
Applied Energy 288 (2021) 116656

A
0

D

I
c

g
T
c
i
s
d
s
T
c
w

h
R

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Multi-layer wind velocity field visualization in infrared images of clouds for
solar irradiance forecasting
Guillermo Terrén-Serrano ∗, Manel Martínez-Ramón
epartment of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM 87131, United States

A R T I C L E I N F O

Keywords:
Cloud tracking
Machine learning
Flow visualization
Beta mixture model
Sky imaging
Solar forecasting

A B S T R A C T

The energy available in a solar energy powered grid is uncertain due to the weather conditions at the time of
generation. Forecasting global solar irradiance could address this problem by providing the power grid with
the capability of scheduling the storage and dispatch of energy. The occlusion of the Sun by clouds is the
main cause of instabilities in the generation of solar energy. This investigation proposes a method to visualize
the wind velocity field in sequences of longwave infrared images of clouds when there are multiple wind
velocity fields in an image. This method can be used to forecast the occlusion of the Sun by clouds, providing
stability in the generation of solar energy. Unsupervised learning is implemented to infer the distribution of
the clouds’ velocity vectors and heights in multiple wind velocity fields in an infrared image. A multi-output
weighted support vector machine with flow constraints is used to extrapolate the wind velocity fields to the
entire frame, visualizing the path of the clouds. The proposed method is capable of approximating the wind
velocity field in a small air parcel using the velocity vectors and physical features of clouds extracted from
infrared images. Assuming that the streamlines are pathlines, the visualization of the wind velocity field can
be used for forecasting cloud occlusions of the Sun. This is of importance when considering ways of increasing
the stability of solar energy generation.
1. Introduction

Recent legislative initiatives to stimulate the use of solar power
and other sustainable energy sources will increase the number of solar
power plants connected to urban power grids worldwide [1]. California
aims to have 100% of clean energy generation by 2045 [2]. Similar ini-
tiatives are occurring in Japan, South Africa and the European Union,
where local governments aim to generate the 24% [3], 41% [4], and
32% [5] of their energy from renewable sources by 2030 respectively.
n addition, the growth of Photovoltaic (PV) solar power capacity has
ontinued to increase in a steady exponential scale from 2000 [6].
To increase the percentage of solar energy in the electrical power

rid it is important to guarantee a reliable supply of energy [7].
he forecasting of solar power provides a Smart Grid (SG) with the
apability of performing energy management [8]. The interruptions
n energy supply from PV systems occurs due to the projection of
hadows from passing clouds [9]. Moving clouds have different effects
epending on the configuration of PV arrays [10], and may cause the
olar irradiance received by a PV system to increase or decrease [11].
he forecasting of solar irradiance in microgrids [12] allows automatic
ontrol of home appliances and other devices [13]. In a large-scale SG
ith a stable supply of energy using a mix plan of solar power from
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PV, concentrated solar power [14] and other systems, the forecasting
of solar energy is necessary to perform an efficient management of the
resources [15].

There is a documented relationship between ground measurements
of direct normal irradiance and Cloud Index (CI) [16]. The relationship
holds in diverse climates and weather conditions [17,18] when the CI
is calculated from visible and infrared (IR) light sensors mounted in
geostationary satellites [19–22]. On-ground maps of solar irradiance
can be derived from the CI using geostationary satellite images [23,24].

This research aims to visualize the wind velocity field to anticipate
interruptions in the supply of energy generated by PV systems [25].
The forecasting interval of this application is from 1 to 5 min [26].
This is often called nowcasting [27]. Accurate Numerical Weather
Prediction (NWP) models which analyze atmospheric dynamics using
satellite images are computationally expensive due to the resolution of
the numerical grid necessary to analyze the forecasting intervals [28].
The variables in mesoscale meteorology models have collinearity when
the objective is to forecast solar irradiation [29].

When transmitting images from a satellite, communications might
have a delay of up to an hour [30]. An alternative to satellite cameras
is the total sky imager [31]. This device captures sky images reflected
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on a concave mirror, and allows a high Field Of View (FOV) [32].
This device has a number of disadvantages including its cost, and the
projection of shadows on the mirror from objects in its own struc-
ture [33]. Digital cameras are less expensive and can obtain better
performances around the circumsolar area with attached lenses [34].
In fact, near IR filters can attenuate the scattering produced by solar
irradiance [26], and fish-eye lenses increase the FOV, which allows
recording of low-cost, shadow-free sky images [35]. IR sensors are the
most viable alternative when the forecast is meant for hours ahead,
and includes night hours or poor daylight conditions [36]. Recent
technological innovations have increased the FOV of ground-based IR
images [37].

The visualization of the wind velocity field requires measurements
of wind velocity at a given altitude. The wind velocity increases with
the altitude in the lower atmosphere [38]. The decrease of temper-
ature along the Troposphere can be approximated by a linear func-
tion [39]. Cloud formations are feasible in a range of altitudes that
varies from the ground to the Tropopause [40]. The detection of
clouds in IR images allows us to indirectly measure physical magni-
tudes of the wind velocity field [41]. Radiometric IR cameras provide
uniform thermal imaging [42], and may be stabilized to perform atmo-
spheric measurements [43]. In fact, microbolometer IR cameras have
been used to provide statistical analysis of clouds [44] for Earth-space
communication [45].

Methods of computational numerical analysis are an effective way
to analyze images of clouds. The direction and magnitude of cloud
velocity have been estimated applying motion vector techniques to a se-
ries of consecutive frames [46]. Through image segmentation, it is pos-
sible to identify clouds and other objects in an image [34]. The clouds’
pathlines can be estimated by tracking them with a Kalman filter [35].
Classical methods of statistical modeling and linear regression have low
computational requirements, and are an alternative to complex NWP
models [47]. Machine learning (ML) algorithms such as artificial neural
networks [48], or Support Vector Machines (SVM) [49], are promising
models to find space–time correlations in cloud images.

This research utilizes two innovations. First, a Data Acquisition
(DAQ) system is used for capturing radiometric long-wave IR circumso-
lar images combined with pyranometer measurements [50]. The DAQ
is equipped with a solar tracker that updates its pan and tilt every
second, maintaining the Sun in a central position in the images during
the day [51]. The IR images are taken at an angle from the normal
position of the camera in relation to the ground. The angle is the Sun’s
elevation. This causes the relative distance of a given object on the
horizon to increase from top to bottom in an image. To account for
this effect, a second innovation is introduced to transform the velocity
vectors from the original Euclidean frame of reference to a non-linear
frame of Ref. [50].

This research also proposes and implements an online ML algorithm
for predicting the streamlines of multiple wind flows in an image.
An unsupervised ML algorithm infers the distribution of velocity vec-
tors and heights of multiple layers of clouds. The velocity vectors
are approximated using the Weighted Lucas–Kanade (WLK) method,
and are segmented and subsampled to reduce the noise of the ap-
proximation and the computational burden of the entire algorithm. A
Multi-Output Weighted Support Vector Machine (𝜀-MO-WSVM) [52]
visualizes the approximated velocity vectors to predict the trajectories
of the clouds. The 𝜀-MO-WSVM is modified from its original form
adding flow constraints. The flow constraints are added so that the
approximated streamlines are equivalent to the pathlines. The wind
velocity field visualization can be used to forecast occlusion of the
Sun by clouds, thereby predicting and preventing disruptions in the
generation of energy from solar power plants.
2

2. Wind velocity field

The IR sensor produces a uniform thermal image. When the ra-
diometry functionality is enabled, the pixels in a frame are turned into
temperature measurements. A pixel of the camera frame is defined by
a pair of euclidean coordinates 𝐗 = {(𝑥, 𝑦)𝑖,𝑗 ∣ ∀𝑖 = 1,… ,𝑀, ∀𝑗 =
1,… , 𝑁}, and the temperature of each one of the pixels is defined in
Kelvin degrees as 𝐓𝑘 = {𝑇𝑖,𝑗 ∈ R ∣ ∀𝑖 = 1,… ,𝑀, ∀𝑗 = 1,… , 𝑁}, where
𝑘 represents a process defined as 𝑘 ∈ (0,∞], which is a sequence of IR
mages ordered chronologically by time of acquisition. The temperature
f a particle in the Troposphere is a function of the height [53]. The
eight of a pixel in a frame is approximated using the Moist Adiabatic
apse Rate (MALR) function [50], that we define as 𝜙 ∶ 𝑇 ↦ ℎ, knowing
the temperatures obtained with the IR camera. The height of each one
of the pixels in a frame are 𝐇𝑘 = {𝐻𝑖,𝑗 ∈ R ∣ ∀𝑖 = 1,… ,𝑀, ∀𝑗 =
1,… , 𝑁}.

When there are multiple layers of clouds in an image, a Beta Mixture
Model (BeMM) of the temperature of the pixels is expected to have
multiple clusters. The number of clusters 𝐶 is estimated by a previously
trained detection algorithm that infers the number of wind velocity
fields which are in an image. In order to infer the distribution of the
temperature of the pixels with a BeMM, the temperatures are first
normalized to the domain of a beta distribution such as 𝑇̄𝑖,𝑗 = [𝑇𝑖,𝑗 −
min(𝐓𝑘)]∕[max(𝐓𝑘) − min(𝐓𝑘)].

