Designing a 2048-Chiplet, 14336-Core Waferscale Processor

Saptadeep Pal*, Jingyang Liuf, Irina Alam*, Nicholas Cebrny, Haris Suhail*, Shi Bu*, Subramanian S. Iyer*,
Sudhakar Pamarti*, Rakesh Kumar', and Puneet Gupta*
*Department of Electrical and Computer Engineering, University of California, Los Angeles
TDepartmenl of Electrical and Computer Engineering, University of Illlinois at Urbana-Champaign
{saptadeep,puneetg} @ucla.edu

Abstract—Waferscale processor systems can provide the large number
of cores, and memory bandwidth required by today’s highly parallel
workloads. One approach to building waferscale systems is to use a
chiplet-based architecture where pre-tested chiplets are integrated on a
passive silicon-interconnect wafer. This technology allows heterogeneous

integration and can provide significant performance and cost benefits.

However, designing such a system has several challenges such as
power delivery, clock distribution, waferscale-network design, design for
testability and fault-tolerance. In this work, we discuss these challenges
and the solutions we employed to design a 2048-chiplet, 14,336-core
waferscale processor system.

Keywords—Waferscale Processors, Silicon Interconnect Fabric, Chiplet
Assembly

I. INTRODUCTION

The proliferation of highly parallel workloads such as graph
processing, data analytics, and machine learning is driving the
demand for massively parallel high-performance systems with a large
number of processing cores, extensive memory capacity, and high
memory bandwidth [1, 2]. Often these workloads are run on systems
composed of many discrete packaged processors connected using
conventional off-package communication links. These off-package
links have inferior bandwidth and energy efficiency compared to
their on-chip counterparts and have been scaling poorly compared
to silicon scaling [3]. As a result, the overhead of inter-package
communication has been growing at an alarming pace.

Waferscale integration can alleviate this communication bottleneck
by tightly interconnecting a large number of processor cores on a large
wafer. Multiple recent works have shown that waferscale processing
can provide very large performance and energy efficiency benefits [4,
5] compared to conventional systems. Recently, Cerebras has
successfully commercialized a waferscale compute engine. Similarly,
in the BrainScaleS/FACETS [6] project, a waferscale brain emulation
engine was built. These approaches rely on building one large
monolithic waferscale chip with custom cross-reticle interconnections.
Monolithic waferscale chips are, however homogeneous, and so
cannot integrate components from heterogeneous technologies such
as DRAM or other dense memory technologies. Moreover, in order
to obtain good yields, redundant cores and network links need to
be reserved on the waferscale chip.

A competing approach to building waferscale systems is to integrate
pre-tested known-good chiplets (in this work, we call un-packaged
bare-dies/dielets as chiplets) on a waferscale interconnect substrate
[5]. Silicon interconnect Fabric (Si-IF) is a candidate technology
which allows us to tightly integrate many chiplets on a high-density
interconnect wafer [7]. Si-IF technology provides fine-pitch copper
pillar based (10um pitch) I/Os which are atleast 16x denser than
conventional p-bumps used in an interposer based system [8], as well
as ~100um inter-chiplet spacing. Therefore, it provides global on-chip
wiring-like characteristics for inter-chiplet interconnects. Moreover, in
a chiplet-based waferscale system, the chiplets can be manufactured
in heterogeneous technologies and can potentially provide better
cost-performance trade-offs. E.g., TBs of memory capacity at 100s
of TBps alongside PFLOPs of compute throughput can be obtained
which is suitable for big-data workloads in HPC and ML/AL

978-1-6654-3274-0/21/$31.00 ©2021 IEEE

Large scale chiplet assembly based system design, however, has
its unique set of challenges which encompass a wide range of topics
from the underlying integration technology to circuit design and
hardware architecture, and their impact on software. This work,
for the first time, attempts to build a fine-grained chiplet-based
waferscale processor prototype. The system comprises an array of
1024 tiles, where each tile is composed of two chiplets, for a total
of 2048 chiplets and about 15,000 mm? of total area.

The scale of this prototype system forced us to rethink several
aspects of the design flow. Because this is the first attempt at building
such a system, there were several unknowns around the manufacturing
and assembly process. As a result, fault tolerance and resiliency, was
one of the primary drivers behind the design decisions we took. We
also ensured that the design decisions were not too complex, such that
they could be reliably implemented by a small team of 3-4 graduate
students within a reasonable amount of time. The several challenges
we faced while architecting and designing this system are as follows:

(1) How should we deliver power to all the flip-chip bonded
chiplets across the wafer?

(2) How can we reliably distribute clock across such a large area?

(3) How can we design area-efficient I/Os when a large number of
fine-pitch copper pillar-based 1/Os need to be supported per chiplet,
and how do we achieve very high overall chiplet assembly and
bonding yield?

(4) What is the inter-chip network architecture and how do we
achieve resiliency if a few chiplets fail?

(5) What is the testing strategy when I/O pads have small
dimensions and how do we ensure scalability of the testing schemes?

(6) How can we design the chiplets and the substrate with the
uncertainty and constraints of the manufacturing process ?

