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Abstract

We compute some ℝ-motivic stable homotopy groups.

For 𝑠 − 𝑤 ⩽ 11, we describe the motivic stable homo-

topy groups𝜋𝑠,𝑤 of a completion of theℝ-motivic sphere

spectrum. We apply the 𝜌-Bockstein spectral sequence

to obtain ℝ-motivic Ext groups from the ℂ-motivic Ext

groups, which are well understood in a large range.

These Ext groups are the input to the ℝ-motivic Adams

spectral sequence. We fully analyze the Adams differen-

tials in a range, and we also analyze hidden extensions

by 𝜌, 2, and 𝜂. As a consequence of our computations, we

recover Mahowald invariants of many low-dimensional

classical stable homotopy elements.

MSC 2020

14F42, 55Q45, 55S10, 55T15 (primary)

1 INTRODUCTION

The goal of this article is to compute the stable homotopy groups of theℝ-motivic sphere spectrum
in a range. These stable homotopy groups are the most fundamental invariants of the ℝ-motivic
stable homotopy category, and thus lead to a deeper understanding of many of the computa-
tional aspects of ℝ-motivic homotopy theory. More specifically, we work in cellular ℝ-motivic
stable homotopy theory, completed appropriately at 2 so that the ℝ-motivic Adams spectral
sequence converges.
Our main tool is the ℝ-motivic Adams spectral sequence, which takes the form

𝐸2 = Ext(𝕄2,𝕄2) ⇒ 𝜋∗∗.

Here  is the ℝ-motivic Steenrod algebra, 𝕄2 is the ℝ-motivic cohomology of a point, and 𝜋∗,∗
is the bigraded homotopy groups of the 2-complete ℝ-motivic sphere. We obtain complete results
about 𝜋𝑠,𝑤 for 𝑠 − 𝑤 ⩽ 11. This approach follows [12], which computed 𝜋𝑠,𝑤 for 𝑠 − 𝑤 ⩽ 3.
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1756 BELMONT and ISAKSEN

See [7] for large-scale ℝ-motivic Adams charts. These charts are an essential companion to
this article. In a sense, this article consists of a series of arguments for the computational facts
displayed in the Adams charts.

1.1 The 𝝆-Bockstein spectral sequence

The first step in an Adams spectral sequence program is to obtain the algebraic 𝐸2-page. We study
this computation in Sections 5–7.We use the 𝜌-Bockstein spectral sequence, which takes the form

Extℂ(𝕄ℂ
2 ,𝕄

ℂ
2 ) ⇒ Ext(𝕄2,𝕄2).

Hereℂ is the ℂ-motivic Steenrod algebra, and𝕄ℂ
2
is the ℂ-motivic cohomology of a point.

The 𝜌-Bockstein spectral sequence is a tool that passes from ℂ-motivic Ext groups toℝ-motivic
Ext groups. We discuss the general properties of this spectral sequence in Section 5, and we
describe an unexpectedly effective strategy for computing differentials. The key idea is to compute
the 𝜌-periodic groups Ext(𝕄2,𝕄2)[𝜌

−1] in advance. Then naive combinatorial considerations
force a very large number of Bockstein differentials. We discuss specific Bockstein differential
computations in Section 6.
Having obtained the 𝐸∞-page of the 𝜌-Bockstein spectral sequence, we do not yet have a

complete knowledge of Ext(𝕄2,𝕄2). It remains to resolve extensions that are hidden by the
𝜌-Bockstein filtration. There is an unmanageable quantity of hidden extensions, so we do not
attempt to analyze them completely, not even in a range. Nevertheless, we do analyze all exten-
sions by ℎ0 and ℎ1 in the range under consideration. These computations are carried out in
Section 7.

1.2 The ℝ-motivic Adams spectral sequence

Having obtained the 𝐸2-page of the ℝ-motivic Adams spectral sequence, the next step is to deter-
mineAdams differentials.We carry out these computations in Section 8. These differentials can be
obtained by a variety of techniques. One important technique is the use of the Moss Convergence
Theorem 8.2 to compute Toda brackets, which determine that certain elements are permanent
cycles. Another technique is comparison to previously established computations in the ℂ-motivic
and classical computations. See Section 1.4 for more discussion of these comparisons.
After computing Adams differentials and obtaining the Adams 𝐸∞-page, there are once again

hidden extensions to resolve. As in the algebraic case, there are too many extensions to study
exhaustively, but we do consider all extensions by 𝜌, 𝗁, and 𝜂 exhaustively (where 𝜌, 𝗁, and 𝜂 are
stable homotopy elements detected by 𝜌, ℎ0, and ℎ1, respectively). These computations are carried
out in Section 9. Once again, the key techniques are shuffling relations involving Toda brackets
and comparison to the ℂ-motivic and classical cases.

1.3 Milnor–Witt 𝑲-theory

Our computations describe the structure of 𝜋∗,∗ as amodule over⊕𝑛𝜋𝑛,𝑛, that is, the 2-completed
Milnor-Witt 𝐾-theory of ℝ. Milnor-Witt 𝐾-theory is multiplicatively generated over the 2-adic
integers ℤ2 by 𝜌 and 𝜂.

 1
7
5
3
8
4
2
4
, 2

0
2
2
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
2
/to

p
o

.1
2

2
5

6
 b

y
 C

ase W
estern

 R
eserv

e U
n

iv
ersity

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
5

/0
9

/2
0

2
3

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n

s L
icen

se



ℝ-MOTIVIC STABLE STEMS 1757

We make a change of generators that makes the computation easier to understand. Instead of
describing motivic stable homotopy groups as a module over the 2-adic integers ℤ2 (that is, in
terms of the action of 2), it is easier to describe the homotopy groups in terms of the action of 𝗁.
More precisely, let 𝗁ℤ𝗁 be the non-unital subring of 𝜋∗,∗ that is generated by 𝗁. The elements of
𝗁ℤ𝗁 consist of power series

∑
𝑖>0 𝜖𝑖𝗁

𝑖 , where each 𝜖𝑖 is either 0 or 1. Multiplication of power series
occurs in the usual way, but addition is determined by the formulas 𝗁𝑖 + 𝗁𝑖 = 𝗁𝑖+1. The ring 𝗁ℤ𝗁

is abstractly isomorphic to the ideal 2ℤ2 of ℤ2, but it differs from 2ℤ2 as a subring of 𝜋∗,∗.
With this notation, the Milnor 𝐾-theory of ℝ is easily described as

ℤ𝗁[𝜌, 𝜂]

𝗁𝜌, 𝗁𝜂
.

This is much cleaner and more practical than the alternative

ℤ2[𝜌, 𝜂]

(2 + 𝜌𝜂)𝜌, (2 + 𝜌𝜂)𝜂
.

1.4 Comparison of homotopy theories

An essential ingredient in our computations is comparison between the ℝ-motivic, ℂ-motivic,
𝐶2-equivariant, and classical stable homotopy theories, as depicted in the diagram

(1.1)

The horizontal arrows labeled ‘realization’ refer to the Betti realization functors that take a variety
over ℂ (respectively, over ℝ) to the space (respectively, 𝐶2-equivariant space) of ℂ-valued points.
The vertical arrow labeled ‘extension of scalars’ refers to the functor that takes a variety over ℝ
and views it as a variety over ℂ. The vertical arrow labeled ‘forgetful’ refers to the functor that
takes a 𝐶2-equivariant object to its underlying non-equivariant object.
Our philosophy in this article is to accept computational information about the ℂ-motivic and

classical stable homotopy groups as given, and to use this information to study the ℝ-motivic
stable homotopy groups. See [19] for an extensive summary of computational information about
the ℂ-motivic and classical Adams spectral sequences. The presence of the 𝐶2-equivariant stable
homotopy category in this diagram is relevant for our consideration of Mahowald invariants, to
be discussed below in Section 1.5.
There is a surprising connection between ℂ-motivic and ℝ-motivic that enables many of our

detailed computations. Namely, Theorem 3.4 shows that the ℂ-motivic stable homotopy groups
are isomorphic to the ℝ-motivic homotopy groups of the cofiber 𝑆∕𝜌 of 𝜌. This means that the
structure of ℂ-motivic stable homotopy groups governs both the cokernel and the kernel of mul-
tiplication by 𝜌. This allows us to deduce many ℝ-motivic computational facts with relative ease
from known ℂ-motivic information.
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1758 BELMONT and ISAKSEN

TABLE 1 Some Mahowald invariants

Stem 𝜶 𝑹(𝜶) Indeterminacy

0 2 𝜂

0 4 𝜂2

0 8 𝜂3

1 𝜂 𝜈 2𝜈, 4𝜈

2 𝜂2 𝜈2

3 𝜈 𝜎 2𝜎, 4𝜎, 8𝜎

3 2𝜈 𝜂𝜎 𝜖

3 4𝜈 𝜂2𝜎 𝜂𝜖

6 𝜈2 𝜎2 𝜅

7 𝜎 𝜎2

7 2𝜎 𝜂4 𝜂𝜌15

7 4𝜎 𝜂𝜂4 𝜈𝜅, 𝜂2𝜌15

8 𝜂𝜎 𝜈4 2𝜈4, 4𝜈4

8 𝜖 𝜎

9 𝜂2𝜎 𝜈𝜈4 𝜂𝜅

1.5 Mahowald invariants

Let 𝛼 be a non-zero classical stable homotopy element. The Mahowald invariant (or root invari-
ant) 𝑅(𝛼) is a non-zero equivalence class of classical stable homotopy elements in a stem that is
higher than the stem of 𝛼. One source of interest in Mahowald invariants is that 𝑅(𝛼) appears to
have greater chromatic complexity than 𝛼. Thus one can construct more exotic stable homotopy
elements out of elements that are better understood [21].
Bruner and Greenlees reformulated the definition of the Mahowald invariant in terms of 𝐶2-

equivariant stable homotopy groups [10]. Although we do not study 𝐶2-equivariant homotopy
groups directly, we have indirectly obtained information about them because the ℝ-motivic and
𝐶2-equivariant stable homotopy groups are isomorphic in a range [6]. In Section 4, we show how
manyMahowald invariants can be immediately deduced fromourℝ-motivic computations.While
these results only recover previously known Mahowald invariants [4, 21], we believe that our
techniques can be extended into uncharted territory without much more effort.

Theorem 1.6. Table 1 gives some values of the Mahowald invariant.