2.1. Beta mixture model

Consider the temperatures 𝑇̄𝑖,𝑗 of a given image (by omitting su-
perindex 𝑘). The distribution of the normalized temperatures can be
approximated by a mixture of beta distributions 𝑇̄ ∼ 𝐵𝑒(𝛼𝑐 , 𝛽𝑐 ) with
the density function,

𝑓
(

𝑇̄𝑖,𝑗 ; 𝛼𝑐 , 𝛽𝑐
)

= 1
B
(

𝛼𝑐 , 𝛽𝑐
) ⋅ 𝑇̄ 𝛼𝑐−1𝑖,𝑗 ⋅

(

1 − 𝑇̄𝑖,𝑗
)𝛽𝑐−1 , 𝛼𝑐 , 𝛽𝑐 > 0, (1)

where 𝑇̄𝑖,𝑗 ∈ (0, 1), the beta function is B(𝛼𝑐 , 𝛽𝑐 ) = [𝛤 (𝛼𝑐 )𝛤 (𝛽𝑐 )]∕[𝛤 (𝛼𝑐 +
𝛽𝑐)], and the gamma function is 𝛤 (𝛼𝑐 ) = (𝛼𝑐 − 1)!.

The log-likelihood of the beta density function that we need to
compute the expected complete data log-likelihood (CDLL) is,

log 𝑝
(

𝑇̄𝑖,𝑗 ∣ 𝛼𝑐 , 𝛽𝑐
)

=
(

𝛼𝑐 − 1
)

log 𝑇̄𝑖,𝑗+
(

𝛽𝑐 − 1
)

log
(

1 − 𝑇̄𝑖,𝑗
)

−logB
(

𝛼𝑐 , 𝛽𝑐
)

,

(2)

and the CDLL in a mixture model is,


(

𝜽(𝑡),𝜽(𝑡−1)
)

=
𝑀
∑

𝑖=1

𝑁
∑

𝑗=1

𝐶
∑

𝑐=1
𝛾𝑖,𝑗,𝑐 log𝜋𝑐 +

𝑀
∑

𝑖=1

𝑁
∑

𝑗=1

𝐶
∑

𝑐=1
𝛾𝑖,𝑗,𝑐 log 𝑝

(

𝑇̄𝑖,𝑗 ∣ 𝜽(𝑡)
)

(3)

where 𝛾𝑖,𝑗,𝑐 ≜ 𝑝(𝑦𝑖,𝑗 = 𝑐 ∣ 𝑇̄𝑖,𝑗 ,𝜽(𝑡−1)) is the responsibility of the cluster 𝑐
in the sample 𝑖, 𝑗 and 𝜽(𝑡) = {𝛼(𝑡)𝑐 , 𝛽

(𝑡)
𝑐 }.

The parameters in the clustering of beta distributions can be directly
computed applying the Expectation Maximization (EM) algorithm [54].
In the E stage of the algorithm a prior is established and then, by using
the likelihood function (3), a posterior 𝛾𝑖,𝑗,𝑐 = 𝑝(𝑦𝑖,𝑗 = 𝑐 ∣ 𝑇̄𝑖,𝑗 ,𝜽) can be
assigned to each sample [55]. In the M stage, the parameters 𝛼𝑐 and
𝛽𝑐 of each cluster that maximize the log-likelihood are computed by
gradient descent of the CDLL [56]. The corresponding derivatives are,

𝜕 (𝜽)
𝜕𝛼𝑐

=
𝑀
∑

𝑖=1

𝑁
∑

𝑗=1

𝐶
∑

𝑐=1
𝛾𝑖,𝑗,𝑐

𝜕
𝜕𝛼𝑐

log 𝑝
(

𝑇̄𝑖,𝑗 ∣ 𝛼𝑐 , 𝛽𝑐
)

(4)

=
𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
𝛾𝑖,𝑗,𝑐

𝐶
∑

𝑐=1

[

log 𝑇̄𝑖,𝑗 − 𝜓
(

𝛼𝑐
)

+ 𝜓
(

𝛼𝑐 + 𝛽𝑐
)]

, (5)
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(

𝜽𝑐
)

𝜕𝛽𝑐
=

𝑀
∑

𝑖=1

𝑁
∑

𝑗=1

𝐶
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𝑐=1
𝛾𝑖,𝑗,𝑐

[

𝜕
𝜕𝛽𝑐

log 𝑝
(

𝑇̄𝑖,𝑗 ∣ 𝛼𝑐 , 𝛽𝑐
)

]

(6)

=
𝑀
∑

𝑁
∑

𝛾𝑖,𝑗,𝑐
𝐶
∑

[

log
(

−𝑇̄𝑖,𝑗
)

− 𝜓
(

𝛽𝑘
)

+ 𝜓
(

𝛼𝑐 + 𝛽𝑐
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. (7)

𝑖=1 𝑗=1 𝑐=1
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𝑣
where 𝜕B(𝛼𝑐 , 𝛽𝑐 )∕𝜕𝛼𝑐 = B(𝛼𝑐 , 𝛽𝑐 ) ⋅ [𝜓(𝛼𝑐) − 𝜓(𝛼𝑐 + 𝛽𝑐 )], and 𝜓(⋅) is the
digamma function, which is 𝜓(𝛼𝑐 ) = 𝛤 ′(𝛼𝑐)∕𝛤

(

𝛼𝑐
)

.
The optimal priors are found by maximizing the CDLL with respect

to 𝜋𝑐 , constrained to
∑

𝑐 𝜋𝑐 = 1. As a result, the optimal priors are

𝜋𝑐 =
1

𝑀𝑁

𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
𝛾𝑖,𝑗,𝑐 . (8)

The cloud average heights in a frame are computed using the
posterior probabilities 𝛾𝑖,𝑗,𝑐 in a frame, but only in the pixels with a
cloud,

𝐻̂𝑐 =
∑

𝑖,𝑗 𝛾𝑖,𝑗,𝑐 ⋅𝐻𝑖,𝑗 ⋅ I
(

𝑏𝑖,𝑗 = 1
)

∑

𝑖,𝑗 𝛾𝑖,𝑗,𝑐 ⋅ I
(

𝑏𝑖,𝑗 = 1
) , (9)

where I (⋅) is the indicator function. An image segmentation algorithm
indicates which pixels belong to a cloud, so that 𝐁 = {𝑏𝑖,𝑗 ∈ B ∣ ∀𝑖 =
1,… ,𝑀, ∀𝑗 = 1,… , 𝑁} is a binary image where 0 is a clear sky pixel,
and 1 is a pixel belonging to a cloud [57].

The performance of a Gamma Mixture Model and a BeMM were
compared to infer the distribution of the temperatures and the heights.
The BeMM of the temperature of the pixels was found to be better when
identifying which pixels belong to the wind velocity layer.

2.2. Motion vectors

In current computer vision literature, there are three primary meth-
ods to estimate the motion of objects in a sequence of images: Lucas–
Kanade [58], Horn–Schunk [59], and Farnebäck [60]. These three
methods are based on the space–time partial derivatives between two
consecutive frames. Taking a different disciplinary approach, the ve-
locity field in experimental fluid dynamics is approximated applying
research methods based on signal cross-correlation operated in the
frequency domain [61]. The techniques to estimate the motion vectors
in an image are sensitive to the intensity gradient of the pixels. We
implemented a model that removes the gradient produced by the solar
direct radiation, and atmospheric scattered radiation, both of which
routinely appear on the images in the course of the year. A persistent
model of the outdoor germanium window of the camera removes
sporadic debris that appears in the images such as water stains or dust
particles [50].

A series of sequences of images with clouds flowing in different
directions were simulated to cross-validate the set of parameters for
each one of the mentioned methods. The investigation searched for a
dense implementation of a motion vector method to approximate the
dynamics of clouds. The most suitable method was found to be the
Weighted Lucas–Kanade (WLK) [62], but in this application, instead
of weighting the neighboring pixels with a multivariate normal distri-
bution, the weights 𝛾𝑖,𝑗,𝑐 are the posterior probabilities of the BeMM.
Therefore, a pixel has a velocity vector for each cloud layer 𝑐 in a frame.
The optimal window size, weighted least-squares regularization, and
differential kernel amplitude are:  = 16[pixels2], 𝜏 = 1 × 10−8, and
𝜎 = 1 respectively. The velocity components in the 𝑥-axis are 𝐔𝑐 =
{u𝑖,𝑗,𝑐 ∈ R ∣ ∀𝑖 = 1,… ,𝑀, ∀𝑗 = 1,… , 𝑁}, and the velocity components
in the 𝑦-axis are 𝐕𝑐 = {v𝑖,𝑗,𝑐 ∈ R ∣ ∀𝑖 = 1,… ,𝑀, ∀𝑗 = 1,… , 𝑁}.
The velocity vectors are in units of pixels per frame, but knowing the
geometrical transformation of the frame, they can be transformed to
meters per second [50]. The geometric transformation is a function of
the Sun’s elevation and azimuth angles 𝜓 ∶ (𝜀, 𝛼) ↦ 𝛥𝐱𝑖,𝑗 in a frame, it
defines the dimensions of a pixel at a given height 𝛥𝐗 = {(𝛥𝑥, 𝛥𝑦)𝑖,𝑗 ∣
∀𝑖 = 1,… ,𝑀, ∀𝑗 = 1,… , 𝑁}. This transformation connects the x,𝑦-axis
coordinates system with the height, which is the 𝑧-axis. The relation
holds even when the height is an approximation, since the components
of velocity vectors are transformed with respect to the new coordinates
system. The velocity vectors of each cloud layer are transformed such
as,

𝑢𝑖,𝑗 =
𝛿

⋅ 𝛥𝑥𝑖,𝑗
𝐶
∑

𝐻̂𝑐 ⋅ 𝛾𝑖,𝑗,𝑐 ⋅ u𝑖,𝑗,𝑐 (10)
3

𝑓𝑟 𝑐=1
𝑖,𝑗 =
𝛿
𝑓𝑟

⋅ 𝛥𝑦𝑖,𝑗
𝐶
∑

𝑐=1
𝐻̂𝑐 ⋅ 𝛾𝑖,𝑗,𝑐 ⋅ v𝑖,𝑗,𝑐 (11)

where 𝑓𝑟 is the frame rate of the sequence of images, and 𝛿 is velocity
vectors’ scale in the WLK approximation.

