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ABSTRACT

Time series anomaly detection remains one of the most active areas
of research in data mining. In spite of the dozens of creative
solutions proposed for this problem, recent empirical evidence
suggests that time series discords, a relatively simple twenty-year old
distance-based technique, remains among the state-of-art
techniques. While there are many algorithms for computing the
time series discords, they all have limitations. First, they are limited
to the batch case, whereas the online case is more actionable.
Second, these algorithms exhibit poor scalability beyond tens of
thousands of datapoints. In this work we itroduce DAMP, a novel
algorithm that addresses both these issues. DAMP computes exact
left-discords on fast arriving streams, at up to 300,000 Hz using a
commodity desktop. This allows us to find tume series discords in
datasets with trillions of datapoints for the first time. We will
demonstrate the utility of our algorithm with the most ambitious
set of time series anomaly detection experiments ever conducted.
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1. INTRODUCTION

Time series anomaly detection is one of the most useful tools
investigated by the data mining community [2]{8][11]. It can be
used offline to investigate archival data, or online, to momitor
critical situations that offer a potential to intervene. For example,
summoning a doctor or shutting down a machine that may be about
to damage itself. Given its importance, it is unsurprising that this
area attracts a lot of attention from the community, with dozens of
algorithms proposed each year. However, in spite of the plethora of
algorithms i the literature, there is increasng evidence that a
twenty-year-old distance-based method called time series discords is
still competitive {11]. Discords are competitive with deep learning
methods in spite (or perhaps because) of thewr great simplicity. A
time series discord is sumply the subsequence of a time series that is
maxumally far from its nearest neighbor.

At least one-hundred papers have reported using discords to solve
problems m diverse domains, and discords seem to be the only tume
sertes anomaly detection technique to produce Buperhumani
results (see discussion m Section 2). However, discords have three
important limitations that have limited their broader adoption:

# If an anomalous pattern appears at least twice in the tune series,
then each occurrence will be the other nearest neighbor, and
thus fail to optimize the discord definition. This 1s mformally
called the twin-freak problem.

¢ Discords are only defined for the batch case, but anomaly
detection is most actionable in online settings.

o In spite of extensive progress in speeding up discord discovery,
datasets with millions of datapoints remain itractable.

In this paper we introduce DAMP (Discord Aware Matrix Profile), a
novel algorithm which solves all the above problems.

* DAMP 1s not confused by repeated anomalies {twin-freaks), it
simply flags the first occurrence (f desired, other occurrences
can then be found by simple similarity search).

o DAMP 15 defined for both online and offlme cases. Moreover,
DAMP has an extraordinary fast throughput, exceeding 300,000
Hz on standard hardware.

® As the previous bullet point suggests, DAMP is extraordinarily
scalable. For the first time, this allows us to consider datasets
with nullions, billions and even trillions of datapoints.

The rest of this paper is organized as follows. In Section 2 we
motivate the use of discords as the time series anomaly definition
most worthy of acceleration and generalization. We also concretely
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define a new term, effectively online, that allows DAMP to tackle
ultra-fast real-time data sources found m industry and science.
Section 3 contains the necessary definition and notation require,
and Section 4 discusses related work, before we introduce our
algorithm in Section 5. In Section 6 we conduct the most ambitious
empirical evaluation of time series anomaly detection ever
attempted.

2. MOTIVATION

Bcforc contmumg we need to answer thc following question. Why

A SDAETERK AT EDDIDD
a new algorithm, or make one of the many dozens of proposed
approaches more scalable?

The reason is that there is increasing evidence that discords remain
competitive with the state-of-the-art! [11]. Among the hundreds of
time series anomaly detection algorithms proposed in the last two
decades, only time series discords could claim to have been adopted
by more than one hundred independent teams to actually solve a
real-world problem (a partial bibliography is here [6]).

In addition, time series discords seem to be the only anomaly
detection algorithm that has been demonstrated to perform at
superhuman levels [11]. All other algorithms that we are aware of
have shown to discover anomalies that are also readily apparent to
the human eye. For example, a recent paper proposed an LSTMs
network for anomaly detection and evaluated it on data retrieved
from Mars [8]. However, the only anomaly shown i the paper
shows a visually obvious anomaly where a repeated periodic
pattern suddenly transitions to a literal flatline. Of course, this does
not mean that such algorithms have no value, as human attention
is very expensive. However, the literature also offers some examples
where discords have found anomalies that are very subtle, defying
the possibility of human discovery. Consider Figure 1, which shows
the vibration of an industrial motor [4][12].
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Figure 1: top) A 20-second run of an industrial motor. bottom)
a zoom-in of the region known to contain an anomaly, which
is the length of (but not necessarily at the location of) the red
bar.

The data comes for a motor running under no load, however for a
brief instant a load was applied and immediately removed, creating
an anomaly:. It is clearly fruitless to visually search for the anomaly
in the full dataset, however, even if we zoom into a local region
containing the anomaly, it is not clear where it is. In Figure 2 we
task time series discords with detecting the anomaly.

I Note that some papers misattribute the success of their anomaly detection to the
Matrix Profile or to HOTSAX, but these are simple different algorithms to compute
time series discords.
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Figure 2: top) A 20-second run of an industrial motor. bottonn)
The time series discord discovered by the Left-MP correctly
locates the anomaly.

Beyond the accuracy of discords prediction here, note that this
dataset contains 244,189 datapoints, representing about 20 seconds
of wall clock time recorded at 12,000 Hz. We are not aware of any
anomaly detection algorithm in the literature that could process this
dataset in real-time, however, as we will show, DAMP can.

We also consider a dataset that is dramatically different to the
bearing data. In Figure 3 we show the Left-MP for an ECG which
we know contains a single anomaly beat, a ventricular contraction.

ECG (43-year-cld mae)
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Figure 3: top) A sixty-second snippet of an ECG. bottom) The
top-1 time series discord correctly locates the anomaly.