Proof. Theorem 4.10 reduces the computation to an ℝ-motivic Mahowald invariant, as defined in
Section 4.3. Table 3 gives the values of the ℝ-motivic Mahowald invariant. Finally, Table 17 gives
the Betti realizations of the ℝ-motivic Mahowald invariants. □

See Examples 4.9 and 4.11 for detailed illustrations of how this technique plays out in practice.
We have computed the Mahowald invariant of most, but not every, 𝛼 through the 11-stem. In

particular, we do not compute theMahowald invariants of 2𝑘 for 𝑘 ⩾ 4, 8𝜎, 𝜂𝜖, 𝜇9, 𝜂𝜇9, nor 𝜁11 and
its multiples. In these cases, the problem is that the inequality of Theorem 4.10 does not apply, so
our ℝ-motivic computations do not determine 𝐶2-equivariant behavior.
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ℝ-MOTIVIC STABLE STEMS 1759

2 NOTATION

We write 𝕄2 for the ℝ-motivic homology of a point with coefficients in 𝔽2. Recall that 𝕄2 is
isomorphic to 𝔽2[𝜌, 𝜏], where 𝜌 and 𝜏 have degrees (−1, −1) and (0, −1), respectively, [27].
Wewrite for theℝ-motivic dual Steenrod algebra. Recall that is described by the equations

 = 𝕄2[𝜏0, 𝜏1, … , 𝜉1, 𝜉2, … ]∕(𝜏2
𝑘
= 𝜏𝜉𝑘+1 + 𝜌𝜏𝑘+1 + 𝜌𝜏0𝜉𝑘+1)

𝜂𝐿(𝜏) = 𝜏, 𝜂𝑅(𝜏) = 𝜏 + 𝜌𝜏0, 𝜂𝐿(𝜌) = 𝜂𝑅(𝜌) = 𝜌

Δ(𝜏𝑘) = 𝜏𝑘 ⊗ 1 +
∑

𝜉2
𝑖

𝑘−𝑖
⊗ 𝜏𝑖

Δ(𝜉𝑘) =
∑

𝜉2
𝑖

𝑘−𝑖
⊗ 𝜉𝑖 ,

where 𝜏𝑖 and 𝜉𝑘 have degrees (2
𝑖+1 − 1, 2𝑖 − 1) and (2𝑖+1 − 2, 2𝑖 − 1), respectively, [28].

We write 𝕄ℂ
2
for the ℂ-motivic homology of a point with coefficients in 𝔽2, and we write 

ℂ
∗

for the ℂ-motivic dual Steenrod algebra. These objects are easily described in terms of𝕄2 and.
Namely, they are the result of setting 𝜌 equal to 0.
We writecl

∗ for the classical dual Steenrod algebra, which can be obtained from by setting
𝜌 and 𝜏 to be 0 and 1 respectively.
We write Ext or Extℝ for Ext(𝕄2,𝕄2), that is, the cohomology of the ℝ-motivic Steenrod

algebra. We write Extℂ and Extcl for the cohomologies of the ℂ-motivic and classical Steenrod
algebras, respectively.
We write 𝜋𝑝,𝑞 or 𝜋

ℝ
𝑝,𝑞 for the stable homotopy groups of the ℝ-motivic sphere spectrum. Simi-

larly, we write 𝜋ℂ
𝑝,𝑞 for the stable homotopy groups of the ℂ-motivic sphere spectrum. We adopt

the usual motivic grading convention, so that 𝜋𝑝,𝑞𝑋 denotes maps out of 𝑆𝑝,𝑞, where 𝑆𝑝,𝑞 is the
smash product of 𝑝 − 𝑞 copies of the simplicial sphere and 𝑞 copies of 𝔸1 − 0. There is an incon-
sistency in the literature regarding the definition of 𝜌; we take 𝜌 = −[−1], though some authors
take 𝜌 = [−1].
We write 𝜋

𝐶2
𝑝,𝑞 for the stable homotopy groups of the 𝐶2-equivariant sphere spectrum. We use

an equivariant grading convention that is compatible with themotivic grading convention, so that
𝜋𝑝,𝑞𝑋 denotesmaps out of 𝑆𝑝,𝑞, where 𝑆𝑝,𝑞 is the one-point compactification ofℝ𝑝, with𝐶2 acting
by negating the last 𝑞 coordinates. Betti realization takes ℝ-motivic 𝑆𝑝,𝑞 to 𝐶2-equivariant 𝑆

𝑝,𝑞.
We write 𝜋𝑝 for the classical stable homotopy groups.
All stable homotopy groups are suitably 2-completed so that Adams spectral sequences

converge [18].

Grading conventions
Following [19] and [12], we use the following grading convention for the motivic Adams spectral
sequence: 𝑠 denotes the stem, 𝑓 denotes the Adams filtration, and 𝑤 denotes the motivic weight.
Then the internal degree is 𝑠 + 𝑓. In this grading, Adams differentials take the form

𝑑𝑟 ∶ 𝐸
𝑠,𝑓,𝑤
𝑟 → 𝐸

𝑠−1,𝑓+𝑟,𝑤
𝑟 .

The coweight of an element in degree (𝑠, 𝑓, 𝑤) is defined to be 𝑠 − 𝑤. This quantity has pre-
viously been referred to as Milnor–Witt stem in the literature. Note that 𝜌 has coweight 0. In
particular, an element 𝑥 and its 𝜌-multiple 𝜌𝑥 lie in the same coweight. This makes coweights
particularly useful in the 𝜌-Bockstein perspective that we adopt.
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1760 BELMONT and ISAKSEN

2.1 Stable homotopy elements

We adopt conventional notation, as used (for example) in [19, 20], for the names of elements in
the classical stable homotopy groups 𝜋∗ and the ℂ-motivic stable homotopy groups 𝜋

ℂ
∗,∗.

Table 9 gives the notation that we use for elements of 𝜋ℝ
∗,∗. We define these elements in terms

of the elements of the Adams 𝐸∞-page that detect them. These definitions have indeterminacy
parametrized by elements of the Adams 𝐸∞-page in higher Adams filtration. As a general rule,
this indeterminacy does not matter to our computations. It is possible to use Toda brackets, or
geometric constructions (see [11]), to eliminate the indeterminacy in many cases.

Remark 2.2. We use the symbol 𝗁 to denote an element of 𝜋0,0 that is detected by ℎ0. The symbol
stands for ‘hyperbolic’ because it corresponds to the hyperbolic plane in the Grothendieck–Witt
group interpretation of 𝜋0,0 [23, Remark 6.4.2]. (Alternatively, it can also stand for ‘Hopf’, since 𝗁
is the zeroth Hopf map.) Beware that 𝗁 does not equal 2; in fact, 2 = 𝗁 − 𝜌𝜂.

Remark 2.3. The element 𝜎 requires more discussion. We write 𝜎 for an element of 𝜋7,4 that is
detected by ℎ3. There are 256 possible choices for 𝜎, because of the presence of elements in higher
Adams filtration. One such element in higher filtration is 𝜌𝑐0. Lemma 7.19 shows that 𝜏

2ℎ2 ⋅ 𝜌𝑐0
equals 𝜌4𝑑0. Therefore, some possible choices of 𝜎 have the property that 𝜏

2𝜈 ⋅ 𝜎 is detected by
𝜌4𝑑0 in𝜋10,4, while other possible choices of 𝜎 have the property that 𝜏

2𝜈 ⋅ 𝜎 is zero. (The elements
𝜏ℎ1 ⋅ 𝜏𝑃ℎ1 and 𝜌ℎ1 ⋅ 𝜏ℎ1 ⋅ 𝜏𝑃ℎ1 are not relevant, by comparison to 𝑘𝑞 as in Remark 8.15.)
We will need to use the relation 𝜏2𝜈 ⋅ 𝜎 = 0 in later computations, so we must assume that our

choice of 𝜎 satisfies this condition.

Remark 2.4. In some cases, we have chosen names for elements of 𝜋ℝ
∗,∗ that reflect the values of

the extension of scalars functor given in Table 17. For example, we write 𝜏𝜎2 for an element of
𝜋ℝ
14,7

that is detected by 𝜌ℎ4, since this element maps to 𝜏𝜎
2 in 𝜋ℂ

14,7
.

Remark 2.5. Beware that our use of the symbol 𝜅 is inconsistent with its usage in [19]. In this
article, 𝜏𝜅 refers to a non-zero element of 𝜋ℂ

20,11
that is detected by 𝜏g . The symbol 𝜅 is used in [19]

for the same element.

Remark 2.6. Occasionally we refer to stable homotopy elements that have no standard name. In
these cases, we use the symbol {𝑥} to indicate a stable homotopy element that is detected by an
element 𝑥 of an Adams 𝐸∞-page.

3 COMPARISON BETWEEN ℝ-MOTIVIC AND ℂ-MOTIVIC
HOMOTOPY

We first discuss the relationship between ℝ-motivic and ℂ-motivic stable homotopy theory. We
will use these ideas frequently in later sections to obtain ℝ-motivic information from known ℂ-
motivic information.
Consider the cofiber sequence
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The cofiber 𝑆∕𝜌 of 𝜌 is a 2-cell complex whose structure governs multiplication by 𝜌 in the ℝ-
motivic stable homotopy groups, in a sense to be made precise in this section. In addition, we will
draw an unexpected connection between the ℝ-motivic homotopy groups of 𝑆∕𝜌 and ℂ-motivic
stable homotopy groups.
As shown in diagram (1.1), there is an extension of scalars functor fromℝ-motivic stable homo-

topy theory to ℂ-motivic stable homotopy theory, and a Betti realization functor from ℂ-motivic
stable homotopy theory to classical stable homotopy theory. These functors take Eilenberg–
Mac Lane spectra to Eilenberg–Mac Lane spectra, and thus interact nicely with Adams spectral
sequences. In particular, they induce highly structured morphisms of Adams spectral sequences.
We will frequently use these comparison functors to deduce information about the ℝ-motivic
Adams spectral sequence from already known information about the ℂ-motivic and classical
Adams spectral sequences. See [19] for an extensive summary of computational information about
the ℂ-motivic and classical Adams spectral sequences.
Extension of scalars takes the element 𝜌 of 𝜋−1,−1 to zero. In particular, it induces the map

𝕄2 → 𝕄ℂ
2
that takes 𝜌 to zero, and it similarly induces the map → ℂ

∗ that takes 𝜌 to zero.
For an ℝ-motivic spectrum, we write Extℝ(𝑋) for the 𝐸2-page of the ℝ-motivic Adams spectral

sequence that converges to 𝜋∗,∗(𝑋), that is, for Ext(𝕄2, 𝐻
∗,∗(𝑋)), and similarly for Extℂ(𝑋).

Extension of scalars induces a diagram

Because 𝜌 becomes zero after extension of scalars, the bottom row of the diagram splits. The
map Extℝ(𝑆∕𝜌) → Extℂ(𝑆

0,0 ∨ 𝑆−2,−1) lifts to a map Extℝ(𝑆∕𝜌) → Extℂ(𝑆
0,0) that makes the

diagram

commute.

Proposition 3.1. The map Extℝ(𝑆∕𝜌) → Extℂ(𝑆
0,0) is an isomorphism.

