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ABSTRACT ARTICLE HISTORY
We consider the distributed stochastic optimization problem where Received 29 September 2022
n agents want to minimize a global function given by the sum of  Accepted 23 July 2023
agents’ local functions and focus on the heterogeneous setting when KEYWORDS
agents'’ local functions are defined over non-i.i.d. datasets. We study Federated leaming; local
the Local SGD method, where agents perform a number of local SGD; distributed
stochastic gradient steps and occasionally communicate with a cen- optimization

tral node to improve their local optimization tasks. We analyze the

effect of local steps on the convergence rate and the communica-

tion complexity of Local SGD. In particular, instead of assuming a

fixed number of local steps across all communication rounds, we

allow the number of local steps during the jth communication round,

H;, to be different and arbitrary numbers. Our main contribution

is to characterize the convergence rate of Local SGD as a function

of {H,-}]’-?:1 under various settings of strongly convex, convex, and

nonconvex local functions, where R is the total number of communi-

cation rounds. Based on this characterization, we provide sufficient

conditions on the sequence {I-Ij}/’-?:1 such that Local SGD can achieve

linear speedup with respect to the number of workers. Furthermore,

we propose a new communication strategy with increasing local

steps that is superior to constant local steps for strongly convex local

functions. On the other hand, for convex and nonconvex local func-

tions, we argue that fixed local steps are the best communication

strategy for Local SGD and recover state-of-the-art convergence rate

results. Finally, we justify our theoretical results through extensive

numerical experiments.

1. Introduction

Stochastic Gradient Descent (SGD) is one of the most commonly used algorithms for
parameter optimization of machine learning models. SGD tries to minimize a function
f by iteratively updating parameters as: x'*! = x! — 1,8, where g’ is a stochastic gradient
of f at x" and 1 is the learning rate. However, given the massive scale of many modern ML
models and datasets, and taking into account data ownership, privacy, fault tolerance, and
scalability, distributed training approaches have recently emerged as a suitable alternative
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over centralized ones, e.g. parameter server [4], federated learning [7,12,20,25], decen-
tralized stochastic gradient descent [1,10,15,31], decentralized momentum SGD [36],
decentralized ADAM [21], among others [3,17,32].

A naive distributed generalization of SGD consists of having multiple agents computing
stochastic gradients distributedly, with a central node or fusion center, where local gradi-
ents are aggregated and sent back to the agents at every iteration. However, communicating
at each iteration induces a large communication overhead, where at each iteration of the
algorithm, all agents need to send their gradients to the central node. Then the central node
needs to send the agents the aggregated information. Local SGD [18,29,33,38], which can
be viewed as a special case of the well-known Federated Averaging algorithm [19] assum-
ing full participation of the agents, presents a suitable solution to the problem. Specifically,
in Local SGD, each agent independently runs SGD locally for a number of steps and then
aggregates by a central node from time to time only. The main advantage of Local SGD is
that multiple local updates would likely move the model parameters much faster to the opti-
mal solution in each communication round, thus effectively reducing the communication
overhead at the cost of more local computations.

On the other hand, it remains a delicate problem to choose the number of local steps
during each communication round in Local SGD, as too few local steps would result in poor
communication efficiency, while too many local steps would lead to slow convergence or
even non-convergence of the algorithm. The problem is further complicated by the vari-
ous scenarios the algorithm is facing, including different types of local objective functions,
i.e. strongly convex, general convex or nonconvex functions, as well as whether all agents
have the same objective function (the homogeneous case) [9,28,30] or different objective
functions (the heterogeneous case) [5,8,9,24,35]. In this paper we focus on the more gen-
eral heterogeneous case and study strongly convex, general convex and nonconvex local
functions respectively.

1.1. Related work

For the case of homogeneous local functions, i.e. when all agents have the same objective
function, it was shown in [9,30] that using O(npolylog(T)) communication rounds, one
can achieve convergence rate O (=) for Local SGD with strongly convex functions, where
n is the number of agents and T is the number of iterations (or local gradient steps).

A number of recent works have focused on the convergence analysis of Local SGD in
heterogeneous setting [5,8,9,24,35]. It is shown that (’)(%) is both alower and upper bound
for the convergence rate of Local SGD for strongly convex objective functions [8,24]. More-
over, it is known that (’)(ﬁ) is both a lower and upper bound for the convergence rate of
Local SGD for general convex and nonconvex objective functions [9,35]. These two con-
vergence rates are often referred to as linear speedup with respect to the number of agents
N for strongly convex and convex/nonconvex objective functions, respectively. The name
linear speedup comes from the implication that with N agents, the algorithm converges N
times faster than with just 1 agent [24]. Furthermore, for general convex and nonconvex
local functions it is shown that Local SGD can achieve linear speedup with (’)(n% T%) com-
munication rounds [8,9]. For strongly convex local functions, the results in [11] implies
that Local SGD can achieve (’)(bﬁ—(TT)) convergence rate with O(v/nT) communication
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rounds without the bounded gradient assumption; [24] showed that linear speedup can
be achieved with O(v/#T) communication rounds, however, their analysis requires the
bounded gradient assumption, which is unrealistic in certain cases (see, e.g. [9]).

On the other hand, while most of the works mentioned above assume a fixed number of
local steps across all communication rounds, several recent works have proposed different
communication strategies for Local SGD to reduce communication costs further. Specifi-
cally, in the homogeneous setting, [34] proposed an adaptive communication strategy that
gradually increases communication frequency for training neural networks. [6] gave an
error bound of Local SGD that explicitly relies on the sequence of local steps for noncon-
vex local functions that satisfy the Polyak-ojasiewicz condition and proposed decreasing
communication frequency. Recently, [27] proposed a linearly increasing number of local
steps for strongly convex objective functions and theoretically showed its better communi-
cation efficiency. This result has been further generalized in [22] to the network settings. In
the heterogeneous setting, [16] proposed decreasing communication frequency such that
a number of fully synchronized SGD steps are performed, followed by Local SGD with
a fixed number of local steps. On the contrary, [14] proposed increasing communication
frequency such that the number of local steps decreases exponentially until it reaches unit
local steps.

However, with the exception of [6], the aforementioned works focused on certain spe-
cific communication strategies, thus failing to provide a comprehensive understanding of
the role of local steps in the convergence rate of Local SGD. In this paper, we aim to system-
atically study the role of local steps in Local SGD in the more general heterogeneous setting
and study strongly convex, general convex, and nonconvex local functions, respectively.