2.3. Velocity vectors selection

In order to approximate the potential lines and streamlines of the
wind velocity field in a frame, we propose to select the most consistent
velocity vectors over a sequence of consecutive frames. The main
problems with this approach are that as the vectors are selected over a
sequence of images, the amount of vectors is expected to be large; also
when optical flow is implemented in dense manner, it yields to noisy
vectors. Because of this, we threshold the velocity vectors to reduce
both the algorithm’s computational burden and the variance of the
noise.

2.3.1. Velocity vector segmentation
The pixel intensity difference between two consecutive frames is

computed to find the pixels that show a change. The pixel normalized
intensities that were used to compute the velocity vectors are 𝐈 = {𝑖𝑖,𝑗 ∈
R[0,28) ∣ ∀𝑖 = 1,… ,𝑀, ∀𝑗 = 1,… , 𝑁}. The root squared intensity
normalized difference is,

𝑑𝑖,𝑗 =

√

(

𝑖𝑘−1𝑖,𝑗 − 𝑖𝑘𝑖,𝑗
)2

∑

𝑖,𝑗

√

(

𝑖𝑘−1𝑖,𝑗 − 𝑖𝑘𝑖,𝑗
)2
. (12)

Matrix 𝐃 with normalized differentials 𝑑𝑖,𝑗 is vectorized and sorted
from the lowest to the highest, i.e., 𝐝 = sort(vec(𝐃)). A vector 𝐫 with
the accumulated variance is computed as

𝑟𝑚 =

{ 𝑚
∑

𝑖=1
𝐝𝑖

}𝑁 ⋅𝑀

𝑚=1

. (13)

Then, vector 𝐫 is reorganized and set in the original matrix form,
defined as 𝐑 = {𝑟𝑖,𝑗 ∈ R[0,1) ∣ ∀𝑖 = 1,… ,𝑀, ∀𝑗 = 1,… , 𝑁}. Finally,
a threshold 𝜏 is applied

𝑏𝑖,𝑗 =

{

1 𝑟𝑖,𝑗 ≥ 𝜏
0 Otherwise,

(14)

where 𝐁 ∈ B is a binary image whose elements are 1 when a pixel is
selected. The threshold velocity vectors in a frame 𝑘 are 𝐕′𝑘 = {𝐯𝑘𝑖,𝑗 =
{𝑢𝑘𝑖,𝑗 , 𝑣

𝑘
𝑖,𝑗} ∧ 𝑏

𝑘
𝑖,𝑗 = 1 ∣ ∀𝑖 = 1,… ,𝑀, ∀𝑗 = 1,… , 𝑁}.

Based on the assumption that a cloud floating in the air follows
a trajectory dictated by the wind velocity field, the wind velocity
field is approximated using the segmented velocity vectors of 𝓁 last
frames. Hence, the set of velocity vectors available to compute the wind
velocity field are,

𝐕̃𝑘 =
⎡

⎢

⎢

⎢

⎣

𝐕′𝑘

⋮

𝐕′𝑘−𝓁

⎤

⎥

⎥

⎥

⎦

∈ R2×𝑁𝑘
, (15)

the number of samples in 𝐕̃𝑘 is 𝑁𝑘, this number is not the same in each
frame 𝑘.

2.3.2. Velocity vector and height distributions
A velocity vector 𝐯̃𝑖 (by omitting superindex 𝑘) in the set 𝐕̃𝑘 =

{𝐯̃𝑘𝑖 ∈ R2 ∣ ∀𝑖 = 1,… , 𝑁𝑘} is assumed to belong to a cloud layer 𝑐.
The probability of a vector to belong to a cloud layer 𝑐 is modeled as
an independent normal random variable 𝐯̃𝑖 ∼  (𝝁𝑐 ,𝜮𝑐). The function
of the multivariate normal distribution is,

𝑝
(

𝐯̃𝑖 ∣ 𝝁𝑐 ,𝜮𝑐
)

= 1
√

𝑑
| |

⋅ exp
{

−1
2
(

𝐯̃𝑖 − 𝝁𝑐
)⊤ 𝜮−1

𝑐
(

𝐯̃𝑖 − 𝝁𝑐
)

}

. (16)

(2𝜋)

|

𝜮𝑐 |
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In the case when two cloud layers were detected, we propose to infer
the probability distribution of velocity vectors’ in each cloud layer with
this model,

𝑝
(

𝐯̃𝑖 ∣ 𝜣
)

∝ 𝑝
(

𝐯̃𝑖 ∣ 𝝁1,𝜮1
)𝜆𝑖 ⋅ 𝑝

(

𝐯̃𝑖 ∣ 𝝁2,𝜮2
)(1−𝜆𝑖) , (17)

here 𝜣 = {𝝀,𝝁1,𝜮1,𝝁2,𝜮2}, and 𝜆𝑖 ∈ {0, 1}. 𝜆𝑖,𝑐 is defined as convex,
considering that a velocity vector may belong to one or the other wind
velocity layer, but no to both. Knowing the vectors that belong to the
first cloud layer, the vectors that belong to the second cloud layer are
also known, 𝜆𝑖,2 = 1 − 𝜆𝑖,1. The lower bound of the data log-likelihood
is found applying Jensen’s inequality [63],

log 𝑝
(

𝐯̃𝑖 ∣ 𝜣
)

∝ 𝜆𝑖,1 ⋅ log 𝑝
(

𝐯̃𝑖 ∣ 𝝁1,𝜮1
)

+ 𝜆𝑖,2 ⋅ log 𝑝
(

𝐯̃𝑖 ∣ 𝝁2,𝜮2
)

, (18)

so that the posterior distribution is a linear combination of the multi-
variate normal distributions.

The probabilistic model parameters are inferred using a fixed-point
variation of the Iterated Conditional Modes (ICM) [64]. The algorithm
begins by randomly assigning the velocity vectors to a cloud layer,
𝜆𝑖,1 ∼  (0, 𝐶 − 1). The parameters of velocity vector distributions, in
Eq. (18) that maximize the data log-likelihood are computed in the first
step of the algorithm. These same parameters are used to initialize the
inference of the parameters of the height distributions in the second
step in Eq. (22).

In the case of a multivariate normal distribution, the ICM algorithm
is iteratively updates parameters. At iteration 𝑡 + 1, the means and
covariances are,

𝝁(𝑡+1)
𝑐 =

∑

𝑖 𝜆
(𝑡)
𝑖,𝑐 ⋅ 𝐯̃𝑖

∑

𝑖 𝜆
(𝑡)
𝑖,𝑐

; 𝜮(𝑡+1)
𝑐 =

∑

𝑖 𝜆
(𝑡)
𝑖,𝑐 ⋅

(

𝐯̃𝑖 − 𝝁(𝑡+1)
𝑐

)⊤ (
𝐯𝑖 − 𝝁̃(𝑡+1)

𝑐

)

∑

𝑖 𝜆
(𝑡)
𝑖,𝑐

(19)

The vectors are re-assigned to a cloud layer at the end of each param-
eters update, applying the maximum a posteriori (MAP) criterion

𝜆(𝑡+1)𝑖,2 = argmax
𝑐

𝑝
(

𝐯̃𝑖 ∣ 𝝁(𝑡+1)
𝑐 ,𝜮(𝑡+1)

𝑐
)

− 1 (20)

𝜆(𝑡+1)𝑖,1 = 1 − 𝜆(𝑡+1)𝑖,2 . (21)

fter completing the inference of the velocity vectors distribution, it is
ossible to infer the cloud layer’s height using the same method. The
elocity vectors in an image were calculated using the WLK method.
he algorithm approximates the velocity vector using a set of pixels
nside a window. The result is that the velocity vectors do not exactly
orrespond to a clouds’ pixels, which are in motion. Instead, the ve-
ocity vectors are assigned to nearby pixels. To identify which layer
f clouds 𝑐, is the highest and which one is the lowest, the height
istribution of the pixels is inferred using the MAP classification of the
elocity vectors 𝐯′𝑖,𝑗 in a image.
The height of the pixels within the cloud are modeled as inde-

endently distributed normal random variables 𝐻𝑖,𝑗 ∼  (𝜇𝑐 , 𝜎2𝑐 ). The
probabilistic model to infer the distribution of heights of each cloud
layer in a frame is,

log 𝑝
(

𝐻𝑖,𝑗 ∣ 𝜣
)

