. Every crop type prediction needs to separately 
operate 1D CNN model, probably pushing efficiency 
decrement to some certain extent with increment of crop type. 
In addition, other environmental factors should be considered 
in the prediction process. For example, soil moisture could 
represent soil water storage for crop growth [35] and be 
transferred into quantitative format to join in the neural 
network calculation. 

IV. CONCLUSION 

This paper innovatively encodes historical CDL crop types via 
location map and stacks them into the 3D time series location 
matrix to calculate the spatial and temporal pattern of crop 
type cultivation using 1D CNN. The corn, soybean, and alfalfa 
2021 distribution map in Cass County of Iowa was predicted. 
According to the confusion matrix with 2021 CDL, prediction 
result owns high overall accuracy and kappa coefficient. The 
single crop type prediction accuracy probably depends on the 
quantity of historical planting area. In this case, corn and 
soybean have high prediction accuracy (> 0.9). This approach 
provides an option with reasonable accuracy to predict major 
crop types (corn, soybean) planting map in the next year. 
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