In this paper, we explain the challenges and possible solutions
(including design decisions for our prototype system) for building
scale-out chiplet-assembly based systems. To the best of our
knowledge, this is the largest chiplet assembly based system ever
attempted. In terms of active area, our prototype system is about
10x larger than a single chiplet-based system from NVIDIA/AMD etc.
[9, 10], and about 100x larger than the 64-chiplet Simba (research)
system from NVIDIA [11].

II. OVERVIEW OF THE WAFERSCALE PROCESSOR SYSTEM

To understand the design and implementation challenges as well
as the opportunities when using a chiplet based waferscale processor
system, we architected and designed a 2048-chiplet based 14,336
core processor system.'Here, we first provide a brief overview of the
architecture of the overall system, the chiplets and the intra-chiplet
and inter-chiplet network.

a) Overall System Architecture: We designed a scalable tile-based
architecture for our system. This architecture can scale to a 32x32 tile
array (see Figure 1), for a total of 1024 tiles. Each tile is comprised of
two chiplets: a Compute chiplet and a M emory chiplet. It contains a
total of 14 independently programmable processor cores and 512KB of
globally shared memory. We architected this system as a unified mem-
ory system where any core on any tile can directly access the globally
shared memory across the entire waferscale system using the wafer-
scale interconnect network. Scaling a network across 14,336 cores

(a)
Fig. 1: (a) Waferscale Processor System Overview showing 32x32 tile array where each tile comprises of a compute chiplet and a memory
chiplet. (b) Detailed overview of the compute and memory chiplets. (¢) Micrograph of the compute chiplet.

(b)

Compute Chiplet _ _ _ _ _ 1 | — . -
Inter-tile g rsm XY 5
—_— i '
ARM ARM ARM Router '@usizsiom ¥X Deoul Decou'plmg
LN cortex M3 | cortex M3 Cortex M3 < Capacitors PLL Capacitors
1 Core 1 Core 2 Core 14 |
14x
Core | Core Core |Core —
LXIT X L] -
| B B B B AR
] Intra-tile I sraM |sram| |srRAM |sram | PM
] H { 1 Core [Core [ile & Inter- |<0T¢ [Core
! | TP O | et e lw o |w
l m m m % m sram | sram |tile Network Logic| span | sram
e - - 'l\ Core [Core |Core Core |Core |Core
e == == TN wNw fw w fw |
| ~ ' |srRam |srRaM |sRAM SRAM | SRAM |SRAM | -
I ‘ 1 \sb lemory Controllers
| o S e e e = 1

(c)

TABLE I: Salient Features of the Waferscale Processor System

Compute Chiplets 1024 # Memory Chiplets 1024 # Cores per Tile 14

Compute Chiplet Size 3.15mm x 2.4mm Memory Chiplet Size 3.15mm x 1.Imm Network B/W 9.83 TBps
Private Memory per Core 64KB Total Shared Memory 512 MB Total # Cores 14336

Compute Throughput 4.3 TOPS Shared Memory B/W 6.144 TB/s # 1/Os per Chiplet | 2020(C)/1250(M)
Total Area (w/ edge 1/Os) 15100 mm? Nominal Freq./Voltage 300 MHz/1.1V Total Peak Power T25W

however is challenging. Therefore, we designed a hierarchical network
scheme with an intra-tile crossbar network and a waferscale inter-tile
mesh network. The salient features of the system are listed in Table I.

The chiplets are designed and fabricated in the TSMC 40nm-LP
process and terminated at the top copper metal layer where the
fine-pitch I/O pads were built. The waferscale substrate is a passive
substrate containing the interconnect wiring between the chiplets
and copper pillars to connect to the chiplet I/Os. The chiplets are
flip-chip bonded on to the waferscale substrate as shown in Figure 2
and we would connect the entire waferscale system to the power
supply and external controllers using edge connectors.

b) Compute Chiplet: As shown in Figure 1, the compute chiplet
contains 14 ARM CORTEX-M3 cores and their private SRAMs
(64KB each), memory controllers (to access the banks in the memory
chiplet), network routing infrastructure for inter-tile network and
a chiplet-level intra-tile crossbar interconnect (implemented using
ARM BusMatrix IP) to connect all these components. The power
delivery related components are also contained within the compute
chiplet. The network routing infrastructure was built around the
open-source BSG IPs [12], but includes other custom units needed to
support two independent networks, adapters to communicate with the
intra-tile network and support various memory-mapped functionality.
The micro-architectural details are out of scope for this paper.

¢) Memory Chiplet: The memory chiplet comprises five 128KB
SRAM memory banks. Four of these banks are addressable using the
global shared memory address space while one bank can be accessed
only by the cores and network routers on the same tile. All these banks
can be accessed in parallel and are connected to the intra-tile network
through the memory controllers on the compute chiplet. The memory
chiplet also provides buffered feedthroughs for the north-south
interconnect links and two banks of decoupling capacitors. Note that
though the two chiplets in a tile are architecturally heterogeneous, we
implemented them in the same technology node for ease of design.
However, this chiplet can be easily implemented in a newer or denser
memory technologies for higher memory capacity and/or area savings.

d) Features of the waferscale substrate: The waferscale substrate
is built using the Si-IF technology. The 1/O (i.e., copper pillar) pitch
we use in our prototype is 10um (minimum that the technology
offers). The interconnect wiring pitch is Sum (minimum offered is
currently 4pm). With two layers of signaling, the edge interconnect
density we achieve is 400 wires/mm.