Proof. Let 𝐶∗
ℝ
and 𝐶∗

ℂ
be the cobar complexes for Extℝ(𝑆

0,0) and Extℂ(𝑆
0,0), respectively. Note that

𝐶∗
ℂ
is isomorphic to 𝐶∗

ℝ
∕𝜌. Because multiplication by 𝜌 is injective on 𝐶∗

ℝ
, this is also isomorphic

to the cobar complex that computes Extℝ(𝑆∕𝜌). □

Remark 3.2. Because of the isomorphism of Proposition 3.1, the objectExtℂ is amodule over Extℝ.
By careful inspection of definitions, this module action is easy to describe. Using the 𝜌-Bockstein
spectral sequence notation from Section 5, a typical element of Extℝ is of the form 𝜌𝑘𝑥, where 𝑥
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belongs to Extℂ. The Extℝ-module action on Extℂ is described by

𝜌𝑘𝑥 ⋅ 𝑦 =

{
0 if 𝑘 > 0

𝑥𝑦 if 𝑘 = 0,

where the last expression 𝑥𝑦 is to be interpreted as the usual Yoneda product of elements in Extℂ.

Remark 3.3. Proposition 3.1 implies that there is a long exact sequence

of Extℝ-module maps, where Extℂ is an Extℝ-module as in Remark 3.2. If 𝑥 is a permanent cycle
in the 𝜌-Bockstein spectral sequence, then the map 𝑖 takes 𝑥 in Extℝ to the element of Extℂ of the
same name.

Now consider the diagram

(3.1)

in which the diagonal arrow exists because 𝜌maps to zero in 𝜋ℂ
∗,∗.

Theorem 3.4. The map 𝜋ℝ
∗,∗(𝑆∕𝜌) → 𝜋ℂ

∗,∗ is an isomorphism.

Proof. Proposition 3.1 shows that there is an isomorphism of 𝐸2-pages of Adams spectral
sequences, so the targets of the spectral sequences are also isomorphic. □

Corollary 3.5. Let 𝛼 be an element of 𝜋ℝ
∗,∗. Extension of scalars takes 𝛼 to zero in 𝜋

ℂ
∗,∗ if and only if

𝛼 is divisible by 𝜌.

Proof. Chase the diagram (3.1), using that the diagonal map is an isomorphism. □

Remark 3.6. Corollary 3.5 has a 𝐶2-equivariant analogue, as stated later in Proposition 4.2.

Remark 3.7. The isomorphism of Theorem 3.4 can be strengthened to an equivalence of cate-
gories [5, Corollary 8.6]. Namely, the 2-complete ℂ-motivic cellular stable homotopy category is
equivalent to the homotopy category of 𝑆∕𝜌-modules in the 2-complete ℝ-motivic cellular stable
homotopy category.

Corollary 3.8. There is a long exact sequence
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Proof. This is the long exact sequence in homotopy for the fiber sequence

in ℝ-motivic spectra, after applying the identification in Theorem 3.4. □

4 MAHOWALD INVARIANTS

The goal of this section is to useℝ-motivic computations to recompute someMahowald invariants.
See [4, Section 4] for a careful discussion of the definition, using Lin’s theorem that ℝ𝑃∞−∞ is
equivalent to 𝑆−1.

4.1 𝑪𝟐-equivariant homotopy theory andMahowald invariants

Using 𝐶2-equivariant homotopy theory, Bruner and Greenlees [10] gave an alternative definition
of theMahowald invariant.Wewill summarize this definition, but first we need some background
on 𝐶2-equivariant homotopy theory.
Let 𝑆𝑎,𝑏 be the one-point compactification of ℝ𝑎, where 𝐶2 acts by negating the last 𝑏 coordi-

nates. Then 𝜌 ∶ 𝑆0,0 → 𝑆1,1 is the inclusion of fixed points. Note that the cofiber of this map is
Σ(𝐶2)+, that is, the suspension of the based free 𝐶2-space.
We use the same notation 𝜌 for the map 𝑆−1,−1 → 𝑆0,0 in the 𝐶2-equivariant stable homotopy

group𝜋
𝐶2
−1,−1

. The identification of the cofiber of 𝜌 leads immediately to the following proposition,
whose short proof appears in [13, Proposition 11.2].

Proposition 4.2. Let𝛼 be a𝐶2-equivariant stable homotopy element. The underlying classical stable

homotopy element𝑈(𝛼) of 𝛼 is zero if and only if 𝛼 is divisible by 𝜌.

Geometric fixed points gives a map 𝜋
𝐶2
𝑎,𝑏

→ 𝜋𝑎−𝑏, and this map takes 𝜌 to 1. The 𝜌-periodic

groups 𝜋
𝐶2
∗,∗[𝜌

−1] are isomorphic to 𝜋∗ ⊗ ℤ[𝜌±1], that is, to the classical stable homotopy groups
with 𝜌 and 𝜌−1 adjoined [9, Proposition] [2, Proposition 7.0].
With this background on 𝐶2-equivariant stable homotopy groups, we now give the Bruner–

Greenlees definition of the Mahowald invariant. Start with a classical stable homotopy element
𝛼 in 𝜋𝑛, which we identify with the obvious element of 𝜋∗ ⊗ ℤ[𝜌±1] in degree (0, −𝑛). Using the
isomorphism

𝜋∗ ⊗ ℤ[𝜌±1] ≅ 𝜋
𝐶2
∗,∗[𝜌

−1],

write 𝛼 = 𝜌𝑘𝛽 for some 𝛽 in 𝜋
𝐶2
∗,∗ and some integer 𝑘, with 𝑘 maximal. Finally, the Mahowald

invariant 𝑅(𝛼) is the underlying classical stable homotopy element 𝑈(𝛽) of 𝛽.
Note that the Mahowald invariant is not strictly defined; it is a set of classical stable homotopy

elements. While the choice of 𝑘 is unique, the choice of 𝛽 is not. Different choices of 𝛽 can lead
to different values of 𝑈(𝛽).
Also note that𝑈(𝛽) is necessarily non-zero by Proposition 4.2. The point is that 𝛽 is not divisible

by 𝜌, since 𝑘 was chosen to be maximal.
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1764 BELMONT and ISAKSEN

4.3 ℝ-motivic homotopy theory andMahowald invariants

We will now adapt the framework of Bruner and Greenlees [10] from the 𝐶2-equivariant to the
ℝ-motivic settings. In order to carry this out, we need to observe some key ℝ-motivic properties.
First, the 𝜌-periodic groups 𝜋ℝ

∗,∗[𝜌
−1] are isomorphic to 𝜋∗ ⊗ ℤ[𝜌±1], that is, to the classical

stable homotopy groups with 𝜌 and 𝜌−1 adjoined [12]. See also [3] for a more structured version
of this isomorphism. Second, Corollary 3.5 relates 𝜌-divisibility to the kernel of the extension of
scalars map.

Definition 4.4. Let 𝛼 be a classical stable homotopy element in 𝜋𝑛. The ℝ-motivic Mahowald
invariant 𝑅ℝ(𝛼) is defined as follows. Identify 𝛼 with the obvious element of

𝜋∗ ⊗ ℤ[𝜌±1] ≅ 𝜋ℝ
∗,∗[𝜌

−1]

in degree (0, −𝑛). Write 𝛼 = 𝜌𝑘𝛽 for some 𝛽 in 𝜋ℝ
∗,∗ and some integer 𝑘, with 𝑘 maximal. Define

𝑅ℝ(𝛼) in 𝜋ℂ
∗,∗ to be the extension of scalars of 𝛽.

Remark 4.5. As for the traditional Mahowald invariant, the ℝ-motivic Mahowald invariant is not
strictly defined. Different choices of 𝛽 can have different values in 𝜋ℂ

∗,∗ under extension of scalars.

Remark 4.6. As for the traditional Mahowald invariant, the ℝ-motivic Mahowald invariant is
always non-zero by Corollary 3.5. The point is that 𝛽 is not divisible by 𝜌, since 𝑘 was chosen to
be maximal.

Remark 4.7. See [25] and [26] for a different consideration of Mahowald invariants in the motivic
context. Our construction does not compare directly.

Theorem 4.8. Some values of the ℝ-motivic Mahowald invariant are given in Table 3.

Proof. This follows immediately from the computations carried out later in the article. In partic-
ular, one needs the values of the extension of scalars map, as shown in Table 17 and discussed in
Section 10 □

Example 4.9. We illustrate Theorem 4.8 by describing the computation of𝑀ℝ(𝜎). The element 𝜎
in 𝜋7 is identified with the element 𝛼 of 𝜋

ℝ
∗,∗ ⊗ ℤ[𝜌±1] in degree (0, −7) that is detected by 𝜌15ℎ4.

Then 𝛼 equals 𝜌14𝛽, where 𝛽 is detected by 𝜌ℎ4. Finally, Table 17 shows that the realization of 𝛽
is 𝜏𝜎2 in 𝜋ℂ

14,7
.

In general, the relationship between 𝑅(𝛼) and 𝑅ℝ(𝛼) is not obvious. The choices involved in the
definitions are not necessarily compatible. For example, it is possible that an element 𝛽 in 𝜋ℝ

∗,∗ is

not divisible by 𝜌, while its realization in 𝜋
𝐶2
∗,∗ is divisible by 𝜌.

The main result of [6] tells us that the ℝ-motivic and 𝐶2-equivariant stable homotopy groups
agree in a range. In this range, 𝑅(𝛼) and 𝑅ℝ(𝛼) are easier to compare.

Theorem 4.10. Let 𝑅ℝ(𝛼) belong to 𝜋ℂ
𝑠,𝑤 , and suppose that 2𝑤 − 𝑠 < 4. Then 𝑅(𝛼) equals the Betti

realization of 𝑅ℝ(𝛼).
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Proof. The isomorphism between ℝ-motivic and 𝐶2-equivariant stable homotopy groups [6]
implies that the choice of 𝛽 in the definition of 𝑅ℝ(𝛼) realizes to the choice of 𝛽 in the definition
of 𝑅(𝛼). By the commutativity of the diagram (1.1), the realization of 𝑅ℝ(𝛼) equals 𝑅(𝛼). □

Example 4.11. We showed in Example 4.9 that 𝑅ℝ(𝜎) equals 𝜏𝜎2 in 𝜋ℂ
14,7

. The numerical condi-

tion of Theorem 4.10 is satisfied. It follows that 𝑅(𝜎) equals 𝜎2 in 𝜋14, since 𝜎
2 is the realization

of 𝜏𝜎2.

Remark 4.12. Theorem4.10, togetherwith our computations ofℝ-motivic stable homotopy groups,
can be used to compute the Mahowald invariants 𝑅(𝛼) for most 𝛼 up to the 11-stem. The excep-
tions are 2𝑘 for 𝑘 ⩾ 4, 8𝜎, 𝜂𝜖, 𝜇9, 𝜂𝜇9, and 𝜁11 and its multiples. In these cases, 𝑅

ℝ(𝛼) can still be
computed as shown in Table 3. However, the numerical condition of Theorem 4.10 does not hold,
so we cannot draw a conclusion about 𝑅(𝛼) in these cases.

