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Abstract
In addition to scientific questions, clinical trialists often explore or require other design features, such as increasing

the power while controlling the type I error rate, minimizing unnecessary exposure to inferior treatments, and comparing
multiple treatments in one clinical trial. We propose implementing adaptive seamless design (ASD) with response adaptive
randomization (RAR) to satisfy various clinical trials’ design objectives. However, the combination of ASD and RAR poses
a challenge in controlling the type I error rate. In this paper, we investigated how to utilize the advantages of the two
adaptive methods and control the type I error rate. We offered the theoretical foundation for this procedure. Numerical
studies demonstrated that our methods could achieve efficient and ethical objectives while controlling the type I error
rate.
keywords and phrases: Adaptive design, Ethics, Efficiency, Response adaptive randomizations, Type I error.

1. INTRODUCTION
The significance of streamlining clinical trials has been

emphasized in the Critical Path Opportunities Report and
List [60]. The FDA [61] revised their guidance on seam-
less clinical trials and re-iterated the importance of moving
towards the broadening acceptance of seamless trials. The
FDA [61] outlined the need to evaluate new therapies in
a time-sensitive, cost-effective and ethical manner without
compromising the integrity and validity of the development
process.

The seamless phase II/III clinical trial can reduce the lead
time between different phases, reduce the number of trials
for comparing multiple treatments, efficiently combine the
data from both phases, monitor patients from the phase II
trial longer for safety issues, and decrease the sample size
while maintaining power. Typically, multiple experimental
treatments are compared against a control in the first stage.
The empirically best candidates are then selected to en-
ter the second stage together with the control arm. The
final analysis based on the patients from both stages is per-
formed such that the overall type I error rate is controlled
[44, 55, 56]. Until 2016, there have been more than 40 ac-
tive, first-in-human cancer trials that are using the seam-
less strategy [39]. A motivating example is the Indacaterol
to Help Achieve New COPD Treatment Excellence (IN-
HANCE) trial [4], an adaptive seamless phase II/III clinical
trial of inhaled indacaterol to treat chronic obstructive pul-
monary disease (COPD). Other real seamless phase II/III
clinical trials include [68] and [16].

In practice, hypothesis testing with type I error con-
trol is the primary focus of a seamless phase II/III trial,
with estimation being an essential but secondary target
∗Corresponding author.

[9, 10, 19, 32, 33, 38, 40, 46, 51, 52, 58]. This paper will focus
on the control of type I error rate, as well as the investiga-
tion of the advantages of implementing DBCD in seamless
clinical trials. The closure principle [37] has been proposed
to handle the multiple testing problem; certain combination
methods such as the inverse χ2 method [5] and the weighted
inverse normal method [34] have been proposed to combine
data from the two stages; and different approaches such as
the Simes test [47] and the Dunnett test [20] have been pro-
posed to test the intersection of more than two hypotheses
constructed for applying the closure principle. [14] and [45]
made use of these methods to control the familywise type
I error rate (FWER) for ASD. This paper will employ this
framework since FDA and the pharmaceutical industry will
readily accept it. [31, 49, 50] allowed more than one experi-
mental treatment to continue beyond the first interim analy-
sis and sequential analyses in the second stage. [63] proposed
a multi-stage drop-the-losers design and discussed the re-
quired sample size. [36] proposed methods for any number
of treatment arms, any number of stages and any number of
patients per treatment per stage in such trials. [35] provided
the theoretical foundation for a general family of two-stage
adaptive designs. ASD with different study endpoints in the
two stages has been investigated by [18, 48, 57]. We leave
all these extensions for future research on our proposed pro-
cedure.

Next, we introduce RAR. Clinical trials are complex and
usually have multiple objectives such as increasing the power
of detecting treatment differences, and assigning more pa-
tients to better treatments. Two families of RAR have been
proposed to achieve these objectives: DBCD [25, 62, 70, 71]
and urn models [64, 65, 69, 72]. RAR can achieve greater
efficiency and ethical advantages by skewing the allocation
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proportion based on previous treatment assignments and re-
sponses. A popular formal RAR framework contains three
steps. First, the design objectives are mathematically formu-
lated, and it is usually expressed in an optimization problem.
Second, the optimal allocation proportions to achieve this
objective as the solution of the optimization problem are de-
rived. Third, a specific RAR design is implemented to target
the optimal allocation proportion. [25, 71, 72] studied the
asymptotic properties and sequential monitoring of RAR.
[24] showed that RAR could increase efficiency in certain
clinical trials. [59] explored the derivation of optimal allo-
cation proportion. Other discussions of the advantages of
RAR can be found in [2, 8, 21, 26, 27, 30, 41]. Clinical trials
using RAR designs include [1, 42, 53]. This paper focuses on
using DBCD as randomization in seamless clinical trials.