Finally, [26] proposed Local SGD with an exponentially increasing communication
intervals, and showed upper bounds for the convergence rate of Local SGD that match with
the bounds shown in this paper.! However, [26] only focused on a specific communication
strategy that relies heavily on prior knowledge for the initialization of the algorithm (e.g.
setting up initial stepsize and initial communication interval), while this paper provides a
much broader analysis with less reliance on such prior knowledge.

1.2. Contributions and organization

In this paper, we allow the number of local steps during the jth communication round, Hj,
to be different integer numbers, and characterize the convergence rate of Local SGD with
respect to the sequence {Hj};;l, where R is the total number of communication rounds.
Such a characterization enables us to study the convergence rate of Local SGD for any
general communication pattern. We summarize our contributions as follows:

e We characterize the convergence rate of Local SGD explicitly as a function of {H;}X |

under various settings of strongly convex, convex, and nonconvex local functions.
e We provide sufficient conditions on the sequence {Hj}]}i1 such that Local SGD can

achieve linear speedup with respect to the number of agents, i.e. (9(%) convergence rate

for strongly convex local functions and O(ﬁ) convergence rate for general convex or
n

nonconvex local functions, that covers broad classes of communication strategies.
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e For strongly convex local functions, we propose a new communication strategy for the
Local SGD with an increasing number of local steps and show it can achieve linear
speedup convergence rate with O(v/nT) communication rounds without any assump-
tion on the boundedness of the gradients. To our knowledge, this is tighter than all
existing bounds of Local SGD with constant number of local steps.> We also validate
the superiority of the communication strategy through numerical experiments.

e Based on our convergence rate characterization, we argue that using fixed local steps is
the best communication strategy for Local SGD in the case of convex and nonconvex
local functions. Our results imply that Local SGD can achieve a linear speedup con-
vergence rate with O(n% T%) communication rounds, which matches the best-known
results in this setting [8,9]. Moreover, we show through numerical experiments that this
bound on the number of communication rounds to achieve linear speedup is almost
tight.

The paper is organized as follows. Section 2 describes the problem statement. Section 3
states our main results for the case of strongly convex and convex objective functions.
Section 3.3 extends our convergence rate analysis to the case of nonconvex functions. Sim-
ulation results are given in Section 4, followed by conclusions and future directions in
Section 5. For ease of presentation, all the proof details are deferred to the supplementary
materials.

2. Problem formulation

We consider the distributed stochastic optimization problem with a set of [n] = {1, ..., n}
agents, where each agent i € [1] holds a local objective function f;: R? — R that can be
expressed in a stochastic form

ﬁ(X) = EEiNDiFi(X’ gl) (1)

Here, x € R is the optimization variable, and D; denotes the distribution of random vari-
able &; over the parameter sample space €2; for agent i. The agents’ goal is to minimize the
global objective function f: R? — R given by the average sum of all the local functions
or, equivalently, solve the following unconstrained optimization problem

* . _1 . .
f ._felﬁ{r}i{f(x)_;;ﬁ(X)}, (2)

by performing local gradient steps and occasionally communicating with a central node to
leverage the samples obtained by the other agents.

We assume throughout the paper that f(x) is bounded below by f* (i.e. a global mini-
mum exists), f;(x) is L-smooth for every i € [n], and VF;(x, §;) is an unbiased stochastic
gradient of f;(x), which by now are standard assumptions in the context of federated
learning [8,9].

Assumption 2.1: For every i € [n], f;(x) is L-smooth in terms of x, that is

IVfix) = Vil < Lix—yl, VxyeR%ie[n].
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Moreover, for some of our results, we will require functions f; to be y-strongly convex
with respect to the parameter x as defined next.

Assumption 2.2: Wesay f;: RY — Ris y-(strongly) convex for some ;4 > Oifforallx,y €
R¥, we have

£ =iy + 5 [x =y = (V. x - y).

If u = 0, then f; is convex but not strongly-convex.

Next, as in [9], we consider the following definition, which allows us to measure the
heterogeneity among local functions.

Definition 2.1: Assume (2) admits a unique optimal solution x* = argmin f(x). We
define

VE(x" )] -

1 n
52 =— § Ee,
n
i=1

It follows that for all non-degenerate sampling distribution D;, 62 is well-defined and
finite and serves as a natural measure of variance in local methods. However, for nonconvex
objective functions where a unique x* may not exist, as in [8], we consider the following
assumption of bounded gradient dissimilarity.

Assumption 2.3 (bounded gradient dissimilarity): We say that the local functions f; sat-
isfy (G, B)-bounded gradient dissimilarity (or for short (G, B)-BGD ) if there exist constants
G > 0 and B > 1 such that

1 n
- Y IVA®I? < G+ B V@7 ¥x.
i=1

We also assume VF;(x, §;) is an unbiased stochastic gradient of f;(x) with variance bounded
by o2.

2.1. Local stochastic gradient descent

A popular method for solving (2) in a distributed manner is the local stochastic gradient
descent (Local SGD) method. In Local SGD, each agent performs local gradient steps, and
a central node will compute the average of all agents’ iterates every once in a while to guide
agents’ iterates toward consensus. Let us denote the total number of iterations in Local
SGD by T and the set of communication instances by Z C [T]. Then, in every iteration
t € [T] of the Local SGD i) each agent i € [n] performs stochastic gradient descent update
on its local objective function, and ii) if ¢ is a communication time, i.e. t € Z, each agent
i € [n] sends its current local solution xzm to the central node and receives the average of
all agents’ local solutions. The pseudo-code for the Local SGD algorithm is summarized in
Algorithm 1.

Finally, we consider the following definition of communication intervals in the Local
SGD.
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Algorithm 1 Local SGD
(0)

i

1: Input x;° =x@ for i € [n], total number of iterations T, the step-size sequence
{m}tT:_Ol, the set of communication time instances 7 = {rj}JR:O.

2 fort=0,...,T—1do

32 fori=1,...,ndo

4 Sample £, compute g! = VF;(x\", ")
5 if t +1 € 7 then

6 =L — g

7 else

R

9 end if

10: end for

11: end for

Definition 2.2: Given communication time instances 7 = {‘L’]'}JRZI, we let Hj = 7j — 7j1
be the length of the jth communication interval, i.e. the number of local steps between the
(j — Dthand jth communications. Moreover, for any time instance ¢ € [z}, 7j+1), we define
k(t) = j. In other words, k(t) is the index such that 7j;) < t < Tk 41.

Our main objective in this work is to characterize the convergence rate of Algorithm 1
with respect to the sequence of the local steps {I—IJ'}]R:1 as defined above, when applied to
the optimization problem (2).