∝ 𝜌𝑖,𝑗,1 ⋅ log 𝑝
(

𝐻𝑖,𝑗 ∣ 𝜇1, 𝜎21
)

+ 𝜌𝑖,𝑗,2 ⋅ log 𝑝
(

𝐻𝑖,𝑗 ∣ 𝜇2, 𝜎22
)

,

(22)

here 𝜣 = {𝑷 , 𝜇1, 𝜎1, 𝜇2, 𝜎2}, and 𝜌𝑖,𝑗,𝑐 ∈ {0, 1} is a convex variable so
hat 𝜌𝑖,𝑗,2 = 1 − 𝜌𝑖,𝑗,1.
The ICM algorithm is also used to the infer the parameters of

he height distributions model. The 𝜌𝑖,𝑗,𝑐 are initialized to the MAP
lassification of the velocity vectors 𝐯′𝑖,𝑗 using the parameters that were
nferred using all the velocity vectors 𝐯̃𝑖 in Eq. (15),

𝑖,𝑗,2 = argmax
𝑐

𝑝
(

𝐯′𝑖,𝑗 ∣ 𝝁𝑐 ,𝜮𝑐

)

− 1 (23)

𝑖,𝑗,1 = 1 − 𝜌𝑖,𝑗,2. (24)

he parameters of the height distributions are updated using the formu-
as in Eq. (19). The algorithm eventually converges so that the pixels in
4

b

he frame are segmented where a cloud appears. The segmentation is
erformed according to the MAP classification of height distributions,
(𝑡+1)
𝑖,𝑗,2 = argmax

𝑐
𝑝
(

𝐻𝑖,𝑗 ∣ 𝜇(𝑡+1)𝑐 , 𝜎2(𝑡+1)𝑐
)

− 1 (25)

𝜌(𝑡+1)𝑖,𝑗,1 = 1 − 𝜌(𝑡+1)𝑖,𝑗,2 . (26)

In order to find the height of a given cloud layer, the heights are
averaged with this formula,

𝐻̄𝑐 =
∑

𝑖,𝑗 𝜌𝑖,𝑗,𝑐 ⋅𝐻𝑖,𝑗 ⋅ I
(

𝑏𝑖,𝑗 = 1
)

∑

𝑖,𝑗 𝜌𝑖,𝑗,𝑐 ⋅ I
(

𝑏𝑖,𝑗 = 1
) . (27)

The wind velocity fields are organized into upper and lower layers by
average height 𝐻̄𝑐 . In this way, each detected wind velocity field has a
distribution of velocity vectors, and another distribution of heights.

2.3.3. Sampling
In order to reduce the computational burden of the algorithm, a

subset of the velocity vectors is selected according to the estimated
probability distributions of the vectors. At each layer 𝑐, we define the
importance weights 𝑤𝑘𝑖,𝑐 as

𝑤𝑘𝑖,𝑐 ≜ 𝑝
(

𝐯̃𝑘𝑖
|

|

|

𝜽𝑐
)

, 𝑤𝑘𝑖,𝑐 ∈ R+. (28)

The weights are normalized to have the characteristics of a probability
mass function such as ∑𝑁𝑘

𝑖=1 𝑤̂
𝑘
𝑖,𝑐 = 1.

The Cumulative Probability Function (CDF) is computed as

𝑤̃𝑘𝑖,𝑐 =

{ 𝑖
∑

𝑚=1
𝑤̂𝑘𝑚,𝑐

}𝑁𝑘

𝑖=1

. (29)

In order to select samples for each distribution 𝑝(𝐯̃𝑘𝑖 ∣ 𝜽𝑐),𝑁
∗∕𝐶 samples

re drawn from a uniform distribution,

𝑘
𝑗,𝑐 ∼  (0, 1) , 𝑗 = 1,… , 𝑁

∗

𝐶
, (30)

For each value 𝑧𝑘𝑗,𝑐 , a sample is selected with the criterion

𝑘
𝑗,𝑐 = argmin ∣ 𝑤̃𝑘𝑖,𝑐 − 𝑧

𝑘
𝑗,𝑐 ∣, ∀𝑖 = 1,… , 𝑁𝑘 ∀𝑗 = 1,… , 𝑁

∗

𝐶
. (31)

The selected vectors are the ones whose CDF is closest to the values of
the uniform samples 𝑧𝑘𝑗,𝑐 ,

̃∗𝑘𝑐 ≜ 𝐯̃𝑘
𝐼𝑘𝑗,𝑐
, ∀𝑗 = 1,… , 𝑁

∗

𝐶
. (32)

The subset of selected velocity vectors in frame 𝑘 for the cloud layer
𝑐 is 𝐕∗𝑘

𝑐 = {(𝑢̃, 𝑣̃)∗𝑘𝑗,𝑐 ∈ R2 ∣ ∀𝑗 = 1,… , 𝑁∗∕𝐶}, the subset of Euclidean
coordinate pairs of those selected vectors is 𝐗∗𝑘

𝑐 = {(𝑥, 𝑦)∗𝑘𝑗,𝑐 ∈ N2 ∣ ∀𝑗 =
1,… , 𝑁∗∕𝐶}.

Assuming that the prior is uniform, the posterior probabilities are,

𝑧∗𝑘𝑖,𝑐 ≜
𝑝
(

𝐯̃∗𝑘𝑖
|

|

|

𝜽𝑐
)

∑𝐶
𝑐=1 𝑝

(

𝐯̃∗𝑘𝑖
|

|

|

𝜽𝑐
) . (33)

The sampling is repeated for as many cloud layers detected. All
elected subsets of vectors, coordinate pairs, and weights form the
ataset that is used to approximate the wind velocity field,

∗𝑘 =

⎡

⎢

⎢

⎢

⎣

𝑥∗𝑘1 𝑦∗𝑘1
⋮ ⋮

𝑥∗𝑘𝑁∗ 𝑦∗𝑘𝑁∗

⎤

⎥

⎥

⎥

⎦

, 𝐕∗𝑘 =

⎡

⎢

⎢

⎢

⎣

𝑣̃∗𝑘1 𝑢̃∗𝑘1
⋮ ⋮

𝑣̃∗𝑘𝑁∗ 𝑢̃∗𝑘𝑁∗

⎤

⎥

⎥

⎥

⎦

, 𝐙∗𝑘 =

⎡

⎢

⎢

⎢

⎣

𝑧∗𝑘1,1 𝑧∗𝑘1,𝑐
⋮ ⋮

𝑧∗𝑘𝑁∗ ,1 𝑧∗𝑘𝑁∗ ,𝑐

⎤

⎥

⎥

⎥

⎦

, (34)

here 𝑁𝑘 ≫ 𝑁∗.

. Flow visualization

The atmosphere is a system where the dynamics are continuously
hanging [28]. This fact implies that a wind velocity field exists,

ut we can only visualize it where clouds are present. From ground
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level to the Tropopause, the wind flow can have multiple layers with
different velocities in each one of the layers. The wind flow may also
be convective, however, for the sake of simplicity, we assume that the
multi-layer flow which is observed in IR images is a multi-layer laminar
flow. This analysis neither considers the z-component in the motion of a
cloud (which is not observable) nor the possible inter-crossing of cloud
layers.

3.1. Wind velocity field estimation

Three methods were implemented to estimate the extrapolation
function and compare their performances. The first method uses a
weighted 𝜀-support vector regression machine (𝜀-WSVM) for each one
of the velocity components. The second method is a 𝜀-MO-WSVM
that estimates both velocity components. The third is an innovation
which uses a 𝜀-MO-WSVM with flow constraints (𝜀-MO-WSVM-FC) to
estimate both velocity components. The flow constraints are used to
force the extrapolated wind flow to have zero divergence or curl, so it
can be assumed that, in the approximated wind flow, streamlines are
equivalent to the cloud pathlines.

The regression problem can be formulated as the optimization of a
function with the form,

𝑓
(

𝐱𝑖
)

= 𝐰⊤𝜑
(

𝐱𝑖
)

+ 𝑏, ∀𝑖 = 1,… , 𝑁∗, 𝐰, 𝐱𝑖 ∈ R𝐷, 𝑏 ∈ R. (35)

where 𝐱𝑖 ≜ 𝐱∗𝑘𝑖 in our problem, and where 𝜑(⋅) is a transformation into a
igher dimensional (possibly infinite) Hilbert space  endowed with a
ot product (𝐱𝑖, 𝐱𝑗 ) = ⟨𝜑(𝐱𝑖), 𝜑(𝐱𝑗 ). A function (𝐱𝑖, 𝐱𝑗 ) is a dot product
f it is a bivariate positive semi-definite function that maps 𝐱𝑖, 𝐱𝑗 into
, commonly called a Mercer’s kernel or simply a kernel function.