Therefore, it is desirable to study how to benefit from the
advantages of ASD and RAR in one clinical trial. However,
both ASD and RAR pose a challenge in controlling the type
I error rate, which is critical in confirmatory clinical trials.
ASD tends to increase the type I error rate due to multiple
testing and treatment selection at the interim look. RAR
introduced extra difficulties with correlated responses and
treatment assignments. In this paper, we overcame these dif-
ficulties and studied its asymptotic and finite-sample prop-
erties.

In Section 2, we introduce the notation, our proposed
methods, and theoretical findings. In Section 3, we offer re-
sults from numerical studies via simulations. Conclusions
are in Section 4, and the proof is in the Supplementary ma-
terials.

2. SEAMLESS CLINICAL TRIALS WITH
DBCD

2.1 Adaptive Seamless Design with DBCD
We first introduce the notation for DBCD with multiple

treatments. Suppose (K+1) treatments are under study in a
clinical trial with sample size n. Let T i = (Ti0, Ti1, . . . , TiK)
denote the ith patient’s treatment assignment, where treat-
ment 0 indicates the control arm, Tik = 1, k = 0, 1, . . . ,K if
the ith patient is in treatment k, and Tik = 0 otherwise. Let
N(m) = (N0 (m) , N1 (m) , . . . , NK (m)), where Nk(m) =∑m

i=1 Tik, k = 0, 1, . . . ,K is the number of patients assigned
to treatment k after m patients have entered the trial. Let
Xi = (Xi0,Xi1, . . . ,XiK), i = 1, . . . , n be a random ma-
trix of response variables, where Xik, k = 0, 1, . . . ,K, are
d-dimensional random vectors. Here, if the ith patient is as-
signed to treatment k, only Xik can be observed. In other
words, Xik is the ith patient’s response in the presence of
treatment k and only observed if Tik = 1. Therefore, the
variable Tik does not influence the expectation of Xik; it
only determines if it is observed. Without loss of generality,
we assume θk = E(Xik) = (θk1, . . . , θkd), k = 0, 1, . . . ,K.
Then the parameter estimator after responses of m patients

have been observed is

θ̂k(m) =

∑m
i=1 TikXik

Nk(m)
. (2.1)

Write

θ = (θ0,θ1, . . . ,θK)

and

θ̂(m) = (θ̂0(m), θ̂1(m), . . . , θ̂K(m)).

RAR can achieve various objectives by targeting differ-
ent allocation proportions that will be functions of unknown
parameters [59]. Let ρl(θ) = (ρl0(θ), ρl1(θ), . . . , ρlK(θ)),
l = 1, 2, is the target allocation proportions for stage l,
where ρl(θ) : �d×(K+1) → (0, 1)(K+1) is the vector-valued
functions satisfying ρl(θ)1

′ = 1. Specific examples can be
seen in Section 3.

Next, we introduce the procedure to conduct a seamless
phase II/III clinical trials with a family of DBCD:

(i) In the first stage, we first assign m0 patients to each
of the K+1 treatments by fixed design to obtain initial pa-
rameter estimates. When the mth (m > (K+1)m0) patient
enters the first stage of the trial, calculate θ̂(m − 1) and
ρ̂1 = ρ1(θ̂(m− 1)) based on all the previous responses and
treatment assignments.

(ii) Assign the mth patient to treatment k with probabil-
ity

g1k

(
N(m− 1)/(m− 1),ρ1(θ̂(m− 1))

)
,

where g1k(s, r) = g1k((s0, s1, . . . , sK), (r0, r1, . . . , rK)) :

(0, 1)(K+1)×(0, 1)(K+1) → (0, 1) satisfies
∑K

k=0 g1k(s, r) = 1
[25]. We write g1 = (g10, g11, . . . , g1K). [25] proposed the fol-
lowing allocation probability function to the treatment k for
the mth patient

g1k(s, r) =
rk(rk/sk)

2∑K
j=0{rj(rj/sj)2}

, (2.2)

where sk = Nk(m− 1)/(m− 1) and rk = ρ1k(θ̂(m− 1)).
(iii) At the end of the first stage, choose one (say treat-

ment M) based on certain criteria to enter the second stage,
along with the control arm. For example, we can choose the
experimental treatment arm with the largest treatment ef-
fect to enter the second stage; we can also incorporate safety
data into the criteria for choosing a treatment arm for the
second stage.

