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ABSTRACT

We consider the distributed stochastic optimization problem where
n agents want to minimize a global function given by the sum of
agents’ local functions and focus on theheterogeneous settingwhen
agents’ local functions are defined over non-i.i.d. datasets. We study
the Local SGD method, where agents perform a number of local
stochastic gradient steps and occasionally communicate with a cen-
tral node to improve their local optimization tasks. We analyze the
effect of local steps on the convergence rate and the communica-
tion complexity of Local SGD. In particular, instead of assuming a
fixed number of local steps across all communication rounds, we
allow the number of local steps during the jth communication round,
Hj , to be different and arbitrary numbers. Our main contribution
is to characterize the convergence rate of Local SGD as a function
of {Hj}Rj=1 under various settings of strongly convex, convex, and

nonconvex local functions, where R is the total number of communi-
cation rounds. Based on this characterization, we provide sufficient
conditions on the sequence {Hj}Rj=1 such that Local SGD can achieve

linear speedup with respect to the number of workers. Furthermore,
we propose a new communication strategy with increasing local
steps that is superior to constant local steps for strongly convex local
functions. On the other hand, for convex and nonconvex local func-
tions, we argue that fixed local steps are the best communication
strategy for Local SGD and recover state-of-the-art convergence rate
results. Finally, we justify our theoretical results through extensive
numerical experiments.
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1. Introduction

Stochastic Gradient Descent (SGD) is one of the most commonly used algorithms for

parameter optimization of machine learning models. SGD tries to minimize a function

f by iteratively updating parameters as: xt+1 = xt − ηtĝ
t , where ĝt is a stochastic gradient

of f at xt and ηt is the learning rate. However, given the massive scale of many modernML

models and datasets, and taking into account data ownership, privacy, fault tolerance, and

scalability, distributed training approaches have recently emerged as a suitable alternative
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over centralized ones, e.g. parameter server [4], federated learning [7,12,20,25], decen-

tralized stochastic gradient descent [1,10,15,31], decentralized momentum SGD [36],

decentralized ADAM [21], among others [3,17,32].

A naive distributed generalization of SGD consists of havingmultiple agents computing

stochastic gradients distributedly, with a central node or fusion center, where local gradi-

ents are aggregated and sent back to the agents at every iteration. However, communicating

at each iteration induces a large communication overhead, where at each iteration of the

algorithm, all agents need to send their gradients to the central node. Then the central node

needs to send the agents the aggregated information. Local SGD [18,29,33,38], which can

be viewed as a special case of the well-known Federated Averaging algorithm [19] assum-

ing full participation of the agents, presents a suitable solution to the problem. Specifically,

in Local SGD, each agent independently runs SGD locally for a number of steps and then

aggregates by a central node from time to time only. The main advantage of Local SGD is

thatmultiple local updateswould likelymove themodel parametersmuch faster to the opti-

mal solution in each communication round, thus effectively reducing the communication

overhead at the cost of more local computations.

On the other hand, it remains a delicate problem to choose the number of local steps

during each communication round in Local SGD, as too few local stepswould result in poor

communication efficiency, while too many local steps would lead to slow convergence or

even non-convergence of the algorithm. The problem is further complicated by the vari-

ous scenarios the algorithm is facing, including different types of local objective functions,

i.e. strongly convex, general convex or nonconvex functions, as well as whether all agents

have the same objective function (the homogeneous case) [9,28,30] or different objective

functions (the heterogeneous case) [5,8,9,24,35]. In this paper we focus on the more gen-

eral heterogeneous case and study strongly convex, general convex and nonconvex local

functions respectively.

1.1. Related work

For the case of homogeneous local functions, i.e. when all agents have the same objective

function, it was shown in [9,30] that using O(npolylog(T)) communication rounds, one

can achieve convergence rateO( 1
nT ) for Local SGD with strongly convex functions, where

n is the number of agents and T is the number of iterations (or local gradient steps).

A number of recent works have focused on the convergence analysis of Local SGD in

heterogeneous setting [5,8,9,24,35]. It is shown thatO( 1
nT ) is both a lower andupper bound

for the convergence rate of Local SGD for strongly convex objective functions [8,24].More-

over, it is known thatO( 1√
nT

) is both a lower and upper bound for the convergence rate of

Local SGD for general convex and nonconvex objective functions [9,35]. These two con-

vergence rates are often referred to as linear speedup with respect to the number of agents

N for strongly convex and convex/nonconvex objective functions, respectively. The name

linear speedup comes from the implication that with N agents, the algorithm converges N

times faster than with just 1 agent [24]. Furthermore, for general convex and nonconvex

local functions it is shown that Local SGD can achieve linear speedup withO(n
3
4T

3
4 ) com-

munication rounds [8,9]. For strongly convex local functions, the results in [11] implies

that Local SGD can achieve O(
log(T)

nT ) convergence rate with O(
√
nT) communication
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rounds without the bounded gradient assumption; [24] showed that linear speedup can

be achieved with O(
√
nT) communication rounds, however, their analysis requires the

bounded gradient assumption, which is unrealistic in certain cases (see, e.g. [9]).

On the other hand, while most of the works mentioned above assume a fixed number of

local steps across all communication rounds, several recent works have proposed different

communication strategies for Local SGD to reduce communication costs further. Specifi-

cally, in the homogeneous setting, [34] proposed an adaptive communication strategy that

gradually increases communication frequency for training neural networks. [6] gave an

error bound of Local SGD that explicitly relies on the sequence of local steps for noncon-

vex local functions that satisfy the Polyak–ojasiewicz condition and proposed decreasing

communication frequency. Recently, [27] proposed a linearly increasing number of local

steps for strongly convex objective functions and theoretically showed its better communi-

cation efficiency. This result has been further generalized in [22] to the network settings. In

the heterogeneous setting, [16] proposed decreasing communication frequency such that

a number of fully synchronized SGD steps are performed, followed by Local SGD with

a fixed number of local steps. On the contrary, [14] proposed increasing communication

frequency such that the number of local steps decreases exponentially until it reaches unit

local steps.

However, with the exception of [6], the aforementioned works focused on certain spe-

cific communication strategies, thus failing to provide a comprehensive understanding of

the role of local steps in the convergence rate of Local SGD. In this paper, we aim to system-

atically study the role of local steps in Local SGD in themore general heterogeneous setting

and study strongly convex, general convex, and nonconvex local functions, respectively.

Finally, [26] proposed Local SGD with an exponentially increasing communication

intervals, and showed upper bounds for the convergence rate of Local SGD thatmatchwith

the bounds shown in this paper.1 However, [26] only focused on a specific communication

strategy that relies heavily on prior knowledge for the initialization of the algorithm (e.g.

setting up initial stepsize and initial communication interval), while this paper provides a

much broader analysis with less reliance on such prior knowledge.

1.2. Contributions and organization

In this paper, we allow the number of local steps during the jth communication round,Hj,

to be different integer numbers, and characterize the convergence rate of Local SGD with

respect to the sequence {Hj}Rj=1, where R is the total number of communication rounds.

Such a characterization enables us to study the convergence rate of Local SGD for any

general communication pattern. We summarize our contributions as follows:

• We characterize the convergence rate of Local SGD explicitly as a function of {Hi}Ri=1

under various settings of strongly convex, convex, and nonconvex local functions.

• We provide sufficient conditions on the sequence {Hj}Rj=1 such that Local SGD can

achieve linear speedupwith respect to the number of agents, i.e.O( 1
nT ) convergence rate

for strongly convex local functions andO( 1√
nT

) convergence rate for general convex or

nonconvex local functions, that covers broad classes of communication strategies.
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• For strongly convex local functions, we propose a new communication strategy for the

Local SGD with an increasing number of local steps and show it can achieve linear

speedup convergence rate withO(
√
nT) communication rounds without any assump-

tion on the boundedness of the gradients. To our knowledge, this is tighter than all

existing bounds of Local SGD with constant number of local steps.2 We also validate

the superiority of the communication strategy through numerical experiments.