We validated the system design and architecture discussed in this

paper by emulating a reduced-size multi-tile system on an FPGA
platform (full waferscale system emulation was not possible due to
scale). We were successfully able to run various workloads including
graph applications such as breadth-first search (BFS), single-source
shortest path (SSSP), etc. on this system. Next, we will discuss each
of our design decisions in detail.

III. WAFERSCALE POWER DELIVERY AND REGULATION

Here, we ask the question: How to deliver power reliably to all the
chiplets which are flip-chip bonded on to a ~15000mm? large wafer-
scale interconnect substrate? Unlike a monolithic waferscale system
where the power can be directly supplied to the top-most metal layer
(face side), the chiplets are flip-chip bonded on to the thick waferscale
substrate. As a result, either power can be delivered through the
backside of the wafer using through-wafer-vias (TWVs) [13], which
are 700um deep vias across a full-thickness wafer, or can be delivered
at the edge of the wafer. Since the integration of TWV technology in
a Si-IF wafer is still under development and not ready for prime-time
yet, we chose to use edge power delivery for our prototype system.

The peak power per tile is about 350mW when operating at a
voltage of 1.21V (fast-fast corner). Therefore, about 290A of current
needs to be delivered to the chiplets across the wafer. The number of
metal layers in the substrate is restricted to four in order to maximize
yield. Since two metal layers are dedicated to inter-chip signaling,
two layers are available for power distribution. Maximum thickness of
metal layers in the Si-IF technology is 2um and thus, the resistance
of the power distribution network would result in large voltage droop
if the current that needs to be delivered is very large. As such, we
considered two different strategies for power delivery: (1) High voltage
(say 12V) power delivery at the edge and using down conversion (buck
or switched capacitor based converters) near the chiplets [5], which
would lower the current delivered through the power planes by ~12x,
(2) Higher voltage power delivery (say 2.5V) at the edge and using
low-dropout (LDO) based regulation in the chiplets, which would
mean that a larger amount of current needs to traverse the PDN planes
and, therefore, would sustain larger losses in the power delivery planes.

The first option of using down-conversion near the chiplets has high
area overheads because bulky off-chip components such as inductors
and capacitors need to be placed on the wafer. We estimate that about
25-30% of the area would be occupied by these components. Moreover,

'As of submission of this paper, the fabricated chiplets are back, and the
waferscale assembly design and fabrication is in progress.

Rail-to-Rail
Voltage

Fig. 2: Power is delivered from the edge. The chiplets at the edge
of the wafer receive power at 2.5V. There is voltage droop as we
move towards the center of the wafer and the chiplets at the center
receive power at 1.4V.

integrating these components on the wafer would result in disruption of
the regular structure of the chiplet array and increase the inter-chiplet
distance, which would diminish the benefits of fine-pitch interconnects.
This scheme would result in increased design complexity.

Since, this prototype is a sub-kW system, we chose to avoid this
complexity in lieu of some power efficiency loss coming from the
resistive power loss and poorer LDO efficiency. In our scheme, the
chiplets near the edge would receive power at much higher voltage
(2.5V) and the chiplets away from the edge would receive power at
lower voltage due to resistive power loss related voltage droop. Our
estimates show that the chiplets at the center would receive power
at roughly 1.4V during peak power draw from all the chiplets. This
however, makes the LDO design challenging as it has to produce
a stable voltage of 1.1V (nominal) for the logic devices while the
DC supply voltage can vary between 1.4V and 2.5V depending on
where the chiplet is placed on the wafer. We built a custom LDO
which can track this wide input voltage range.

The other challenge is that the LDO regulator has to support up
to 350mW of peak power while sustaining up to 200mA current
demand fluctuation (worst case) within a few cycles. In order to
achieve good regulation under these operating conditions, the LDO
regulator needs sufficient decoupling capacitance at the output. Such
high capacitance requirements are usually fulfilled using off-chip
discrete decoupling capacitors. However, in our waferscale system,
off-chip capacitors can only be placed around the edge of the array.
As a result, the chiplets at the center of the array can be as far as 70
mm away from the nearest capacitor. Hence, we designed a custom
on-chip decoupling capacitor and dedicated ~35% of the total tile
area to decoupling capacitance giving about 20 nF per tile.”> The
eventual design ensures that the regulated voltage is always between
1.0V and 1.2V across process/voltage/temperature corners. We omit
the circuit level details for brevity.

IV. WAFERSCALE CLOCK GENERATION AND DISTRIBUTION

Next, we ask the question: How do we provide clock to all the
chiplets across the >15,000mm? waferscale substrate?