3. Convergence results for local SGD

In this section, we state our main result for the case of strongly convex and convex func-
tions. To that end, let X¥ and g be the average of agents’ iterates and the average of their
stochastic gradients at time ¢, respectively, i.e.

_ 1o P
xW = - ngt), g(t) = ZVFi(xgt),Ei(t)).
i=1 i=1

Moreover, define the following parameters
1 n
n=EIKO —x 2 vi=-E) Ix -2V, e =EfGEN] - f&),
i=1

which represent the expected distance of the averaged iterates at time ¢ to the optimum
solution, the expected consensus error among agents at time ¢, and the expected optimality
gap at time .

3.1. Convergence result for strongly convex functions

Theorem 3.1: Let Assumptions 2.1 and 2.2 hold with u > 0. Then, the sequence gener-
ated by Algorithm 1 with stepsize n; = m, and any sequence of communication intervals
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{Hj}]R:l and parameter § > 20L such that

i—1
o< MET N Ho
7= 12L ’
has the following property:

(B — 1) 1262 144152 & H}
rT = 1o i T
nu W S He+ B

= 3)

where L is the smoothness constant, R is the number of communication rounds, and B is a
constant that can be tuned by the Local SGD algorithm to balance the first and third term
in (3).

An immediate corollary of Theorem 3.1 is the set of sufficient conditions on the sequence
{Hj}JR:1 that leads to linear speedup in the convergence of Algorithm 1.

Corollary 3.1: Assume that T > n. Let the sequence of local steps {Hj}]}-z:1 have the following
properties:

B HY (T
(1) H; < = , Vj (Z)ZH_T (3)2 Hk+ﬂ_0<;>'

Then, the sequence generated by in Algorithm 1 has the following property rr = O(%).

Next, using Corollary 3.1, we can analyze two special communication strategies, one
with a fixed number of local steps and the other with an increasing number of steps.

Proposition 3.1: Let Assumptions 2.1 and 2.2 hold with u > 0. Then,

(1) For the constant number of local steps H; = %, Vjand g = IZLT , the convergence rate
of Local SGD is upper bounded by rr = C’)(%), where R = O(\/ Tlog(nT)) is the

number of communication rounds.
(2) For the increasing number of local steps Hj = |af*|,Vj with a = (’)(n_% T%),
O<s<1and B = a(%}s : % + 1, the convergence rate of Local SGD is upper

bounded by rr = C’)(n—lT) with R = O(v/nT) number of communication rounds.

Remark 3.1: Based on the convergence rate upper bounds of Local SGD in Proposi-
tion 3.1, the communication strategy with an increasing number of local steps exhibits
better communication efficiency than a fixed number of local steps. Moreover, it is shown
in [35] that if adopting a fixed number of local steps, the convergence rate of Local SGD is
lower bounded by (9(%),4 suggesting that using the proposed communication strategy of
increasing number of local steps is at least aas good as fixed number of local steps.
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3.2. Convergence result for convex functions

In this part, we relax the assumption of strong convexity on the local function to merely
convex functions and analyze the convergence rate of Algorithm 1 in terms of the number
of local steps.

Theorem 3.2: Let Assumptions 2.1 and 2.2 be satisfied with i = 0 and set a stepsize as

N =-c %, Ve < ﬁ\/; Moreover, set the communication intervals to satisfy Hj < ﬁ =
7&, Vj. Thus, the iterates generated by Algorithm 1 have the following property:
1520 o4 6262 241623
~ Y e < + > H. (4)
= cvnT T j=1 ’

An immediate corollary of Theorem 3.2 is a sufficient condition on the sequence {Hj}]R=1
that leads to linear speedup in the convergence of Algorithm 1.

Corollary 3.2: Assume that T > n®. In order to achieve Linear Speedup, %ZtT;ol e =
O(\/%TT), it is enough to select the local steps sequence {Hj}f:1 such that

1) H —l _—\/_ Vj 2 ERH_T 3 ERH3_(9—;
) ]_7Ln 7Lcﬁ’ 5 ()j=1 ! ’ ()j T J (n%).

Remark 3.2: A closer look at the bound (4) reveals that in order to minimize the
error bound of Local SGD, the sequence {Hj}le should minimize Z]R:l Hj3 subject to

ZJR:I Hj = T.Thisleads to the communication strategy of a fixed number of local steps, i.e.

Hj= %. Therefore, based on the convergence rate of Local SGD derived in Theorem 3.2,
for convex local functions, the fixed number of local steps is the best communication strat-
egy for Local SGD. Moreover, from Corollary 3.2, we immediately get that in order to
achieve linear speedup, the number of communication rounds should be R = O((nT)3*),?
which correspond to the number of local steps H; = 3;31—;: Vj. This choice of the number of
local steps also results in the first and second term in the left-hand side of inequality (4) to

be of the same order, which is ‘efficient’ in a sense.

3.3. Convergence result for non-convex functions

In this section, we focus on the class of nonconvex local functions. However, we need
to impose the additional (G, B)-BGD assumption to analyze the convergence rate versus
communication complexity trade-oft. To state our main result, let us define

he = |IVFED) |12,

which is the gradient norm of the average iterates in the Local SGD. Then, we have the
following theorem.
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Theorem 3.3: Let Assumptions 2.1 and 2.3 hold, fix a stepsize ny = ¢,/ %, Y¢c < 4L\/?

and set a sequence of communication intervals that satisfy H; < 7Lan = %, Vj. Then,

the sequence generated by Algorithm 1 has the following property:

T-1 22 20,2 22, R
1 8eo + 4c‘o 48L°(0* + G*)c*n
?5 hy < +

0

/T o L ®

j=1

As a corollary of Theorem 3.2, we obtain the following set of sufficient conditions on
the sequence {Hj}JR: , that leads to linear speedup in the convergence of Algorithm 1.

Corollary 3.3: Assume that T > n®. In order to achieve Linear Speedup, % ZtT:_ol hy =
O(«/;ﬁ)’ it is enough to select the local steps sequence {I—Ij}j].i1 such that

1 VT ) R . 3 T2
W= ey = 7iBeym m};Hf_T’ (3)ZH ( )

Remark 3.3: By taking a closer look at the bound (5), it is easy to see that in order to
minimize the error bound of Local SGD, the local steps sequence {Hj} ~, should min-

imize Z]=1 Hj3 subject to ijl Hj = T. This leads to the communication strategy of a

fixed number of local steps, i.e. Hj = %. Therefore, using the convergence rate of Local
SGD obtained in Theorem 3.3, for nonconvex local functions, we conclude that a fixed
number of local steps is the best communication strategy for Local SGD. Moreover, from
Corollary 3.3, we immediately get that in order to achieve linear speedup, the number of
communication rounds should be R = O((nT)3/4),° which correspond to the number of
local steps Hj = Z;—;: Vj. This choice of the number of local steps also results in the first
and second term in the LHS of inequality (5) to be of the same order, which is ‘efficient’ in
a sense.