5 THE 𝝆-BOCKSTEIN SPECTRAL SEQUENCE

We briefly recall some background on the 𝜌-Bockstein spectral sequence that computes the
cohomology of the ℝ-motivic Steenrod algebra. See [17] and [12] for additional details.
Begin with the observation that the ℂ-motivic cohomology of a point𝕄ℂ

2
equals𝕄2∕𝜌, and the

ℂ-motivic dual Steenrod algebraℂ
∗ equals∕𝜌. Then filter the cobar complex by powers of 𝜌 to

obtain the 𝜌-Bockstein spectral sequence

𝐸1 = Ext∗∗


ℂ
∗
(𝕄ℂ

2 ,𝕄
ℂ
2 )[𝜌] ⇒ Ext∗∗


(𝕄2,𝕄2). (5.1)

Our goal is to analyze the 𝜌-Bockstein spectral sequence (5.1) in computational detail in a range
of degrees. We recall some structural results about this spectral sequence from [12].

Proposition 5.1 [12, Lemma 3.4]. If 𝑑𝑟(𝑥) is non-trivial in the 𝜌-Bockstein spectral sequence, then
𝑥 and 𝑑𝑟(𝑥) are both 𝜌-torsion free on the 𝐸𝑟-page.

Recall thatcl
∗ is the classical dual Steenrod algebra. The following theorem is the algebraic ana-

logue to the identification of the 𝜌-periodic motivic stable homotopy category with the classical
stable homotopy category [3].

Proposition 5.2 [12, Theorem 4.1]. There is an isomorphism

Ext

cl
∗
(𝔽2, 𝔽2)[𝜌

±1] ≅ Ext(𝕄2,𝕄2)[𝜌
−1]

that takes elements of degree (𝑠, 𝑓) in Ext

cl
∗
(𝔽2, 𝔽2) to elements of degree (2𝑠 + 𝑓, 𝑓, 𝑠 + 𝑓) in

Ext(𝕄2,𝕄2). In particular, the classical element ℎ𝑛 corresponds to the ℝ-motivic element ℎ𝑛+1.

Moreover, the isomorphism is highly structured, that is, preserves products and Massey products.

The point of Proposition 5.2 is that we a priori know the elements of Extℝ that are 𝜌-periodic, in
the sense that they support infinitelymany non-zeromultiplications by 𝜌. In the range considered
in this article, these 𝜌-periodic elements are ℎ1, ℎ2, ℎ3, ℎ4, 𝑐1, ℎ2g , ℎ3g , as well as products of these
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1766 BELMONT and ISAKSEN

elements. This corresponds to the fact that through the 11-stem, Extcl is generated by the classical
elements ℎ0, ℎ1, ℎ2, ℎ3, 𝑐0, 𝑃ℎ1, and 𝑃ℎ2. We may effectively ignore these 𝜌-periodic elements
when analyzing the 𝜌-Bockstein spectral sequence, since they can be neither source nor target of
any 𝜌-Bockstein differential.
Let {𝑥𝑖} be an 𝔽2-linear basis for Extℂ, that is, an 𝔽2[𝜌]-linear basis for the 𝜌-Bockstein 𝐸1-page,

excluding the 𝜌-periodic permanent cycles described in the previous paragraph. For every 𝑖, either
𝑥𝑖 supports a differential, or 𝜌

𝑟𝑥𝑖 is the target of the 𝑑𝑟 differential for some 𝑟. In other words, the
set {𝑥𝑖} may be partitioned into pairs (𝑥𝑖 , 𝑥𝑗) such that 𝑑𝑟(𝑥𝑖) = 𝜌𝑟𝑥𝑗 for some 𝑗. Actually, one
must be somewhat careful about the choice of basis in situations where two or more elements of
the basis have the same degree. Nevertheless, it is always possible to change basis so that the basis
elements can be partitioned into pairs.
The Bockstein differential 𝑑𝑟 ∶ 𝐸

𝑠,𝑓,𝑤
𝑟 → 𝐸

𝑠−1,𝑓+1,𝑤
𝑟 preserves the quantity 𝑠 + 𝑓 − 𝑤, and 𝜌 lies

in a degree satisfying 𝑠 + 𝑓 − 𝑤 = 0. Thus wemay consider one value of 𝑠 + 𝑓 − 𝑤 at a time when
analyzing the 𝜌-Bockstein spectral sequence.
We exploit this structure in the following strategy for analyzing the 𝜌-Bockstein spectral

sequence.

Strategy 5.3.

(1) Fix a value 𝑁 = 𝑠 + 𝑓 − 𝑤.
(2) Find an 𝔽2[𝜌]-basis 𝐵𝑁 for the part of the 𝜌-Bockstein 𝐸1-page in degrees (𝑠, 𝑓, 𝑤) satisfying

𝑁 = 𝑠 + 𝑓 − 𝑤.
(3) Remove elements from 𝐵𝑁 that detect 𝜌-periodic elements of Extℝ.
(4) Use a variety of techniques, to be described below, to identify some differential 𝑑𝑟(𝑥𝑖) = 𝜌𝑟𝑥𝑗 ,

where 𝑥𝑖 and 𝑥𝑗 belong to 𝐵𝑁 .
(5) Remove 𝑥𝑖 and 𝑥𝑗 from 𝐵𝑁 .
(6) Repeat steps (4) and (5) until 𝐵𝑁 is empty.

For this strategy to be effective, we need to know that the basis 𝐵𝑁 chosen in step 2 is finite.
Lemma 5.4 establishes this fact.

Lemma 5.4. Let 𝑁 be fixed. In degrees (𝑠, 𝑓, 𝑤) satisfying𝑁 = 𝑠 + 𝑓 − 𝑤, the 𝜌-Bockstein 𝐸1-page

is a finitely generated 𝔽2[𝜌]-module.

Proof. Recall that Extℂ is non-zero only in degrees (𝑠, 𝑓, 𝑤) satisfying 𝑠 + 𝑓 − 2𝑤 ⩾ 0 [19, Remark
2.20]. This inequality can be rewritten in the form

𝑠 + 𝑓 − 𝑤 ⩾
1

2
(𝑠 + 𝑓).

In other words, we only need consider the part of Extℂ in total degree at most 2𝑁. □

One consequence of our strategy is that we do not compute the Bockstein differentials 𝑑𝑟 in
order of increasing 𝑟. Rather, we obtain all differentials as part of the same process.
Step (4) is the limiting factor in the practical effectiveness of our algorithm. The ad hoc argu-

ments required to establish specific differentials becomemore difficult as the value of𝑁 increases.
However, these difficulties increase at a surprisingly slow rate, and we are able to carry out the
computation remarkably far without much difficulty.
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ℝ-MOTIVIC STABLE STEMS 1767

Our goal is to compute the 𝜌-Bockstein spectral sequence through coweight 13. Unfortunately,
infinitelymany values of𝑁 in Step 1 are relevant in this range. For example, consider the elements
ℎ𝑘
1
of coweight 0, which belong to degrees satisfying 𝑠 + 𝑓 − 𝑤 = 𝑘.
Similarly, any ℎ1-periodic sequence of elements ℎ

𝑘
1
𝑥 of Extℂ lies in degrees for which 𝑠 + 𝑓 − 𝑤

is unbounded. Fortunately, it is only these ℎ1-periodic families that are problematic.

Lemma 5.5. Let 𝑥 be a non-zero element of Extℂ of degree (𝑠, 𝑓, 𝑤) whose coweight is at most 𝑘.

Then:

(1) 𝑥 is an ℎ1-periodic element, in the sense that ℎ
𝑖
1
𝑥 is non-zero for all 𝑖 ⩾ 0; or

(2) 𝑠 + 𝑓 − 𝑤 ⩽ 3𝑘 + 3.

Proof. If 2𝑓 − 𝑠 ⩾ 4, then 𝑥 is ℎ1-periodic [15]. So we may assume that 2𝑓 − 𝑠 < 4.
By [19, Remark 2.20], we also have the inequality 𝑠 + 𝑓 − 2𝑤 ⩾ 0. Combining with the

assumption 𝑠 − 𝑤 ⩽ 𝑘, we conclude that

𝑠 + 𝑓 − 𝑤 = (2𝑓 − 𝑠) − (𝑠 + 𝑓 − 2𝑤) + 3(𝑠 − 𝑤) < 4 + 0 + 3𝑘 = 3𝑘 + 4. □

As we wish to consider elements up to coweight 13, Lemma 5.5 suggests we need to look at
degrees satisfying the inequality 𝑠 + 𝑓 − 𝑤 ⩽ 42, in addition to studying ℎ1-periodic elements.
However, inspection of elements in Extℂ shows that 𝑠 + 𝑓 − 𝑤 ⩽ 28 for all elements that are
relevant in our range.
The ℎ1-periodic elements of Extℂ are well understood [14]. Up to coweight 13, all such ele-

ments are of the form 1, 𝑃𝑘ℎ1, 𝑃
𝑘𝑐0, 𝑃

𝑘𝑑0, 𝑃
𝑘𝑒0, 𝑃

𝑘𝑐0𝑑0, 𝑑
2
0
, or 𝑐0𝑒0, as well as the ℎ1-multiples

of these elements. Lemma 5.5 indicates that the behavior of the 𝜌-Bockstein spectral sequence
on these elements must be studied separately. See Proposition 6.2 for the analysis of these
ℎ1-periodic elements.

6 𝝆-BOCKSTEIN DIFFERENTIALS

The goal of this section is to describe a variety of methods for determining 𝜌-Bockstein differen-
tials. These methods are applied in Step (4) of Strategy 5.3. Taken together, these methods allow
us to determine all 𝜌-Bockstein differentials through coweight 13.
We begin with a result that describes all 𝜌-Bockstein differentials on the elements of Adams

filtration zero.

Proposition 6.1 [12, Proposition 3.2].

(1) 𝑑1(𝜏) = 𝜌ℎ0.

(2) 𝑑2𝑘 (𝜏
2𝑘 ) = 𝜌2

𝑘
𝜏2

𝑘−1
ℎ𝑘 for 𝑘 ⩾ 1.

Nextwe considerℎ1-periodic elements. These elementsmust be treated as special cases because
of Case (1) of Lemma 5.5.

Proposition 6.2. Table 4 gives some Bockstein differentials that are non-zero after inverting ℎ1.