We included a phase-locked loop (PLL) in the compute chiplet which
can take an input clock with frequency between 10 and 133MHz and
generate an output clock with frequency up to 400 MHz. Therefore,
one option is to distribute a slow clock across the wafer using a
passive clock distribution network (CDN) built on the Si-IF. However,
there are two challenges in such a scheme. First, the parasitics of a
passive CDN which spans an area of about 15,100 mm? and has 1024
sinks are very large (>450pF and >120nH). So, the clock distribution
can only be done at sub-MHz frequency. Also, getting a good crystal
oscillator which can drive large capacitive load while ensuring absolute
jitter performance of sub-100 pico-seconds is hard. Second, the PLL
IP we used requires a stable reference voltage for reliable operation.
However, the voltage regulation in the chiplets away from the edge is
not perfect and the regulated voltage could fluctuate between 1.0V and

2In the future, incorporation of deep trench decoupling capacitors [14]
(currently under development) in to the waferscale substrate has the potential

to significantly improve PDN performance and will also reduce the area
overhead of on-chip decoupling capacitors.

1.2V. As a result, stable clock can only be generated near the edge of
the wafer where the chiplets can access near-by off-chip decoupling
capacitors. Therefore, in this system, a fast clock (up to 350 MHz) will
be generated in one of the edge tiles and then forwarded throughout
the tile array using forwarding circuitry built inside every tile. Next,
we briefly describe the clock selection and forwarding circuitry.

Clock Selection and Forwarding
The clock selection and forwarding circuitry is a part of the compute
chiplet. As shown in Figure 3, the compute chiplet has multiple clock
inputs: master (slow) clock, software-controlled test/JTAG clock and
four forwarded clocks (one from the neighboring chiplet on each
side); and four outputs to forward a clock to the neighboring chiplets
on all sides. During testing and program/data loading phases, the
JTAG clock is selected as the functional clock for the tile. During the
program execution phase however, either one of the four forwarded
input clocks or the master clock can be selected as the functional
clock for the tile logic. If the frequency of the selected tile clock
needs to be multiplied, it can be optionally passed on to the PLL.
Moreover, one of these five clocks is selected to be forwarded to all
the neighboring tiles.

During boot-up, the clock selector circuitry defaults to the software-
controlled JTAG clock. Using JTAG, we then initiate the clock setup
phase. In this phase, first we select one or multiple edge tiles and
configure them to generate a faster clock from the slower system clock
that is provided from an off-the-wafer crystal oscillator source. The
generated faster clocks from the edge chiplets are forwarded to their
neighboring chiplets. The non-edge chiplets are then configured for the
auto-clock selection phase. In this phase, the clock selection circuitry
selects the forwarded clock which starts toggling and is the first to
reach a pre-defined toggle count (default is 16). Once a forwarded
clock is selected, the clock setup phase for that tile terminates and
the selected clock is forwarded to its neighboring tiles. This ensures
that no live-lock scenarios occur in the clock forwarding process.

However, one issue with such a clock forwarding scheme is that the
fast clock can accrue duty cycle distortion because of pull-up/pull-
down imbalance in the buffers, inverters, forwarding unit components
and inter-chiplet I/O drivers [15]. As the clock traverses across multiple
tiles in the array, this duty cycle distortion can potentially kill the
clock, e.g., a 5% distortion per tile could kill the clock with in just 10
tiles. In order to avoid this issue, we forward an inverted version of the
clock. This ensures that the distortion is alternated between the clock
cycle halves. > Moreover, we also implemented a duty cycle distortion
correction (DCC) unit [16], which can correct any residual distortion.

Resiliency in Clock Forwarding Network
Faulty chiplets can potentially disrupt the clock forwarding mechanism.
Our clock generation and forwarding scheme however, has resilience
built in. Because any chiplet at the edge can generate a faster clock,
there isn’t a single point of failure in clock generation. Moreover,
because every non-edge tile receives a toggling clock from all four
directions, this ensures that if at least one of the neighboring chiplets
out of the four is not faulty, then the clock can reach that chiplet
and be further forwarded. By induction, it can be proven that the
generated fast clock can reach all non-faulty tiles on the wafer, unless
all the neighboring tiles of a specific tile are faulty.

Figure 4 shows one possible clock forwarding configuration for an
8x8 tile array with faulty tiles. The edge tile 0 generates the faster
clock that gets forwarded across the entire wafer. Even with 6 faulty
tiles in a 64 tile mesh, all tiles, except tile @, receive the forwarded
clock. Tile @ has faulty tiles on all four sides and hence, is unable
to receive the generated clock. Even otherwise, this tile would have
been rendered unusable since there is no available path for other tiles
to communicate with this tile using the waferscale inter-tile network.

3The half-cycle phase delay and any jitter introduced is not a concern since
our inter-chiplet communication uses asynchronous FIFOs [12]

FwdClk_in_N FwdClk_out_N

—~ FwdClk_in_E

FwdClk_in_W
master_clk ——i~J
1

1
JTAG_Clk —

FwdClk_out_W

FwdClk_out_E

FwdClk_in_S FwdClk_out_S
Fig. 3: Schematic of clock selection and forwarding
circuitry

On the other hand, tile @) can still receive the forwarded clock even
when surrounded by three faulty tiles. This is because it has one
non-faulty neighbor from which it receives the generated clock.

V. I/O ARCHITECTURE

In this section, we ask the question: Since, each chiplet needs to
support a large number of I/Os (transceiver circuitry and Cu pads) for
fine-pitch copper pillar interconnects, how do we design area-efficient
I/Os and achieve high bonding yield?