(iv) Because we have only two treatment arms under
study in the second stage, let ρ2(θ) = (ρ20(θ), ρ2M (θ)) be
the target allocation proportions for the second stage, where
ρ2(θ) : �d×2 → (0, 1)2 is the vector-valued functions satisfy-
ing ρ2(θ)1

′ = 1. At the second stage, assign the mth patient
to treatment k, k = 0,M with probability

g2k

(
(N0(m−1)/(m−1), NM (m−1)/(m−1)) ,ρ2(θ̂(m−1))

)
,
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where g2k(s, r) : (0, 1)
2×(0, 1)2 → (0, 1) satisfies g20(s, r)+

g2M (s, r) = 1. We write g2 = (g20, g2M ).
The above DBCD considers both the estimated targeted

allocation proportions and the current allocation propor-
tions in order to achieve different ethical and efficient ob-
jectives. A specific family of allocation probability functions
will be given in Section 3. Other discussions and properties
of DBCD can be seen in [71, 25].

2.2 Data Analysis Procedure
At the end of the clinical trial, one considers a general

hypothesis test:

H0,M : h(θM ) = h(θ0) versus H1,M : h(θM ) > h(θ0)

where h(θj) is a �d → � continuous and twice differentiable
function in a small neighborhood of θj , j = 0,M .

We test the above hypothesis with the combined data
from the two stages and follow the closure principle [37] to
control the familywise type I error rate. The closure principle
rejects H0,M at level α if each intersection hypothesis H0,I

with M ∈ I, I ⊆ {1, . . . ,K}, is rejected at level α, where
H0,I = ∩k∈IH0,k with H0,k : h(θk) = h(θ0). Each H0,I can
be tested with the following inverse χ2 method. Let P1,I and
P2,I denote the p-values for H0,I based on the data from
the first stage and the second stage, respectively. Then we
reject H0,I if − log(P1,IP2,I) > χ2

4(1 − α)/2, where χ2
4(1 −

α) is the (1 − α)th quantile of the χ2 distribution with 4
degrees of freedom. To calculate the adjusted p-values for
each stage, P1,I and P2,I , we use the Simes test [47] with
the following test statistics for the elementary hypotheses
H0,k in the intersection hypothesis H0,I ,

Zk

(
N(n)

n
, θ̂(n)

)
=

h
(
θ̂k(n)

)
− h

(
θ̂0(n)

)
√

ˆV ar
(
h

(
θ̂k(n)

))
+ ˆV ar

(
h

(
θ̂0(n)

)) .

(2.3)

Here ˆV ar(h(θ̂k(n))) and ˆV ar(h(θ̂0(n))) are some consistent
estimators of the variances of h(θ̂k(n)) and h(θ̂0(n)) respec-
tively. We assume that for some functions νk and v0

n ˆV ar
(
h

(
θ̂j (n)

))

= νj

(
N (n)

n
, θ̂ (n)

)
(1 + o(1)) a.s. j = 0, k.

Both νj(y, z) and Zk(y, z) are �(K+1)(1+d) → � function,
where y is a (K+1)-dimensional vector and z is a (K+1)d-
dimensional vector. Examples of using this formulation are
given in Section 3.

2.3 Asymptotic Results
Before we give the main theorem, we need the following

conditions.

(A1) For some ε > 0, E‖X1‖2+ε < ∞;
(A2) g1k(s, r), k = 0, 1, . . . ,K, is jointly continuous and

twice differentiable at (ρ1,ρ1), and g2k(s, r), k =
0,M , is jointly continuous and twice differentiable at
(ρ2,ρ2);

(A3) g1k(r, r) = rk, k = 0, 1, . . . ,K, for all r ∈ (0, 1)(K+1)

and
∑K

k=0 rk = 1, g1k(s, r) is strictly decreasing
in s ∈ (0, 1)(K+1) and strictly increasing in r ∈
(0, 1)(K+1), g2k(r, r) = rk, k = 0,M , for all r ∈ (0, 1)2

and r0 + rM = 1, and g2k(s, r) is strictly decreasing
in s ∈ (0, 1)2 and strictly increasing in r ∈ (0, 1)2;

(A4) ρ1k(θ), k = 0, 1, . . . ,K and ρ2k(θ), k = 0,M are
continuous functions and twice continuously differen-
tiable in a small neighborhood of θ;

(A5) νj(y, z) is jointly continuous and twice differentiable
in a small neighborhood of (ρ,θ);

(A6) Zk(y, z) is a continuous function and it is twice con-
tinuously differentiable in a small neighborhood of
vector (ρ,θ).

Theorem 2.1. Under Conditions (A1)–(A6), a valid type I
error rate can be asymptotically obtained for the Simes test
with the test statistics Zk, k = 1, . . . ,K, for the proposed
procedure. That is, for a given significance level α, when
H0,M holds, the probability that we reject H0,M has a limit
that is not larger than α.