.1.1. Support vector machine for regression
Assuming 𝐯𝑖 = {𝑢𝑖, 𝑣𝑖} ≜ 𝐯∗𝑘𝑖 , the regression problem in a 𝜀-SVM

is formulated with an 𝜀-insensitive loss function, which penalizes the
errors |𝜀| > 0 [65] for each one of the components in 𝐯𝑖 and for each
cloud layer 𝑐 as

|

|

|

𝑢𝑖 − 𝑓
(

𝐱𝑖
)

|

|

|𝜀
= max

[

0, ||
|

𝑢𝑖 − 𝑓
(

𝐱𝑖
)

|

|

|

− 𝜀
]

, ∀𝑖 = 1,… , 𝑁, 𝑢𝑖, 𝜀 ∈ R,

(36)

and identically for 𝑣𝑖. The 𝜀-insensitive loss function can be seen as
a tube of radius 𝜀 adjusted around the regression hyper-plane via the
Support Vectors (SV) [66].

The samples are weighted by their probability of belonging to wind
velocity field 𝑐 [67],

𝑧𝑖 ≜ 𝑧∗𝑘𝑖 , 𝑧𝑖 ∈ R≤1. (37)

𝑐𝑖 = 𝑧𝑖 ⋅
𝐶
𝑁

(38)

The L2-norm and 𝜀-loss function is applied to the model weights,

min
𝐰,𝑏,𝜉,𝜉∗

1
2
‖𝐰‖2 + 𝐶

𝑁

𝑁
∑

𝑖=1
𝑧𝑖
(

𝜉𝑖 + 𝜉∗𝑖
)

(39)

s.t.

⎧

⎪

⎨

⎪

⎩

𝑢𝑖 − 𝐰⊤𝜑
(

𝐱𝑖
)

− 𝑏 ≤ 𝜀 + 𝜉𝑖
𝐰⊤𝜑

(

𝐱𝑖
)

+ 𝑏 − 𝑢𝑖 ≤ 𝜀 + 𝜉∗𝑖
𝜉𝑖, 𝜉∗𝑖 ≥ 0

𝑖 = 1,… , 𝑁, (40)

and identically for 𝑣𝑖. The slack variables 𝜉𝑖 were introduced to relax
the constraints of the optimization problem and to deal with unfeasible
optimization problems [68]. The primal objective function aims to find
the trade off between the regularization term 𝜀, the allowed errors
or slack variables 𝜉𝑖 and 𝜉∗𝑖 , and the complexity of the model 𝑐𝑖 per
weighted sample.

The proposed kernel functions in this analysis are,


(

𝐱𝑖, 𝐱𝑗
)

= 𝐱⊤𝑖 𝐱𝑗 , (41)


(

𝐱 , 𝐱
)

= exp
(

−𝛾 ⋅ ‖𝐱 − 𝐱 ‖

2) , (42)
5

𝑖 𝑗 𝑖 𝑗 𝜶

(

𝐱𝑖, 𝐱𝑗
)

=
(

𝛾 ⋅ 𝐱⊤𝑖 𝐱𝑗 + 𝛽
)𝑑 , (43)

where 𝛾, 𝛽 ∈ R, and 𝑑 ∈ N are the kernel hyperparameters that need
cross-validation. [66]. These kernel functions are referred to as linear,
radial basis function (RBF) or square exponential, and polynomial of
order 𝑑 respectively [69].

In order to optimize the constrained problem in functional (39)
and constraints (40) a Lagrangian functional is constructed with the
functional and the set of constraints through a dual set of new vari-
ables [70], which leads to a solvable Quadratic Programming problem
(QP). The Lagrangian functional is


(

𝐰, 𝑏, 𝛼, 𝛼∗, 𝛽, 𝜉, 𝜉∗, 𝜀, 𝜂, 𝜂∗
)

= (44)

= 1
2
‖𝐰‖2 + 𝑐𝑖

𝑁
∑

𝑖=1

(

𝜉𝑖 + 𝜉∗𝑖
)

… (45)

−
𝑁
∑

𝑖=1

(

𝜂𝑖𝜉𝑖 + 𝜂∗𝑖 𝜉𝑖 ∗
)

−
𝑁
∑

𝑖=1
𝛼𝑖
(

𝜀 + 𝜉𝑖 − 𝑢𝑖 + 𝐰⊤𝜑
(

𝐱𝑖
)

+ 𝑏
)

… (46)

−
𝑁
∑

𝑖=1
𝛼∗𝑖

(

𝜀 + 𝜉∗𝑖 + 𝑢𝑖 − 𝐰⊤𝜑
(

𝐱𝑖
)

− 𝑏
)

, ∀𝑖 = 1,… , 𝑁, 𝜂𝑖, 𝜂
∗
𝑖 ∈ R.

(47)

he derivatives of the primal variables 𝐰, 𝜀, 𝜉𝑖, 𝜉∗𝑖 yield to the follow-
ng set of equations, which is a case of Karush-Kuhn–Tucker (KKT)
onditions,

⊤ =
𝑁
∑

𝑖=1

(

𝛼∗𝑖 − 𝛼𝑖
)

𝜑
(

𝐱𝑖
)

, (48)

0 =
𝑁
∑

𝑖=1

(

𝛼𝑖 − 𝛼∗𝑖
)

, (49)

0 = 𝑐𝑖 − 𝛼𝑖 − 𝜂𝑖, (50)

0 = 𝑐𝑖 − 𝛼∗𝑖 − 𝜂
∗
𝑖 . (51)

hese conditions, together with the complimentary KKT conditions
which force the product of dual parameters 𝛼𝑖, 𝛼∗𝑖 with the constraints
o be zero) leads to the following dual functional by substitution on the
agrangian:

min
,𝜶∗

1
2
⋅
(

𝜶 − 𝜶∗)⊤𝐊
(

𝜶 − 𝜶∗) +
𝑁
∑

𝑖=1

(

𝛼𝑖 − 𝛼∗𝑖
)

𝑢𝑖 + 𝜀 ⋅ 𝟏⊤
(

𝜶 + 𝜶∗) (52)

s.t.

{

𝟏⊤ (𝜶 − 𝜶∗) = 0
0 ≤ 𝛼𝑖, 𝛼∗𝑖 ≤ 𝑐𝑖

∀𝑖 = 1,… , 𝑁. (53)

here 𝟏1×𝑁 = [1,… , 1]⊤, and matrix 𝐊 is a Gram matrix of dot
roduct such that 𝐊𝑖,𝑗 = (𝐱𝑖, 𝐱𝑗 ). The minimal of the primal function
s equivalent to the saddle point on the Lagrangian formulation. The
pproximated function is,

(𝐱) =
𝑁
∑

𝑖=1

(

𝛼𝑖 − 𝛼∗𝑖
)

⋅
(

𝐱𝑖, 𝐱𝑖
)

+ 𝑏, (54)

here 𝑏 is obtained from the complimentary KKT conditions.

.1.2. Multi-output weighted support vector machine
When the wind velocity field function is approximated by 𝜀-MO-

VM, the primal regression can be formulated as

𝑖 = 𝐖⊤𝜑(𝐱𝑖) + 𝐛, (55)

here each one of the column vectors of primal parameter matrix 𝐖
pproximates one of the velocities in vector 𝐲𝑖. Primal parameters are a
unction of the dual parameters as well, but the dual parameters 𝜶𝑖,𝜶∗

𝑖
re vectors in a 2-dimensional multi-output problem.
Since independent variables are represented in vectors 𝐯𝑖, the train-

ng set is defined in a vector 𝐯̃1×2𝑁 , and so are the dual parameters
̃ ̃ ∗
1×2𝑁 and 𝜶1×2𝑁 for notation simplicity.
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The gram matrix of dot products between input patterns 𝜑(𝐱𝑖) can
be interpreted as the covariance matrix between variables 𝐯𝑖. Indeed

E
(

(𝐯𝑖 − 𝐛⊤)(𝐯𝑗 − 𝐛)
)

= E
(

𝐖⊤𝜑(𝐱𝑖)𝜑(𝐱𝑗 )⊤𝐖
)

=

(

𝜑(𝐱𝑖)⊤𝛴11𝜑(𝐱𝑗 ) 𝜑(𝐱𝑖)⊤𝛴12𝜑(𝐱𝑗 )
𝜑(𝐱𝑖)⊤𝛴21𝜑(𝐱𝑗 ) 𝜑(𝐱𝑖)⊤𝛴22𝜑(𝐱𝑗 )

)

,
(56)

where the 2 × 2 covariance E
(

𝐖𝐖⊤) is interpreted as a model for the
dependencies between elements in 𝐯𝑖, i.e.

E
(

𝐖𝐖⊤) =

(

𝛴11 𝛴12

𝛴21 𝛴22

)

. (57)

If we consider that both vertical and horizontal velocities are inde-
pendent, then 𝛴12 = 𝛴21 = 𝟎. If we assume further that 𝛴11 = 𝛴22 = 𝐈
for simplicity, which, in turn leads to

E
(

(𝐯𝑖 − 𝐛⊤)(𝐯𝑗 − 𝐛)
)

=

(

(𝐱𝑖, 𝐱𝑗 ) 0

0 (𝐱𝑖, 𝐱𝑗 )

)

. (58)

The Gram matrix 𝐊̃𝐷𝑁×𝐷𝑁 in the 𝜀-MO-SVM formulation for inde-
pendent components is,

𝐊̃ =

(

𝐊 𝟎
𝟎 𝐊

)

. (59)

The full kernel matrix in a 𝜀-MO-WSVM is computationally expensive,
and it is not implemented in this research.