Through coweight 13, these are the only ℎ1-periodic 𝜌-Bockstein differentials.
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1768 BELMONT and ISAKSEN

TABLE 2 Bockstein differentials for 𝑠 + 𝑓 − 𝑤 = 6

Coweight (𝒔, 𝒇,𝒘) 𝒙 𝒅𝒓 𝒅𝒓(𝒙)

0 (6, 6, 6) ℎ6
1

3 (9, 3, 6) ℎ2
1
ℎ3

6 (0, 0, −6) 𝜏6 𝑑2 𝜏5ℎ1

5 (0, 1, −5) 𝜏5ℎ0 𝑑1 𝜏4ℎ2
0

3 (0, 3, −3) 𝜏3ℎ3
0

𝑑1 𝜏2ℎ4
0

1 (0, 5, −1) 𝜏ℎ5
0

𝑑1 ℎ6
0

4 (3, 2, −1) 𝜏3ℎ0ℎ2 𝑑1 𝜏3ℎ3
1

5 (7, 1, 2) 𝜏2ℎ3 𝑑2 𝜏ℎ1ℎ3

4 (7, 2, 3) 𝜏ℎ0ℎ3 𝑑1 ℎ2
0
ℎ3

5 (3, 1, −2) 𝜏4ℎ2 𝑑4 𝜏2ℎ2
2

4 (2, 2, −2) 𝜏4ℎ2
1

𝑑7 𝑐0

For legibility, we have not included powers of 𝜌 in the values of the Bockstein differentials in
Table 4. For example, the first row of the table is to be interpreted as 𝑑3(𝑃ℎ1) = 𝜌3ℎ3

1
𝑐0.

Proof. The differentials in the ℎ1-periodic 𝜌-Bockstein spectral sequence are completely known
[16]. For each ℎ1-periodic element 𝑥, this determines 𝑑𝑟(ℎ

𝑘
1
𝑥) for large values of 𝑘. However, it is

possible that the elements ℎ𝑘
1
𝑥 support shorter differentials for small values of 𝑘. By inspection,

no such shorter differentials occur. □

Remark 6.3. The phenomenon considered at the end of the proof of Proposition 6.2 turns out not
to occur through coweight 13. However, it does occur in higher coweights.

The following examples are representative arguments for establishing𝜌-Bockstein differentials.
In many situations, more than one argument leads to the same result.

Example 6.4. Table 2 summarizes the analysis of Bockstein differentials in degrees (𝑠, 𝑓, 𝑤) sat-
isfying 𝑠 + 𝑓 − 𝑤 = 6. In these degrees, the 𝐸1-page consists of 𝜌 multiples of twenty elements.
The first part of Table 2 lists the two elements that are 𝜌-periodic, as in Proposition 5.2. They
correspond to the classical elements ℎ6

0
and ℎ2

0
ℎ2.

The second section of Table 2 lists somedifferentials that are easily deduced fromProposition 6.1
and the Leibniz rule. At this point, only the elements 𝜏4ℎ2

1
and 𝑐0 remain unaccounted. The third

section of Table 2 gives the only possibility.
These differentials are illustrated in Figure 1.

Example 6.5. In some situations, a more careful analysis of multiplicative structure establishes
a differential. For example, 𝑑1(𝑓0) cannot equal 𝜌ℎ1𝑒0 because ℎ1𝑓0 = 0 but 𝜌ℎ2

1
𝑒0 is not zero.

For a slightly more complicated example, consider the relation ℎ0 ⋅ 𝜏g = 𝜏 ⋅ ℎ0g . This implies
that

ℎ0 ⋅ 𝑑1(𝜏g) = 𝑑1(𝜏) ⋅ ℎ0g = 𝜌ℎ20g ,

so 𝑑1(𝜏g)must equal 𝜌ℎ0g .
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ℝ-MOTIVIC STABLE STEMS 1769

F IGURE 1 The 𝜌-Bockstein spectral sequence for 𝑠 + 𝑓 − 𝑤 = 6. Cyan lines are 𝜌-Bockstein differentials,

and red lines denote 𝜌-multiplication

Example 6.6. Sometimes, the multiplicative structure and an already known differential imply
that a certain element is killed by 𝜌𝑘. Then that element must be killed by a differential 𝑑𝑟 with
𝑟 ⩽ 𝑘. For example, the element 𝜏4ℎ2

1
ℎ3 = (𝜏2ℎ2)

2ℎ2 is a permanent cycle because it is a prod-
uct of permanent cycles. There are two possible differentials that could hit a 𝜌-multiple of it:
𝑑4(𝜏

6ℎ2
2
) or 𝑑8(𝜏

8ℎ2
1
). Note that 𝜏4ℎ2

1
ℎ3 is killed by 𝜌

4 because of the differential 𝑑4(𝜏
4) = 𝜌4𝜏2ℎ2.

Therefore, 𝜌4𝜏4ℎ2
1
ℎ3 must be hit by a 𝑑𝑟 differential with 𝑟 ⩽ 4. The only possibility is that

𝑑4(𝜏
6ℎ2

2
) = 𝜌4𝜏2ℎ2

1
ℎ3.

This differential can be obtained another way using the Leibniz rule, themultiplicative relation
𝜏6ℎ2

2
= 𝜏4 ⋅ 𝜏2ℎ2 ⋅ ℎ2, and the differential 𝑑4(𝜏

4) = 𝜌4𝜏2ℎ2.

Example 6.7. Sometimes onemust look ahead to larger values of 𝑠 + 𝑓 − 𝑤 in order to usemulti-
plicative relations to rule out differentials. For example, in order to show that 𝑑4(𝑖) = 𝜌4ℎ1𝑐0𝑒0 (in
degrees satisfying 𝑠 + 𝑓 − 𝑤 = 18), we first use other techniques to rule out possible differentials
until it suffices to eliminate the possibility that 𝑑11(𝜏

4𝑃𝑐0)might equal 𝜌
11ℎ1𝑐0𝑒0. But this would

imply that 𝑑11(𝜏
4𝑃ℎ1𝑐0) equals ℎ

2
1
𝑐0𝑒0 (in degrees satisfying 𝑠 + 𝑓 − 𝑤 = 19), and this contradicts

the ℎ1-periodic differential 𝑑3(𝑃𝑒0) = 𝜌3ℎ2
1
𝑐0𝑒0 from Table 4.
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1770 BELMONT and ISAKSEN

Example 6.8. The Leibniz rule implies that certain elements survive at least to a certain page of
the spectral sequence. For example, the element 𝜏6ℎ2

3
cannot be hit by a differential, so it must

support a differential. There are two possibilities: 𝑑4(𝜏
6ℎ2

3
) might equal 𝜌4𝜏4ℎ2

1
ℎ4, or 𝑑6(𝜏

6ℎ2
3
)

might equal 𝜌6𝜏3𝑐1. The Leibniz rule and the relation 𝜏
6ℎ2

3
= 𝜏4 ⋅ 𝜏2ℎ2

3
imply

𝑑4(𝜏
6ℎ23) = 𝑑4(𝜏

4) ⋅ 𝜏2ℎ23 = 𝜌4𝜏2ℎ2 ⋅ 𝜏
2ℎ23 = 0.

Therefore, 𝑑6(𝜏
6ℎ2

3
)must equal 𝜌6𝜏3𝑐1.

Example 6.9. The multiplicative structure implies that certain elements do not support any
differentials because they are the product of elements that do not support any differentials.

Extending Example 6.6, sometimes the Massey product structure of Extℝ implies that some
element 𝜌𝑘𝑥 must be zero. Then 𝜌𝑘𝑥 must be the target of a Bockstein 𝑑𝑟 differential for 𝑟 ⩽ 𝑘.
Through coweight 12, we apply this method only once in the following Lemma 6.10. However, we
anticipate that this approach will become more and more important in higher coweights. Massey
products in Extℝ are discussed below in Section 7 and Table 6.

Lemma 6.10. 𝑑2(𝜏
2
g) = 𝜌2ℎ2𝑓0.

Proof. Table 6 shows that ℎ2𝑓0 equals the Massey product ⟨𝜏ℎ1, ℎ41, ℎ4⟩ in Extℝ. Shuffle to obtain

𝜌2
⟨
𝜏ℎ1, ℎ

4
1, ℎ4

⟩
=
⟨
𝜌2, 𝜏ℎ1, ℎ

4
1

⟩
ℎ4,

which equals 0 because the last bracket is zero. Therefore, 𝜌2ℎ2𝑓0 is hit by a 𝑑1 or 𝑑2 differential,
and the only possibility is that 𝑑2(𝜏

2
g) = 𝜌2ℎ2𝑓0. □

Theorem 6.11 summarizes the results of the analysis of 𝜌-Bockstein differentials.

Theorem 6.11. Table 5 lists some values of the 𝜌-Bockstein 𝑑𝑟 differentials on multiplicative gen-

erators of the 𝐸𝑟-page. Through coweight 13, the 𝑑𝑟 differential vanishes on all other multiplicative

generators of the 𝐸𝑟-page.

For legibility, we have not included powers of 𝜌 in the values of the Bockstein differentials in
Table 5. For example, the first row of the table is to be interpreted as 𝑑1(𝜏) = 𝜌ℎ0.

7 HIDDEN EXTENSIONS IN THE 𝝆-BOCKSTEIN SPECTRAL
SEQUENCE

Section 6 explains how to obtain the 𝐸∞-page of the 𝜌-Bockstein spectral sequence through
coweight 12. As usual, this 𝐸∞-page is an associated graded object of Extℝ.
We abuse notation and use the same name for generators of the 𝜌-Bockstein 𝐸∞-page and ele-

ments of Extℝ that they represent. A generator of the 𝜌-Bockstein 𝐸∞-page can represent more
than one element in Extℝ, where the indeterminacy is parametrized by elements of the 𝐸∞-page
in higher filtration. For example, the element 𝜏2ℎ2 of the 𝐸∞-page represents two elements of
Extℝ whose difference is 𝜌

4ℎ3.
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ℝ-MOTIVIC STABLE STEMS 1771

We adopt the following convention in selecting generators in Extℝ. We always choose an ele-
ment of Extℝ that is annihilated by the same power of 𝜌 as its representative in the 𝐸∞-page.
For example, 𝜏2ℎ2 is annihilated by 𝜌

4 in the 𝐸∞-page. Therefore, we write 𝜏
2ℎ2 for the (unique)

element of Extℝ that is annihilated by 𝜌
4. (The other possible choice is 𝜌-periodic.)

This convention concerning annihilation by powers of 𝜌 eliminates much of the ambigu-
ity in passing from the 𝐸∞-page to Extℝ. In some cases, our convention does not eliminate all
ambiguities. However, the remaining ambiguities make little practical difference.
In order to recover the full structure of Extℝ from the 𝜌-Bockstein 𝐸∞-page, wemust determine

hidden multiplicative extensions. We adopt the precise definition of a hidden extension given in
[19, Section 4.1.1]. In this section, we will analyze all hidden extensions by ℎ0 and ℎ1 through
coweight 12.
The 𝜌-Bockstein spectral sequence has numerous hidden extensions by other elements. There

are so many examples that it is not practical to enumerate them exhaustively. In practice, these
other hidden extensions are occasionally useful, andwe treat themon an adhoc basis as necessary.

Definition 7.1. A hidden 𝑎 extension from 𝑥 to 𝑦 is decomposable if there exists a hidden 𝑎

extension from 𝑢 to 𝑣, and there exists 𝑧 such that 𝑥 = 𝑧𝑢 and 𝑦 = 𝑧𝑣 in the 𝐸∞-page.