• Based on our convergence rate characterization, we argue that using fixed local steps is

the best communication strategy for Local SGD in the case of convex and nonconvex

local functions. Our results imply that Local SGD can achieve a linear speedup con-

vergence rate with O(n
3
4T

3
4 ) communication rounds, which matches the best-known

results in this setting [8,9]. Moreover, we show through numerical experiments that this

bound on the number of communication rounds to achieve linear speedup is almost

tight.

The paper is organized as follows. Section 2 describes the problem statement. Section 3

states our main results for the case of strongly convex and convex objective functions.

Section 3.3 extends our convergence rate analysis to the case of nonconvex functions. Sim-

ulation results are given in Section 4, followed by conclusions and future directions in

Section 5. For ease of presentation, all the proof details are deferred to the supplementary

materials.

2. Problem formulation

We consider the distributed stochastic optimization problem with a set of [n] = {1, . . . , n}
agents, where each agent i ∈ [n] holds a local objective function fi : R

d → R that can be

expressed in a stochastic form

fi(x) = Eξi∼DiFi(x, ξi). (1)

Here, x ∈ R
d is the optimization variable, andDi denotes the distribution of random vari-

able ξi over the parameter sample space �i for agent i. The agents’ goal is to minimize the

global objective function f : R
d → R given by the average sum of all the local functions

or, equivalently, solve the following unconstrained optimization problem

f � := min
x∈Rd

{

f (x) = 1

n

n
∑

i=1

fi(x)

}

, (2)

by performing local gradient steps and occasionally communicating with a central node to

leverage the samples obtained by the other agents.

We assume throughout the paper that f (x) is bounded below by f � (i.e. a global mini-

mum exists), fi(x) is L-smooth for every i ∈ [n], and ∇Fi(x, ξi) is an unbiased stochastic

gradient of fi(x), which by now are standard assumptions in the context of federated

learning [8,9].

Assumption 2.1: For every i ∈ [n], fi(x) is L-smooth in terms of x, that is

‖∇fi(x) − ∇fi(y)‖ ≤ L‖x − y‖, ∀x, y ∈ R
d, i ∈ [n].
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Moreover, for some of our results, we will require functions fi to be μ-strongly convex

with respect to the parameter x as defined next.

Assumption 2.2: We say fi : R
d → R is μ-(strongly) convex for someµ ≥ 0 if for all x, y ∈

R
d, we have

fi(x) − fi(y) + µ

2

∥

∥x − y
∥

∥

2

2
≤
〈

∇fi(x), x − y
〉

.

If µ = 0, then fi is convex but not strongly-convex.

Next, as in [9], we consider the following definition, which allows us to measure the

heterogeneity among local functions.

Definition 2.1: Assume (2) admits a unique optimal solution x� = argmin f (x). We

define

σ̄ 2 = 1

n

n
∑

i=1

Eξi

∥

∥∇Fi(x
∗, ξi)

∥

∥

2

2
.

It follows that for all non-degenerate sampling distribution Di, σ̄
2 is well-defined and

finite and serves as a naturalmeasure of variance in localmethods.However, for nonconvex

objective functions where a unique x∗ may not exist, as in [8], we consider the following

assumption of bounded gradient dissimilarity.

Assumption 2.3 (bounded gradient dissimilarity): We say that the local functions fi sat-

isfy (G,B)-bounded gradient dissimilarity (or for short (G,B)-BGD ) if there exist constants

G ≥ 0 and B ≥ 1 such that

1

n

n
∑

i=1

‖∇fi(x)‖2 ≤ G2 + B2‖∇f (x)‖2, ∀x.

We also assume∇Fi(x, ξi) is an unbiased stochastic gradient of fi(x)with variance bounded

by σ 2.

2.1. Local stochastic gradient descent

A popular method for solving (2) in a distributed manner is the local stochastic gradient

descent (Local SGD) method. In Local SGD, each agent performs local gradient steps, and

a central node will compute the average of all agents’ iterates every once in a while to guide

agents’ iterates toward consensus. Let us denote the total number of iterations in Local

SGD by T and the set of communication instances by I ⊆ [T]. Then, in every iteration

t ∈ [T] of the Local SGD i) each agent i ∈ [n] performs stochastic gradient descent update

on its local objective function, and ii) if t is a communication time, i.e. t ∈ I , each agent

i ∈ [n] sends its current local solution x
(t)
i to the central node and receives the average of

all agents’ local solutions. The pseudo-code for the Local SGD algorithm is summarized in

Algorithm 1.

Finally, we consider the following definition of communication intervals in the Local

SGD.
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Algorithm 1 Local SGD

1: Input x
(0)
i = x(0) for i ∈ [n], total number of iterations T, the step-size sequence

{ηt}T−1
t=0 , the set of communication time instances I = {τj}Rj=0.

2: for t = 0, . . . ,T − 1 do

3: for i = 1, . . . , n do

4: Sample ξ
(t)
i , compute gti = ∇Fi(x

(t)
i , ξ

(t)
i )

5: if t + 1 ∈ I then

6: x
(t+1)
i = 1

n

∑n
j=1(x

(t)
j − ηtg

t
i)

7: else

8: x
(t+1)
i = x

(t)
i − ηtg

t
i

9: end if

10: end for

11: end for

Definition 2.2: Given communication time instances I = {τj}Rj=1, we let Hj = τj − τj−1

be the length of the jth communication interval, i.e. the number of local steps between the

(j − 1)th and jth communications.Moreover, for any time instance t ∈ [τj, τj+1), we define

k(t) = j. In other words, k(t) is the index such that τk(t) ≤ t < τk(t)+1.

Our main objective in this work is to characterize the convergence rate of Algorithm 1

with respect to the sequence of the local steps {Hj}Rj=1 as defined above, when applied to

the optimization problem (2).

3. Convergence results for local SGD

In this section, we state our main result for the case of strongly convex and convex func-

tions. To that end, let x̄(t) and ḡ(t) be the average of agents’ iterates and the average of their

stochastic gradients at time t, respectively, i.e.

x̄(t) = 1

n

n
∑

i=1

x
(t)
i , ḡ(t) = 1

n

n
∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i ).

Moreover, define the following parameters

rt = E‖x̄(t) − x∗‖2, Vt = 1

n
E

n
∑

i=1

‖x(t)
i − x̄(t)‖2, et = E[f (x̄(t))] − f (x∗),

which represent the expected distance of the averaged iterates at time t to the optimum

solution, the expected consensus error among agents at time t, and the expected optimality

gap at time t.

3.1. Convergence result for strongly convex functions

Theorem 3.1: Let Assumptions 2.1 and 2.2 hold with µ > 0. Then, the sequence gener-

ated by Algorithm 1 with stepsize ηt = 2
µ(β+t) , and any sequence of communication intervals
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{Hj}Rj=1 and parameter β ≥ 20L
µ

such that

Hj ≤
µ(β +

∑j−1
k=1Hk)

12L
∀j,

has the following property:

rT ≤ (β − 1)2

T2
r0 + 12σ̄ 2

nµ2T
+ 144Lσ̄ 2

µ3T2

R
∑

j=1

H3
j

∑j−1
k=1Hk + β

. (3)

where L is the smoothness constant, R is the number of communication rounds, and β is a

constant that can be tuned by the Local SGD algorithm to balance the first and third term

in (3).

An immediate corollary of Theorem 3.1 is the set of sufficient conditions on the sequence

{Hj}Rj=1 that leads to linear speedup in the convergence of Algorithm 1.

Corollary 3.1: Assume that T ≥ n. Let the sequence of local steps {Hj}Rj=1 have the following

properties:

(1) Hj ≤
µ(β +

∑j−1
k=1Hk)

12L
, ∀j (2)

R
∑

j=1

Hj = T (3)

R
∑

j=1

H3
j

∑j−1
k=1Hk + β

= O

(

T

n

)

.

Then, the sequence generated by in Algorithm 1 has the following property rT = O( 1
nT ).

Next, using Corollary 3.1, we can analyze two special communication strategies, one

with a fixed number of local steps and the other with an increasing number of steps.