The extension of weights in the 𝜀-MO-WSVM requires weighting
each sample in each output [71],

𝑧̃𝑖 =
[

𝑧… 𝑧𝑁 𝑧1 … 𝑧𝑁
]⊤ ,

𝐷⋅𝑁
∑

𝑖=1
𝑧̃𝑖 = 2, 𝑧̃𝑖 ∈ R≤1. (60)

The dual formulation of the QP problem for the 𝜀-MO-WSVM is,

min
𝜶̃,𝜶̃∗

1
2
⋅
(

𝜶̃ − 𝜶̃∗)⊤ 𝐊̃
(

𝜶̃ − 𝜶̃∗) + 𝐲̃⊤
(

𝜶̃ − 𝜶̃∗) + 𝜀 ⋅ 𝟏⊤
(

𝜶̃ + 𝜶̃∗) (61)

s.t.

{

𝟏⊤ (𝜶̃ − 𝜶̃∗) = 0
𝟎 ≤ 𝛼̃𝑖, 𝛼̃∗𝑖 ≤ 𝑐𝑖

∀𝑖 = 1,… , 2𝑁, (62)

where the extended weighted complexity is 𝑐𝑖 = 𝑧̃𝑖∕2𝑁 .

3.1.3. Multi-output weighted support vector machine with flow constraints
Assuming that the analyzed air parcel is sufficiently small so that the

flow can be considered approximately incompressible and irrotational,
a new set of flow constraints are added to the original set of constraints
with the purpose of visualizing the wind velocity field to force the
divergence and the vorticity to zero:

s.t.

{

(

𝐯̃𝑘⊤𝑐 𝚫𝑥,𝑦𝐕̇
)

⋅
(

𝐯̃𝑘⊤𝑐 𝚫𝑥,𝑦𝐕̇
)⊤ = 0

(

𝐯̃𝑘⊤𝑐 𝚫𝑥,𝑦𝐃̇
)

⋅
(

𝐯̃𝑘⊤𝑐 𝚫𝑥,𝑦𝐃̇
)⊤ = 0,

(63)

where the matrices of this expression are defined in Eqs. (64) (65) and
66). To compute the vorticity and divergence, the differentiation of
he velocity field along the 𝑥-axis, the and 𝑦-axis is implemented using
operator

𝚫𝑥,𝑦 =
[

𝜟𝑥 𝟎
𝟎 𝜟𝑦

]

2𝑁×2𝑁

, (64)

here the differential operators 𝜟𝑥 and 𝜟𝑦 are defined as,

𝑥 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 0 … 0

1 −1 ⋱ ⋮

0 1 ⋱ 0

⋮ ⋱ ⋱ −1

0 … 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦𝑁×𝑁

; 𝜟𝑦 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

−1 … 0

⋮ ⋱ ⋮

0 … −1

1 … 0

⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

. (65)
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⎣ 0 … 1 ⎦

𝑁×𝑁
n

The operators of the velocity field’s vorticity and divergence are respec-
tively,

𝐕̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 … 0
⋮ ⋱ ⋮
0 … 1
1 … 0
⋮ ⋱ ⋮
0 … 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

2𝑁×𝑁

; 𝐃̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 … 0
⋮ ⋱ ⋮
0 … 1
−1 … 0
⋮ ⋱ ⋮
0 … −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

2𝑁×𝑁

. (66)

The velocity field is extrapolated to the entire frame using the
inferred parameters in frame 𝑘

𝐯̂𝑘𝑐 =
(

𝜶̃𝑘𝑐 − 𝜶̃∗𝑘
𝑐
)

⋅
(

𝐗∗𝑘,𝐗
)

+ 𝐛𝑘𝑐 , (67)

where the velocity components are 𝐔̂𝑘𝑐 ≜ 𝐯̂𝑘𝑥,𝑐 , and 𝐕̂𝑘𝑐 ≜ 𝐯̂𝑘𝑦,𝑐 , where
𝐔̂𝑘𝑐 , 𝐕̂

𝑘
𝑐 ∈ R𝑀×𝑁 .

To compute the flow constraints, the velocity field has to be extrap-
olated to the whole frame using Eq. (67). The constraints in Eq. (63)
are added to the constraints in the dual formulation of the 𝜀-MO-SVM
in Eq. (61).

4. Wind velocity field dynamics estimation

To estimate the wind velocity field dynamics, velocity vectors
are approximated using the WLK method. The velocity vectors are
weighted by the posterior probabilities of the cloud layers in the
image, and transformed to the cloud layer plane. The velocity vectors
are segmented and sampled to reduce the noise and the computation
burden. The parameters of the 𝜀-MO-WSVM-FC are cross-validated, and
the model is trained to estimate the wind velocity field of the detected
cloud layers. If an optimal set of parameters is available, it is possible
to proceed with the training of 𝜀-MO-WSVM-FM without performing
the cross-validation. After training the 𝜀-MO-WSVM-FC, the testing is
performed to extrapolate the wind velocity field to the whole image.
The streamlines are computed using Eq. (68) to visualize the trajectory
of a cloud. The potential lines are not shown in the Figs. 5(a)–6(f), but
they are computed with Eq. (69).

The physical process of cloud formation and evolution over time
is part of atmospheric thermodynamics and may have divergence and
vorticity [72]. The air parcel in one frame is very small compared
to the whole volume of air contained in the atmosphere. Within this
frame we consider it feasible that there is no vorticity or divergence,
and the approximated streamlines are equivalent to the pathlines.
Henceforth, the obtained results are a numerical approximation of the
actual atmospheric air parcel flow.

When we assume that a flow does not have divergence and vor-
ticity, the stream and velocity potential functions are orthogonal, and
we can apply Cauchy–Riemann equations to calculate their rates of
change [73]. For the stream function we determine 𝑑𝜙 = 𝑣𝑥𝑑𝑦 − 𝑣𝑦𝑑𝑥
using samples of functions. The trapezoidal rule of numerical analysis
is applied to solve the definite integrals [74]. The values of a streamline
are,

𝜱𝑐 =
𝐻̂𝑐
2

⎡

⎢

⎢

⎣

{ 𝑖
∑

𝑚=1
𝐮̂𝑚,𝑐 ⊙ 𝛥𝐲𝑚,𝑐

}𝑁

𝑖=1

−

{ 𝑗
∑

𝑚=1
𝐯̂𝑚,𝑐 ⊙ 𝛥𝐱𝑚,𝑐

}𝑁

𝑗=1

⎤

⎥

⎥

⎦

, (68)

here ⊙ denotes the element-wise matrix multiplication. This is the
um of element-wise products between each velocity component and
ts opposite differential increments.
The total change in the potential function is 𝑑𝜓 = 𝑣𝑥𝑑𝑥 + 𝑣𝑦𝑑𝑦, so

e can determine the potential in each pixel 𝐱 = {𝑥, 𝑦} as,

𝑐 =
𝐻̂𝑐
2

⎡

⎢

⎢

⎣

{ 𝑗
∑

𝑚=1
𝐮̂𝑚,𝑐 ⊙ 𝛥𝐱𝑚,𝑐

}𝑁

𝑗=1

+

{ 𝑖
∑

𝑚=1
𝐯̂𝑚,𝑐 ⊙ 𝛥𝐲𝑚,𝑐

}𝑀

𝑖=1

⎤

⎥

⎥

⎦

. (69)

he sum of each element-wise product between the velocity compo-
ents, and their differential increment.
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Fig. 1. The images in the first row from left to right show the pixel temperatures, pixel heights and the BeMM distribution of the normalized pixel temperatures. The images in
the middle row show the posterior probabilities of the upper layer, the posterior probabilities of the lower layer, and MAP classification of the pixels.
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5. Experiments

To infer the wind velocity field this method utilizes data acquired by
a system that captures circumsolar IR images and measures global solar
irradiance using a pyranometer. The IR sensor is a Lepton1 radiometric
camera, which has a wavelength from 8 to 14 𝜇𝑚 and provides a
uniform thermal image. When the radiometric functionality is enabled,
the pixels in a frame are turned into temperature measurements in
centikelvin units. The resolution of an IR image is 80 × 60 pixels, and
the diagonal FOV is 60◦. The data is publicly accessible in the Dryad
repository [75].

The weather features that were used to compute cloud height as
ell as to remove cyclostationary artifacts [50] on the IR images
re: atmospheric pressure, air temperature, dew point and humidity.
he weather station is set to measure every 10 min, so the data was
nterpolated to match the IR images’ sampling interval. The weather
tation is located at the University of New Mexico Hospital, and both
ts real-time and historical data are publicly accessible.2
The images in the top row of Fig. 1 show the temperature of the

ixels obtained using the radiometric functionality of the IR camera
n Kelvin (left pane), the height of the pixels in meters after applying
he MALR transformation to the temperatures (center pane), and the
emperature 𝑇̄𝑖,𝑗 histogram in light blue (right pane). Beta distributions
n Eq. (1), are in red and blue, and the BeMM result in Eq. (3) is in
black. The images in the bottom row show the temperature posterior
probabilities 𝛾𝑖,𝑗,1 of the upper layer (left), the temperature posterior
probabilities 𝛾𝑖,𝑗,2 of the lower layer (center), and the MAP classification
of the pixels (right). In the image that shows the MAP classification
of the pixels, those in dark blue are the segmented pixels that do not
belong to a cloud (𝑏𝑖,𝑗 = 0).