4. Numerical results

This section shows the results for two sets of experiments on the MNIST dataset [13] to
validate our theoretical findings. We focus on strongly-convex loss functions for the first
set of experiments, where we train a logistic regression model with I, regularization. We
focus on nonconvex loss functions for the second set of experiments, where we train a
small, fully connected neural network.

4.1. Logistic regression model for MNIST

In this set of experiments, we distribute the MNIST dataset to n = 20 agents and apply
Local SGD to train a multinomial logistic regression model with I, regularization. We
first sort the data by digit label, then divide the dataset into 100 shards and assign each
of 20 agents 5 shards. Each agent will have examples of approximately five digits, reflecting
moderately heterogeneous data sets.



10 (&) T.QNETAL

o
©
©

— Hi=1
— H;=2

o
©
©

Test Accuracy
Test Accuracy

Hi=5
0.87 Hi=10 0.87

H;=20
0.86 —— H;=50 0.86

— H;i=10-/%2
0.85 T T T T T 0.85 T T T T T T T T T
0 50 100 150 200 250 300 0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds R Number of Iterations T
(a) (b)

Figure 1. Logistic regression for MNIST. (a) Test accuracy vs. communication rounds for different com-
munication strategies. (b) test accuracy vs. the number of iterations for different communication
strategies. Simulation results averaged over 5 runs of the experiment.

Communication-Computation Trade off

fixed local steps
~#- increasing local steps

w
=3
=}

N
g
=}

200 4

Communication Rounds
=
w
o

=
o
)

v
=}

250 500 750 1000 1250 1500 1750 2000
Number of Iterations

Figure 2. Logistic regression for MNIST. Summary of the number of communication rounds and itera-
tions needed for the model to reach a 91.5% accuracy on the MNIST test dataset for different communi-
cation strategies. Yellow dots: fixed number of local steps. Red dot: increasing number of local steps as
in Proposition 3.1 with a = 10, s = 0.2. Simulation results averaged over 5 runs of the experiment.

We evaluate different communication strategies (i.e. various numbers of local steps
when following communication strategy with a fixed number of local steps and a = 10,
s = 0.2 when following communication strategy with an increasing number of local steps
as in Proposition 3.1) the corresponding communication rounds and iterations needed for
the model to reach a 91.5% accuracy on the MNIST test dataset. The simulation results are
averaged over 5 independent runs of the experiments and are shown in Figures 1 and 2.

For the set of hyperparameters, we use a training batch size of 8, I, regularization param-
eter © = 0.001, 8 = 1000 and set stepsize at iteration ¢ to be n; = %770, where the initial
stepsize 7o is chosen based on a grid search of resolution 107,

Figure 1 shows the details of the runs of the experiment. Figure 2 shows the summary of
the runs. For example, the upper left yellow dot in Figure 2 corresponds to the average of
5 runs of Local SGD with constant H; = 1, showing that with constant H; = 1 it took the
algorithm an average of ~ 305 communication rounds as well as total iterations to reach
91.5% accuracy.
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Figure 3. Speedup curve for Local SGD with different communication strategies. Fixed: fixed number of
local steps subject to a total of R = %T%n% orR= %T%n% communication rounds. Increasing: H; oc i2
subject to a total of R = %T%n% orR = %T%n% communication rounds. Decreasing: H; oc (R — i)2 sub-
jectto atotal of R = %T%n% orR = %T%n% communication rounds. The dashed black line corresponds
to speedup = /n.

Communication-Computation Trade-Off: In general, we can observe a communication-
computation trade-oft such that with more local computation (corresponding to a larger
number of iterations T'), less communication is needed (corresponding to a smaller number
of communication rounds R) for the model to reach a certain accuracy.

Better Communication Efficiency with Increasing Number of Local Steps: As we can
see from Figure 2, the red dot lies to the bottom left of the yellow line, which shows
that the communication strategy of an increasing number of local steps is indeed more
communication efficient than a fixed number of local steps, thus validating our claim in
Remark 3.1.

4.2. Neural network for MNIST

In this set of experiments, we distribute the MNIST dataset to n agents and apply Local
SGD to train a fully-connected neural network (2NN) with 2-hidden layers with 50 units
each using ReLu activations (42310 total parameters).” We first sort the data by digit label,
then divide the dataset into n shards and assign each of n agents 1 shards. Each agent will
have examples of approximately one digit, reflecting the most heterogeneous data sets.
We evaluate the speedup effect of the number of agents n for different communication
strategies. In particular, we set a fixed number of T = 20, 000 iterations and run Local
SGD for T iterations with different communication strategies, a different number of agents
n, and a different number of communication rounds R. After that, a speedup factor is
derived by dividing the expected error of a single worker SGD at the final iterate T by
the expected error of Local SGD with different communication strategies and a different
number of agents # at the final iterate T. We plot the speedup curve in Figure 3. In the case
of linear speedup, we should expect the dashed black line on the graph, corresponding to

speedup = /.
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We use a training batch size of 1 and choose stepsize 1 based on a grid search of
resolution 1073, The simulation results are averaged over 5 independent runs of the
experiments.

Better Performance with Fixed Number of Local Steps: We can observe from Figure 3
that Local SGD with fixed number of local steps significantly outperforms its increasing or
decreasing number of local steps counterparts in both settings of R = %T3/ 4n3/4 (corre-
sponding to sufficient communication) and R = %T3/ 4n1/2 (corresponding to insufficient
communication). This validates our claim in Remark 3.3 that a fixed number of local steps
is the best communication strategy for Local SGD for nonconvex local functions.

Almost Tight Bound for R = O((nT)**) to Achieve Linear Speedup: Another observa-
tion from Figure 3 is that while setting R = O((nT)**) and following a communication
strategy of a fixed number of local steps, Local SGD successfully achieved linear speedup,

as expected, decreasing R by a factor of ni fails for Local SGD to achieve linear speedup,
even with the best communication strategy of a fixed number of local steps. This suggests
that the bound of R = O((nT)*/*) to achieve linear speedup is close to tight.