Proposition 3.1: Let Assumptions 2.1 and 2.2 hold with µ > 0. Then,

(1) For the constant number of local steps Hj = T
R ,∀j and β = 12LT

µR , the convergence rate

of Local SGD is upper bounded by rT = O( 1
nT ), where R = O(

√
nT log(nT)) is the

number of communication rounds.

(2) For the increasing number of local steps Hj = 
ajs�,∀j with a = O(n− s+1
2 T

1−s
2 ),

0< s<1 and β = a� 24L
µ

�s · 12L
µ

+ 1,3 the convergence rate of Local SGD is upper

bounded by rT = O( 1
nT ) with R = O(

√
nT) number of communication rounds.

Remark 3.1: Based on the convergence rate upper bounds of Local SGD in Proposi-

tion 3.1, the communication strategy with an increasing number of local steps exhibits

better communication efficiency than a fixed number of local steps. Moreover, it is shown

in [35] that if adopting a fixed number of local steps, the convergence rate of Local SGD is

lower bounded byO( 1
nT ),4 suggesting that using the proposed communication strategy of

increasing number of local steps is at least aas good as fixed number of local steps.
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3.2. Convergence result for convex functions

In this part, we relax the assumption of strong convexity on the local function to merely

convex functions and analyze the convergence rate of Algorithm 1 in terms of the number

of local steps.

Theorem 3.2: Let Assumptions 2.1 and 2.2 be satisfied with µ = 0 and set a stepsize as

ηt = c
√

n
T , ∀c ≤ 1

10L

√

T
n . Moreover, set the communication intervals to satisfy Hj ≤ 1

7Lη =
√
T

7Lc
√
n
,∀j. Thus, the iterates generated by Algorithm 1 have the following property:

1

T

T−1
∑

t=0

et ≤ 2r0 + 6c2σ̄ 2

c
√
nT

+ 24Lσ̄ 2c2n

T2

R
∑

j=1

H3
j . (4)

An immediate corollary of Theorem 3.2 is a sufficient condition on the sequence {Hj}Rj=1

that leads to linear speedup in the convergence of Algorithm 1.

Corollary 3.2: Assume that T ≥ n3. In order to achieve Linear Speedup, 1
T

∑T−1
t=0 et =

O( 1√
nT

), it is enough to select the local steps sequence {Hj}Rj=1 such that

(1) Hj ≤ 1

7Lη
=

√
T

7Lc
√
n
,∀j, (2)

R
∑

j=1

Hj = T, (3)

R
∑

j=1

H3
j = O(

T
3
2

n
3
2

).

Remark 3.2: A closer look at the bound (4) reveals that in order to minimize the

error bound of Local SGD, the sequence {Hj}Rj=1 should minimize
∑R

j=1H
3
j subject to

∑R
j=1Hj = T. This leads to the communication strategy of a fixed number of local steps, i.e.

Hj = T
R . Therefore, based on the convergence rate of Local SGD derived in Theorem 3.2,

for convex local functions, the fixed number of local steps is the best communication strat-

egy for Local SGD. Moreover, from Corollary 3.2, we immediately get that in order to

achieve linear speedup, the number of communication rounds should be R = O((nT)3/4),5

which correspond to the number of local stepsHj = T1/4

n3/4
∀j. This choice of the number of

local steps also results in the first and second term in the left-hand side of inequality (4) to

be of the same order, which is ‘efficient’ in a sense.

3.3. Convergence result for non-convex functions

In this section, we focus on the class of nonconvex local functions. However, we need

to impose the additional (G,B)-BGD assumption to analyze the convergence rate versus

communication complexity trade-off. To state our main result, let us define

ht = ‖∇f (x̄(t))‖2,

which is the gradient norm of the average iterates in the Local SGD. Then, we have the

following theorem.
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Theorem 3.3: Let Assumptions 2.1 and 2.3 hold, fix a stepsize ηt = c
√

n
T , ∀c ≤ 1

4L

√

T
n .,

and set a sequence of communication intervals that satisfy Hj ≤ 1
7LBη

=
√
T

7LBc
√
n
,∀j. Then,

the sequence generated by Algorithm 1 has the following property:

1

T

T−1
∑

t=0

ht ≤ 8e0 + 4c2σ 2

c
√
nT

+ 48L2(σ 2 + G2)c2n

T2

R
∑

j=1

H3
j . (5)

As a corollary of Theorem 3.2, we obtain the following set of sufficient conditions on

the sequence {Hj}Rj=1 that leads to linear speedup in the convergence of Algorithm 1.

Corollary 3.3: Assume that T ≥ n3. In order to achieve Linear Speedup, 1
T

∑T−1
t=0 ht =

O( 1√
nT

), it is enough to select the local steps sequence {Hj}Rj=1 such that

(1) Hj ≤ 1

7LBη
=

√
T

7LBc
√
n
,∀j, (2)

R
∑

j=1

Hj = T, (3)

R
∑

j=1

H3
j = O

(

T
3
2

n
3
2

)

.

Remark 3.3: By taking a closer look at the bound (5), it is easy to see that in order to

minimize the error bound of Local SGD, the local steps sequence {Hj}Rj=1 should min-

imize
∑R

j=1H
3
j subject to

∑R
j=1Hj = T. This leads to the communication strategy of a

fixed number of local steps, i.e. Hj = T
R . Therefore, using the convergence rate of Local

SGD obtained in Theorem 3.3, for nonconvex local functions, we conclude that a fixed

number of local steps is the best communication strategy for Local SGD. Moreover, from

Corollary 3.3, we immediately get that in order to achieve linear speedup, the number of

communication rounds should be R = O((nT)3/4),6 which correspond to the number of

local steps Hj = T1/4

n3/4
∀j. This choice of the number of local steps also results in the first

and second term in the LHS of inequality (5) to be of the same order, which is ‘efficient’ in

a sense.

4. Numerical results

This section shows the results for two sets of experiments on the MNIST dataset [13] to

validate our theoretical findings. We focus on strongly-convex loss functions for the first

set of experiments, where we train a logistic regression model with l2 regularization. We

focus on nonconvex loss functions for the second set of experiments, where we train a

small, fully connected neural network.

4.1. Logistic regressionmodel forMNIST

In this set of experiments, we distribute the MNIST dataset to n = 20 agents and apply

Local SGD to train a multinomial logistic regression model with l2 regularization. We

first sort the data by digit label, then divide the dataset into 100 shards and assign each

of 20 agents 5 shards. Each agent will have examples of approximately five digits, reflecting

moderately heterogeneous data sets.
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Figure 1. Logistic regression for MNIST. (a) Test accuracy vs. communication rounds for different com-
munication strategies. (b) test accuracy vs. the number of iterations for different communication
strategies. Simulation results averaged over 5 runs of the experiment.

Figure 2. Logistic regression for MNIST. Summary of the number of communication rounds and itera-
tions needed for the model to reach a 91.5% accuracy on the MNIST test dataset for different communi-
cation strategies. Yellow dots: fixed number of local steps. Red dot: increasing number of local steps as
in Proposition 3.1 with a = 10, s = 0.2. Simulation results averaged over 5 runs of the experiment.

We evaluate different communication strategies (i.e. various numbers of local steps

when following communication strategy with a fixed number of local steps and a = 10,

s = 0.2 when following communication strategy with an increasing number of local steps

as in Proposition 3.1) the corresponding communication rounds and iterations needed for

the model to reach a 91.5% accuracy on theMNIST test dataset. The simulation results are

averaged over 5 independent runs of the experiments and are shown in Figures 1 and 2.

For the set of hyperparameters, we use a training batch size of 8, l2 regularization param-

eter µ = 0.001, β = 1000 and set stepsize at iteration t to be ηt = β
t+β

η0, where the initial

stepsize η0 is chosen based on a grid search of resolution 10−3.