Theorem 2.1 offers the theoretical justification for con-
trolling the type I error rate for our procedure. All these con-
ditions are easily satisfied. The well-known family of DBCD
[25] meets all these requirements. Condition (A1) ensures
consistency and asymptotic normality. All the examples in
Chapter 5 [23] meet Conditions (A4)–(A6). In particular,
Condition (A3) has practical meaning in clinical trials: if
the current actual allocation proportion is equal to the tar-
get allocation proportion, the allocation probability for the
next patient will equal to the target allocation proportion
(gjk(r, r) = rk). On top of that, because the allocation prob-
ability function is strictly decreasing in the actual allocation
proportion and strictly increasing in the estimated target al-
location proportion, the proposed RAR design will asymp-
totically drive the actual allocation proportion to approach
the theoretically targeted one for each stage (ρ1 for stage 1
and ρ2 for stage 2), which is proved in [25]. The actual final
allocation proportion for the two-stage seamless trial when
the sample size is finite will be studied in the next section.

3. NUMERICAL STUDIES
In this section, we study the finite-sample properties of

our proposed procedure and offer three specific targeted al-
location proportions.

Suppose 300 patients sequentially enter the trial with two
experimental treatments and one control in the first stage.
Let the responses Xik, i = 1, . . . , 300, k = 0, 1, 2, follow
the Bernoulli distribution with success rate pk, respectively.
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These patients will be sequentially randomly allocated to
the treatment k with the following allocation probability
function [25]

g1k(s, r) =
rk(rk/sk)

2∑K
j=0{rj(rj/sj)2}

,

where sk = Nk(m − 1)/(m − 1) and rk = ρ1k(θ̂(m − 1))
when we are calculating the allocation probability for the
mth patient. We will discuss three specific targeted allo-
cation proportions later. The experimental treatment arm
with a larger treatment effect, say treatment M , is chosen
to continue to the second stage. In the second stage, 500 pa-
tients are sequentially randomly allocated to the control arm
and treatment M with the following allocation probability
function

g2k(s, r) =
rk(rk/sk)

2

{r0(r0/s0)2 + rM (rM/sM )2} , k = 0,M.

At the end of the trial, we test

H0,M : pM = p0 vs. H1,M : pM > p0.

In this case, d = 1, θk = pk, and

Zk=(p̂k−p̂0)/
√
p̂k(1− p̂k)/Nk+p̂0(1− p̂0)/N0, k=1, . . . ,K.

The significance level is 0.025 for all the tests. All the results
are based on 10, 000 replications.

In the first scenario, let

ρ1(θ) =

(
p0

p0 + p1 + p2
,

p1
p0 + p1 + p2

,
p2

p0 + p1 + p2

)

and

ρ2(θ) =

(
qM

q0 + qM
,

q0
q0 + qM

)

that is the urn allocation [64]. Urn allocation is used to
assign more patients to the better treatment.

In the second scenario, let

ρ1(θ)

=

( √
p0√

p0+
√
p1+

√
p2

,

√
p1√

p0+
√
p1+

√
p2

,

√
p2√

p0+
√
p1+

√
p2

)

and

ρ2(θ) =

( √
p0√

p0 +
√
pM

,

√
pM√

p0 +
√
pM

)

that is the optimal allocation [41]. The optimal allocation
is used to minimize the total number of failures while fixing
the power.

In the third scenario, let

ρ1(θ) =

(
p0

p0 + p1 + p2
,

p1
p0 + p1 + p2

,
p2

p0 + p1 + p2

)

Table 1. Performance of DBCD targeting the urn allocation
under H0 when three treatments are under study.

(p1, p2, p0) Design α p̂0 ρ0 Failure
(0.5, 0.5, 0.5) DBCD 0.024 0.500(0.027) 0.438(0.020) 400(14)
(0.5, 0.5, 0.5) CR 0.024 0.500(0.027) 0.438(0.017) 400(14)
(0.6, 0.6, 0.6) DBCD 0.022 0.599(0.026) 0.437(0.022) 320(14)
(0.6, 0.6, 0.6) CR 0.022 0.600(0.026) 0.438(0.017) 320(14)
(0.7, 0.7, 0.7) DBCD 0.024 0.700(0.025) 0.437(0.025) 240(13)
(0.7, 0.7, 0.7) CR 0.023 0.700(0.025) 0.438(0.017) 240(13)
(0.8, 0.8, 0.8) DBCD 0.023 0.799(0.021) 0.437(0.032) 160(11)
(0.8, 0.8, 0.8) CR 0.025 0.800(0.021) 0.438(0.017) 160(11)

Table 2. Performance of DBCD targeting the optimal
allocation under H0 when three treatments are under study.