This dataset has a wandering baseline which is diagnostically
meaningless, but which distracts the human eye (and many
algorithms). However, once again time series discords have no
problcm detecting the anomaly, which cardiologist Dr. Greg Mason
says is on the cusp of his ability to detect by eye.

Finally, in Figure 4 we consider a dataset that was explicitly created
with the sole purpose of having anomalies that are ®difficult to spot
for the human eyéd[13]. Here again discords are superhuman.
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Figure 4: top) The MGAB dataset was built to defy visual
discovery of anomalies. bottorn) The Top-1 time series
discord correctly locates the anomaly.

In summary, both the recent literature and our experiments suggest
that time series discords are at least competitive with recently
proposed algorithms, and thus worthy of accelerating to allow
discords to be discovered in settings that are currently infeasible.

2.1 Effectively Online Anomaly Detection

The meaning of the terms batch and online are obvious, however n
order to make our claims clearer, it is useful to introduce a new
term, effectively online. A true online algorithm reports the mstant
it detects a monitored condition. However, let us imagine the
following scenario: After a difficult cardiac surgery, a doctor decides
she wants to monitor her patient for anomalous heartbeats, which
may be an indication of postoperative Cardiac Tamponade (CT). If
the patient does have an ECG suggestive of CT symptoms, the
doctor has perhaps eight to ten minutes to confirm CT with an
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ultrasound and perform pericardiocentesis, a procedure done to
remove fluid that has built up in the sac around the heart [9].
Because the doctor is nervous about the possibility of CT, she
arranges the rest of her day such that she can be in the ICU within
two minutes, for example eating her lunch in a hospital cafeteria
rather than her favorite restaurant across town. Clearly in this
situation an algorithm that reported an anomalous heartbeat ten
minutes after its appearance would be unacceptable. However, an
algorithm that reported an anomalous heartbeat at most two
seconds after it appears would be just as good as a true online
algorithm. As such we propose the following:

Definition 1: An algorithm is said to be effectively online, if the
lag in reporting a condition has lttle or no impact on the
actionability of the reported information.

Note that the scale of the permissible lag is problem dependent. In
the above scenario, two seconds made sense to the cardiologists we
consulted. In an ultrafast arriving data stream, the permissible lag
may be as little as 0.1 seconds, and for telemetry arriving from
devices with a slow cycle rate, say the daily periodicity of pedestrian
traffic, the permission lag may be minutes to hours.

We suspect that many algorithms that are referred to as online in
the literature, are really effectively online. The above discussion
allows us to frame our contribution. Our proposed algorithm DAMP
is parameterized by a single variable called lookahead.

o  If lookahead is zero, DAMP is a fast true online algorithm.

e  If lookahead is allowed to be arbitrarily large, DAMP is an
ultrafast batch algorithm. We should not be surprised that a
batch algorithm can be much faster, as it has access to all the
information at once.

And now the raison d'etre for our digression:

e  Even if lookahead is a small (but non-zero) number, DAMP 1s
effectively online algorithm, yet it retams most or all the
speedup of the arbitrarily large lookahead algorithm.

As we will show, DAMP allows for the discovery of time series
discords in ultra-fast-moving streams for the first time.

3. DEFINITIONS AND BACKGROUND
We begin by defining the key terms used in this work. The data we
work with 1s a time series.

Definition 2: A time series Tis a sequence of real-valued numbers
t;: Tov atylt 1 —4, Wyhere nis the length of T

Typically, we consider only local subsequences of the times series.

Definition 3: A subsequence Ty, of a time series T is a
continuous subset of data points from T of length m starting at
position i. Ty, ov o il tigyl — g may Wyol dol aidanod oy.

The length of the subsequence is typically set by the user based on
domain knowledge. For example, for most human actions, ¥ second
may be appropriate, but for classifymng transient stars, three days
may be appropriate.

If we take any subsequence Ty, as a query, calculate its distance
from all subsequences in the time series T and store the distances in
an array in order, we get a distance profile.

Definition 4: Distance profile D; for time series T refers to an
ordered array of Euclidean distances between the query
subsequence Ty, and all subsequences in time series T. Formally,
Dy v dyyldyc1® 1dpgmay,where dpjoy B iljInlmdyeis the
Euclidean distance between Ty, and Tjpy.
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For distance profile D; of query Ty, the imposition represents the
distance between the query and itself, so the value must be 0. The
values before and after position i are also close to 0, because the
corresponding  subsequences have overlap with query. Our
algorithm neglects these matches of the query and itself, and instead
focuses on non-self match.

Definition 5: Non-Self Match: Given a time series T contaming a
subsequence Tpp, of length m starting at position p and a
matching subsequence T gy, starting at g, Tpyy, 1s @ non-self match
to Tgyy with distance dy), if Bpdd aidid on.

With the definition of non-self match, we can define time series
discords.

Definition 6: Time Series Discord: Given a time series T, the
subsequence T gy, of length m beginning at position d is said to
be a discord of Tif the distance between T g, and its nearest non-
self match is maximum. That is, ® subsequences T g, of T, non-
self matching set Mp of Ty, and non-self matching set Mc of
T gym, min dgyy, 0= anin deyg e

Although there are many ways to locate time series discord, the
most effective one recently is the matrix profile [18].

Definition 7: A matrix profile P of a time series T 1s a vector
storing the z-normalized Euclidean distance between each
subsequence and its nearest non-self match. Formally, Pv
:min Dydmin D dR® 1min D,gpmay€Wwhere D; (yHiBnKRmd
y) is the distance profile of query Ty, in time series T. It is easy
to see that the highest value of the matrix profile is the time series
discord.

As we will explain below, we can compute a special matrix profile
which only looks to the past. We call it the left matrix profile.