Figure 1 shows the details of the runs of the experiment. Figure 2 shows the summary of

the runs. For example, the upper left yellow dot in Figure 2 corresponds to the average of

5 runs of Local SGD with constant Hi = 1, showing that with constant Hi = 1 it took the

algorithm an average of ∼ 305 communication rounds as well as total iterations to reach

91.5% accuracy.
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Figure 3. Speedup curve for Local SGDwith different communication strategies. Fixed: fixed number of

local steps subject to a total of R = 1
5
T

3
4 n

3
4 or R = 1

5
T

3
4 n

1
2 communication rounds. Increasing: Hi ∝ i

2

subject to a total of R = 1
5
T

3
4 n

3
4 or R = 1

5
T

3
4 n

1
2 communication rounds. Decreasing: Hi ∝ (R − i)2 sub-

ject to a total of R = 1
5T

3
4 n

3
4 or R = 1

5T
3
4 n

1
2 communication rounds. The dashed black line corresponds

to speedup=
√
n.

Communication-Computation Trade-Off: In general, we can observe a communication-

computation trade-off such that with more local computation (corresponding to a larger

number of iterationsT), less communication is needed (corresponding to a smaller number

of communication rounds R) for the model to reach a certain accuracy.

Better Communication Efficiency with Increasing Number of Local Steps: As we can

see from Figure 2, the red dot lies to the bottom left of the yellow line, which shows

that the communication strategy of an increasing number of local steps is indeed more

communication efficient than a fixed number of local steps, thus validating our claim in

Remark 3.1.

4.2. Neural network forMNIST

In this set of experiments, we distribute the MNIST dataset to n agents and apply Local

SGD to train a fully-connected neural network (2NN) with 2-hidden layers with 50 units

each using ReLu activations (42310 total parameters).7 We first sort the data by digit label,

then divide the dataset into n shards and assign each of n agents 1 shards. Each agent will

have examples of approximately one digit, reflecting the most heterogeneous data sets.

We evaluate the speedup effect of the number of agents n for different communication

strategies. In particular, we set a fixed number of T = 20, 000 iterations and run Local

SGD for T iterations with different communication strategies, a different number of agents

n, and a different number of communication rounds R. After that, a speedup factor is

derived by dividing the expected error of a single worker SGD at the final iterate T by

the expected error of Local SGD with different communication strategies and a different

number of agents n at the final iterate T. We plot the speedup curve in Figure 3. In the case

of linear speedup, we should expect the dashed black line on the graph, corresponding to

speedup = √
n.
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We use a training batch size of 1 and choose stepsize η based on a grid search of

resolution 10−3. The simulation results are averaged over 5 independent runs of the

experiments.

Better Performance with Fixed Number of Local Steps: We can observe from Figure 3

that Local SGDwith fixed number of local steps significantly outperforms its increasing or

decreasing number of local steps counterparts in both settings of R = 1
5T

3/4n3/4 (corre-

sponding to sufficient communication) and R = 1
5T

3/4n1/2 (corresponding to insufficient

communication). This validates our claim in Remark 3.3 that a fixed number of local steps

is the best communication strategy for Local SGD for nonconvex local functions.

Almost Tight Bound for R = O((nT)3/4) to Achieve Linear Speedup: Another observa-

tion from Figure 3 is that while setting R = O((nT)3/4) and following a communication

strategy of a fixed number of local steps, Local SGD successfully achieved linear speedup,

as expected, decreasing R by a factor of n
1
4 fails for Local SGD to achieve linear speedup,

even with the best communication strategy of a fixed number of local steps. This suggests

that the bound of R = O((nT)3/4) to achieve linear speedup is close to tight.

5. Conclusions

In this paper, we analyzed the role of local steps in Local SGD in the heterogeneous

data setting. We characterized the convergence rate of Local SGD as a function of the

sequence of the local steps {Hi}Ri=1 under various settings of strongly convex, convex, and

nonconvex local functions. Based on this characterization, we gave sufficient conditions

on the sequence {Hi}Ri=1 that covers broad classes of communication strategies such that

Local SGD can achieve linear speedup. Furthermore, for strongly convex local functions,

we proposed a new communication strategy with increasing local steps that enjoy better

performance than the vanilla fixed local steps communication strategy theoretically and

in numerical experiments. We argued that fixed local steps are the best communication

strategy for Local SGD and recover state-of-the-art convergence rate results for convex

and nonconvex local functions. Such an argument is validated by numerical experiments,

which showed that the results are almost tight.

As a future research direction, one can consider analyzing the role of local steps in other

federated optimization methods, e.g.SCAFFOLD [8], FedAC [37]. Moreover, generalizing

our work to directed networks in which agents communicate with their neighbours rather

than a central node is another interesting research problem, e.g. for Stochastic Gradient

Push algorithm [2]. Also, we only considered the role of local steps in Local SGD with

full agent participation; generalizing it to the partial participation setting is yet another

interesting problem.

Notes

1. Ourworkwas done independently of [26], whichwas brought to our attention during the review
process.

2. For constant number of local steps, the results in [11] implies that Local SGD can achieve

O(
log(T)

nT ) convergence rate withO(
√
nT) communication rounds without the bounded gradi-

ent assumption; [24] showed that linear speedup can be achieved withO(
√
nT) communication
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rounds, however, their analysis requires the bounded gradient assumption. Recently, [26] pro-
posed a communication strategy with exponentially increasing number of local steps (different

from ours) and also showedO( 1
nT ) convergence rate withO(

√
nT) communication rounds.

3. It is easy to see that for such choice of parameters conditions (2) and (3) in Corollary 3.1 are
satisfied. For the proof of condition (1), we refer to Appendix A.5.

4. In fact, Theorem 2 in [35] stated a lower bound of O( 1
nT ) + O( T

n2R3
) + min{O(exp(−R2

T )),

O( T
R3

)}. The higher order terms also suggest that in order to achieveO( 1
nT ) convergence rate,

R needs to be at least max(O(n−1/3T2/3),O((T log(nT))1/2)).
5. This matches the best-known results in the setting [9].
6. This matches the best-known results in the setting [8].
7. We have deliberately chosen to train a small neural network to avoid getting an overparameter-

ized model, in which case the convergence rate of Local SGD would be different [23].
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Appendix. Omitted proofs

A.1 Proof of Theorem 3.1

In order to prove Theorem 3.1, we first establish the following two lemmas. The first lemma allows
us to establish a descent property for the distance of iterates from the optimal point, while the sec-
ond lemma bounds the consensus error among the agents. The proofs of these lemmas are given in
Appendix A.4.
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Lemma A.1 (Decent lemma): Let Assumption 2.2 hold. Then,

rt+1 ≤ (1 − µηt)rt − ηtet + 3σ̄ 2

n
η2t + 2LηtVt .

Lemma A.2 (Consensus error lemma): Let Assumption 2.2 hold. Then,

Vt ≤ Hk(t)+1

t−1
∑

j=τk(t)

η2j (12Lej + 6σ̄ 2).

where k(t) is the index such that τk(t) ≤ t < τk(t)+1.

Using Lemmas A.1 and A.2, we can now prove Theorem 3.1.

Proof of Theorem 3.1: For ηt = 2
µ(β+t) , it is easy to see that (t + β)2(1 − µηt) = (t + β)(t + β −

2) ≤ (t + β − 1)2. Thus, if we multiply both sides of the expression in Lemma A.1 by (t + β)2, we
can write

(t + β)2rt+1 ≤ (t + β − 1)2rt − (t + β)2ηtet + (t + β)2
3σ̄ 2

n
η2t + (t + β)22LηtVt

= (t + β − 1)2rt − 2(t + β)

µ
et + 12σ̄ 2

nµ2
+ 4L(t + β)

µ
Vt .