Example 7.2. There is a hidden ℎ0 extension from 𝜏ℎ1 to 𝜌𝜏ℎ
2
1
. Multiplication by 𝜏ℎ1 gives the

decomposable hidden ℎ0 extension from 𝜏2ℎ2
1
to 𝜌𝜏2ℎ3

1
.

Definition 7.1 allows us to focus only on the hidden extensions that aremost significant. In prac-
tice, decomposable hidden extensions are easy to understand, once the indecomposable hidden
extensions have been studied.

Remark 7.3. The structure of the 𝜌-Bockstein spectral sequence guarantees that there are no hid-
den extensions by 𝜌. For degree reasons, if there is a possible hidden 𝜌 extension from 𝑥 to 𝑦, then
in fact 𝑦 is a multiple of 𝜌. According to the definition of a hidden extension [19, Section 4.1.1],
this means that 𝑦 cannot be the target of a hidden 𝜌 extension.

7.4 Massey products

Our main tool for establishing hidden extensions is the May Convergence Theorem [22, Theorem
4.1], restated here for convenience.

Theorem 7.5 (May Convergence Theorem). Let 𝛼0, 𝛼1, and 𝛼2 be elements of Extℝ such that the
Massey product ⟨𝛼0, 𝛼1, 𝛼2⟩ is defined. For each 𝑖, let 𝑎𝑖 be a permanent cycle in the Bockstein𝐸𝑟-page
that detects 𝛼𝑖 . Suppose further that:

(1) there exist elements 𝑎01 and 𝑎12 in the Bockstein 𝐸𝑟-page such that 𝑑𝑟(𝑎01) equals 𝑎0𝑎1 and

𝑑𝑟(𝑎12) equals 𝑎1𝑎2;

(2) if either 𝑎01 or 𝑎12 has degree (𝑠, 𝑓, 𝑤) and 𝜌-Bockstein degree𝑚, and 𝑥 is an element in degree
(𝑠, 𝑓, 𝑤) and 𝜌-Bockstein degree𝑚′ such that𝑚′ ⩽ 𝑚, then 𝑑𝑡(𝑥) = 0 for all 𝑡 such that𝑚′ + 𝑡 >

(𝑚 −𝑚′) + 𝑟.

Then 𝑎0𝑎12 + 𝑎01𝑎2 is a permanent cycle in the 𝜌-Bockstein spectral sequence, and it detects an

element of ⟨𝛼0, 𝛼1, 𝛼2⟩ in Extℝ.
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We will often use Theorem 7.5 in the situation when 𝑎01 has 𝜌-Bockstein degree 0 and 𝑎12
has negative 𝜌-Bockstein degree. Since the 𝜌-Bockstein spectral sequence is zero in negative 𝜌-
Bockstein degrees, condition (2) of Theorem 7.5 simplifies to the condition that no element in the
same degree as 𝑎01 with 𝜌-Bockstein degree 0 supports a longer differential.

Proposition 7.6. Table 6 lists some Massey products in Extℝ.

Proof. Most of these Massey products are straightforward applications of the May Convergence
Theorem 7.5. In those cases, the sixth column of Table 6 gives the 𝜌-Bockstein differential that is
relevant for computing the Massey product.
In some cases, theMassey products follow by comparison to theℂ-motivic case. This is denoted

by the word ‘ℂ-motivic’ in the sixth column of Table 6. However, this only determines the Massey
product up to multiples of 𝜌. These ambiguities can typically be eliminated by the multiplicative
structure. In particular, if the Massey product ⟨𝑥, 𝑦, 𝑧⟩ is defined and 𝜌𝑎𝑥 and 𝜌𝑏𝑧 are both zero,
then

𝜌𝑎+𝑏⟨𝑥, 𝑦, 𝑧⟩ = 𝜌𝑏⟨𝜌𝑎, 𝑥, 𝑦⟩𝑧 = 0.

The indeterminacies can be computed by inspection. □

Table 6 is not meant to be an exhaustive list of Massey products. It merely provides an
assortment of Massey products that are needed for various specific computations throughout
the manuscript.

7.7 Hidden 𝒉𝟎 extensions

Proposition 7.8. Table 7 lists all indecomposable hidden ℎ0 extensions in the 𝜌-Bockstein spectral

sequence, through coweight 12.

Proof. All of the hidden ℎ0 extensions in Table 7 are proved using a single technique, which was
introduced in the proof of [12, Lemma 6.2]. To illustrate this technique, we will show that there is
a hidden ℎ0 extension from 𝜏2ℎ1𝑐0 to 𝜌

2𝑃ℎ2.
First we show that the product ℎ0 ⋅ 𝜏

2ℎ1𝑐0 is non-zero in Extℝ. If not, then the Massey product
⟨𝜌, ℎ0, 𝜏2ℎ1𝑐0⟩ would be defined in Extℝ. The May Convergence Theorem 7.5, together with the
𝜌-Bockstein differential 𝑑1(𝜏) = 𝜌ℎ0, would then imply that 𝜏

3ℎ1𝑐0 is a permanent cycle. But this
contradicts the 𝜌-Bockstein differential 𝑑3(𝜏

3ℎ1𝑐0) = 𝜌3𝑃ℎ2.
This shows that there must be a hidden ℎ0 extension on 𝜏

2ℎ1𝑐0. The target of this hidden exten-
sion can only be 𝜌2𝑃ℎ2 or 𝜏𝑃ℎ1. But the target must have higher 𝜌-Bockstein filtration than the
source, which rules out 𝜏𝑃ℎ1.
In some cases, one needs to use multiplicative relations to rule out possible hidden ℎ0 exten-

sions. For example, the target of a hidden ℎ0 extension cannot support a 𝜌 multiplication, since
𝜌ℎ0 = 0 in Extℝ.
We must also show that many elements do not support hidden ℎ0 extensions. In all cases

through coweight 12, the non-existence follows from simplemultiplicative relations. For example,
if 𝑥 is already known to not support an ℎ0 extension, then the product 𝑥𝑦 cannot support an ℎ0
extension. Similarly, if ℎ1𝑦 or 𝜌𝑦 is non-zero, then 𝑦 cannot be the target of a hidden extension
because of the relations ℎ0ℎ1 = 0 and 𝜌ℎ0 = 0 in Extℝ. □
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7.9 Hidden 𝒉𝟏 extensions

Proposition 7.10. Table 8 lists all indecomposable hidden ℎ1 extensions in the 𝜌-Bockstein spectral

sequence, through coweight 12.

Proof. Many of the extensions are established using the map

of Remark 3.3. To illustrate this technique, we will show that there is a hidden ℎ1 extension from
𝜏2ℎ1𝑐0 to 𝜌𝑃ℎ2. The relation ℎ1 ⋅ 𝜏

3𝑐0 = 𝜏3ℎ1𝑐0 in Extℂ implies ℎ1 ⋅ 𝑝(𝜏
3𝑐0) = 𝑝(𝜏3ℎ1𝑐0). Observe

that 𝑝(𝜏3𝑐0) = 𝜌𝜏ℎ1 ⋅ 𝜏𝑐0 and 𝑝(𝜏
3ℎ1𝑐0) = 𝜌2𝑃ℎ2. This shows that there is a hidden ℎ1 extension

from 𝜌𝜏2ℎ1𝑐0 to 𝜌
2𝑃ℎ2, and it follows that there is also a hidden ℎ1 extension from 𝜏2ℎ1𝑐0 to 𝜌𝑃ℎ2.

Several more difficult cases are established in the following lemmas.
We must also show that many elements do not support hidden ℎ1 extensions. In most cases

through coweight 12, the non-existence follows from simplemultiplicative relations. For example,
if 𝑥 is already known to not support an ℎ1 extension, then the product 𝑥𝑦 cannot support an
ℎ1 extension. Similarly, if ℎ0𝑦 is non-zero, then 𝑦 cannot be the target of a hidden ℎ1 extension
because of the relation ℎ0ℎ1 = 0 in Extℝ.
Additionally, the map 𝑝 ∶ Extℂ → Extℝ can be used to detect the absence of some ℎ1

extensions. □

Remark 7.11. The first three extensions in Table 8 were established in [12].

Lemma 7.12. There is a hidden ℎ1 extension from 𝜏3ℎ3
2
to 𝜌4𝑑0.

Proof. The element 𝜏3ℎ3
2
of the 𝜌-Bockstein 𝐸∞-page detects the element 𝜏

2ℎ2 ⋅ 𝜏ℎ
2
2
in Extℝ.

Table 8 shows that ℎ1 ⋅ 𝜏ℎ
2
2
= 𝜌𝑐0, and ℎ

2
1
⋅ 𝜏2ℎ2 = 𝜌3𝑐0. Therefore,

ℎ31 ⋅ 𝜏
2ℎ2 ⋅ 𝜏ℎ

2
2 = 𝜌3𝑐0 ⋅ 𝜌𝑐0 = 𝜌4ℎ21𝑑0.

It follows that ℎ1 ⋅ 𝜏
2ℎ2 ⋅ 𝜏ℎ

2
2
equals 𝜌4𝑑0. □

Lemma 7.13. There is a hidden ℎ1 extension from 𝜏2𝑓0 to 𝜌
2𝜏2ℎ1g .

Proof. Table 6 shows that 𝜏2𝑓0 belongs to the Massey product ⟨𝜏2ℎ2, ℎ3, ℎ20ℎ3⟩. Table 8 shows that
there is a hidden ℎ1 extension from 𝜏2ℎ2 to 𝜌

2𝜏ℎ2
2
. Therefore, we have

ℎ1
⟨
𝜏2ℎ2, ℎ3, ℎ

2
0ℎ3

⟩
=
⟨
𝜌2𝜏ℎ22, ℎ3, ℎ

2
0ℎ3

⟩
= 𝜌2

⟨
𝜏ℎ22, ℎ3, ℎ

2
0ℎ3

⟩
,

where the equalities follow from inspection of indeterminacies. Table 6 shows that the element
𝜏2ℎ1g of the Bockstein 𝐸∞-page detects both elements of the Massey product ⟨𝜏ℎ22, ℎ3, ℎ

2
0
ℎ3⟩, so

𝜌2𝜏2ℎ1g is the target of the hidden ℎ1 extension. □

Lemma 7.14.

(1) There is a hidden ℎ1 extension from 𝜏8ℎ1𝑐0 to 𝜌𝜏
6𝑃ℎ2.
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(2) There is a hidden ℎ1 extension from 𝜏6𝑃ℎ2 to 𝜌
2𝜏5ℎ2

0
𝑑0.

(3) There is a hidden ℎ1 extension from 𝜏4𝑃ℎ1𝑐0 to 𝜌𝜏
2𝑃2ℎ2.

(4) There is a hidden ℎ1 extension from 𝜏2𝑃2ℎ2 to 𝜌
2𝜏𝑃ℎ2

0
𝑑0.