The Si-IF technology allows inter-chiplet links to be as short as
200-300 pm. As a result, the links can be easily driven by small,
energy efficient I/O circuitry that can operate at 1GHz. Besides, the
Si-IF technology also offers fine pitch copper pillars (10um pitch)
for bonding the chiplet on to the substrate and fine pitch interconnect
wiring (4 um pitch) for inter-chiplet communication [7]. In order
to support a large number of I/Os without large area overhead, the
size of the I/O cells need to be small. Moreover, if the I/O cells are
large, they have to be placed at a distance from the I/O pads, thereby,
significantly reducing the energy benefits of short inter-chiplet Si-IF
links. Therefore, if the I/O circuitry can be completely encompassed
under the pad, it would enable us to obtain optimal energy efficiency
for the I/O transceivers. The transmitter was designed using simple
appropriately-sized cascaded inverters which can drive signals at IGHz
for link length of up to 500um. The receiver was designed using two
minimum sized inverters. Managing electrostatic discharge (ESD) in
small I/O cell area is a challenge but fortunately, unlike packaged parts
which usually have to deal with large ESD events corresponding to 2kV
human body model, bare-die chiplet to wafer bonding only needs to
address the less stringent 100V human-body model (HBM) or machine-
model (MM) specifications [17] (similar to silicon interposers).

The final area of the I/O cells, along with the stripped down ESD
circuitry, was about 150pm?. This is larger than the area that could
be accommodated under one copper pillar. Therefore, we designed
the I/Os such that two copper pillars can land on each pad. This also
enhances the bonding-related yield. For a single pillar, the expected
bonding yield is >99.99% [7]. With two pillars per pad, per-I/O
bonding yield can be improved significantly. With over 2000 1/Os
per chiplet, bonding yield for a chiplet would therefore improve from
81.46% to 99.998%. This is critical for system yield since our wafer-
scale system comprises of 2048 chiplets (i.e., at the wafer-level this
would reduce expected number of faulty chiplets from 380 down to 1).
As shown in Figure 5, in order to achieve the maximum I/O density per
mm of chiplet edge, the I/O pads were placed such that the two pillars
landing on each I/O pad would be orthogonal to the chiplet edge. Over-
all, this I/O design is area-efficient (total I/O area is only 0.4mm?),
energy-efficient (0.063pJ/bit) and improves system yield dramatically.

VI. WAFERSCALE NETWORK ARCHITECTURE AND RESILIENCY

The next question we ask is: How do we architect the waferscale
network and ensure good connectivity among working chiplets when

Fig. 4. A
configuration
system with faulty tiles. All tiles
except the yellow one can receive
the forwarded clock

1/0 Cell

1/0 P;;EB/

Cu-PiIIars—f :
= -
|- W
Die Edge —>1
Fig. 5: Fine-pitch I/O layout with
ESD protection circuitry and two
Cu-pillars per I/O pad

clock forwarding
is shown for a

a small number of chiplets may fail?

We use a mesh network to connect the chiplets across the wafer.
The network routers reside on the compute chiplet. In order to avoid
deadlocks, we use dimension-ordered routing (DoR). However, as
mentioned in Section V, even with an excellent bonding yield of
99.998% per chiplet, the overall system of 2048 chiplets might have
one or few faulty chiplets. Using Monte-Carlo simulation we estimate
the percentage of source destination pairs that will get disconnected
if there is a single path between any pair of chiplets. As shown in
Figure 6, with just five faulty chiplets (out of 2048) in the wafer,
>12% of paths get disconnected.

In order to overcome this issue, we designed two independent
networks across the wafer; one with X-Y dimension-ordered routing
and the other with Y-X dimension ordered routing as shown in
Figure 7. With this, most chiplet pairs (all pairs where the two chiplets
are not in the same row/column) on the wafer have two distinct paths
between them. This dramatically reduces the number of paths that get
disconnected when a certain number of chiplets on the wafer are faulty.
For example, with five faulty chiplets on the wafer, the percentage
of disconnected paths reduces from >12% to <2% as we go from a
single DoR network to two independent DoR networks on the wafer.
The paths that still get disconnected with two DoR networks mostly
connect those pairs of chiplets that are in the same row/column.
Moreover, in our system, network request-response communication
happens using the complimentary networks (this is baked in to the
router hardware). As shown in Figure 7, if a request from chiplet A
to chiplet B is sent along the X-Y direction, the response from B-to-A
is sent in the Y-X direction in order to ensure that the same path
is taken by the request-response pair. This makes sure that two-way
communication between chiplets is possible whenever one non-faulty
path exists. This also avoids deadlocks between request-response pairs.

Given the length of our chiplet edge, we can support 400-bit wide
parallel inter-chiplet network link escaping each side of the tile. The
width of an entire packet in our case is 100 bits. Thus, we divide
the inter-chiplet links into four separate parallel wide buses. Two
of them are dedicated to the X-Y network and the other two are
dedicated to the Y-X network. The two buses corresponding to each
DoR network are ingress and egress links.