5. Conclusions

In this paper, we analyzed the role of local steps in Local SGD in the heterogeneous
data setting. We characterized the convergence rate of Local SGD as a function of the
sequence of the local steps {H;}R | under various settings of strongly convex, convex, and
nonconvex local functions. Based on this characterization, we gave sufficient conditions
on the sequence {H;}X | that covers broad classes of communication strategies such that
Local SGD can achieve linear speedup. Furthermore, for strongly convex local functions,
we proposed a new communication strategy with increasing local steps that enjoy better
performance than the vanilla fixed local steps communication strategy theoretically and
in numerical experiments. We argued that fixed local steps are the best communication
strategy for Local SGD and recover state-of-the-art convergence rate results for convex
and nonconvex local functions. Such an argument is validated by numerical experiments,
which showed that the results are almost tight.

As a future research direction, one can consider analyzing the role of local steps in other
federated optimization methods, e.g.SCAFFOLD [8], FedAC [37]. Moreover, generalizing
our work to directed networks in which agents communicate with their neighbours rather
than a central node is another interesting research problem, e.g. for Stochastic Gradient
Push algorithm [2]. Also, we only considered the role of local steps in Local SGD with
full agent participation; generalizing it to the partial participation setting is yet another
interesting problem.

Notes

1. Our work was done independently of [26], which was brought to our attention during the review
process.
2. For constant number of local steps, the results in [11] implies that Local SGD can achieve

O(bi#) convergence rate with O(v/nT) communication rounds without the bounded gradi-
ent assumption; [24] showed that linear speedup can be achieved with O(+/nT) communication
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rounds, however, their analysis requires the bounded gradient assumption. Recently, [26] pro-
posed a communication strategy with exponentially increasing number of local steps (different
from ours) and also showed (’)(%) convergence rate with O(+/nT) communication rounds.

3. It is easy to see that for such choice of parameters conditions (2) and (3) in Corollary 3.1 are

satisfied. For the proof of condition (1), we refer to Appendix A.5.

4. In fact, Theorem 2 in [35] stated a lower bound of O(n—lT) + O(TTRQ + min{(’)(exp(—R—;)),
O(R—TS)}. The higher order terms also suggest that in order to achieve O(%) convergence rate,
R needs to be at least max(O(n~1/3T2/3), O((Tlog(nT))'/?)).

. This matches the best-known results in the setting [9].

. This matches the best-known results in the setting [8].

7. We have deliberately chosen to train a small neural network to avoid getting an overparameter-
ized model, in which case the convergence rate of Local SGD would be different [23].
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Appendix. Omitted proofs

A.1

Proof of Theorem 3.1

In order to prove Theorem 3.1, we first establish the following two lemmas. The first lemma allows
us to establish a descent property for the distance of iterates from the optimal point, while the sec-
ond lemma bounds the consensus error among the agents. The proofs of these lemmas are given in
Appendix A 4.



16 («) T.QINETAL

Lemma A.1 (Decent lemma): Let Assumption 2.2 hold. Then,
362,
rep1 < (1 — ung)re — neer + 77“ + 2Ln; Vs

Lemma A.2 (Consensus error lemma): Let Assumption 2.2 hold. Then,
t—1
Vi < Hi1 y_, n7(12Lej + 652).
J=Tk(n)

where k(t) is the index such that Ty <t < T(p)+1.

Using Lemmas A.1 and A.2, we can now prove Theorem 3.1.

Proof of Theorem 3.1: For n; = m, it is easy to see that (t + B2 —pun)=@+pE+p—

2) < (t+ B — 1)%. Thus, if we multiply both sides of the expression in Lemma A.1 by (¢ + B)?, we
can write
2

(t+ B rep1 < (t+ B — 1P — (t+ B) e + (t+ ﬁ)zgnf + (t+ B)*2Ln, V;

n

20t + 1262 AL(t+
— e po - D, 200 AEED,

np I

Summing this relation over t = 0,..., T — 1, we get
T-1 -2 T-1
2(t + 126%T 4L
(T+B-D’rr < (B—1’ro— ) (Mﬁ)et+ e +;Z(t+ﬂ)vt. (A1)

t=0 t=0

Next, we use Lemma A.2 to bound the last term ZtT:_Ol (t + B) V¢ in the above expression (Al). We
have

T—1 T—1 t—1
D+ BV <Y (t+ BHips1 Y nj(12Lej +657)
t=0 t=0 J=Tko)
T—2 Th()+1—1
=Y 0 (12Lej+65%) > (t+ PHkpn
j=0 t=j+1
T—2 Tk(j)+1—1
=) i (12Lej + 65°) Hygj 1 > t+p), (A2)
j=0 t=j+1

where the last equality holds because k(t) = k(j) forany ¢ € [j + 1, x(j+1 — 1]. Moreover, using the
assumption on the communication intervals, we have
ki)
Th()+1 — k() = Highp+1 < B+ ZHz =B+ j»
=1

which implies 711 < B + 27k(j). Using this relation together with ;) < j < T¢(j)+1, we can write

Tk()+1—1 Ti(j)+1—1
dY+p < Y. t+h
t=j+1 =T

Tk()+1 + Tk(i))

=< (Tk()+1 — k() (,3 + 3
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/3 + 3‘Ek(])

< Higy+1 (ﬂ + 3

) Hk(])+1(] + B).

Substituting this relation into (A2), we get

T-1 T-2

D+ PV < Z 7(18Lej +957)(j + B)Hfj) 4,

t=0
T-2 2
Z 72L 3602 Hi 11
t= 2 t+ﬂ .

where in the second equality we have used n; =
substitute the above relation into (A1), we obtain

i /3 7 and relabeled the index j by ¢. Finally, if we

1262T (28812 Hiyyy  2(t+ B)
(T+ﬂ—1)2rT—(ﬁ—1)2ro< +t2(;< ey el

(A3)

—2 T—=2 rg2
144LO'2 Z Hk(t)-H

: )
W t+p

Now, using the condition on the length of communication intervals in the theorem statement, we
know that

k) g
nw(B+ 2 _rB+ Tk(t)) w(p+ t)
12L 12L 12L
Substituting this bound in (A3) we obtain

Hip41 <

12627 144157 = Hig i
(T4 B = VPrr— (B =D = =0 4 = 50 20

nu t=0

1252 T, 144Lc7 Z ’il Hﬁ(tm
nu?

i=1 t=1i

-2 -2 R 3
- 126°T n 144Lo Z H;