5.1. Training data construction

To create a data set for validation purposes we selected 21 consec-
utive images, per day, on six different days. The images were selected

1 https://www.flir.com/
2 https://www.wunderground.com/dashboard/pws/KNMALBUQ473
7

t

due to the presence of different types of clouds distributed across
different heights. The selected images were captured during different
seasons and different times of the day. The images from three of
the six days show a layer of cirrustratus in winter in the morning,
altostratus in spring in the afternoon and stratocumulus in summer in
the afternoon. The other three days show two layers of altostratus and
stratocumulus in winter at noon, cirrustratus and altocumulus in spring
in the afternoon, and cirruscumulus and cumulus in summer in the
morning.

The proposed algorithm only requires the validation dataset to be
labeled as it is an unsupervised online machine learning algorithm.
The validation dataset is used to find the optimal parameters of the
algorithm which segments and subsamples the velocity vectors from
the last 6 consecutive frames.

The targets of the 𝜀-WSVM are the velocity vectors computed using
he WLK method. The machine is cross-validated and trained for each
rame using the selected velocity vectors of the last 6 frames. The
esting error is that of the 𝜀-WSVM approximating the WLK velocity
ectors.
The average height, velocity magnitude and angle of a cloud was
anually calculated for each cloud layer in each sequence of images
o use them as ground truth. To do this, the pathline intercepting the
un was manually segmented. The distance that a cloud has moved in
he pathline was calculated in each frame. The height of a cloud layer
as measured by segmenting the clouds along the sequence of images.
he calculated height, velocity magnitude and angle of each cloud layer
as averaged across the validation sequences of images.
The wind velocity is a relative measure of the actual velocity in
frame. The algorithm does not need the actual wind velocity. The
lgorithm requires the height of the clouds to define the space of cam-
ra’s FOV. The velocity vectors are transformed from pixels per frame
o meters per second. Each pixel is projected to its actual dimension
n the space defined by the camera’s FOV. To know the distance that
cloud will travel in a given time to occlude the Sun, the magnitude
f the projected velocity vectors in the space defined by the camera’s
OV is calculated. The relative measure of the wind velocity vectors (in
ixels per frame) and the height of the clouds (in meters) are connected
ogether in the frames by the geometric transformation. For this reason,
he wind velocity that it is required is not the actual wind velocity but

he relative wind velocity measured in the frame.

https://www.flir.com/
https://www.wunderground.com/dashboard/pws/KNMALBUQ473
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Fig. 2. The figures illustrate the proposed method to discriminate between points which probably show a moving cloud air parcel and those that probably show a pixel without
movement. The left graph shows the computation of the squared difference between two consecutive frames. The right graph shows in blue those pixels which are considered not
moving as their squared difference value is less than a previously validated threshold 𝜏.
Fig. 3. Probability distribution of the velocity vectors and the subsampling implemented to decrease the computational cost. The upper row shows the distribution of the measured
velocities represented in R2. The colormap represents the likelihood of the velocities conditional to a point belonging to the lower layer of clouds (left) and upper layer (right).
The lower row shows the downsampled set of vectors (and their posterior probabilities) after applying the downsampling methodology.
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5.2. Velocity vectors calculation, segmentation and subsampling parameters
validation

The parameters 𝛿 in Eq. (10), 𝜏 in Eq. (14), 𝓁 in Eq. (15) of
he velocity vectors selection algorithm were validated using the six
equences of images described above. The velocity estimator was 𝜀-
SVM with a linear kernel. The parameters of 𝜀-WSVM, 𝜀 and 𝐶, were
8

t

ross-validated in the same process. The flow velocity constraints were
ot applied in the validation.
The average of the approximated wind velocity field height, mag-

itude and angle was computed, and the Mean Absolute Percentage
rror (MAPE) was calculated between the measured and the averaged
pproximation in each frame. The MAPE was averaged and differ-
ntiated across consecutive frames. The combination of parameters
hat had less averaged MAPE plus total difference of MAPE between
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consecutive frames was selected. This added difference of MAPE was
used to account for the accuracy of the selected model parameters,
but also the stability of the models. This stability is optimal if good
results are consistently obtained for each one of the images in the same
sequence.

The optimal amplitude 𝛿 of the velocity vector in Eq. (10), was
ound to be 𝛿 = 2.29. The optimal threshold 𝜏 in the segmentation of
the velocity vector in Eq. (14), was found to be 𝜏 = 0.95. The optimal
number of velocity vectors from 𝓁 last frames to form the dataset in
Eq. (15), was found to be 𝓁 = 6. The optimal number of selected
samples𝑁∗ by sampling algorithm in Eq. (34), was found that 𝑁∗ = 200
samples are sufficient to perform a robust extrapolation of the wind
velocity field to the entire frame.

The velocity vectors that were segmented in a frame with two layers
of clouds are shown in Fig. 2. The velocity vectors from the last 6 frames
after applying the segmentation are shown in the upper row of Fig. 3. In
this figure, the colors represent the likelihoods conditional to the upper
cloud layer (left), and lower cloud layer (right). The sampled velocity
vectors in a frame with two layers of clouds are shown in the bottom
row. Fig. 4 shows the selected velocities in the bottom row of Fig. 3 in
heir corresponding coordinates. In this figure, the colors represent the
osterior probabilities conditional to the upper cloud layer (left), and
ower cloud layer (right).

.3. 𝜀-MO-WSVM-FC parameters validation

After optimal values of 𝛿, 𝜏 and 𝓁 have been chosen, the pa-
ameters of the proposed 𝜀-MO-WSVM-FC are cross-validated using
he validation data or an online ML approach. This means that the
xperiments with the 𝜀-MO-WSVM-FC have two different setups. In
he first, the parameters are cross-validated in each testing frame. In
he second, the parameters are fixed to the optimal values obtained
n a previous cross-validation using the validation data. This is done
o check for the validity of the previously obtained parameters, which
ould significantly reduce the velocity field estimation computational
urden.
The objective of the constraints is that the divergence and vorticity

f approximated velocity field are zero in the clouds’ plane. The ve-
ocity fields shown in Figs. 5(b) to 6(f) have divergence and vorticity
fter the field is projected to the camera plane. This is caused by the
on-linear geometric transformation applied to the velocity vectors.

.4. Wind velocity field estimation with new data

Unlike the 𝜀-MO-WSVM-FC, the experiments with the 𝜀-WSVM and
-MO-WSVM use only the first setup. These models are validated and
rained for each testing frame. The results are compared with a Gaus-
ian process for regression (GPR) for each one of the velocity com-
onents [76], a Multi-Output Ridge Regression (MO-RR) with inde-
endent components (which is a special case of Tikhonov’s regulariza-
ion [77]) and a multi-output Gaussian process for regression (MO-GPR)
ith correlation between velocity components [78].
The testing data is composed of sequences of 28 images from 10

ifferent days. The sequences are from different seasons and different
imes of the day. Five days have one velocity field layer and the other
ive have two layers. 75% of this data is chosen for the online training
nd validation of the models. The rest of data is used for testing. The
esting set is from 𝑘 + 𝓁 frames ahead of the training set from frame
. The number of frames ahead is equal to the lag of the velocity
ectors in the data 𝓁 = 6. The methodologies implemented in the
alidation are the standard grid search and 3-fold cross-validation. The
arameters cross-validated in the 𝜀-WSVM, 𝜀-MO-WSVM and 𝜀-MO-
SVM-FC are 𝐶 and 𝜀. The MO-RR requires the cross-validation of the
egularization parameter. In the GPR and MO-GPR the parameters are
ound by numerical gradient, optimizing the marginal log-likelihood.
he kernel functions are: linear, RBF, polynomial of order two (2),
9

able 1
he table above shows the testing results of the different kernel learning methods
ithout flow constraints. The first method is the 𝜀-WSVM-FC, the second is 𝜀-MO-
SVM, the third is the GPR, the fourth is the MO-RR and the fifth is the MO-GPR.
he wind velocity fields approximated by all the methods have low MAE and WMAE
ith high divergence and vorticity. The fastest methods are GPR and MO-GPR as the
ptimization of the parameters is performed via numerical gradient.
𝜀-WSVM

 (𝐱, 𝐱∗) MAE WMAE ∇ ⋅ 𝑉 ∇ × 𝑉 Time [s]

Linear 13.37 12.55 1.69⋅103 2.17⋅103 90.01
RBF 13.39 12.61 6.25⋅103 6.40⋅103 365.72
2 14.06 13.22 1.20⋅104 1.19⋅104 2413.79
3 14.90 13.95 8.98⋅104 9.48⋅104 3468.75

𝜀-MO-WSVM

Linear 13.27 12.49 1.30⋅103 1.35⋅103 162.70
RBF 14.00 13.13 1.21⋅𝟏𝟎𝟑 1.22⋅𝟏𝟎𝟑 560.54
2 14.25 13.53 1.43⋅104 1.71⋅104 5635.31
3 19.29 18.12 8.89⋅105 8.92⋅105 7284.54

GPR

Linear 12.56 12.56 2.62⋅103 3.27⋅103 6.50
RBF 12.89 12.88 1.24⋅104 1.27⋅104 6.43
2 12.52 12.50 7.27⋅103 9.02⋅103 6.44
3 12.67 12.68 2.72⋅104 3.11⋅104 6.42

MO-RR

Linear 12.62 12.58 2.62⋅103 3.31⋅103 6.71
RBF 13.43 13.35 3.95⋅103 7.24⋅103 11.80
2 12.55 12.55 1.53⋅104 1.15⋅104 29.76
3 12.70 12.64 3.17⋅105 2.20⋅105 41.16

MO-GPR

Linear 12.57 12.58 2.69⋅103 3.34⋅103 8.07
RBF 12.81 12.80 1.21⋅104 1.23⋅104 17.67
2 12.53 12.55 1.10⋅104 1.09⋅104 11.31
3 12.54 12.55 4.12⋅104 4.49⋅104 11.19

and polynomial of order three (3). The optimal parameters for the
𝜀-MO-WSVM-FC are displayed in Table 2.