The task of choosing the correct network to use is left up to the
kernel software. Once a system is fully assembled, we identify the
faulty tiles and store them in a fault-map. The kernel software then
uses the information of the fault map to decide the network to use
for a source-destination tile pair. If both the paths are available
between two tiles, the kernel software is used to distribute the source-
destination pairs to the network in a way such that both the networks
are equally utilized. While doing so, we ensure packet consistency
(i.e., packets arrive in order) by allocating all communication between
a source-destination pair to a single network only.

Additionally, we can also use kernel software to circumvent the issue

=y
»

H=XY/YX
“@=XY+YX

==
oN

Percentage of
Disconnected Paths (%)

O N M O®

ng"’*_—.

1 2 3 4 5
Number of Faulty Tiles

Fig. 6: Average percentage of disconnected

[]
[]
[]
[]
[]
[]
[]
[]

source-destination pairs for the conventional

Larger
sacrificial
1/0 pads

1/0 pads 2
for wires

1/0 pads
for wires
in Layer 2

Rt

Fig. 8: Larger pads are for

scheme with one DoR network versus when
two networks are used. This result is obtained
using a set of randomly generated fault maps

of disconnected paths. Every time a packet needs to be sent through
a path with a faulty tile, it can divert the packets to an intermediate

tile and then route it from the intermediate tile to the final destination.

The response packet will also follow the same path. However, this will
require cores to allocate cycles towards network routing instead of
executing the actual application process and hence, can adversely affect
the overall performance. Since our solution of using two DoR networks
significantly reduces the number of disconnected paths, as compared to
a single network, this performance impact is expected to be minimal.*

VII. TESTING INFRASTRUCTURE

Chiplet-based waferscale technology promises to provide better
system yield than a monolithic approach. However, it depends on
the identification of known-good dies (KGD) and reliable chiplet
assembly on the Si-IF. Therefore, we ask the question: How to do
design our test scheme for pre-bond testing as well as testing the
system post assembly?

a) Test infrastructure inside a tile: As shown in Figure 9, the
ARM CORTEX-M3 core provides debug access through a Debug
Access Port (DAP, based on IEEE 1149.1 JTAG protocol minus
boundary scan). External communication with the DAP port is done
using a JTAG interface. Each tile in our system has fourteen cores
and, therefore, fourteen DAP interfaces. One option was to bring all
the fourteen DAP interfaces out to the edge of the compute chiplet;
and eventually to the edge of the wafer for testing (using ARM-based
MBED microcontrollers, in our case). However, such a scheme would
require a lot of I/Os at the edge of the wafer, e.g., for just the 32
chiplets at the edge, a 1792-bit interface is needed. Though handling
this many I/Os at the edge is possible using advanced connectors
or by using serialization/de-serialization at the edge of the wafer, this
was beyond the scope of this work. Therefore, we daisy-chained all
the DAP interfaces inside the compute chiplet (as shown in Figure 9)
and so, only one JTAG interface is required to connect to the multiple
DAPs in a chain. We also provision the daisy-chain such that it can
be extended to include DAPs across multiple chiplets.

During testing, all the cores would usually run the same set of test
instructions. Also, upon analysis of many irregular workloads, we
found that majority of the cores would actually run the same program
(albeit independently). Therefore, in order to minimize the program
loading time, we provision for the same program to be broadcasted
to multiple cores in a tile. The optimization is to broadcast the input
at TDI; . (Test Data In) to the TDI pin of all the DAP ports and
the TDO (Test Data Out) of the first core is forwarded to TDOy;e.
Thus, in this mode, the external controller sees only one DAP per
tile and, therefore, the JTAG bit shifting latency reduces by 14x.

A. Pre-bond Testing

Pre-bond testing is essential for identifying KGD parts. However,
there are two issues which make pre-bond testing of un-packaged

“4In the future, we will incorporate sophisticated routing schemes [18, 19]
for improved waferscale fault tolerance as well as performance.

Fig. 7: Fault-tolerant waferscale
mesh network architecture

probing
and fine-pitch pads are for inter-chiplet

communication.

chiplets designed with fine-pitch IO pads for Si-IF assembly difficult:
(1) the fine-pitch IO pads with 10 pm pitch and 7 pum width are
not amenable to probe-card-based testing. The probe pitch usually is
larger than 50 pm. (2) Once the probes land on a pad, it damages the
planarity of the pad surface which is critical for reliable subsequent
direct metal-to-metal bonding.

Therefore, in order to get around these issues, we designed larger
duplicate pads for the JTAG and some auxiliary test signals. These
larger pads are designed such that probe-card testing can be done,
while their fine-pitch counterparts are used for bonding to the
Si-IF. Using this approach, we can thoroughly test the chiplets and
eliminate faulty chiplets before bonding. Once the chiplets are tested,
we ensure that, for die-to-wafer bonding, we don’t use the larger
pads which are probed. We only have copper pillars for bonding
the fine-pitch pads which are not probed. The same JTAG interface
can be used to load test routines and programs in the chiplet after
bonding, but now using the fine-pitch pillars.