Proof. We will show that ℎ3
1
⋅ 𝜏8𝑐0 equals 𝜌

3𝜏5ℎ2
0
𝑑0. This will establish the first two exten-

sions simultaneously.
Table 6 shows that ℎ1 ⋅ 𝜏

8𝑐0 equals the Massey product ⟨𝜏ℎ1 ⋅ 𝜏5𝑐0, 𝜏ℎ1, 𝜌2⟩. By inspection of
indeterminacies,

ℎ21
⟨
𝜏ℎ1 ⋅ 𝜏

5𝑐0, 𝜏ℎ1, 𝜌
2
⟩
= ℎ1

⟨
ℎ1 ⋅ 𝜏ℎ1 ⋅ 𝜏

5𝑐0, 𝜏ℎ1, 𝜌
2
⟩
.

This expression equals ℎ1⟨𝜌𝜏4𝑃ℎ2, 𝜏ℎ1, 𝜌2⟩, since Table 8 shows that there is a hidden ℎ1
extension from 𝜏6ℎ1𝑐0 to 𝜌𝜏4𝑃ℎ2. By inspection of indeterminacies again, this also equals
𝜌ℎ1⟨𝜏4𝑃ℎ2, 𝜏ℎ1, 𝜌2⟩.
Now shuffle to obtain

𝜌ℎ1
⟨
𝜏4𝑃ℎ2, 𝜏ℎ1, 𝜌

2
⟩
= 𝜌3

⟨
ℎ1, 𝜏

4𝑃ℎ2, 𝜏ℎ1
⟩
.

Finally, Table 6 shows that ⟨ℎ1, 𝜏4𝑃ℎ2, 𝜏ℎ1⟩ equals 𝜏5ℎ20𝑑0. This establishes the first two extensions.
The argument for the last two extensions is essentially identical. The Massey product

⟨𝜏ℎ1 ⋅ 𝜏𝑃𝑐0, 𝜏ℎ1, 𝜌2⟩ equals ℎ1 ⋅ 𝜏4𝑃𝑐0. We have

ℎ21
⟨
𝜏ℎ1 ⋅ 𝜏𝑃𝑐0, 𝜏ℎ1, 𝜌

2
⟩
= ℎ1

⟨
ℎ1 ⋅ 𝜏ℎ1 ⋅ 𝜏𝑃𝑐0, 𝜏ℎ1, 𝜌

2
⟩
,

which equals

ℎ1
⟨
𝜌𝑃2ℎ2, 𝜏ℎ1, 𝜌

2
⟩
= 𝜌ℎ1

⟨
𝑃2ℎ2, 𝜏ℎ1, 𝜌

2
⟩
.

Finally, shuffle to obtain

𝜌ℎ1
⟨
𝑃2ℎ2, 𝜏ℎ1, 𝜌

2
⟩
= 𝜌3

⟨
ℎ1, 𝑃

2ℎ2, 𝜏ℎ1
⟩
= 𝜌3𝜏𝑃ℎ20𝑑0. □

Lemma 7.15. There is a hidden ℎ1-extension from 𝜏3𝑐1 to 𝜌
2𝜏2ℎ2𝑐1.

Proof. Table 6 shows that 𝜏3𝑐1 is contained in theMassey product ⟨𝜌2, 𝜏ℎ1, 𝜏𝑐1⟩. Shuffle to obtain

⟨
𝜌2, 𝜏ℎ1, 𝜏𝑐1

⟩
ℎ1 = 𝜌2⟨𝜏ℎ1, 𝜏𝑐1, ℎ1⟩.

Table 6 shows that the element 𝜏2ℎ2𝑐1 of the Bockstein 𝐸∞-page detects both elements of
⟨𝜏ℎ1, 𝜏𝑐1, ℎ1⟩, so 𝜌2𝜏2ℎ2𝑐1 is the target of the hidden ℎ1 extension. □

Lemma 7.16.

(1) There is a hidden ℎ1 extension from 𝜏3ℎ2
2
𝑒0 to 𝜌

2𝑗.

(2) There is a hidden ℎ1 extension from 𝑗 to 𝜌𝑑2
0
.

 1
7
5
3
8
4
2
4
, 2

0
2
2
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
2
/to

p
o

.1
2

2
5

6
 b

y
 C

ase W
estern

 R
eserv

e U
n

iv
ersity

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
5

/0
9

/2
0

2
3

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n

s L
icen

se



ℝ-MOTIVIC STABLE STEMS 1775

Proof. Table 8 shows that ℎ1 ⋅ 𝜏ℎ
2
2
= 𝜌𝑐0, and ℎ

3
1
⋅ 𝜏2𝑒0 = ℎ1 ⋅ 𝜌𝜏ℎ

2
2
⋅ 𝑑0 = 𝜌2𝑐0𝑑0. Therefore,

ℎ41 ⋅ 𝜏ℎ
2
2 ⋅ 𝜏

2𝑒0 = 𝜌3𝑐20𝑑0 = 𝜌3ℎ21𝑑
2
0 .

Both hidden extensions are immediate consequences. □

7.17 Miscellaneous relations

We briefly consider a few other types of hidden extensions.
In the Bockstein 𝐸∞-page, we have the relation ℎ2

1
⋅ 𝜏4ℎ3 + (𝜏2ℎ2)

2ℎ2 = 0. However, in Extℝ,
it is possible that the sum ℎ2

1
⋅ 𝜏4ℎ3 + (𝜏2ℎ2)

2ℎ2 equals a non-zero element that is detected in
higher 𝜌-Bockstein filtration. Lemma 7.18 demonstrates that this does in fact occur. It provides
one additional piece of information about the multiplicative structure of Extℝ.

Lemma 7.18. In Extℝ, we have the relation

ℎ21 ⋅ 𝜏
4ℎ3 + (𝜏2ℎ2)

2ℎ2 = 𝜌5𝜏ℎ0ℎ
2
3.

Proof. This follows by comparison along the map 𝑝 ∶ Extℂ → Ext𝑅 of Remark 3.3. The rela-
tion ℎ1 ⋅ 𝜏

8ℎ1 = 𝜏8ℎ2
1
in Extℂ implies that ℎ1 ⋅ 𝑝(𝜏

8ℎ1) = 𝑝(𝜏8ℎ2
1
) in Extℝ. Observe that 𝑝(𝜏

8ℎ1) =

𝜌7𝜏4ℎ1ℎ3 and 𝑝(𝜏
8ℎ2

1
) = 𝜌12𝜏ℎ0ℎ

2
3
. This shows that there is a hidden ℎ1 extension from 𝜌7𝜏4ℎ1ℎ3

to 𝜌12𝜏ℎ0ℎ
2
3
, which implies the desired relation. □

Lemma 7.19. There is a hidden 𝜏2ℎ2 extension from 𝑐0 to 𝜌
3𝑑0.

Proof. Table 8 shows that there are hidden ℎ1 extensions from 𝜏ℎ2
2
to 𝜌𝑐0, and from 𝜏3ℎ2

2
to 𝜌4𝑑0.

Therefore,

𝜏2ℎ2 ⋅ 𝜌𝑐0 = 𝜏2ℎ2 ⋅ ℎ1 ⋅ 𝜏ℎ
2
2 = 𝜌4𝑑0.

□

Lemma 7.20. There is a hidden ℎ2 extension from ℎ2𝑓0 to 𝜌ℎ
2
1
ℎ4𝑐0.

Proof. We use the map 𝑝 ∶ Extℂ → Extℝ of Remark 3.3. The relation ℎ2 ⋅ 𝜏
2
g = 𝜏2ℎ2g in Extℂ

implies ℎ2 ⋅ 𝑝(𝜏
2
g) = 𝑝(𝜏2ℎ2g). Observe that 𝑝(𝜏

2
g) = 𝜌ℎ2𝑓0, and 𝑝(𝜏

2ℎ2g) = 𝜌2ℎ2
1
ℎ4𝑐0.

Therefore, there is a hidden ℎ2 extension from 𝜌ℎ2𝑓0 to 𝜌2ℎ2
1
ℎ4𝑐0, and also a hidden ℎ2

extension from ℎ2𝑓0 to 𝜌ℎ
2
1
ℎ4𝑐0. □

8 ADAMS DIFFERENTIALS

Sections 6 and 7 describe how to compute Extℝ, which serves as the 𝐸2-page of the ℝ-motivic
Adams spectral sequence. We now proceed to analyze Adams differentials. We remind the reader
of the notation for stable homotopy elements discussed in Section 2.1 and Table 9.
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Recall from Section 3 that extension of scalars induces a map from the ℝ-motivic Adams
spectral sequence to theℂ-motivicAdams spectral sequence.Wewill frequently use these compar-
ison functors to deduce information about the ℝ-motivic Adams spectral sequence from already
known information about the ℂ-motivic and classical Adams spectral sequences. See [19] for
an extensive summary of computational information about the ℂ-motivic and classical Adams
spectral sequences.

8.1 Toda brackets

The Moss Convergence Theorem 8.2 is a key tool for determining Toda brackets [24] [19, Sec-
tion 3.1]. See also [8] for a modern treatment of the theorem, which specifically covers the
ℝ-motivic Adams spectral sequence that we use.

Theorem 8.2 (Moss Convergence Theorem). Let 𝛼0, 𝛼1, and 𝛼2 be elements of theℝ-motivic stable
homotopy groups such that the Toda bracket ⟨𝛼0, 𝛼1, 𝛼2⟩ is defined. Let 𝑎𝑖 be a permanent cycle on
the Adams 𝐸𝑟-page that detects 𝛼𝑖 for each 𝑖. Suppose further that:

(1) the Massey product ⟨𝑎0, 𝑎1, 𝑎2⟩𝐸𝑟 is defined (in Extℝ when 𝑟 = 2, or using the Adams 𝑑𝑟−1
differential when 𝑟 ⩾ 3);

(2) if (𝑠, 𝑓, 𝑤) is the degree of either 𝑎0𝑎1 or 𝑎1𝑎2; 𝑓
′ < 𝑓 − 𝑟 + 1; 𝑓′′ > 𝑓; and 𝑡 = 𝑓′′ − 𝑓′; then

every Adams differential 𝑑𝑡 ∶ 𝐸
𝑠+1,𝑓′,𝑤
𝑡 → 𝐸

𝑠,𝑓′′,𝑤
𝑡 is zero.

Then ⟨𝑎0, 𝑎1, 𝑎2⟩𝐸𝑟 contains a permanent cycle that detects an element of the Toda bracket

⟨𝛼0, 𝛼1, 𝛼2⟩.

Theorem 8.3. Table 10 lists some Toda brackets in 𝜋∗,∗.