T onp? w o =i+

L 126°T | 144L6° & HP

- 2 3 i—1 >
nw 123 i=1 j=1 H] + ,3

where the second equality holds because for any t € [r;_}, 7;), we have k(¢) + 1 = i. Dividing both
sides by T2, we obtain the desired bound. ]

A.2 Proofof Theorem 3.2

Proof: Let us set n; = 1, Vt, for some parameter 1 to be determined later. Substituting & = 0 in
Lemma A.1 and summingover t = 0,...,T — 1, we get

T-1

nZet<r0—rT—f- +2LnZV, (A4)
=0 t=0
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Next, we use Lemma A.2 to bound ZtT:_Ol V. We have,

T-1 t—1

T-1
Ve Hiaw ) n'(12Le+66%)
t=0

t=0 J=Tk(t)
T—2 TkG+1—1 T—1
< 12Ly? Z ¢ Z Hiy+1 + 6571° Z Hip+1(t — Trny)
=0 t=j+1 t=0
T-2 T—1
< 12Ly° Z ejHl%(j)-H +657n" Z HI%(:)+1
=0 =0
1 T—2 . R . N
_Egeﬁ on; 2, (A5)

where in the third inequality we have used the fact that k(t) = k(j) for any ¢ € [j + L, t¢y+1 — 1],
and t — Tk < Hi()+1, and in the last inequality we have used H; < ﬁ, Vi. Now, we can write

R

1 — _f—rr 362nT 2 o 5
B Z + = 12157 Z H.
t=0 i=0
Dividing both sides of the above inequality by T and using the choice of n = ¢,/ 7, we obtain

2rp + 6c252 2415220 R
fzet_ 0 + 2 H;.
c/nT T? 4

A.3 Proofof Theorem 3.3

To prove Theorem 3.3, we first establish an analogous descent lemma and consensus error lemma
for the case of nonconvex local functions. The proofs of these lemmas are given in Appendix A.4.

Lemma A.3 (Decentlemma, non-convex): Assume that VF;(x, ;) is an unbiased stochastic gradient
of f;(x) with variance bounded by 5. We have

2
Nt Lo
ery1 < e — —h + 777,2 + L2, Vs
4 2n

Lemma A.4 (Consensus error lemma, non-convex): Let Assumption 2.3 hold. Moreover, assume
that VF;(x,£;) is an unbiased stochastic gradient of f;(x) with variance bounded by o*. For any t,
define k(t) be the index such that Ty <t < Ti(s)4+1. We have
t—1
Ve < Huper ) 60 (B +0° +G).
J=k

Proof of Theorem 3.3: Let us choose n; =1, for some 1 to be specified later. By summing
Lemma A3 overt=0,...,T — 1, we get

S

T—1 2.2 T—1
Lo“n*T
IS e —er+ =212 4123 Vi (A6)
t=0 2n t=
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Next, we use Lemma A.4 to bound ZtT:_Ol V. Using the same idea as in deriving expression (A5) in
the proof of Theorem 3.2, we can get

T—1 T—1 t—1
Vi <) Hinr y, 60°(B*hj+0° + G
t= t=0 J=Tk(r)
T-2 Tk(+1—1 T-1
< 6B%n? Z & Z Hi 41+ 6(0” + G Z Hi(p)+1( — Thr))
=0 t=j+1 =0
T2 T-1
< 6B2n2 Z ejH,%(]-H_1 + 6(02 + G2)772 Z Hl%(t)+1
j=0 t=0
T2 R

1
<n > he+6(0?+GHn? Y HY,
t=0 i=0

1

where in the last inequality we have used H; < Vi. Now, we can write

7BLy’
T-1 2 R
1 eo—er Lo°nT
Y < 2T T L6126+ G Y HY
8 t=0 " 2n i=0

Substituting n; = cﬁ into the above inequality and dividing both sides by T we get the desired
bound. u

A.4 Proofoflemmas

Proof of Lemma A.1: Consider the filtration {F*}°, adapted to the history of random variables
@y &
(&), ie.

Fr=1EPliemo<k<t—1 (A7)

and note that gf-_l = VF,; (xf_l, éi(t_l)) and xf are F'-measurable, but gf is not. Using the definition

ofr, = E[|x® — x*|?and g = % > iL1 8> we have

re1 = E[xD — x*)1%]

=E[Ix? — ng® —x*|1]

n n 2
—E|[x0-x -2 Zl VA - & le(g(” — Vfix))
1= 1=
— " 2 ) » 2
=B | [0 —x = 23 viedh| | R H o &Y = VhiED)
i=1 i=1

2 ) i n n )
- LEs [<x“> —x - ; Vi), E [Z(g“) ~ Vfi(xh) |Pm ,

i=1

where the last term is obtained by first conditioning on F* and then taking expectation with
respect to F'. However, the last inner product in the above expression is zero, we have E[g!|F'] =
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Vfi(x!), Vi, and thus E[} 7, (8 — Vfi(x}))|F'] = 0. Therefore, we have

2 L 2
1’[+1=E|: :| +77t2E |:‘n :| (A8)
i=1

D @Y - VAkD)
We can bound the second term in Equation (A8) using [11, Proposition 5] as the following:

20 _ _ t
X x* nZVf(x)

i=1

i=1 i=1

2
32 & 6L 352
‘ = = ) Elw - %17 + 2 (B ®)] - f(x) + =

tZ@LWMD

312 6L 362
= —th + —e + —.
n n

In order to bound the first term in (A8), we can write

n
- Nt 2
Ex® — x* — - 21: VAEED |
1=

Y VAGD

2

—EIx0 —x*’ + LE
n

i=1

2 n
_ 2 s o !
SR —x ,iXI:Vf,(x,)). (A9)

Tobound E|| Y7, Vfi(x})||* in (A9), we can write

n n 2
Y VA = Y VAR
i=1 i=1

2

n
ElI)  VA&DI? < 2E +2E
i=1

Y VAR =) V)
i=1 i=1

<20E Y |Vfix) — VA +20E Y V&) — VA&

i=1 i=1

n
<2ml’EY " |Ix? — V)2 + 4’ LEFE?) — f(x*)

i=1
= 2n?L? Vi + 4n2Let,

where in the last inequality, we have used Lemma A.8. To bound Ex® — x*, VS (xf)) in (A9),
we have

Ex® - x, i Vfi(x})
i=1
= XH:E&(” — x*, Vfi(xh)
i=1
= Xn:E(i(” —x Vfixh) + iE(x,f” —x*, Vi(x))
i=1 i=1
>ZE%M)ﬂN) W’“WL&FWﬁ%ﬂm+g“)XH
i=1
—mewrﬂmw EW”KW—C?ﬂéMWLWW

u L—pu
= ne; + Enrt — <T) nVy,
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where the first inequality follows from the strong convexity assumption and Lemma A.8. Moreover,
in the last equality, we used Lemma A.7. Finally, if we put the above bounds into (A9) and substitute
the result into (A8), we obtain

2
2 L—
rep1 < 1+ n—t(anLth + 4n2Let) _ ney + Enn — Mth
n? n 2 2
, (3% 6L 352
+ni | —Vi+ —e + —
n n n

2
= (1 — uny)re — (277t — 4L —

6Ln;
n

3L2 2 36,2 2
)et + <2L2nf + (L — e + n’”) Vi+ nm
=22

30°n;
< (I — pungre — nrer + 2L Ve + o

where the last inequality holds because n; < ﬁ.