(p1, p2, p0) Design α p̂0 ρ0 Failure
(0.5, 0.5, 0.5) DBCD 0.023 0.499(0.027) 0.438(0.012) 400(14)
(0.5, 0.5, 0.5) CR 0.024 0.500(0.027) 0.438(0.017) 400(14)
(0.6, 0.6, 0.6) DBCD 0.024 0.600(0.026) 0.438(0.011) 320(14)
(0.6, 0.6, 0.6) CR 0.022 0.600(0.026) 0.438(0.017) 320(14)
(0.7, 0.7, 0.7) DBCD 0.026 0.700(0.025) 0.438(0.010) 240(13)
(0.7, 0.7, 0.7) CR 0.023 0.700(0.025) 0.438(0.017) 240(13)
(0.8, 0.8, 0.8) DBCD 0.024 0.800(0.022) 0.438(0.010) 160(11)
(0.8, 0.8, 0.8) CR 0.025 0.800(0.021) 0.438(0.017) 160(11)

Table 3. Performance of DBCD targeting the intuitively
ethical allocation proportion under H0 when three treatments

are under study.
(p1, p2, p0) Design α p̂0 ρ0 Failure
(0.5, 0.5, 0.5) DBCD 0.027 0.500(0.027) 0.438(0.020) 400(14)
(0.5, 0.5, 0.5) CR 0.024 0.500(0.027) 0.438(0.017) 400(14)
(0.6, 0.6, 0.6) DBCD 0.024 0.599(0.026) 0.437(0.017) 320(14)
(0.6, 0.6, 0.6) CR 0.022 0.600(0.026) 0.438(0.017) 320(14)
(0.7, 0.7, 0.7) DBCD 0.026 0.699(0.025) 0.437(0.014) 240(13)
(0.7, 0.7, 0.7) CR 0.023 0.700(0.025) 0.438(0.017) 240(13)
(0.8, 0.8, 0.8) DBCD 0.022 0.800(0.022) 0.438(0.012) 160(11)
(0.8, 0.8, 0.8) CR 0.025 0.800(0.021) 0.438(0.017) 160(11)

and

ρ2(θ) =

(
p0

p0 + pM
,

pM
p0 + pM

)
.

This target allocation proportion is intuitively assigning
more patients to the better treatment.

In Tables 1–3, we studied and compared the performance
of our methods under each of the above scenarios and com-
plete randomization (CR) under H0,M . In these tables, we
found that, under H0,M , our method can control the type
I error rate (α) well. We reported p̂0 as a representative of
the parameter estimators. We also reported the actual al-
location proportion to the control group (ρ0) and the total
number of failures (Failure). The standard deviations are
in the parentheses. In all the tables, our methods and CR
return almost the same values in terms of the allocation
proportion and the total number of failures under H0,M ,
since our designs are also targeting the equal allocation un-
der H0,M . Our methods can also estimate the parameter
accurately.
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Table 4. Performance of DBCD targeting the urn allocation
under H1 when three treatments are under study.

(p1, p2, p0) Design Power p̂0 ρ0 Failure
(0.4, 0.45, 0.3) DBCD 0.939 0.300(0.027) 0.379(0.020) 494(15)
(0.4, 0.45, 0.3) CR 0.946 0.300(0.025) 0.438(0.017) 501(15)
(0.5, 0.55, 0.4) DBCD 0.926 0.400(0.028) 0.378(0.021) 414(16)
(0.5, 0.55, 0.4) CR 0.930 0.400(0.026) 0.438(0.017) 420(15)
(0.6, 0.65, 0.5) DBCD 0.925 0.500(0.029) 0.371(0.023) 333(16)
(0.6, 0.65, 0.5) CR 0.929 0.500(0.027) 0.438(0.017) 340(15)
(0.7, 0.75, 0.6) DBCD 0.952 0.599(0.029) 0.358(0.026) 251(15)
(0.7, 0.75, 0.6) CR 0.955 0.600(0.026) 0.438(0.017) 260(14)

Table 5. Performance of DBCD targeting the optimal
allocation under H1 when three treatments are under study.

(p1, p2, p0) Design Power p̂0 ρ0 Failure
(0.4, 0.45, 0.3) DBCD 0.938 0.300(0.026) 0.395(0.015) 495(15)
(0.4, 0.45, 0.3) CR 0.946 0.300(0.025) 0.438(0.017) 501(15)
(0.5, 0.55, 0.4) DBCD 0.928 0.400(0.027) 0.404(0.013) 417(15)
(0.5, 0.55, 0.4) CR 0.930 0.400(0.026) 0.438(0.017) 420(15)
(0.6, 0.65, 0.5) DBCD 0.928 0.500(0.028) 0.410(0.017) 337(15)
(0.6, 0.65, 0.5) CR 0.929 0.500(0.027) 0.438(0.017) 340(15)
(0.7, 0.75, 0.6) DBCD 0.951 0.600(0.027) 0.414(0.010) 258(14)
(0.7, 0.75, 0.6) CR 0.955 0.600(0.026) 0.438(0.017) 260(14)