Definition 8: A left matrix profile PL of a time series Tis a vector
that stores the z-normalized Euclidean distance between each
subsequence and the nearest non-self match appearing before that
subsequence. Formally, given a query subsequence Tyy, , let
Df‘ v dildy IR 1dymmay be a special distance profile that
records only the distance between the query subsequence and all
subsequences that occur before the query, then we have Pty
i i ; K 2 L
:min Dydmin D:d® Imin DramayeW
Note that the term discord in this paper refers to the highest value
on the left matrix profile PL, ie. left-discord. For the sake of
simplicity, we will refer to left-discord as discord where there is no
ambiguity. It is clear that in the online case, we must use the Left-
MP. However, here we argue that even in the offline case we should
use it. To see why, consider the example shown m Figure 5.
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Figure 5: fop to bottom) A snippet of ECG with two types of
anomalous heartbeats indicated by a ground truth vector. A
full Matrix Profile can find the sole occurrence of V-tach, but
is confused by the multiple occurrences of PVCs (twin-
freaks) and cannot find them. In contrast, the Left-MP flags
the first occurrence of a PVC and the first (and only) V-tach.
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Here left-discords solve the twin-freak problem by reporting the
first occurrence of the anomaly (later occurrences, if of interest, can
be trivially found with subsequence search/monitoring).

4. RELATED WORK

The topic of anomaly detection in time series has seen a dramatic
explosion of interest in recent years, it is a difficult area to survey
in  limited space. We refer the mterested reader to
[1][2](3](8][11][13] and the references therem. We have also
compiled a longer annotated biography that explicitly discusses
discords at [6].

There are two important points that we have gathered from our
survey of the literature. The firstis due mostly to a single paper [16],
that forcefully suggests some of the apparent success of recently
proposed algorithms may be questionable, due to severe problems
with the commonly used benchmarks in this area. Beyond the issues
that [16] notes, we wish to add another issue. Most of these
benchmarks are mmuscule. For example, the individual time series
problems in Yahoo S5 dataset are all about 1,200 data pomts long.
We suspect that the small datasets that the community has focused
onis at least partly due to the poor scalability of current approaches.
For example, a recent paper examines time series of length 140,256
K& Given the length of the dataset, we sub-sample it by a factor 10¥s
[1]. This paper is by researcher group at Amazon, who presumably
do not lack for computational resources. For reference, DAMP takes
0.9 seconds of the full-sized version of this dataset [6].

5. DAMP
5.1 Intuitive Overview of DAMP

Before we give a formal explanation of our algorithm, we will first
give the intuition of how it works. We will discuss the batch case,
and then later explain the (minor) step needed to generalize to the
online case. As shown in Figure 6, it is helpful to explan the
algorithm mid execution, as it is processing the subsequence Ti.

Best-So-Far=2.2 T

T et e T

leftaMP  09[0.8/11[12] - [ - [-[ -
—  e——t =

Pruned Vector 1]1]1 a1
Current Subsequence "~

Figure 6: A sketch of the DAMP algorithm in progress,
processing the current subsequence. fop) The time series T.
center) The Left-aMP, its values between 1 and i ave
computed, its values after i have yet to be computed. bottomn)
the Pruned Vector indicates subsequences that can be
ignored without effecting the final result.

Figure 6.top shows the time series Tbeing processed, the green bar
indicating the current subsequence being processed at location i.
Note that we have created two parallel vectors to accompany T. The
Left-aMP is the vector we are computing. It is an approximation to
the true Left-MP, with the following properties:

e Iflocation jis the true left-discord for the time series Tiy, then
the discord value at @MP;is not an approximation, but the true
left-discord value.

o Otherwise, the approximation at aMP; is strictly bounded:
MP; B aMP; KA BNV Pysj)

These properties tell us that we can take any prefix of T (inducing
the special case of the entire length of 7), and the left-discord
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reported by the Left-aMP will be the same as that reported by the
Left-MP.

In Figure 6.bottom we show the other parallel vector that
accompanies Tand the Left-aMP;. The Pruned Vector tells us which
subsequences could not be the left-discord, and hence do not need
to be processel-c
indicating that all subsequences must be processed. However, as we

R
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At the @ location, the processing can be divided into two
independent steps, backward processmg and forward processing.

5.1.1 Backward Processing

Here we must discover if the current subsequence Tisem-1 1s the
discord. The naive way to do this would be to compute its nearest
neighbor distance to any subsequence in T

However, note that in general we may not need to find the nearest
neighbor, any neighbor whose distance is less than the Best-So-Far
will disqualify the current subsequence from being the discord. This
suggests an early abandoning scheme that we can optimize with the
two following observations:

o Instead of incrementally searching from the beginning, we
should expect to be able to abandon earlier if we search
backwards from the i location. The reason this is true is
because the patterns can drift over time. In other words, the
pattern most likely to be similar to the current subsequences 1s
generally the subsequence just before the current subsequence.

o The MASS algorithm is optimized for queries with powers of
two length. For example, using the machine that performed all
the experiments in this paper, we find that a MASS search with
a query of length 512, takes 0.025 seconds for a time series of
length 524,288 (i.e. 2'°). But if we delete a single point to get a
524,287, it takes 0.177 seconds. This suggests we should attempt
to construct a backward search algorithm that is comprised
mostly or solely of such P8t length queries.

These two observations suggest an algorithm. We should look
backwards at the prefix that is the next power-of-two longer than
m. If that yields a neighbor that is less than the Best-So-Far (BSF) we
are done, we simply place that value in aMP; as our approximation.
If that was not the case, we double the length of the prefix to two
times the next power-of-two longer than m, and try agamn. We
continue to iteratively double until we find a nearest neighbor
distance that is less than the Best-So-Far, or until our prefix includes
the full span back to the beginning of T. In that latter case, we use
the nearest neighbor distance to update both the Best-So-Far and
aMP;.