Summing this relation over t = 0, . . . ,T − 1, we get

(T + β − 1)2rT ≤ (β − 1)2r0 −
T−1
∑

t=0

2(t + β)

µ
et + 12σ̄ 2T

nµ2
+ 4L

µ

T−1
∑

t=0

(t + β)Vt . (A1)

Next, we use Lemma A.2 to bound the last term
∑T−1

t=0 (t + β)Vt in the above expression (A1). We
have

T−1
∑

t=0

(t + β)Vt ≤
T−1
∑

t=0

(t + β)Hk(t)+1

t−1
∑

j=τk(t)

η2j (12Lej + 6σ̄ 2)

=
T−2
∑

j=0

η2j (12Lej + 6σ̄ 2)

τk(j)+1−1
∑

t=j+1

(t + β)Hk(t)+1

=
T−2
∑

j=0

η2j (12Lej + 6σ̄ 2)Hk(j)+1

τk(j)+1−1
∑

t=j+1

(t + β), (A2)

where the last equality holds because k(t) = k(j) for any t ∈ [j + 1, τk(j)+1 − 1]. Moreover, using the
assumption on the communication intervals, we have

τk(j)+1 − τk(j) = Hk(j)+1 ≤ β +
k(j)
∑

	=1

H	 = β + τk(j),

which implies τk(j)+1 ≤ β + 2τk(j). Using this relation together with τk(j) ≤ j < τk(j)+1, we can write

τk(j)+1−1
∑

t=j+1

(t + β) ≤
τk(j)+1−1
∑

t=τk(j)

(t + β)

≤ (τk(j)+1 − τk(j))

(

β +
τk(j)+1 + τk(j)

2

)
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≤ Hk(j)+1

(

β +
β + 3τk(j)

2

)

≤ 3

2
Hk(j)+1(j + β).

Substituting this relation into (A2), we get

T−1
∑

t=0

(t + β)Vt ≤
T−2
∑

j=0

η2j (18Lej + 9σ̄ 2)(j + β)H2
k(j)+1

=
T−2
∑

t=0

(

72L

µ2
et + 36

µ2
σ̄ 2

)

H2
k(t)+1

t + β
.

where in the second equality we have used ηt = 2
µ(β+t) and relabeled the index j by t. Finally, if we

substitute the above relation into (A1), we obtain

(T + β − 1)2rT − (β − 1)2r0 ≤ 12σ̄ 2T

nµ2
+

T−1
∑

t=0

(

288L2

µ3

H2
k(t)+1

t + β
− 2(t + β)

µ

)

et

+ 144Lσ̄ 2

µ3

T−2
∑

t=0

H2
k(t)+1

t + β
. (A3)

Now, using the condition on the length of communication intervals in the theorem statement, we
know that

Hk(t)+1 ≤
µ(β +

∑k(t)
j=1 Hj)

12L
= µ(β + τk(t))

12L
≤ µ(β + t)

12L
.

Substituting this bound in (A3) we obtain

(T + β − 1)2rT − (β − 1)2r0 ≤ 12σ̄ 2T

nµ2
+ 144Lσ̄ 2

µ3

T−2
∑

t=0

H2
k(t)+1

t + β

= 12σ̄ 2T

nµ2
+ 144Lσ̄ 2

µ3

R
∑

i=1

τi−1
∑

t=τi−1

H2
k(t)+1

t + β

≤ 12σ̄ 2T

nµ2
+ 144Lσ̄ 2

µ3

R
∑

i=1

H3
i

τi−1 + β

= 12σ̄ 2T

nµ2
+ 144Lσ̄ 2

µ3

R
∑

i=1

H3
i

∑i−1
j=1 Hj + β

,

where the second equality holds because for any t ∈ [τi−1, τi), we have k(t) + 1 = i. Dividing both
sides by T2, we obtain the desired bound. �

A.2 Proof of Theorem 3.2

Proof: Let us set ηt = η, ∀t, for some parameter η to be determined later. Substituting µ = 0 in
Lemma A.1 and summing over t = 0, . . . ,T − 1, we get

η

T−1
∑

t=0

et ≤ r0 − rT + 3σ̄ 2η2T

n
+ 2Lη

T−1
∑

t=0

Vt . (A4)
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Next, we use Lemma A.2 to bound
∑T−1

t=0 Vt . We have,

T−1
∑

t=0

Vt ≤
T−1
∑

t=0

Hk(t)+1

t−1
∑

j=τk(t)

η2(12Lej + 6σ̄ 2)

≤ 12Lη2
T−2
∑

j=0

ej

τk(j)+1−1
∑

t=j+1

Hk(t)+1 + 6σ̄ 2η2
T−1
∑

t=0

Hk(t)+1(t − τk(t))

≤ 12Lη2
T−2
∑

j=0

ejH
2
k(j)+1 + 6σ̄ 2η2

T−1
∑

t=0

H2
k(t)+1

≤ 1

4L

T−2
∑

t=0

et + 6σ̄ 2η2
R
∑

i=0

H3
i , (A5)

where in the third inequality we have used the fact that k(t) = k(j) for any t ∈ [j + 1, τk(j)+1 − 1],

and t − τk(t) ≤ Hk(t)+1, and in the last inequality we have used Hi ≤ 1
7Lη , ∀i. Now, we can write

1

2

T−1
∑

t=0

et ≤ r0 − rT

η
+ 3σ̄ 2ηT

n
+ 12Lσ̄ 2η2

R
∑

i=0

H3
i .

Dividing both sides of the above inequality by T and using the choice of η = c
√

n
T , we obtain

1

T

T−1
∑

t=0

et ≤ 2r0 + 6c2σ̄ 2

c
√
nT

+ 24Lσ̄ 2c2n

T2

R
∑

i=1

H3
i .

�

A.3 Proof of Theorem 3.3

To prove Theorem 3.3, we first establish an analogous descent lemma and consensus error lemma
for the case of nonconvex local functions. The proofs of these lemmas are given in Appendix A.4.

LemmaA.3 (Decent lemma, non-convex): Assume that∇Fi(x, ξi) is an unbiased stochastic gradient
of fi(x) with variance bounded by σ 2. We have

et+1 ≤ et − ηt

4
ht + Lσ 2

2n
η2t + L2ηtVt .

Lemma A.4 (Consensus error lemma, non-convex): Let Assumption 2.3 hold. Moreover, assume
that ∇Fi(x, ξi) is an unbiased stochastic gradient of fi(x) with variance bounded by σ 2. For any t,
define k(t) be the index such that τk(t) ≤ t < τk(t)+1. We have

Vt ≤ Hk(t)+1

t−1
∑

j=τk(t)

6η2j (B
2hj + σ 2 + G2).

Proof of Theorem 3.3: Let us choose ηt = η, for some η to be specified later. By summing
Lemma A.3 over t = 0, . . . ,T − 1, we get

η

4

T−1
∑

t=0

ht ≤ e0 − eT + Lσ 2η2T

2n
+ L2η

T−1
∑

t=0

Vt . (A6)
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Next, we use Lemma A.4 to bound
∑T−1

t=0 Vt . Using the same idea as in deriving expression (A5) in
the proof of Theorem 3.2, we can get

T−1
∑

t=0

Vt ≤
T−1
∑

t=0

Hk(t)+1

t−1
∑

j=τk(t)

6η2(B2hj + σ 2 + G2)

≤ 6B2η2
T−2
∑

j=0

ej

τk(j)+1−1
∑

t=j+1

Hk(t)+1 + 6(σ 2 + G2)η2
T−1
∑

t=0

Hk(t)+1(t − τk(t))

≤ 6B2η2
T−2
∑

j=0

ejH
2
k(j)+1 + 6(σ 2 + G2)η2

T−1
∑

t=0

H2
k(t)+1

≤ 1

8L2

T−2
∑

t=0

ht + 6(σ 2 + G2)η2
R
∑

i=0

H3
i ,

where in the last inequality we have used Hi ≤ 1
7BLη , ∀i. Now, we can write

1

8

T−1
∑

t=0

ht ≤ e0 − eT

η
+ Lσ 2ηT

2n
+ 6L2(σ 2 + G2)η2

R
∑

i=0

H3
i .

Substituting ηt = c
√

n
T into the above inequality and dividing both sides by T we get the desired

bound. �

A.4 Proof of lemmas

Proof of Lemma A.1: Consider the filtration {F t}∞t=1 adapted to the history of random variables

{ξ (t)
i }, i.e.