The criteria for selecting the most suitable model and kernel func-
tion for our application is a trade-off between divergence and vorticity,
Weighted Mean Absolute Error (WMAE), and the computing time.
The values of these metrics are summarized for the models without
constraints in Table 1, and for the 𝜀-MO-WSVM-FC in Table 2. The ex-
periment of the 𝜀-MO-WSVM without flow constraints using a 3 kernel
is shown in Fig. 5(a), and that same experiment implemented with the
𝜀-MO-WSVM-FC using a linear kernel is in Fig. 5(b). In sequences of
images in which two layers of clouds were detected, the experiments of
the 𝜀-MO-WSVM-FC using a linear kernel to approximate wind velocity
field are shown in Figs. 6(a) to 6(f).

The experiments were carried out in the Wheeler high perfor-
mance computer of UNM-CARC, which uses SGI AltixXE Xeon X5550
at 2.67 GHz with 6 GB of RAM memory per core, 8 cores per node, 304
nodes total, and runs at 25 theoretical peak FLOPS. It has Linux CentOS
7 installed. The DAQ is localized on the roof of UNM-ME building in
Albuquerque, NM.

6. Discussion

This investigation adds new insights into the computational meth-
ods to forecast the trajectory of clouds and predict the occlusion of the
Sun. The proposed method visualizes the wind velocity field using IR
images of clouds. The algorithm introduced here differs from previous
investigations in that it is based on fluid dynamics. The experiments
show that the pathlines are equivalent to the streamlines in images
where is possible to extract enough information about the wind flow
from the clouds.

From the summary of the experiments presented in Tables 1 and
2, several aspects can be highlighted. The overall performance of the

𝜀-SVM increases when the samples are weighted, since the weights
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Fig. 4. Velocities selected in Fig. 3 in their corresponding position. The left image vectors show a color intensity corresponding to their posterior probabilities conditional to the
upper cloud layer and the right image to the lower cloud layer. The left image shows in yellow the points clearly belonging to the upper layer, while right image shows in yellow
the points that are clearly of the lower layer.
Fig. 5. Comparison between (a) the streamlines computed by a standard Multioutput WSVM (𝜀-MO-WSVM) and (b) the introduced WSVM with divergence and vorticity constraints
(𝜀-MO-WSVM-FC) in a sequence of images with elevation: 46.74◦ and azimuth: 174.21◦. The images are organized chronologically from the left to the right. The time between
frames is 15 s. The distance in the sequences across time is: 0 s, 30 s, 1 min 2 min 4 min. The sequence shows a day when a single cloud layer was detected. The top sequence
visualizes a non-realistic approximation of the flow. A compression is induced to the gas in the bottom left of the frame, and an expansion is induced in the top right of the frame.
Table 2
This table shows the optimal sets of parameters obtained cross-validating and training the 𝜀-MO-WSVM-FC in each training image, the results cross-validating the parameters and
training the 𝜀-MO-WSVM-FC in each testing image, and the testing results training the 𝜀-MO-WSVM-FC in each testing image using the optimal sets of parameters previously
cross-validated in the training data.
𝜀-MO-WSVM-FC

Optimal parameters Online parameters cross-validation Fixed optimal parameters

 (𝐱, 𝐱∗) 𝐶 𝜀 𝛾 𝛽 MAE WMAE ∇ ⋅ 𝑉 ∇ × 𝑉 MAE WMAE ∇ ⋅ 𝑉 ∇ × 𝑉 Time [s]

Linear 38.50 0.19 14.22 13.36 0.0 0.0 14.24 13.35 0.0 0.0 58.54
RBF 38.52 0.35 13.92 14.55 13.53 30.96 30.86 14.12 13.05 136.97 138.80 114.71
2 39.72 0.24 3.78 44.8 14.36 13.48 77.22 70.85 14.48 13.59 30.44 30.77 130.92
3 12.88 0.22 5.61 8.34 15.34 14.34 1.74⋅104 1.66⋅104 45.03 44.48 2.19⋅106 1.97⋅106 145.50
represent the probability of the vector to belong to the corresponding
layer. Vectors with a very low probability do not contribute to the
solution. Furthermore, the computing time of the 𝜀-WSVM is lower than
the 𝜀-MO-WSVM as the Gram matrix dimensions are smaller. The flow
divergence and vorticity are negligible when they are approximated
using the 𝜀-MO-WSVM-FC, but the computing time is larger. The re-
sults are similar between the three models but the 𝜀-MO-WSVM and
𝜀-MO-WSVM-FC models tend to show better performance.
10
The best result without cross-validation in WMAE is obtained by the
𝜀-MO-WSVM-FC with RBF kernel (see Table 2). The flow approximated
by this model has very low vorticity and divergence, which means
that the pathlines and streamlines are approximately equivalent. When
a trade-off is considered between vorticity, divergence, WMAE, and
computing time, the most promising models are the 𝜀-MO-WSVM-FC
with linear kernel and RBF kernel. The computing time required for the
linear kernel is lower, as the kernel does not have hyperparameters, but
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Fig. 6. Streamlines approximated using the 𝜀-MO-WSVM-FC with a linear kernel. Elevation: 32.15◦; azimuth: 180.29◦. The sequence of IR images are organized chronologically
from the left to the right similar to in Figs. 5(a) and 5(b). The displayed sequences are from days when two different cloud layers were detected. The upper layer of clouds is
displayed in the top row of the sequence, the bottom row displays the lower layer.
it is still high for a real-time application. Vorticity and divergence are

removed in the approximated flow. On the other hand, the 𝜀-WSVM
11
with linear kernel, which has not flow constraints, is feasible in real-

time application but the approximated flow is turbulent. When the
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pathlines begin to be the same as the streamlines, the flow constraints
can be relaxed to reduce the vorticity and divergence within a feasible
computing time.

In the implementation of the algorithm, the process of cross-
validating the parameters of the 𝜀-MO-WSVM-FC is computationally
expensive, and the kernels may have hyperparameters which also
require cross-validation. However, the optimal set of parameters is
nearly identical during sort sequences. We propose to implement an
exhaustive cross-validation in parallel with running the algorithm. This
provides a pre-computed set of parameters for the 𝜀-MO-WSVM-FC and
the kernel function that can be used in the consecutive images until the
online cross-validation is finished.

7. Conclusions

This article introduces a method to visualize wind velocity fields
using physical features extracted from infrared images of clouds. The
images are recorded using a ground-based infrared camera mounted
on a solar tracker that maintains the Sun in the center of the im-
ages. The velocity vectors are transformed from the Euclidean frame
of reference to the infrared camera non-linear frame of reference.
The wind velocity field estimation is based on unsupervised online
machine learning methods that independently infer the distribution
of the velocity vectors and the height of the clouds. Segmenting and
subsampling the velocity vectors provides a computationally tractable
solution. The wind velocity field is extrapolated to the entire frame
using only information extracted from a cloud. This is achieved with the
use of a 𝜀-MO-WSVM which includes flow constraints in the quadratic
programming problem formulation.

The methods to compute the motion vectors produce a noisy ap-
proximation of the velocity vectors in the frame. It is possible to
improve the quality of the velocity vectors adding weights to the least-
squares solution in the Lucas–Kanade, and later segmenting the velocity
vectors. Once the noise is reduced, a subsample of vectors is sufficient
to approximate the velocity field in the entire frame. This makes a
real-time implementation of the algorithm for wind flow visualization
feasible. This is important, because the wind velocity field visualization
predicts the pathlines of the clouds. The extrapolation of the wind
velocity field to the entire frame is useful to anticipate where a cloud
will be, or where it may appear in the frame. Additional constraints in
the SVM yields better results, approximating the wind velocity field in
the infrared images.

Further research in this area may focus on predicting the occlusion
of the Sun or the attenuation of solar irradiance using the streamline
(i.e. pathline) that intercepts the Sun, and the magnitude of the wind
velocity field in this streamline. The prediction of the wind veloc-
ity field distribution across space and time using Bayesian regression
methods is suitable for the selection of the most likely intercepting
streamlines. Forecasting solar irradiance is out of the scope of this
paper. The prediction methods could use the accumulated distance of
the pixels along the streamline (starting from the Sun) divided by the
averaged magnitude of the approximated velocity vectors, to estimate
the arrival time of the air parcel in that pixel. In the existing literature
there are multiple optimization algorithms that might speed up the
convergence of the 𝜀-MO-WSVM-FC. These methods may increase the
accuracy of very short-term solar irradiance forecasting algorithms that
are necessary to optimize the dispatch and storage of energy in power
grids that used solar resources.
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