5.1.2 Forward Processing

Here we will attempt to cheaply discover and prune subsequences
that could not be the left-discord. If we take the current subsequence
and compare it to the suffix of T, that is, to Ti-ma (the search must
start at i+m to avoid self-match), any subsequence that is less than
the Best-So-Far distance to current subsequence can be pruned (have
R R AKIXRI ERRIRR (R PRI

In principle, we could do this search from i+m to the end. However,
the two observations in the previous section still apply. While the
next few cycles may be similar and yield a good pruning rate, over
time the patterns tend to drift and the pruning rate falls. The
combination of a long expensive similarity search and the lower
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So instead, we can look forward a limited amount, say four times
the next power-of-two longer than m. After completing both the
backward and forward processing, the algorithm increments the
current pointer from i

Pruned Vector, and repeats the two processing steps.

5.2 Formal Pseudocode for DAMP

Here we formalize the intuition of the previous sections with the
pseudocode shown in Table 1. For ease of explanation, we first
consider only the batch case. In lines 1 and 2 we initialize two
vectors that are essentially the same length as the time series T, but
are actually of length n-m+1. These are PV (Pruned Vector), a
Boolean vector that indicates which indices can be dismissed
without evaluation, and aMP, which is the approximate Matrix
Profile we wish to compute. The current highest discord score
encountered during execution is stored in the BSF, imitialized to zero
in line 3.

Table 1: The Main DAMP Algorithm

IS

[Function: DAMP(T, m, spIndex)
[nput: T Time series
m: Subsequence length
spIndex: Location of split point between training and test data
OQutput: aMP: Left approximate Matrix Profile
1 |PV=ones(1,length(T)-m+1)
2 |aMP = zeros(1,length(T)-m+1)
3 |BSF=0 /f The current best discord score
4 |/ Scan all subsequences in the test data
5 |For i= spIndexto length(T)& m+ 1
6 IfENOT PV;  // Skip the pruned subsequence
7 aMP; = aMP;y
8 Else
9 [aMP;, BSF] = BackwardProcessing(T, m, i, BSF)
10 PV = ForwardProcessing(T, m, i, BSF, PV)
11 |return aMP

In lines 5 to 10, we iterate through all subsequences of length mm
the test data. In each iteration, we first determme whether the
current subsequence was pruned, i.c., whether it is marked as 0 in
the PV (line 6). If yes, we assign the discord score of the previous
subsequence to the current subsequence and then skip to the next
subsequence (line 7). If the current subsequence was not pruned, we
must process it. In line 9 we call BackwardProcessing to calculate
the discord score of the current subsequence. In particular, if the
backward search finds a value higher than the current highest
discord score (BSF), BackwardProcessing returns the exact score of
the cwrent subsequence and updates the BSF, otherwise,
BackwardProcessing returns an approximate score of the current
subsequence and does not update the BSF. Note that while this score
is approximate, it is bounded between the true score and the current
BSE.

At this point we have completely processed the current location.
However, before we increment our loop index to process the next
location, we take a brief digression. We will use the current

B K [N SR @M subsequences ahead of
it that have a distance to it that is less than the current BSF. It 1s casy
to see that any such subsequences could not be a better discord than
the current BSF, as when they do BackwardProcessing, they would
find the current subsequences to be close enough to disqualify them.
0
of the current subsequence. Concretely, line 10 mvokes
ForwardProcessing to find out the subsequences that can be pruned
within a specific range in the future (f any), and their
corresponding vectors are marked as 0 and recorded in the Pruned
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Vector PV, Finally in line 11 we return the left approximate Matrix
Profile computed by the DAMP algorithm.

Table 1 provides a high-level overview of how the DAMP algorithm
works. Let us now Bzoom inland look at the two core subroutines
of DAMP, BackwardProcessing and ForwardProcessing. We begin
with Table 2 to explain backward processing, whose mtuition we
laid out m Section 5.1.1.

Table 2: DAMP Backward Processing Algorithm
[Function: [aMP;, BSF] = BackwardProcessing(7, m, i, BSH)

Input: v & Time series
m: Subsequence length
E Index of current query

BSF: Highest discord score so far
Qutput: aMP: Discord value at position i
BSF: Updated highest discord score so far

1 |aMP;=inf

2 |prefix = 2*nextpow2(m) // Initial length of prefix

3 |While aMP;8 BSF

4 If the search reaches the beginning of the time series
5 aMP; = min(MASS(Tus, Tisom-1))

6 If aMP; = BSF j/ Update the current best discord score
7 BSF = aMP;

] break

9 Else

10 aMP; = min(MASS(Tipreficr 13, Teiom-1))

1 If aMP; < BSF

12 break  // Stop searching

13 Else /{ Double the length of prefix

14 prefix =2*prefix

15 [returm aMP;, BSF

In line 1 we begin by initializing the discord score of the current
query at position i to positive infinity. Then in line 2 we specify the
mitial length of the backward processing and stores it in the variable
prefix. We employ 2*nextpow2(m) to define this imtial length.
Specifically, when we fed the subsequence length m into
2"nextpow2(m), it will return the smallest power of 2 greater than
m. Recall that we are doing this because MASS is significantly faster
when the length of the time series is a power of two. Since we are
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subsequence being processed, it makes sense to make these pieces
be a power of two in length.

The loop in lines 3-14 evaluates the exact or approximate discord
score of the current query. Here we adopt the idea of Kterative
doubling® At the beginning, we find the nearest neighbor of the
current query i the iitial length prefix and save the distance
between the current query and the nearest neighbor mto aMP; (line
10). If this distance is lower than the current highest discord score,
this means that we find a nearest neighbor for the current query
within prefix that is more similar than the current discord and its
nearest neighbor, so it cannot be a discord, and the iteration
terminates (lines 11-12). However, if the distance between the query
and its nearest neighbor aMP; is higher than the current highest
discord score BSF, we double the length of the backward processing
and continue the search in the next iteration (lines 13-14). This idea
is visualized in Figure 7. We keep iteratively doubling until we
compute a score smaller than the BSF within the range prefix, or
search to the beginning of the time series T. If the search gets to the
beginning of the time series, we first find the nearest neighbor of
the query from position 1 to i and store the distance to the nearest
neighbor m aMP; (lines 4-5).
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Look back this far, to try to find a
+_subsequence that will disqualify Current
Subsequence from being the Discord -

k if not found, dauble the length and look back this far..
v
H not found, double the length and look back this far..