F
t = {ξ (k)

i |i ∈ [n], 0 ≤ k ≤ t − 1}, (A7)

and note that gt−1
i = ∇Fi(x

t−1
i , ξ

(t−1)
i ) and xti areF

t-measurable, but gti is not. Using the definition

of rt = E‖x̄(t) − x∗‖2 and ḡ(t) = 1
n

∑n
i=1 g

t
i , we have

rt+1 = E[‖x̄(t+1) − x∗‖2]

= E[‖x̄(t) − ηt ḡ
(t) − x∗‖2]

= E

⎡

⎣

∥

∥

∥

∥

∥

x̄(t) − x∗ − ηt

n

n
∑

i=1

∇fi(x
t
i ) − ηt

n

n
∑

i=1

(ḡ(t) − ∇fi(x
t
i ))

∥

∥

∥

∥

∥

2
⎤

⎦

= E

⎡

⎣

∥

∥

∥

∥

∥

x̄(t) − x∗ − ηt

n

n
∑

i=1

∇fi(x
t
i )

∥

∥

∥

∥

∥

2
⎤

⎦ η2t E

⎡

⎣

∥

∥

∥

∥

∥

1

n

n
∑

i=1

(ḡ(t) − ∇fi(x
t
i ))

∥

∥

∥

∥

∥

2
⎤

⎦

− 2ηt

n
EF t

[〈

x̄(t) − x∗ − ηt

n

n
∑

i=1

∇fi(x
t
i ),E

[

n
∑

i=1

(ḡ(t) − ∇fi(x
t
i )) |F t

]〉]

,

where the last term is obtained by first conditioning on F t and then taking expectation with
respect to F t . However, the last inner product in the above expression is zero, we have E[gti |F t] =
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∇fi(x
t
i ),∀i, and thus E[

∑n
i=1(ḡ

(t) − ∇fi(x
t
i ))|F t] = 0. Therefore, we have

rt+1 = E

⎡

⎣

∥

∥

∥

∥

∥

x̄(t) − x∗ − ηt

n

n
∑

i=1

∇fi(x
t
i )

∥

∥

∥

∥

∥

2
⎤

⎦+ η2t E

⎡

⎣

∥

∥

∥

∥

∥

1

n

n
∑

i=1

(ḡ(t) − ∇fi(x
t
i ))

∥

∥

∥

∥

∥

2
⎤

⎦ . (A8)

We can bound the second term in Equation (A8) using [11, Proposition 5] as the following:

E

⎡

⎣

∥

∥

∥

∥

∥

1

n

n
∑

i=1

(ḡ(t) − ∇fi(x
t
i ))

∥

∥

∥

∥

∥

2
⎤

⎦ ≤ 3L2

n2

n
∑

i=1

E‖xi − x̄‖2 + 6L

n

(

E[f (x̄)] − f (x�)
)

+ 3σ̄ 2

n

= 3L2

n2
Vt + 6L

n
et + 3σ̄ 2

n
.

In order to bound the first term in (A8), we can write

E‖x̄(t) − x∗ − ηt

n

n
∑

i=1

∇fi(x
t
i )‖2

= E‖x̄(t) − x∗‖2 + η2t

n2
E

∥

∥

∥

∥

∥

n
∑

i=1

∇fi(x
t
i )

∥

∥

∥

∥

∥

2

− 2ηt

n
E〈x̄(t) − x∗,

n
∑

i=1

∇fi(x
t
i )〉. (A9)

To bound E‖
∑n

i=1 ∇fi(x
t
i )‖2 in (A9), we can write

E‖
n
∑

i=1

∇fi(x
t
i )‖2 ≤ 2E

∥

∥

∥

∥

∥

n
∑

i=1

∇fi(x
t
i ) −

n
∑

i=1

∇fi(x̄
t)

∥

∥

∥

∥

∥

2

+ 2E

∥

∥

∥

∥

∥

n
∑

i=1

∇fi(x̄
t) −

n
∑

i=1

∇fi(x
t
∗)

∥

∥

∥

∥

∥

2

≤ 2nE

n
∑

i=1

‖∇fi(x
t
i ) − ∇fi(x̄

t)‖2 + 2nE

n
∑

i=1

‖∇fi(x̄
t) − ∇fi(x

t
∗)‖2

≤ 2nL2E

n
∑

i=1

‖x(t)
i − x̄(t)‖2 + 4n2L(Ef (x̄(t)) − f (x∗))

= 2n2L2Vt + 4n2Let ,

where in the last inequality, we have used LemmaA.8. To boundE〈x̄(t) − x∗,
∑n

i=1 ∇fi(x
t
i )〉 in (A9),

we have

E〈x̄(t) − x∗,
n
∑

i=1

∇fi(x
t
i )〉

=
n
∑

i=1

E〈x̄(t) − x∗,∇fi(x
t
i )〉

=
n
∑

i=1

E〈x̄(t) − x
(t)
i ,∇fi(x

t
i )〉 +

n
∑

i=1

E〈x(t)
i − x∗,∇fi(x

t
i )〉

≥
n
∑

i=1

E

[

fi(x̄
(t)) − fi(x

(t)
i ) − L

2
‖x̄(t) − x

(t)
i ‖2

]

+
n
∑

i=1

E
[

fi(x
(t)
i ) − fi(x

∗) + µ

2
‖x(t)

i − x∗‖2
]

=
n
∑

i=1

E[fi(x̄
(t)) − fi(x

∗)] + µn

2
E‖x̄(t) − x∗‖2 −

(

L − µ

2

) n
∑

i=1

E‖x(t)
i − x̄(t)‖2

= net + µ

2
nrt −

(

L − µ

2

)

nVt ,
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where the first inequality follows from the strong convexity assumption and Lemma A.8. Moreover,
in the last equality, we used Lemma A.7. Finally, if we put the above bounds into (A9) and substitute
the result into (A8), we obtain

rt+1 ≤ rt + η2t

n2
(2n2L2Vt + 4n2Let) − 2ηt

n

(

net + µ

2
nrt − L − µ

2
nVt

)

+ η2t

(

3L2

n
Vt + 6L

n
et + 3σ̄ 2

n

)

= (1 − µηt)rt −
(

2ηt − 4η2t L − 6Lη2t
n

)

et +
(

2L2η2t + (L − µ)ηt + 3L2η2t
n

)

Vt + 3σ̄ 2η2t

n

≤ (1 − µηt)rt − ηtet + 2LηtVt + 3σ̄ 2η2t

n
,

where the last inequality holds because ηt ≤ 1
10L . �

In order to prove the consensus error lemma (Lemma A.2), we first state and prove the following
auxiliary lemma, which bounds the expected sum of the gradient norms across all agents.

Lemma A.5: For strongly convex L-smooth local functions, we have

1

n

n
∑

i=1

E‖∇Fi(x
(t)
i , ξ

(t)
i )‖2 ≤ 3L2Vt + 6Let + 3σ̄ 2.

Proof: Starting from the left-hand side, we can write

1

n

n
∑

i=1

E‖∇Fi(x
(t)
i , ξ

(t)
i )‖2

= 1

n

n
∑

i=1

E
∥

∥∇Fi(x
(t)
i , ξ

(t)
i ) − ∇Fi(x̄

(t), ξ
(t)
i ) + ∇Fi(x̄

(t), ξ
(t)
i ) − ∇Fi(x

∗, ξ (t)
i ) + ∇Fi(x

∗, ξ (t)
i )

∥

∥

2

≤ 3

n

n
∑

i=1

E‖∇Fi(x̄
(t), ξ

(t)
i ) − ∇Fi(x

∗, ξ (t)
i )‖2

+ 3

n

n
∑

i=1

E‖∇Fi(x
(t)
i , ξ

(t)
i ) − ∇Fi(x̄

(t), ξ
(t)
i )‖2 + 3σ̄ 2

≤ 3

n

n
∑

i=1

E‖∇Fi(x̄
(t), ξ

(t)
i ) − ∇Fi(x

∗, ξ (t)
i )‖2 + 3L2Vt + 3σ̄ 2, (A10)

where the first inequality uses Definition 2.1, and the second inequality uses L-smooth assumption.
We have

n
∑

i=1

E‖∇Fi(x̄
(t), ξ

(t)
i ) − ∇Fi(x

∗, ξ (t)
i )‖2

≤ 2L

n
∑

i=1

E
[

Fi(x̄
(t), ξ

(t)
i ) − Fi(x

∗, ξ (t)
i )

]

− 2L

n
∑

i=1

E〈∇Fi(x
∗, ξ (t)

i ), x̄(t) − x∗〉

= 2L

n
∑

i=1

E
[

fi(x̄
(t)) − fi(x

∗)
]

− 2L

n
∑

i=1

E〈∇fi(x
∗), x̄(t) − x∗〉
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= 2nLE
[

f (x̄(t)) − f (x∗) − 〈∇f (x∗), x̄(t) − x∗〉
]

= 2nLE
[

f (x̄(t)) − f (x∗)
]

= 2nLet ,

where the first inequality uses Lemma A.8, and the last equality holds because x∗ is the global
minimum of f, and hence ∇f (x∗) = 0. Substituting the above relation into (A10) completes the
proof. �

Proof of Lemma A.2: As τk(t) ≤ t < τk(t)+1, agents do not communicate during the time interval
(τk(t), t] and only perform local gradient steps. Thus, we have

x
(t)
i = x

(τk(t))

i −
t−1
∑

j=τk(t)

ηj∇Fi(x
(j)
i , ξ

(j)
i ).