In order to prove the consensus error lemma (Lemma A.2), we first state and prove the following
auxiliary lemma, which bounds the expected sum of the gradient norms across all agents.

Lemma A.5: For strongly convex L-smooth local functions, we have

i

1 n
=S TEIVEG®, 6712 < 312V, + 6Le; + 362
n

i=1

Proof: Starting from the left-hand side, we can write

1 n
=) EIVEx &)1
i=1

i

1 — _ - 2
= Y E|VEx") - VEG, &) + VEGD, ) - VR g + VEGEED)|
i=1

3 _
< 2 Y EIVEGY, ) - VEE &P

i=1

3« _ i
+ = Y EIVE(" &) - VEGEY, &) + 367
i=1

3 o _ _
< = Y EIVEGE,£") - VR E)P + 317V, + 362, (A10)
i=1

where the first inequality uses Definition 2.1, and the second inequality uses L-smooth assumption.
We have

n
S EIVEGY, &) - VEx*, &)

i=1

n n
<2 Y E[FGY,6") - Fx* )] — 20 Y E(VE(x £), 50 - x*)

i=1 i=1

= ZLZE[ﬁ(;((t)) —fz(X*)] _ ZLZE(Vfi(X*),)_((t) )
i=1

i=1
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=2nLE[fx") — f(x*) — (VF(x"),x" — x*)]
=2nLE[fx") — f(x")] = 2nLey,

where the first inequality uses Lemma A.8, and the last equality holds because x* is the global
minimum of f, and hence Vf(x*) = 0. Substituting the above relation into (A10) completes the
proof. ]

Proof of Lemma A.2: As T(y) <t < T(p+1, agents do not communicate during the time interval
(Tk(r)» t] and only perform local gradient steps. Thus, we have

t—1
t (Tk(r)) Z ()]
Xl() — X,’ k) ﬂjVFi(X?))g,'] )
J=Tk(r)

Moreover, at the communication time i, all the agents update their local vectors to the same

. = T .
average vector received from the center node. Therefore, X*® = x} K0 )Vz, and we have
t—1 =
ot 2T U Tk(t) U
X =Xk — Z njg(’) =X — Z njg(’).
J=Tko) J=Tk(t)

If we substitute the above relations into V;, we get

n
v =E) I - x|

i=1

n t—1 ) ) t—1 2
=SE| Y pvEa.s) - Y g
=1 |j=m%e J=Th(n)
n t—1 . . 2
<Y E| Y yvra?&)
i=1 [j=m
n t—1 ) )
<t-nuw Y. Y. PEIVEE &)
i=1 j=Tk()

t—1

<n(t—T) Y, nyBL’Vj+ 6Lej +357)
J=Tk(t)
t—1
< nHypq1 Y 17 (3L*Vj + 6Lej + 367%).
J=Tk(t)

where the first inequality uses Lemma A.7, and the third inequality follows from Lemma A.5. More-
over, by our choice of step-size 1; < m, Vj > ti(s). Thus, for any time instance in the interval
[Tk(t)> Th(t)+1)> we have shown that
1 t—1 t—1
Vi< ——— Y Vi+Hipp y_ n(6Lej+357).
3Hk+1 .~ £
J=Th() J=Thk()

By recursively unrolling Vj,j =t — 1,..., Tk + 1, and noting that V7, , = 0, we obtain

t—2 t—1
Vi< — Vi + — Vi + Hiy 1 n?(6Lej + 362)
3Hk(t)+1 3H(t)+1 Z ! ® Z 7

J=Tk(ny J=Tkt)
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Unroll V,_ 2
( nrOS 1) ( 1 > Z v,
3Hk+1 3Hk(t)+1

J=Tket)

t—1

1
+(1+ 7> Hi+1 E n?(6Le; + 35%)
( 3Hk()+1 © =Thte ! !

(Unroll V;_,) 1
= (1 >
3Hk(t)+1 3Hk(t)+1 fl

t—1
Hiy1 ) 1j(6Lej +357)
J=Tk(t)

2 t-3
) () 2
3Hk(t)+1 3Hkp+1

J=Tkat)

+

3Hk(t)+1 >

_|_
_|_

+

(1

1 t—1
1+ . Hy n?(6Le; + 36%)
( 3Hk(t)+1> ( > o+ Z ! /

3Hk 1 J=Tk(

t—3 t—1

1\ 1 Ly
=(1+ ) Vi+ <1 + 7) H(t)+1 n?(6Lej + 362)
< 3Hkw+1/)  3Hkm+1 ]%: : 3Hiwr+ J';(:t) T

(Unroll Vy_3,..., ka(,)+1) < 1 )tfk(t) 1
=< 1+ — —_—
3Hg(+1 3Hk(r)+1

ka( t)

1 =Tk t—1 5 5
+ 1+7> Hkt+l 7’](6Le+36' )
( 3Hy(t)+1 ® Z J !

J=Tk(t)
(ka(t)=0) 1 Hi+1 =1 B
< <1+ 7> Hipy+1 Z njz(6Lej+302).
3Hky 1 =Tk

Finally, by replacing (1 + W)H’f(”+1 < 2 into the above relation we obtain the desired bound.