B. Post Assembly Testing

After pre-bond testing, the non-faulty chiplets are passed on to the
die-to-wafer bonding process. Past work on fine-pitch die-to-wafer
bonding [7] has shown to achieve excellent bonding yield (>99.99%).
In our waferscale system, the total number of inter-chip I/Os is 3.7M+.
Even with the I/O redundancy scheme described in section V, a few
bonding-related failures may still occur. Therefore, it is important to
pin-point the location of the faulty chiplets. Moreover, since the num-
ber of chiplets to test in a waferscale system is very large, this testing
process needs to be done at high throughput and demands scalability.

a) Progressive multi-chiplet JTAG chain unrolling: As shown
in Figures 9 and 10, we designed the JTAG chaining mechanism in
a way where the TDOy;;. signal can either be forwarded to the next
tile in the chain or can loop-back towards TDOZOOI,,.5 Therefore, each
chiplet in the chain can be tested progressively and independently.
On power-up, the default mode is the chain loop-back mode. The first
chiplet in the chain is tested first. Once the chiplet passes the test,
its test mode is changed so that the TDOy;. from the first chiplet
is forwarded to the second chiplet. The second chiplet is still in the
loop-back mode and, therefore, the TDOy;;. signal from the second
chiplet is eventually brought out through the TDIyypqss and TDOyo0p
signals of the first chiplet to the external controller. The chain is
progressively unrolled and the test procedure is repeated for all the
chiplets in a chain. This helps to identify the faulty chiplet as the
chain unrolls. This mechanism can also be used for during-assembly
testing to intermittently check for failures in a partially bonded
system. This scheme would help to identify and discard partially
populated faulty systems and minimize wastage of KGD chiplets.

b) Multi-chain JTAG: To achieve high-throughput and scalability,
we adopted a multi-chain debug methodology. Instead of creating
one JTAG daisy-chain with 1024 tiles, we chose to split the array
in to 32 chains with each running across the rows. This has two

SSimilar to the under-development IEEE P1838 standard [20] for 3D devices

TDlyypass

Fig. 9: Schematic of the test circuitry inside a tile

primary benefits: (1) Testing and program/data loading to the tiles
in the rows can be done in parallel. As a result, this can speedup
these processes by up to 32x, speeding up loading all the memory
on the system from 2.5 hours (with a single chain) to roughly under
5 minutes. (2) The TMS and TCLK signals are broadcast to the tiles
in a chain. Splitting the chains allows us to have independent TMS
and TCLK signals for each row and helps reduce the load on these
signals; this would enable us to run these signals at up to 10 MHz.

VIII. WAFERSCALE SUBSTRATE AND ITS IMPACT ON DESIGN

For such a large integration substrate, we were unsure of the wafer
substrate yield (a problem exacerbated by fabrication in a research
facility). As a result, we designed the chiplet I/Os in such a way that,
even with one routing layer, we would have a working processor
system, albeit with reduced shared memory capacity. We have two
sets of I/O columns on each side of chiplet (as shown in Figure 8),
one set per layer of signal routing. The first set comprises of the two
I/O columns closest to the die edge and consists of all the absolutely
essential network link I/Os. It also comprises of I/Os corresponding
to two out of the five memory banks in our memory chiplet. The
other set of I/O columns that would require the second routing layer,
consists of the non-essential I/Os and the ones corresponding to the
remaining three memory banks. Thus, if we have just a single layer
of routing, we will be able to build the entire processor system by
connecting just the I/Os in the first set. The only downside would
be the reduction of shared memory capacity by 60%.

Since the size of the wafer is much larger than the maximum size of
a reticle, the Si-IF substrate had to be designed such that it is step-and-
repeatable.’ The entire wafer is divided into smaller identical reticles
and is fabricated by stitching these reticles. Each reticle consists of 72
tiles (12x6). The inter-chiplet links, within each reticle have width of
2 pum and spacing of 3 um. However, at the edge of each reticle, the
links escaping are made fatter (width increases to 3 um and spacing re-
duces to 2 um), while keeping the pitch constant, in order to reduce the
impact of reticle stitching error [21]. Besides, a number of I/Os from
each of the tiles at the edge of the mesh needs to fan-out to the edge of
the wafer and connect to the external connectors. We designed the fan-
out wiring and the edge I/O pads into each reticle. The chiplet slots on
the Si-IF substrate from the edge reticles would remain un-populated
and the external connectors would connect to the pads in these reticles.
To ensure that these I/O pads don’t cause an issue where chiplets are
bonded, we use a custom block etch process to remove the pads wher-
ever they are not needed. If a foundry supports multiple reticles per
wafer, the edge of the wafer can also be printed using a separate mask.

The Si-IF substrate for this processor system consists of four metal
layers. The bottom two layers are built as dense slotted planes and
are dedicated to power supply. The top two layers are sparse and are
dedicated to inter-chiplet signal routing. The major challenge in using
today’s conventional tools for designing the interconnect substrate is
the sheer scale of the system. The memory footprint when designing
a four layer >15000 mm? wafer using current commercial tools
explodes, which, in turn, leads to very large design time. Hence, we

%This won’t be a problem if a direct-write lithography system is employed but
most commercial and research foundry patterning processes employ steppers.

e g@ D
b][]
s B I| |:|

Fig. 10: Progressive unrolling scheme is shown. The JTAG chain
is unrolled progressively to identify the faulty chiplet in the chain.