Moreover, at the communication time τk(t), all the agents update their local vectors to the same

average vector received from the center node. Therefore, x̄τk(t) = x
(τk(t))

i ∀i, and we have

x̄t = x̄τk(t) −
t−1
∑

j=τk(t)

ηjḡ
(j) = x

(τk(t))

i −
t−1
∑

j=τk(t)

ηjḡ
(j).

If we substitute the above relations into Vt , we get

nVt = E

n
∑

i=1

‖x(t)
i − x̄t‖2

=
n
∑

i=1

E

∥

∥

∥

∥

∥

∥

t−1
∑

j=τk(t)

ηj∇Fi(x
(j)
i , ξ

(j)
i ) −

t−1
∑

j=τk(t)

ηjḡ
(j)

∥

∥

∥

∥

∥

∥

2

≤
n
∑

i=1

E

∥

∥

∥

∥

∥

∥

t−1
∑

j=τk(t)

ηj∇Fi(x
(j)
i , ξ

(j)
i )

∥

∥

∥

∥

∥

∥

2

≤ (t − τk(t))

n
∑

i=1

t−1
∑

j=τk(t)

η2j E‖∇Fi(x
(j)
i , ξ

(j)
i )‖2

≤ n(t − τk(t))

t−1
∑

j=τk(t)

η2j (3L
2Vj + 6Lej + 3σ̄ 2)

≤ nHk(t)+1

t−1
∑

j=τk(t)

η2j (3L
2Vj + 6Lej + 3σ̄ 2).

where the first inequality uses Lemma A.7, and the third inequality follows from Lemma A.5. More-
over, by our choice of step-size ηj ≤ 1

3LHk(t)+1
,∀j ≥ τk(t). Thus, for any time instance in the interval

[τk(t), τk(t)+1), we have shown that

Vt ≤ 1

3Hk(t)+1

t−1
∑

j=τk(t)

Vj + Hk(t)+1

t−1
∑

j=τk(t)

η2j (6Lej + 3σ̄ 2).

By recursively unrolling Vj, j = t − 1, . . . , τk(t) + 1, and noting that Vτk(t) = 0, we obtain

Vt ≤ 1

3Hk(t)+1
Vt−1 + 1

3Hk(t)+1

t−2
∑

j=τk(t)

Vj + Hk(t)+1

t−1
∑

j=τk(t)

η2j (6Lej + 3σ̄ 2)
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(Unroll Vt−1)≤
(

(

1

3Hk(t)+1

)2

+ 1

3Hk(t)+1

)

t−2
∑

j=τk(t)

Vj

+
(

1 + 1

3Hk(t)+1

)

Hk(t)+1

t−1
∑

j=τk(t)

η2j (6Lej + 3σ̄ 2)

(Unroll Vt−2)≤
(

1 + 1

3Hk(t)+1

)

· 1

3Hk(t)+1

t−3
∑

j=τk(t)

Vj

+
(

1 + 1

3Hk(t)+1

)

Hk(t)+1

t−1
∑

j=τk(t)

η2j (6Lej + 3σ̄ 2)

+
(

1 + 1

3Hk(t)+1

)

·
(

1

3Hk(t)+1

)2 t−3
∑

j=τk(t)

Vj

+
(

1 + 1

3Hk(t)+1

)

·
(

1

3Hk(t)+1

)

Hk(t)+1

t−1
∑

j=τk(t)

η2j (6Lej + 3σ̄ 2)

=
(

1 + 1

3Hk(t)+1

)2

· 1

3Hk(t)+1

t−3
∑

j=τk(t)

Vj +
(

1 + 1

3Hk(t)+1

)2

Hk(t)+1

t−1
∑

j=τk(t)

η2j (6Lej + 3σ̄ 2)

(Unroll Vt−3 , . . . ,Vτk(t)+1)

≤
(

1 + 1

3Hk(t)+1

)t−τk(t)

· 1

3Hk(t)+1
Vτk(t)

+
(

1 + 1

3Hk(t)+1

)t−τk(t)

Hk(t)+1

t−1
∑

j=τk(t)

η2j (6Lej + 3σ̄ 2)

(Vτk(t)
=0)

≤
(

1 + 1

3Hk(t)+1

)Hk(t)+1

Hk(t)+1

t−1
∑

j=τk(t)

η2j (6Lej + 3σ̄ 2).

Finally, by replacing (1 + 1
3Hk(t)+1

)Hk(t)+1 ≤ 2 into the above relation we obtain the desired bound.

�

Proof of Lemma A.3: Using Taylor expansion and the L-smoothness assumption, we can write

et+1 = Ef (x̄(t+1)) − f (x∗) (A11)

= Ef
(

x̄(t) − ηt ḡ
(t))

)

− f (x∗) (A12)

≤
(

Ef (x̄(t)) − f (x∗)
)

+ L

2
η2t E‖ḡ(t)‖2 − ηtE〈∇f (x̄(t)), ḡ(t))〉, (A13)

where we recall that ḡ(t) = 1
n

∑n
i=1 ∇Fi(x

(t)
i , ξ

(t)
i ). Next, we bound the second and third terms

in (A13). To bound the third term, using Assumption 2.3, we have

E〈∇f (x̄(t)), ḡ(t))〉

= E

〈

∇f (x̄(t)),
1

n

n
∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i )

〉
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= E

[

E{ξ (t)
i }

[〈

∇f (x̄(t)),
1

n

n
∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i )

〉

|F t

]]

= E

[〈

∇f (x̄(t)),
1

n

n
∑

i=1

E
ξ

(t)
i
[∇Fi(x

(t)
i , ξ

(t)
i )|F t]

〉]

= E

〈

∇f (x̄(t)),
1

n

n
∑

i=1

∇fi(x
(t)
i )

〉

= E

〈

∇f (x̄(t)),
1

n

n
∑

i=1

(∇fi(x
(t)
i ) − ∇fi(x̄

(t))

〉

+ E‖∇f (x̄(t))‖2

≥ 1

2
E‖∇f (x̄(t))‖2 − 1

2n

n
∑

i=1

E‖∇fi(x
(t)
i ) − ∇fi(x̄

(t))‖2

≥ 1

2
E‖∇f (x̄(t))‖2 − L2

2n

n
∑

i=1

E‖x̄(t) − x
(t)
i ‖2

= 1

2
ht − L2

2
Vt , (A14)

where the last inequality is by L-smoothness assumption. To bound the second term in (A13), we
have

E‖ḡ(t)‖2 = E

∥

∥

∥

∥

∥

1

n

n
∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i )

∥

∥

∥

∥

∥

2

= E

∥

∥

∥

∥

∥

1

n

n
∑

i=1

(∇Fi(x
(t)
i , ξ

(t)
i ) − ∇fi(x

(t)
i ))

∥

∥

∥

∥

∥

2

+ E

∥

∥

∥

∥

∥

1

n

n
∑

i=1

∇fi(x
(t)
i )

∥

∥

∥

∥

∥

2

= 1

n2

n
∑

i=1

E‖∇Fi(x
(t)
i , ξ

(t)
i ) − ∇fi(x

(t)
i )‖2 + E

∥

∥

∥

∥

∥

1

n

n
∑

i=1

(∇fi(x
(t)
i ) − ∇fi(x̄

(t))) + ∇f (x̄(t)))

∥

∥

∥

∥

∥

2

.