[ |
Proof of Lemma A.3: Using Taylor expansion and the L-smoothness assumption, we can write
erpr = BfGTY) - f(x") (AL1)
=Ef (X" —nig?) —f(x*) (A12)
< (Bf &) —f(x) + 3 n (EIg"1” — nE(Vf &), 5)), (A13)

where we recall that g = 1 w2 ie1 VEi (x(t) E(t)). Next, we bound the second and third terms
in (A13). To bound the third term usmg Assumption 2.3, we have

E(vfx®),g"))

—-E <Vf()_((t)), l Z VFi(XEt), Ei(t))>
n i=1
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E[ ) [<Vf(x(”) iva(xf”,sf”>>|ffﬂ
i=1
=E [<Vf(x“>> = ZE 0l VE(x?, s}”nff]ﬂ
—E <Vf(x<f>) > Vfix? )>

—E <Vf &), % Z(Vﬁ-(x?”) - Vﬁ(i“))> +EVf D)2

i=1

%

1 1 &
=(Hy\ 12 au ()N = (Dy (12
EEIIVf(X )|l ~ o ;:1 E|IVfi(x") — VAE)|

A%

1 ) J R
SEIVFEDI? - - Y EIRY - x|
i=1

1 12
=h— =V, Al4
Sh——Vi (A14)

where the last inequality is by L-smoothness assumption. To bound the second term in (A13), we
have

2

E”g(t) ”2 Z VF (X(t) %-l(t))

2

2
1 o Iy
_E H . Z(Vpi(xlgt),%.i(t)) _ Vf,-(Xft))) +E H - Z Vfi(xlﬁt))
i=1 =1

2
== ZEHVF x",&0) = VEEI? + E Z(Vﬁ( ) = VAEED)) + V&)
i=1 i=1
Thus, using the bounded noise Assumption 2.3, we get
o? 2
EIg" > < — +2BIV/EDIP + = 3 BNV — VAED)I?
i=1
2 t

< T P BNV + 2 ZEux(” x|
0_2

= — 42k +2L%V,, (A15)
n

where the second inequality holds by the L-smooth assumption. Finally, by substituting (A14)
and (A15) into (A13), we obtain

1 L? L o2
€t+1§€t—77r< ht—EVt>+l( +2ht+2L2Vt>

<e — *ht + 7’% I+ LV,

where the last inequality holds because 1; < E' |
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We first establish the following technical lemma to prove the consensus descent lemma for the
nonconvex functions.

Lemma A.6: Let Assumptions 2.3 hold. Then,

1 n
- S EIVE", 6N < 3(L2V; + Bhy + 0 + GP).

i
i=1
Proof: We can write,

1 n
=S EIVE&, &)1
n i=1
1 — _ _
= Y E|VE&, &) - Vi) + Vi) - VAEED) + VAEED) |
i=1
3« 3« _
< = Y EIVEX"E) = VDI + = 3 EIVe") - VD)
i=1 i=1

3 <& _
+- 21E||Vﬁ(x<”>||2
1=
<302 4+ 3L%V, + 3(G* + B%hy).

where the last inequality is obtained using the L-smoothness assumption and Assumption 2.3. W

Proof of Lemmma A.4: By following the same steps as in the proof of Lemma A.2, we can write

n
Ve =E) I - x|
i=1

n t—1
t—aw) Y. > PEIVEE, &)

i=1 ]= Tk(t)

IA

t—1
n(t— ) Y 30} (L*Vj+ B*hj+ 0 + G
J=k)

IA

t—1
nHyw1 Y, 307 (LVi+ B*hj+ 0% + G?)
J=Tka

IA

t—1
nHiwg1 Y 307 (LVi+ B*hj + 07 + G?),
J=Tk(t)

IA

where in the second inequality, we have used Lemma A.6. Since by the choice of step size we may
assume 7; < m, for any time instance in the time interval [T (), Tk(s)+1), we have shown that

t—1 t—1

< —— ) Vit Hpn Y 30 (Bhj+0 +G).
3Hk(t)+1 . C
J=Tk(t) J=Tk(t)

Vi
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Finally, if we recursively unroll Vj,j = k), . .., t — 1 as in the proof of Lemma A.2, we obtain

t—1
YO x Hyy 1 Y 307 (Bhj+ 0 + G7)
J=Tk(t)

i<+

3Hk(t)+1

t—1
< Hipr Y 60} (B’hj+ 0> + G).
J=Tk(n)

Lemma A.7: Let X = %Z?:l xi. Then, for any X' e R4, Y0 |l — X2 =30, IIxi — X)® +
n||x — x'||2. In particular, Y"1 |Ix; — x|1> < Y0, [Ixil|%.

Proof: We have,

n n
2 S S 2
Dlxi—x1P =) lIxi—x+x—x||
i=1 i=1
n n
=) I — %P+ nlx—xP =) (i —%%—x)
i=1 i=1
n
= lxi — %|* + nlx — X%,
i=1

The second inequality holds by choosing x" = 0. ]

Lemma A.8: Let fbe a L-smooth convex function. Then, for any x,y € R% we have

L
f@ —f) + 3 |x=y5 = {(Vf(.x —y),

IVf ) = VWP < 2L(F(y) = f®) — (V(x),y = x)).

Proof: The first inequality is an immediate consequence of the L-smoothness property. To show the
second inequality, let us definez =y — %(Vf (y) — Vf(x)). Then,

f@) = f + (Vf(x),z — x),
L
f@ <fy)+(Vf(y)rz—y)+ Iy = z|.
Therefore,
1
f+ <Vf 0,y = 7 (V) = V) = x)
< fn ~ (Vf ), 1 (V) — VF o)

1 2
+ o 1V = VDI

Rearranging the terms completes the proof. |
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A.5 Choice of §8 in Proposition 3.1

Here we prove that in Proposition 3.1, we can choose § = a(ML]S . IZL

WP+ Hy)
12L

+ 1 in order to satisfy

condition 1) in Corollary 3.1, ie. H; < , Vi. Since a = O(H_T TT), the overall

convergence rate is still O( n—lT ).

Proof: Letk = (%W,thenﬁ > Hj - % + 1. For all i < k, we have

1B+ Y1 Hy

H; < Hy < ﬁ < —ZJ L
12L 12L

w(B+3 21 Hj)

Forallk < i < T, we would prove by induction thata - ¥ < o7

In fact, for the base case i = k, we have

4L B u(ﬁ+Z IHJ
a. — < —_— .
I 2L = 120

, thus concluding the proof.

. . . . B+ Hj)
For inductive step, assume for some k < i < T, we have a - i* < MSIZT”, then
1B+ i H))

(i 1) <
a-(+1)7= 12L

. s _ MHi
“a- 1Y —a- <
a-(i+1) —a 1_12L

ua- i
24L

=a-(i+1)y¥—a-i

- i+1 1
i _24L
1

—

G +Ds—1

IA

iz

, 1 o241
ciz—F—— =iz[—]=k

u(B+Y 21 Hy)

By induction we conclude that for allk < i < T, we also have H; < a-#* < 12L
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