Figure 7: A visualization of the iterative doubling search
policy used in lines 10-14 of Table 2. See also Figure 6.

After that, we will check whether aMP; is still larger than BSF (line
6). If yes, this means that we cannot find a nearest neighbor that is
similar enough to the current query, and clearly, the current query
is the new discord. In this case, we will update the highest discord
score and break out of the loop (lines 7-8). Finally, line 15 retums
the result of backward processmg, the score of the current query
aMP;, and the current highest discord value BSF.

Note that if the search reaches the very beginning of the time series,
our computation is performed in the global region (from 1 to i), not
in the local region prefix, in which case the discord score of the
current query aMP; is an exact value; whereas if our score is
computed in the local region prefix, aMP; is an approximate value,
but bounded between the true score and the current BSF.

If we just use the backward processing step (line 9 of Table 1), then
we have a fast online algorithm to compute the aMP. However, the
use of forward processing as outlined in Table 3 can speed up the
processing by at least a further order of magnitude. Ths is the
algorithm whose intuition was laid out in Section 5.1.2.

Table 3: DAMP Forward Processing Algorithm

[Function: PV = ForwardProcessing(T, m, i, BSF, PV)
[nput: T Time series
m: Subsequence length
i Index of current query
BSFE. Highest discord score so far
PV: Pruned Vector
Output: PV Updated Pruned Vector
1 [lookahead = 2*nextpow2(m)  // Length to peek ahead
2 |If the search does not reach the end of the time series
3 start=i+m
4 end = min(start + lookahead & 1,]ength(T))
5 D§ = MASS(Titartens, Tiiomt) // Definition 4
6
7
8
9

indices = all indices in D;' with values less than BSF

indices = indices + start@ 1

time series

PViadics = 0 1{ Update the Pruned Vector
return PV

// Convert indices on distance profile to indices on

10

The purpose of forward processing is admissible pruning, That is, if
there is evidence that some future subsequences cannot be a
discord, we will ignore these subsequences and no longer perform
expensive processing on them. To achieve this in line 1 we need to
define lookahead, the range of how many subsequences to peek
ahead. Here we also use 2*nextpow2(m), i.e., the smallest power of
2 larger than the subsequence length m. After that, we need to
determine whether the forward search exceeds the range of T to
ensure that our processing is safe and there is no out-of-bounds
problem (line 2). Line 3 defines the start position of the forward
search, namely start. To avoid self- nmtching, we set the start to the
position after the end of the query, that is, i+m. Line 4 explicitly
defines the end position of the forward search, and since the length
of our forward search is lookahead, or n. we can easily conclude that
endis start + lookahead - 1. In line 5, we calculate the distance profile

D¥by calling MASS.
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The distance profile D? here is slightly different from the one
described in Definition 4 because it is computed under a specific

range. That is, D? stores the distance between the current query and
all subsequences in the range of lookahead (from start to end) mstead
of the distance between the current query and all subsequences of

T. Once the distance profile D? is constructed, we can use it for
pruning. Suppose there exist subsequences in the future that are
more similar to the current query than the discord to its nearest
neighbor. In that case, these subsequences canuot be a discord, so
we can prune them. Therefore, we can use the current highest
discord score BSF as a criterion to find all the indices in the distance
profile with values lower than the BSF (line 6). Since the indices on
the distance profile start at 1 and are not aligned with the true
indices of the time series, we need an additional step in line 7 to
convert the indices on the distance profile to the true indices of the
subsequence. After line 7 we get a list of indices for the
subsequences that can be pruned out. The Pruned Vector values at
the corresponding positions specified in the list indices are set to 0
(ine 9), indicating that when later iterations process the
subsequences listed in indices we can simply skip them. At last, line
10 returns the updated Pruned Vector PV.

The forward processing algorithm has exactly one parameter, the
lookaheadlength. How should we set this? In Figure 8.left we sketch
out the tradeoffs involved. A longer lookahead can prune more
subsequences, but this comes at the cost of more expensive
similarity searches. As Figure 8.right shows, this mtuition is borne
out by experiment. The good news is that the speedup is dramatic,
that the sweet spot is early (given us effectively online detection)
and that the exact value of the Iaokahead parametcr 1s not too

g

The empirical curve
matches the sum of two
theoretical curves.

The time required for
grows almost
finearly (actually mog,(n))

1

lnaeasmqu long lookalle-d -+ :
(muitples of 1024)

Inereasingly long lookahead —

o Time (seconds)
Y

Figure 8: left) The lookahead tradeoff is based on two factors.
As the lookahead grows, the pruning rate becomes greater,
but the cost of the similarity search increases. right) The
empirically measured effectiveness of forward processing
(on random walks of length 22°) is indeed the sum of the two
factors.

5.2.1 The Time and Space Complexity of DAMP

The space complexity of DAMP is just the size of the original data,
O(n). The worst-case time complexity is O(nlogn) per datapoint
ingested, the time required to do a full similarity search with MASS
[10]. However, empirically, on diverse real-world datasets, more
than 99.999% of the times we enter the loop in line 3 of Table 2 we
will break out in the first iteration (line 12), making the algorithmn
effectively O(mlogm) per datapoint ingested, and linear in the time
series length.

5.2.2 DAMP Variants
The basic DAMP algorithm can be easily modified to handle more
general cases, for example:

o The algorithm as explained in Table 1 is a batch algorithm. To
make it an online algorithm, we sunply must reduce the size of the
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lookahead (Table 3, line 1) to the largest delay we are willing to
accept (including possibly zero delay).

o The algorithm as explained in Table 1 computes the Left-aMP,
however we can modify it to compute the classic Full-aMP. If the
backward processing step reaches the beginning of the time
series, instead of updating the BSF, we do the same type of
iterative doubling search, but forward from the current index (not
to be confused with forwards pruning search in Table 3). We have
made this code available at [6], but we do not consider it further
here, due to page limits.

o It may be useful to limit how far back the backward processing
can look, essentially FRXXRIRKINADIXN MIRGNOLK he subsequence
with the maximum distance to any of the X subsequences before ifdo>
We call this variant the X-Lag-Amnesic DAMP.

o Instead of searching an ever-growing amount of previously seen
data in the BackwardProcessing step, we can search a fixed pool
of explicit training data. For example, an engmeer could curate a
dataset that contains all the allowable behaviors for a
manufacturing process (1e., the Kyolden batchE—

Other useful variants are possible [6].