External -
controller (==
2

External

External
controller [=
1

<
2

External

3 —

developed our own lightweight custom router for designing the four
layer waferscale substrate. The current version of the router supports
only jog-free routing for inter-chiplet connections, which is sufficient
for this prototype. Developing a general, scalable router for large (but
low wiring density) chiplet assemblies is part of our future work.

IX. SUMMARY AND CONCLUSION

Chiplet assembly is a very promising approach to build scale-out het-
erogeneous computing systems. We describe our experience designing
largest ever such chiplet assembly based waferscale processor (at least
10X larger than largest known commercial chiplet-based systems) and
develop a design methodology for the same. We highlight challenges
and potential solutions in power delivery, clock distribution, network
design, design for testability and fault-tolerance for waferscale systems.
To best of our knowledge, this is the first work discussing design
methodology challenges for large chiplet-assembly based systems.
Our ongoing work aims at characterizing the waferscale prototype
and developing design methods for higher-power waferscale systems.

ACKNOWLEDGEMENT

The authors would like to thank Matthew Tomei, Ananya Ravikumar,
Alexander Graening, Sorin Dobre (Qualcomm), UCLA-CHIPS,
CDEN, Qualcomm Innovation Fellowship and TSMC for their support.

REFERENCES

[1]1 Workload Analysis of Blue Waters. https://arxiv.org/ftp/arxiv/papers/1703/1703.
00924.pdf. (accessed Nov 23, 2020).

[2] K. Shirahata et al. “A Scalable Implementation of a MapReduce-based Graph
Processing Algorithm for Large-Scale Heterogeneous Supercomputers”. [3th
International Symposium on Cluster, Cloud, and Grid Computing. 2013.

[3] S.Paletal. “A Case for Packageless Processors”. IEEE International Symposium
on High Performance Computer Architecture (HPCA). 2018.

[4] Kamil Rocki et al. Fast Stencil-Code Computation on a Wafer-Scale Processor.
2020. arXiv: 2010.03660.

[5] S. Pal et al. “Architecting Waferscale Processors - A GPU Case Study”. IEEE
International Symposium on High Performance Computer Architecture. 2019.

[6] J. Schemmel et al. “A wafer-scale neuromorphic hardware system for large-scale
neural modeling”. International Symposium on Circuits and Systems. 2010.

[71 A. A. Bajwa et al. “Demonstration of a Heterogeneously Integrated System-on-
Wafer (SoW) Assembly”. 68th ECTC. 2018.

[8] Suresh Ramalingam. 3D-ICs: Advances in the industry. Accessed Nov 23, 2020.

[91 NVIDIA. A100 TENSOR CORE GPU. Accessed Nov 22, 2020.

[10] AMD. Ryzen™ Threadripper™ Processors. Accessed Nov 23, 2020.

[11] Yakun Sophia Shao et al. “Simba: Scaling Deep-Learning Inference with Multi-
Chip-Module-Based Architecture”. Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. USA, 2019.

Shaolin Xie and Michael Bedford Taylor. The BaseJump Manycore Accelerator
Network. 2018. arXiv: 1808.00650 [cs.AR].

M. Liu et al. “Process Development of Power Delivery Through Wafer Vias for
Silicon Interconnect Fabric”. 69th ECTC. 2019.

K. T. Kannan and S. S. Iyer. “Deep Trench Capacitors in Silicon Interconnect
Fabric”. IEEE 70th Electronic Components and Technology Conference. 2020.
Inc. Kaijian Shi Synopsys. Clock Distribution and Balancing Methodology For
Large and Complex ASIC Designs. Accessed Nov 23, 2020.

Yi-Ming Wang and Jinn-Shyan Wang. “An all-digital 50% duty-cycle corrector”.
IEEE International Symposium on Circuits and Systems. 2004.

Global Semiconductor Alliance. “Electrostatic Discharge (ESD) in 3D-IC Pack-
ages” (Accessed Nov 21, 2020).

Jie Wu. “A fault-tolerant and deadlock-free routing protocol in 2D meshes based
on odd-even turn model”. IEEE Transactions on Computers (2003).

Alessandro Zorat. “Construction of a fault-tolerant grid of processors for wafer-
scale integration”. Circuits, Systems and Signal Processing (1987).

E. J. Marinissen, T. McLaurin, and Hailong Jiao. “IEEE Std P1838: DfT standard-
under-development for 2.5D-, 3D-, and 5.5D-SICs”. 21st IEEE ETS. 2016.

W. C. Chen et al. “Wafer level integration of an advanced logic-memory system
through 2nd generation CoWoS technology”. VLSI Technology Symposium. 2017.

[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf
https://arxiv.org/abs/2010.03660
https://arxiv.org/abs/1808.00650

	Introduction
	Overview of the Waferscale Processor System
	Waferscale Power Delivery and Regulation
	Waferscale Clock Generation and Distribution
	I/O Architecture
	Waferscale Network Architecture and Resiliency
	Testing Infrastructure
	Pre-bond Testing
	Post Assembly Testing

	Waferscale Substrate and its Impact on Design
	Summary and Conclusion