Table 6. Performance of DBCD targeting the intuitively
ethical allocation proportion under H1 when three treatments

are under study.
(p1, p2, p0) Design Power p̂0 ρ0 Failure
(0.4, 0.45, 0.3) DBCD 0.939 0.299(0.028) 0.354(0.027) 491(15)
(0.4, 0.45, 0.3) CR 0.946 0.300(0.025) 0.438(0.017) 501(15)
(0.5, 0.55, 0.4) DBCD 0.926 0.399(0.029) 0.372(0.023) 413(16)
(0.5, 0.55, 0.4) CR 0.930 0.400(0.026) 0.438(0.017) 420(15)
(0.6, 0.65, 0.5) DBCD 0.927 0.500(0.029) 0.383(0.019) 334(15)
(0.6, 0.65, 0.5) CR 0.929 0.500(0.027) 0.438(0.017) 340(15)
(0.7, 0.75, 0.6) DBCD 0.954 0.599(0.028) 0.391(0.016) 255(14)
(0.7, 0.75, 0.6) CR 0.955 0.600(0.026) 0.438(0.017) 260(14)

In Tables 4–6, we studied and compared the performance
of our methods under each of the above scenarios and CR
under H1,M . In Table 4, we can see that our method can
save up to around 10 patients while keeping the power at
the same level as CR under H1,M for the first scenario. In
Table 5, we can see that our method can assign more pa-
tients to the better treatment while keeping the power at
the same level as CR under H1,M . In Table 6, we found that
the DBCD targeting this allocation proportion can also save
up to 10 patients under the reported settings without sacri-
ficing the power.

We further performed numerical studies for clinical tri-
als with one control arm and three experimental treatment
arms representing the low, medium, and high doses of the
experimental drugs. The success rates for the control arm
and three experimental treatment arms are p0, p1, p2 and
p3, respectively. We keep the same sample size for Stage 2
as Tables 1–3, but increase the sample size to 400 for Stage
1, considering we have four treatment arms in this stage.

Table 7. Performance of DBCD targeting the urn allocation
under H0 when four treatments are under study.

(p1, p2, p3, p0) Design α p̂0 ρ0 Failure
(0.5, 0.5, 0.5, 0.5) DBCD 0.023 0.499(0.027) 0.389(0.018) 450(15)
(0.5, 0.5, 0.5, 0.5) CR 0.025 0.500(0.027) 0.389(0.016) 450(15)
(0.6, 0.6, 0.6, 0.6) DBCD 0.025 0.599(0.026) 0.389(0.020) 360(15)
(0.6, 0.6, 0.6, 0.6) CR 0.023 0.600(0.026) 0.389(0.016) 360(15)
(0.7, 0.7, 0.7, 0.7) DBCD 0.022 0.699(0.025) 0.389(0.022) 270(14)
(0.7, 0.7, 0.7, 0.7) CR 0.025 0.700(0.025) 0.389(0.016) 270(14)
(0.8, 0.8, 0.8, 0.8) DBCD 0.022 0.799(0.022) 0.389(0.028) 180(12)
(0.8, 0.8, 0.8, 0.8) CR 0.025 0.800(0.022) 0.389(0.016) 180(12)

Table 8. Performance of DBCD targeting the optimal
allocation under H0 when four treatments are under study.

(p1, p2, p3, p0) Design α p̂0 ρ0 Failure
(0.5, 0.5, 0.5, 0.5) DBCD 0.023 0.500(0.027) 0.389(0.011) 450(15)
(0.5, 0.5, 0.5, 0.5) CR 0.025 0.500(0.027) 0.389(0.016) 450(15)
(0.6, 0.6, 0.6, 0.6) DBCD 0.023 0.600(0.026) 0.389(0.010) 360(15)
(0.6, 0.6, 0.6, 0.6) CR 0.023 0.600(0.026) 0.389(0.016) 360(15)
(0.7, 0.7, 0.7, 0.7) DBCD 0.026 0.700(0.024) 0.389(0.009) 270(14)
(0.7, 0.7, 0.7, 0.7) CR 0.025 0.700(0.025) 0.389(0.016) 270(14)
(0.8, 0.8, 0.8, 0.8) DBCD 0.023 0.800(0.021) 0.389(0.008) 180(12)
(0.8, 0.8, 0.8, 0.8) CR 0.025 0.800(0.022) 0.389(0.016) 180(12)