6. EMPIRICAL EVALUATION

To make certain that our experiments are reproducible, we have
built a website [6] that contains all the data/code used in this work.
All experiments were conducted on an Intel® Core 17-9700CPU at
3.00GHz with 32 GB of main memory, unless otherwise stated.

There are two things one normally needs to establish to validate an
anomaly detection algorithm.

o Effectiveness: Here we feel less of an obligation. As we noted m
Section 2, there are at least one hundred independent papers that
have used discords to solve a real-world problem and that discords
are the only technique that seem to be able to discover anomalies
that are not visually obvious (Figure 2, Figure 3 and Figure 4).
Nevertheless, for completeness we will show examples in Sections
6.1 and 6.2 that further demonstrate the excellent effectiveness of
discords in diverse domains, and in Section 6.3 offer a comparison
to several deep learning-based methods.

o Efficiency: As this is the main contribution of the paper, here we
will attempt the most ambitious set of anomaly detection
experiments in terms of both throughput and scale.

6.1 Energy Grid Dataset

A consortium from Texas A&M and USC recently released a large
dataset from decarbonized energy grids [17]. The dataset contams
files representing three years of measurements of various metrics n
sixty-six electrical zones in the continental USA. As Figure 9
suggests, each file represents eleven measurements, ten of which
are measured (temperature, wind speed etc.), but one computed from
the first principles of astronomy, the Solar Zenith Angle. The total
size of this dataset is 12 GB, representing 2,174 years of data with
1,142,668,098 datapoints. As such, we believe that it is the largest
real dataset ever searched for anomalies. This complete search took
only 2.06 days.

As Figure 9 shows, most of the anomalies discovered do have a
semantic meaning that can be traced.

1179

RRE RN 18, 2022, Washington, DC, USA

" Temperature

Solar Zenith Angle

frern Three years v

Unusually cold day.

251 Unusually warmnight . Feb 141

20 | N
215 2020
o

10

5° = 3 vl \
=
- -
§|80_
s ] Feb 290
& 407

Figure 9: top) Two examples of time series from [17]. Most,
like temperature are measured, but Solar Zenith Angle is
computed. bottom) The two corresponding top discords in
these datasets.

For example, a temperature trace from California had a discord that
RN O KRN (R (R (0] [ D KIRKRIG{ 14]. Even the
computed time series reveals a strange anomaly echoing a biblical
event. Joshua persuades God to stop the sun from moving for a day
WThere has never been a day like it before or since qu’y“ﬂ—hl
our dataset there is a similarly unique day in which the sun
apparently does not move! The reader will appreciate the cause of
this anomaly, after noting it occurs on the 29% of February [15].

6.2 Machining Dataset
The previous example shows the utility of anomaly detection
data exploration. However, in some cases if we can do anomaly
detection in real-time, we may be able to perform an intervention
to improve an outcome. For example, consider the process of
making parts using a CNC milling machine. Occasionally a problem
arises where an item being machined is not held correctly and it
ORI R 5. High-end
CNC mills can cost over one million dollars, and crashes resulting
in more than $20,000 in damage are known. Many (but not all)
machining processes can be paused by an operator, so in principle
it may be possible to stop a machine before it crashes. However,
with the speed at which these machines operate, it 1s unlikely that
the MR reflexes would be fast enough.

This suggests the question, could we monitor the process with
telemetry, and pause the process if we detected an anomaly? To test
this, we recreated a common scenario in Figure 10.

Alliing Machina Vibraticn Sensor CumrgCastien_. ten Steel
‘ Tep-1 Dizcerd
- []Lerawe | Lo b
Thres Meutes

Figure 10: top) Vibration telemetry from a milling machine
that was cutting cast iron, but then overshot to start cutting
the steel jaws of the vice. bottom) The Left-aMP discovers the
transition.

A common CNC programming error is to give the wrong
coordinates for a cutting pass, and have the cutter overshoot the
mtended material to be machined, and inadvertently attempt to
remove material from the jaws of the vice. Because the jaws are
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typically harder than the material they hold, and more resistant to
cutting, two things can happen:

» The milling cutter itself will break. This is a $20 to $200 error.

A much worse possibility is that the cutter will move the vice. If
it happens to push it into the path of later traversal, this could
cause a head crash, which is a $2,000 to $20,000 error.

As Figure 10 shows, the aMP can detect the change of material, and
this could be used to sound an alarm, or pause the machining
process until the operator can inspect this.

Note that before the true anomaly there are other areas with high
discord scores. They are when the milling cutter changes direction
{from Climb milling to Conventional milling). Under our proposed
scheme these would have a small cost, the process would pause until
the operator visually confinms all is well, and hits continue.

6.3 Comparisons to Deep Learning

There are now dozens of competing deep leamning anomaly
detection (DLAD) algorithms. However, it is impossible to say
which is the state-of-the-art. This is because, as Wu and Keogh have
demonstrated, the amount of mislabeling in the benchmark datasets
dwarfs the reported differences between algorithms [16]. It makes
no sense to say that algorithm A is 5% better than algonithm B,
when up to 30% of the ground truth labels are suspect.

To bypass this issue, here we will compare to just Telemanom. It is
the most cited anomaly detection paper of the last five years [8], and
several independent papers have also found it to be effective. The
general idea of this work is to use LSTM to predict future values,
then detect anomalies based on the difference between predictions
and actual data. Can Telemanom detect the anomalies we consider
in this work?