Thus, using the bounded noise Assumption 2.3, we get

E‖ḡ(t)‖2 ≤ σ 2

n
+ 2E‖∇f (x̄(t))‖2 + 2

n

n
∑

i=1

E‖∇fi(x
(t)
i ) − ∇fi(x̄

(t))‖2

≤ σ 2

n
+ 2E‖∇f (x̄(t))‖2 + 2L2

n

n
∑

i=1

E‖x̄(t) − x
(t)
i ‖2

= σ 2

n
+ 2ht + 2L2Vt , (A15)

where the second inequality holds by the L-smooth assumption. Finally, by substituting (A14)
and (A15) into (A13), we obtain

et+1 ≤ et − ηt

(

1

2
ht − L2

2
Vt

)

+ Lη2t
2

(

σ 2

n
+ 2ht + 2L2Vt

)

≤ et − ηt

4
ht + Lσ 2

2n
η2t + L2ηtVt ,

where the last inequality holds because ηt ≤ 1
4L . �
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We first establish the following technical lemma to prove the consensus descent lemma for the
nonconvex functions.

Lemma A.6: Let Assumptions 2.3 hold. Then,

1

n

n
∑

i=1

E‖∇Fi(x
(t)
i , ξ

(t)
i )‖2 ≤ 3(L2Vt + B2ht + σ 2 + G2).

Proof: We can write,

1

n

n
∑

i=1

E‖∇Fi(x
(t)
i , ξ

(t)
i )‖2

= 1

n

n
∑

i=1

E
∥

∥∇Fi(x
(t)
i , ξ

(t)
i ) − ∇fi(x

(t)
i ) + ∇fi(x

(t)
i ) − ∇fi(x̄

(t)) + ∇fi(x̄
(t))

∥

∥

2

≤ 3

n

n
∑

i=1

E‖∇Fi(x
(t)
i , ξ

(t)
i ) − ∇fi(x

(t)
i )‖2 + 3

n

n
∑

i=1

E‖∇fi(x
(t)
i ) − ∇fi(x̄

(t))‖2

+ 3

n

n
∑

i=1

E‖∇fi(x̄
(t))‖2

≤ 3σ 2 + 3L2Vt + 3(G2 + B2ht).

where the last inequality is obtained using the L-smoothness assumption and Assumption 2.3. �

Proof of Lemma A.4: By following the same steps as in the proof of Lemma A.2, we can write

nVt = E

n
∑

i=1

‖x(t)
i − x̄t‖2

≤ (t − τk(t))

n
∑

i=1

t−1
∑

j=τk(t)

η2j E‖∇Fi(x
(j)
i , ξ

(j)
i )‖2

≤ n(t − τk(t))

t−1
∑

j=τk(t)

3η2j
(

L2Vj + B2hj + σ 2 + G2
)

≤ nHk(t)+1

t−1
∑

j=τk(t)

3η2j
(

L2Vj + B2hj + σ 2 + G2
)

≤ nHk(t)+1

t−1
∑

j=τk(t)

3η2j
(

L2Vj + B2hj + σ 2 + G2
)

,

where in the second inequality, we have used Lemma A.6. Since by the choice of step size we may
assume ηj ≤ 1

3LHk(t)+1
, for any time instance in the time interval [τk(t), τk(t)+1), we have shown that

Vt ≤ 1

3Hk(t)+1

t−1
∑

j=τk(t)

Vj + Hk(t)+1

t−1
∑

j=τk(t)

3η2j
(

B2hj + σ 2 + G2
)

.
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Finally, if we recursively unroll Vj, j = τk(t), . . . , t − 1 as in the proof of Lemma A.2, we obtain

Vt ≤ (1 + 1

3Hk(t)+1
)Hk(t)+1 × Hk(t)+1

t−1
∑

j=τk(t)

3η2j
(

B2hj + σ 2 + G2
)

≤ Hk(t)+1

t−1
∑

j=τk(t)

6η2j
(

B2hj + σ 2 + G2
)

.

�

Lemma A.7: Let x̄ = 1
n

∑n
i=1 xi. Then, for any x′ ∈ R

d,
∑n

i=1 ‖xi − x′‖2 =
∑n

i=1 ‖xi − x̄‖2 +
n‖x̄ − x′‖2. In particular,

∑n
i=1 ‖xi − x̄‖2 ≤

∑n
i=1 ‖xi‖2.

Proof: We have,

n
∑

i=1

‖xi − x′‖2 =
n
∑

i=1

‖xi − x̄ + x̄ − x′‖2

=
n
∑

i=1

‖xi − x̄‖2 + n‖x̄ − x′‖2 −
n
∑

i=1

〈xi − x̄, x̄ − x′〉

=
n
∑

i=1

‖xi − x̄‖2 + n‖x̄ − x′‖2.

The second inequality holds by choosing x′ = 0. �

Lemma A.8: Let f be a L-smooth convex function. Then, for any x, y ∈ R
d, we have

f (x) − f (y) + L

2

∥

∥x − y
∥

∥

2

2
≥
〈

∇f (x), x − y
〉

,

‖∇f (x) − ∇f (y)‖2 ≤ 2L(f (y) − f (x) − 〈∇f (x), y − x〉).

Proof: The first inequality is an immediate consequence of the L-smoothness property. To show the
second inequality, let us define z = y − 1

L (∇f (y) − ∇f (x)). Then,

f (z) ≥ f (x) +
〈

∇f (x), z − x
〉

,

f (z) ≤ f (y) +
〈

∇f (y), z − y
〉

+ L

2
‖y − z‖2.

Therefore,

f (x) +
〈

∇f (x), y − 1

L
(∇f (y) − ∇f (x)) − x

〉

≤ f (y) −
〈

∇f (y),
1

L
(∇f (y) − ∇f (x))

〉

+ 1

2L
‖(∇f (y) − ∇f (x))‖2.

Rearranging the terms completes the proof. �
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A.5 Choice of β in Proposition 3.1

Here we prove that in Proposition 3.1, we can choose β = a� 24L
µ

�s · 12L
µ

+ 1 in order to satisfy

condition 1) in Corollary 3.1, i.e. Hi ≤ µ(β+
∑i−1

j=1 Hj)

12L , ∀i. Since a = O(n− s+1
2 T

1−s
2 ), the overall

convergence rate is stillO( 1
nT ).

Proof: Let k = � 24L
µ

�, then β ≥ Hk · 12L
µ

+ 1. For all i ≤ k, we have

Hi ≤ Hk <
µβ

12L
<

µ(β +
∑i−1

j=1 Hj)

12L
.

For all k ≤ i ≤ T, we would prove by induction that a · is ≤ µ(β+
∑i−1

j=1 Hj)

12L , thus concluding the proof.
In fact, for the base case i = k, we have

a ·
⌈

24L

µ

⌉s

<
µβ

12L
<

µ(β +
∑k−1

j=1 Hj)

12L
.

For inductive step, assume for some k ≤ i ≤ T, we have a · is ≤ µ(β+
∑i−1

j=1 Hj)

12L , then

a · (i + 1)s ≤
µ(β +

∑i
j=1Hj)

12L

⇐ a · (i + 1)s − a · is ≤ µHi

12L

⇐ a · (i + 1)s − a · is ≤ µa · is
24L

⇐
(

i + 1

i

)s

≤ µ

24L
+ 1

⇐ i ≥ 1

(
µ
24L + 1)

1
s − 1

⇐ i ≥ 1

1 + µ
12Ls − 1

⇐ i ≥ �24L
µ

� = k.

By induction we conclude that for all k ≤ i ≤ T, we also have Hi ≤ a · is ≤ µ(β+
∑i−1

j=1 Hj)

12L . �
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