Table 9. Performance of DBCD targeting the intuitively
ethical allocation proportion under H0 when four treatments

are under study.
(p1, p2, p3, p0) Design α p̂0 ρ0 Failure
(0.5, 0.5, 0.5, 0.5) DBCD 0.022 0.499(0.027) 0.389(0.018) 450(15)
(0.5, 0.5, 0.5, 0.5) CR 0.025 0.500(0.027) 0.389(0.016) 450(15)
(0.6, 0.6, 0.6, 0.6) DBCD 0.025 0.599(0.026) 0.389(0.016) 360(15)
(0.6, 0.6, 0.6, 0.6) CR 0.023 0.600(0.026) 0.389(0.016) 360(15)
(0.7, 0.7, 0.7, 0.7) DBCD 0.024 0.700(0.025) 0.389(0.013) 270(14)
(0.7, 0.7, 0.7, 0.7) CR 0.025 0.700(0.025) 0.389(0.016) 270(14)
(0.8, 0.8, 0.8, 0.8) DBCD 0.020 0.800(0.021) 0.389(0.011) 180(12)
(0.8, 0.8, 0.8, 0.8) CR 0.025 0.800(0.022) 0.389(0.016) 180(12)

In the first scenario (Tables 7 and 10 for H0,M and H1,M ),
let

ρ1(θ) =
( p0
p0 + p1 + p2 + p3

,
p1

p0 + p1 + p2 + p3
,

p2
p0 + p1 + p2 + p3

,
p3

p0 + p1 + p2 + p3

)

and ρ2(θ) =
(

qM
q0+qM

, q0
q0+qM

)
that is the urn allocation [64].

In the second scenario (Table 8 and 11 for H0 and H1),
let ρ1k(θ) =

√
pk√

p0+
√
p1+

√
p2+

√
p3

, k = 0, 1, 2, 3, and ρ2(θ) =( √
p0√

p0+
√
pM

,
√
pM√

p0+
√
pM

)
that is the optimal allocation [41].

In the third scenario (Table 9 and 12 for H0 and H1), we
use the intuitively better allocation proportion

ρ1(θ) =
( p0
p0 + p1 + p2 + p3

,
p1

p0 + p1 + p2 + p3
,

p2
p0 + p1 + p2 + p3

,
p3

p0 + p1 + p2 + p3

)
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Table 10. Performance of DBCD targeting the urn allocation
under H1 when four treatments are under study.

(p1, p2, p3, p0) Design Power p̂0 ρ0 Failure
(0.35, 0.4, 0.45, 0.3) DBCD 0.910 0.299(0.026) 0.339(0.019) 559(17)
(0.35, 0.4, 0.45, 0.3) CR 0.910 0.300(0.025) 0.389(0.016) 566(16)
(0.45, 0.5, 0.55, 0.4) DBCD 0.892 0.400(0.028) 0.338(0.019) 469(17)
(0.45, 0.5, 0.55, 0.4) CR 0.896 0.400(0.026) 0.389(0.016) 476(17)
(0.55, 0.6, 0.65, 0.5) DBCD 0.894 0.499(0.029) 0.332(0.021) 379(17)
(0.55, 0.6, 0.65, 0.5) CR 0.896 0.500(0.027) 0.389(0.016) 386(16)
(0.65, 0.7, 0.75, 0.6) DBCD 0.923 0.598(0.029) 0.320(0.024) 287(17)
(0.65, 0.7, 0.75, 0.6) CR 0.922 0.600(0.026) 0.389(0.016) 296(16)

Table 11. Performance of DBCD targeting the optimal
allocation under H1 when four treatments are under study.

(p1, p2, p3, p0) Design Power p̂0 ρ0 Failure
(0.35, 0.4, 0.45, 0.3) DBCD 0.907 0.300(0.026) 0.353(0.014) 561(16)
(0.35, 0.4, 0.45, 0.3) CR 0.910 0.300(0.025) 0.389(0.016) 566(16)
(0.45, 0.5, 0.55, 0.4) DBCD 0.894 0.400(0.027) 0.361(0.012) 473(17)
(0.45, 0.5, 0.55, 0.4) CR 0.896 0.400(0.026) 0.389(0.016) 476(17)
(0.55, 0.6, 0.65, 0.5) DBCD 0.894 0.500(0.028) 0.366(0.011) 383(17)
(0.55, 0.6, 0.65, 0.5) CR 0.896 0.500(0.027) 0.389(0.016) 386(16)
(0.65, 0.7, 0.75, 0.6) DBCD 0.928 0.599(0.027) 0.369(0.010) 293(15)
(0.65, 0.7, 0.75, 0.6) CR 0.922 0.600(0.026) 0.389(0.016) 296(16)