& ECG (Figure 3) No. Given the same 500 datapomt prefix as
training data, it fails to find the anomaly. If we give it ten times as
much training data (the first 5,000 datapomts), it still fails.

# Bearing (Figure 2): Yes. However, Telemanom took a total of
(517.6 training + 7004 testing) 1,218 seconds. This is two orders
of magnitude slower than DAMP, which took 16.1 seconds. More
importantly, Telemanom is an order of magnitude slower than
real-time, precluding any possibility of online monitoring.
Energy Grid (Section 6.1) Maybe. There are only objective labels
for Solar Zenith Angle (this anomaly was discovered with DAMP
but confirmed with the data creators). If Telemanom sees only the
first week as traming data (as DAMP did), then it only learns that
the Solar Zenith Angle can decrease over tune, and it will flag as
anomalous anything that happens after the summer solstice. A
solution to this problem is to allow Telemanom to train on the full
first year, then test on the subsequent years. Then it may find the
BRI B, However, this will take 59.1 hours, over 1,300
times slower than DAMP.

o Milling Data (Figure 10) No. Actually, Telemanom can detect the
same anomaly as DAMP. But recall it can only start training when
the first 5,000 datapoints arrive, and it takes 411 seconds to train
the model. However, 127 seconds after it begins training, we
encounter the anomaly, and about 21 seconds after that, the
endmill snaps off. Telemanom is just too slow to be useful here.

These comparisons suggest that DLAD is not as accurate as DAMP,

requires more training data, and is much slower.

To further see the lunitations of deep learning anomaly detection,
we can compare DAMP to DLAD algorithms on publicly available
benchmarks. Wu and Keogh have shown that most benchmarks in
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this space are too trivial to be interesting, and i any case are
plagued by nuslabeling and other problems [16]. Instead, we
consider the KDD Cup 2021 dataset consisting of 250 univariate
time series. This archive was designed to be diverse, have a
spectrum of difficulties ranging from easy to essentially impossible,
and has a detailed provenance for each of the 250 datasets, giving
us some confidence that the ground truth is correct. Table 4 shows
the results.

Table 4: Accuracy and Time for Six AD Methods

Method Accuracy | Train and Test Time

USAD [2] 0276 8.05 hours
LSTM-VAE (ref at [6]) 0.198 23.6 hours

AE (ref at [6]) 0236 6.11 hours
Telemanom [8)] Our of memory error on longer examples
SCRIMP (Full-MP) 0.416 245 minutes
DAMP (Left-MP) out-of-the-box 0512 426 hours

DAMP (Left-MP) sharpened data 0.632 426 hours

Once again, these results show that DAMP 1s more accurate and
faster than deep learning-based methods. It is important to note that
the results for DAMP are completely free of any human
mtervention or tuning. We use four hardcoded Iines of Matlab (see
Reproducibility Section) to find the approximate period in each
traning dataset, and used that as the value of m. Likewise, we
simply hardcoded a single lookahead value for all 250 datasets.
Further optimizing the former would improve accuracy and
personalizing the fatter for each individual problem would umprove
the speed. However, we wanted to show that even the most naive
out-of-the-box use of DAMP is highly competitive. As an example
of a small intervention that can further improve accuracy, if we run
DAMP on sharpened data (one line of code) the accuracy umproves
to 0.632.

The left-discords of DAMP are significantly more accurate than the
full-discords computed by SCRIMP, because some anomalies have
IRDIIRHR ORI
nearest neighbor. Note that the time for SCRIMP here 15 relatively
good, as there are 250 short time series. In Figure 12 we will see that
for longer time series this advantage of SCRIMP rapidly fails.

6.4 Threshold Learning for DAMP

Up to this point we have shown that DAMP can locate the most
anomalous subsequence. However, we have not shown how to then
make the binary decision to flag the subsequence as anomalous or
not. To do so we simply need to learn a threshold. To demonstrate,
consider the following experiment. We created 200 random walk
time series of length one million. As shown i Figure 11.top, mto
half of them we randomly mserted a subtle anomaly, a low
amplitude random section of length 950. In Figure 11.left, we show
the top-1 discord score (for m = 1,024) for all 200 time series, divided
imto the two cases. This plot suggests that a threshold of 36.0 is the
optimal value to maximize the accuracy on future occurrences. To
test this, we created and tested an additional million examples, all
of which are also of length one million, classifying an actual
anomaly as a true positive if the correct location of the anomaly was
discovered and the top-1 discord score was above the threshold.
Figure 11.right shows the confusion matrix. We note i passing that
this experiment (which took several days distributed across
commodity laptops and desktops), trained on time series with a total
length of 200 million, and tested on time series with a total length
of 128 billion. To the best of our knowledge, this is the largest scale
time series anomaly detection experiment ever conducted: Could
deep leamning do this? We estimate that Telemanom [8] would take

1 AT ST
- RRRR ORI

G ———
RSO SO IRINIR

NS OO % T AR T
PP PEINKDI AN




Matrix Profile XXIV: Scaling Time Series Anomaly Detection to Trillions
of Datapoints and Ultra-fast Arriving Data Streams

about twelve years to do this, although in practice it gives out-of-
meniory errors.

Injected
anomaly

Random Walk Time Series
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b 38000
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a 1,000,000

Predicted  Predicted
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Figure 11: fop) A sample random walk with an anomaly
embedded. left) The distribution of top-1 discord scores for

the two cases of interest. right) The confusion matrix for this
task.

6.5 Scalability Comparisons

In order to understand which elements of our proposed approach
are responsible for its efficiency, we have performed an ablation
study in which in Figure 12.

100000000 1 Dashed lines are extrapolated Brule FOICe _ raveemer

1 d e

1000000 |

{115 dayx)

100,000

Time (seconds)

T T T T
& Data Length 8 mikon

Figure 12: The CPU time vs time series length for various
discord discovery algorithms, Note the Y-axis is in log scale.

It is clear that each element we proposed does actually contribute to
speed up, and that DAMP is effectively linear in n. A recent paper
pushed that envelope by considering a two million length ECG
dataset [3]. In fact, these authors gave us the exact dataset they used,
and helped us create a perfectly commensurate experiment, as
shown in Figure 13. A real-time video trace of this experiment is at

(6].

Figure 13: (Most of this figure is taken from [3], only the
sreen elements are new). The scalability of various
algorithms on increasing large subsets of a long ECG trace.
All algorithms except DAMP are limited the first 2M data
points by [3]. Note that the Y-axis is logarithmic.

Note that of the many approaches considered, some time out (i.e.,
are not finished in a 4-hour cutoff) at length 500K. In contrast,
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DAMP can handle 8-million pomts in just 22.3 seconds, this is
358,000 Hz.

6.6 Scalability and Stability of DAMP

Wu and Keogh have criticized the common benchmarks for time
series anomaly detection [16]. We add one more criticism, the
datasets considered are tiny. We conducted an experiment that
required performing anomaly detection on time series with a total
length of 1.648 trillion datapoints, using off-the-shelf hardware [6].

7. CONCLUSIONS AND FUTURE WORK

We introduce the left-discord anomaly detection framework,
generalizing classic time series discords to the online case, and n
the process solving the twin-freak problem. We believe that the
throughput and scalability of DAMP will allow the community to
address datasets and applications that are currently out of reach,
and that this will open new challenges and research problems.
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Appendix A: Reproducibility

As we noted in the main text, to make certain that our experiments
are reproducible, we have built a website [6] that contains all the
data/code used in this work. Here we take advantage of the two
pages available to highlight some of our reproducibility steps.

Some experiments (Section 6.4 and 6.6) make use of random
numbers. We have provided the seeds and code to all users to
reproduce all such data bit-for-bit.

In some places we omitted a discussion of the parameter m. This
was done to enhance the flow of the paper. The reader will recall
that mis the only parameter that affects the output of the algorithm
(lookahead affects only the speed). We repair this omission here:

e Figure 2 (Bearing) m was 300. However, the results would be
near identical for m in the range 100 to 500 [6].
» Figure 3 (ECGwandering Baseline) 1 was 150. However, the
results would be near identical for m in the range 100 to 300.
» Figure 4 (Mackey-Glass) m was 40. However, the results
would be near identical for m in the range 20 to 200 [6].
o Figure 5 (ECG), m was 150. However, the results would be
near identical for m in the range 100 to 300 [6].
o Figure 9 (Energy Grid Dataset) m was 5760 (equivalent to
four days of wall clock time). However, we can easily find the
K& Bfon in the range 100 to 10,000 [6].
e Figure 10 (Machining) n1 was 16. However, the results would
be near identical for m in the range 8 to 64 [6].
 Figure 11 (Random Walks) m was 1,024. Here we had to
carefully tune the length on the embedded anomaly so that we
did not get a perfect result each tine.
o Figure 12 (Long ECG) m was 94 [6].
o Figure 13 (Long ECG) m was 94 [6].
Notes on Section 6.3: In Section 6.3 we suggested how long it
would take deep learning to solve the task we considered m that
section. We found that for Telemanom [3] training time is linear to
the time series length with R? = 0.9933, Unfortunately, it runs out of
memory on this task, but we trained it to n = 80,000 which took
3656.5 seconds. This suggests one million datapoimts would take
12.7 hours to train, but recall we tramed on 200 such examples, so
the total training time would be about 105.8 days.

AR
PARDEEXIX XD

For testing Telemanom is also linear. We found that when processing
the bearmg dataset, which is of length 244,189, testing took 700.4
seconds, suggest a throughput of about 348.6 Hz. This suggests 1t
would take about 11.6 years to process the 128 billion datapoints (of
course, this could be done in parallel). The timing experiments for
Telemanom can be found at [6].
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The training time here is the biggest hurdle. The is a qualitative
difference between a model you can train durmg a coffee break, and
one that requires three months.

Notes on Section 6.4: In Section 6.41& REFDRKEIER Bidnserted a
subtle anomaly, a low amplitude random section of length 950%T Ko
choose the odd length of 950, because we found that if we made the
anomaly the same length at m (1024), the accuracy on the traning
set was 100%. We wanted to stress test owr algorithm and have an
experiment that others could improve upon.

Notes on Table 4: As we noted in the main text, the results of
DAMP shown in Table 4 do not require any human effort. We use
the following four lines of Matlab code to automatically learn the
period for each data set and use it as the parameter m for DAMP.

[autocorlags] = xcorr{T,'cocfl);
R ©

[-m] = FREE 35 I8 0 ol ya WEED 0 alyaaadd
lags(length{T)+ 10:1ength(T)+ 1000),SortStr’, descend’, NPeaks' 1),
mfisempty(m))=1000;

m = floor{m);
The period is obtained by finding the peak of autocorrelation in the
range of 10 to 1000 (the value of parameter m 1s lunited to the range
KRyadoyaaaccedid

value, we set the default value of m to
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Although off-the-shelf DAMP has achieved an accuracy of 51.2%,
significantly better than the best of the deep learning approaches,

DEKODEREIE PO

T=[normnlize(T, range’)"( max({l,mean(std(T)}))+1].* 10;

The accuracy of DAMP will increase to 63.2%. The high-level idea
of this approach is to apply a mathematical model with the same
growth (but
anomaly in the tine sexies.
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Important General Note on using DAMP

There is an important thing to remember when viewing an aMP, as
in the blue line in Figure 10.bottom. Failure this understand this may
lead a user to think the aMP 1s mdicating an anomaly where there
1s none.

‘When you search for the top-k left-discords, the k hughest peaks do
correctly show the location and strength (the height of the peaks)
of the top-k left-discords. However, the remaining peaks in the aMP
should not be assumed to mdicate slightly smaller anomalies. They
may indicate slightly smaller anomalies, but they also sumply
indicate regions that were pruned by encountering a matching
subsequence that was just below the current Best-So-Far.