Table 12. Performance of DBCD targeting the intuitively
ethical allocation proportion under H1 when four treatments

are under study.
(p1, p2, p3, p0) Design Power p̂0 ρ0 Failure
(0.35, 0.4, 0.45, 0.3) DBCD 0.911 0.299(0.028) 0.317(0.026) 556(17)
(0.35, 0.4, 0.45, 0.3) CR 0.910 0.300(0.025) 0.389(0.016) 566(16)
(0.45, 0.5, 0.55, 0.4) DBCD 0.894 0.399(0.029) 0.333(0.021) 469(17)
(0.45, 0.5, 0.55, 0.4) CR 0.896 0.400(0.026) 0.389(0.016) 476(17)
(0.55, 0.6, 0.65, 0.5) DBCD 0.896 0.499(0.029) 0.342(0.018) 380(17)
(0.55, 0.6, 0.65, 0.5) CR 0.896 0.500(0.027) 0.389(0.016) 386(16)
(0.65, 0.7, 0.75, 0.6) DBCD 0.926 0.599(0.028) 0.349(0.015) 290(16)
(0.65, 0.7, 0.75, 0.6) CR 0.922 0.600(0.026) 0.389(0.016) 296(16)

and

ρ2(θ) =

(
p0

p0 + pM
,

pM
p0 + pM

)
.

We detected similar conclusions to the numerical studies
with two experimental treatment arms above. While keeping
the same power level, our methods can always assign more
people to better treatment and reduce the number of failures
by up to 10 patients.

4. CONCLUSION
Clinical trials are complex and involve a variety of de-

sign features related to efficiency and ethics. ASD and RAR
have been proposed to achieve different aims [15, 17, 22, 23].
The desire to reduce development costs and the time-to-
market of new treatments has led to the development of
ASD. DBCD is a well-known RAR design with a variety of
favorable properties. However, there has been limited the-
oretical and numerical study of the combination of ASD

and DBCD, which hinders the development and application
of this procedure. In this paper, we proposed a versatile
approach and studied this complex procedure’s theoretical
and numerical properties. Our methods can lead to less fail-
ure without sacrificing power than traditional designs while
controlling the type I error rate.

[73] also tried implementing DBCD in seamless clinical
trials. However, their methods depend on the method in
[43] to construct the test statistics and control the type I
error rate. As a result, strictly speaking, their methods can
only be used for normal responses, and other future inves-
tigations of the procedure will require new challenging the-
oretical proof. This is a severe limitation in practice. The
current paper proposed more versatile approaches based on
the closure principle combined with the combination test
and methods to address multiplicity problems, which FDA
and pharmaceutical industry will more readily accept. More
importantly, many existing approaches based on this frame-
work, such as its combination with sequential monitoring
and other endpoints, can be directly used in future trials.
We leave these for future research. Fundamentally, we pro-
posed a totally different and more flexible approach to im-
plement DBCD in seamless clinical trials, which will signif-
icantly promote the procedure in clinical trials.

It is also worth discussing the benefit-cost tradeoff of the
adaptive designs. First, exploring the seamless phase II/III
design is often desirable in pharmaceutical companies for
various reasons. For example, the regulatory agencies often
require the comparison of a new dose in addition to the
proposed two-arm clinical trial design, so a seamless phase
II/III design often becomes one of some natural choices.
RAR might make the design more complex compared to a
fixed design. However, with the development of technology
such as central data monitoring, interactive voice response
services, and interactive web response service, the complex-
ity of implementing advanced designs such as RAR is much
reduced. Second, the evaluation of the reduction of total
failures depends on the disease characteristics. For lethal
diseases like the Ebola virus, failure means quick death, and
any savings could be worth it.

This paper opens the door to future research topics. First,
there are two families of RAR designs, DBCD and urn mod-
els [64, 65, 72]. It is worth exploring the seamless clinical
trials with urn models. Second, research on adaptive ran-
domization design and ASD under the Bayesian framework
includes but is not limited to [3, 6, 7, 12, 28, 29, 54, 66, 67].
We can comprehensively compare our methods with the
bayesian approaches. Third, [18, 28, 57] investigated the
ASD with different types of study endpoints in the two
phases. All these factors can be explored for the proposed
design. We leave all these for future research topics.

SUPPLEMENTARY MATERIAL
Proof of Theorem 2.1: The rigorous proof for applying the

closure principle [37] with the combination test and Simes
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test in a seamless Phase II/III clinical trial with complete
randomization to control the type I error rate has been ob-
tained and discussed in [11, 13, 35]. (We offer some expla-
nation for this procedure here; details can be seen in the
above papers.) First, the closure principle [37] was proposed
to construct multiple test procedures to strongly control the
family-wise error rate. Then, the randomness of M for the
combination test is addressed by the conditional invariance
principle (see, for example, [11, 13]. According to the invari-
ance principle, the p-values P1,I and P2,I are independent
and also independent of the choice of M , so the combina-
tion test will be used to control the Type I error rate for
our proposed adaptation rules.) Based on [25, 71], under
(A1)–(A6), the joint distribution of (Z1, . . . , ZK) from this
paper is asymptotically the same as that from complete ran-
domization. So our method can asymptotically control the
type I error rate.
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