Proof. Most of these Toda brackets are straightforward applications of the Moss Convergence
Theorem 8.2. When a Massey product appears in the fifth column of Table 10, the Toda bracket
follows from the Moss Convergence Theorem 8.2 with 𝑟 = 2. When an Adams differential
appears in the fifth column of Table 10, the Toda bracket follows from the Moss Convergence
Theorem 8.2 with 𝑟 > 2, and the given Adams differential is relevant for computing the Toda
bracket.
In some cases, the Toda brackets follow by comparison along the extension of scalars functor

to the ℂ-motivic case. This is denoted by the word ‘ℂ-motivic’ in the fifth column of Table 10.
One slightly different case is handled below in Lemma 8.4. □

Table 10 is not meant to be exhaustive in any sense. It merely provides the Toda brackets that
are needed for various specific computations. Beware that these brackets have non-trivial inde-
terminacies, although we have not specified the indeterminacies because they are not generally
relevant to our specific needs.
Beware that some of the Toda brackets in Table 10 require knowledge of Adams differentials

that are established below in Section 8.5.

Lemma 8.4. The Toda bracket ⟨𝜌2, 𝜏𝜂, 𝜈4⟩ is detected by 𝜏2ℎ2 ⋅ ℎ4.
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F IGURE 2 Some Adams 𝑑2 differentials from coweight 7 to 6. Some of the 𝐸2-page in coweight 6 is

displayed in black. Some of the 𝐸2-page in coweight 7 is displayed in green. Differentials connecting these

elements are shown in cyan. Beware that additional elements in coweights 6 and 7 have been removed for

clarity

Proof. Table 6 shows that 𝜏2ℎ2 is contained in the Massey product ⟨𝜌2, 𝜏ℎ1, ℎ2⟩. By inspection of
indeterminacies,

𝜏2ℎ2 ⋅ ℎ4 =
⟨
𝜌2, 𝜏ℎ1, ℎ2

⟩
ℎ4 =

⟨
𝜌2, 𝜏ℎ1, ℎ2ℎ4

⟩
.

The Moss Convergence Theorem 8.2 implies that 𝜏2ℎ2 ⋅ ℎ4 detects the corresponding Toda
bracket. □

8.5 Adams 𝒅𝟐 differentials

We now proceed to analyze Adams differentials. Recall that the Adams 𝑑𝑟 differential takes ele-
ments of degree (𝑠, 𝑓, 𝑤) to elements of degree (𝑠 − 1, 𝑓 + 𝑟, 𝑤); in particular, it decreases the
coweight by 1. This means that our charts organized by coweight do not display Adams differ-
entials. While the charts in [7] and the tables in Section 11 are the primary references for this
calculation, to orient the reader we illustrate in Figure 2 the first nontrivial 𝑑2 differentials, which
are from coweight 7 to 6.

Theorem 8.6. Table 12 lists some values of the ℝ-motivic Adams 𝑑2 differential. Through coweight

12, the 𝑑2 differential is zero on all other multiplicative generators of the ℝ-motivic Adams 𝐸2-page.

Proof. The multiplicative structure rules out many possible differentials. For example, 𝑑2(𝜏
5ℎ1)

cannot equal 𝜏4ℎ0 ⋅ ℎ
2
0
because ℎ2

0
⋅ 𝜏5ℎ1 = 0, while 𝜏4ℎ0 ⋅ ℎ

4
0
is non-zero.
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1778 BELMONT and ISAKSEN

Other multiplicative generators are known to be permanent cycles, because the Moss Conver-
gence Theorem 8.2 shows that they must survive to detect various Toda brackets. These instances
are shown in Table 11. In one case, the element ℎ4 ⋅ 𝜏𝑐0 must survive to detect the product 𝜎 ⋅ 𝜏𝜂4,
by comparison to the ℂ-motivic stable homotopy groups.
Many non-zero differentials follow by comparison to the ℂ-motivic or classical Adams

spectral sequences.
Several more difficult cases are established in the following lemmas. □

Remark 8.7. Table 11 shows that 𝜏4ℎ3 is a permanent cycle because it detects the Toda bracket
⟨𝜌4, 𝜏2𝜈, 𝜎⟩. We give an alternative proof that is geometrically interesting, following the method
of [12, Lemma 7.3].
There is a functor from classical homotopy theory to ℝ-motivic homotopy theory that takes

the sphere 𝑆𝑝 to 𝑆𝑝,0. Let 𝜎top ∶ 𝑆
15,0 → 𝑆8,0 be the image of the classical Hopf map 𝜎 ∶ 𝑆15 → 𝑆8

under this functor.
The cohomology of the cofiber of 𝜎top is free on two generators 𝑥 and 𝑦 of degrees (8,0)

and (16,0), satisfying Sq8(𝑥) = 𝜏4𝑦 and Sq16(𝑥) = 𝜌8𝑦. The proof of these formulas is essentially
identical to the proof of [12, Lemma 7.4].
This shows that 𝜏4ℎ3 + 𝜌8ℎ4 is a permanent cycle in the Adams spectral sequence, since it

detects the stabilization of 𝜎top in 𝜋7,0. Also, 𝜌
8ℎ4 is a permanent cycle because there are no

possible values for differentials. Therefore, 𝜏4ℎ3 is a permanent cycle.

Lemma 8.8. 𝑑2(𝜏ℎ0ℎ
2
3
) = 𝜌2ℎ1𝑑0.

Proof. Table 12 shows that 𝑑2(𝑒0) = ℎ2
1
𝑑0. Therefore,

𝑑2(ℎ1 ⋅ 𝜏ℎ0ℎ
2
3) = 𝑑2(𝜌

2𝑒0) = 𝜌2ℎ21𝑑0.

It follows that 𝑑2(𝜏ℎ0ℎ
2
3
) equals 𝜌2ℎ1𝑑0. □

Lemma 8.9. 𝑑2(𝑓0) = ℎ2
0
𝑒0.

Proof. Comparison to theℂ-motivic or classical case shows that𝑑2(𝑓0) equals eitherℎ
2
0
𝑒0 orℎ

2
0
𝑒0 +

𝜌2ℎ2
1
𝑒0. But ℎ1 ⋅ 𝑓0 = 0 in the 𝐸2-page, while ℎ1(ℎ

2
0
𝑒0 + 𝜌2ℎ2

1
𝑒0) is non-zero. The only possibility

is that 𝑑2(𝑓0) equals ℎ
2
0
𝑒0. □

Lemma 8.10. 𝑑2(𝜏
2𝑓0) = ℎ2

0
⋅ 𝜏2𝑒0 + 𝜌3𝜏ℎ2

2
⋅ 𝑑0.

Proof. The ℂ-motivic differential 𝑑2(𝜏
2𝑓0) = 𝜏2ℎ2

0
𝑒0 implies that 𝑑2(𝜏

2𝑓0) equals either ℎ
2
0
⋅ 𝜏2𝑒0

or ℎ2
0
⋅ 𝜏2𝑒0 + 𝜌3𝜏ℎ2

2
⋅ 𝑑0. We rule out the first possibility by noting that (ℎ

2
0
+ 𝜌2ℎ2

1
) ⋅ 𝜏2𝑓0 = 0 in

Extℝ, whereas (ℎ
2
0
+ 𝜌2ℎ2

1
) ⋅ 𝜏2ℎ2

0
𝑒0 = 𝜌6ℎ1𝑐0𝑑0. □

Lemma 8.11. 𝑑2(𝜏
2ℎ1g) = 𝜌2𝑐0𝑑0.

Proof. Table 8 shows that ℎ1 ⋅ 𝜏
2ℎ1g = 𝜌𝜏ℎ2

2
⋅ 𝑒0. Therefore,

ℎ1 ⋅ 𝑑2(𝜏
2ℎ1g) = 𝜌𝜏ℎ22 ⋅ 𝑑2(𝑒0) = 𝜌𝜏ℎ22 ⋅ ℎ

2
1𝑑0,

which equals 𝜌2ℎ1𝑐0𝑑0 because Table 8 shows that ℎ1 ⋅ 𝜏ℎ
2
2
= 𝜌𝑐0. □
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8.12 Higher Adams differentials

Theorem 8.6 completely describes the Adams 𝑑2 differential through coweight 12. From this infor-
mation, one can compute the Adams 𝐸3-page in a range. We now proceed to analyze higher
differentials.

Theorem 8.13. Table 13 lists some values of theℝ-motivic Adams 𝑑3 differential for 𝑟 ⩾ 3. Through

coweight 12, the 𝑑3 differential is zero on all other multiplicative generators of the ℝ-motivic Adams

𝐸3-page. Moreover, through coweight 12, there are no higher differentials, and the ℝ-motivic Adams

𝐸4-page equals the ℝ-motivic Adams 𝐸∞-page.

Proof. As in the proof of Theorem 8.6, many multiplicative generators cannot support differen-
tials because there are no possible targets. Comparison to the ℂ-motivic and classical cases also
determines some differentials. For example, 𝑑3(ℎ1ℎ4) cannot equal ℎ1𝑑0.
Other multiplicative generators are known to be permanent cycles, because the Moss Conver-

gence Theorem 8.2 shows that they must survive to detect various Toda brackets. These instances
are shown in Table 11.
The multiplicative structure rules out additional cases. For example 𝑑3(𝜌ℎ4) cannot equal 𝜌𝑑0

because of the relation ℎ1 ⋅ 𝜌ℎ4 = 𝜌 ⋅ ℎ1ℎ4, together with the fact that 𝑑3(ℎ1ℎ4) is already known
to be zero.
The harder cases are established in the following lemmas. □

Lemma 8.14. 𝑑3(𝜌
6𝑒0) = 0.

Proof. If 𝑑3(𝜌
6𝑒0) equaled 𝜌ℎ1 ⋅ 𝜏ℎ1 ⋅ 𝜏𝑃ℎ1, then 𝜌

7𝑒0 would be a permanent cycle that detected
an element 𝛼 of 𝜋10,3, and 𝛼 could not be divisible by 𝜌. Therefore, by Corollary 3.5, 𝛼 would map
to a non-zero element 𝛽 in 𝜋ℂ

10,3
. Then 𝛽 would have to be detected by 𝜏3𝑃ℎ2

1
, so 𝜂𝛽 would also

have to be non-zero in 𝜋ℂ
11,4

.

But 𝜂𝛼 would be detected by 𝜌7ℎ1𝑒0 and would be divisible by 𝜌, so it would map to zero in
𝜋ℂ
11,4

. This contradicts that 𝜂𝛽 is non-zero. □

Remark 8.15. Lemma 8.14 can also be proved using the ℝ-motivic spectrum 𝑘𝑞, which is the very
effective slice cover of the Hermitian 𝐾-theory spectrum 𝐾𝑄 [1]. The cohomology of 𝑘𝑞 is iso-
morphic to∕∕(1), where(1) is the 𝕄2-subalgebra of the ℝ-motivic Steenrod algebra that is
generated by Sq1 and Sq2.
By a change-of-rings isomorphism, the homotopy of 𝑘𝑞 is computed by an Adams spectral

sequence whose 𝐸2-page is Ext(1)(𝕄2,𝕄2). This 𝐸2-page was computed in [17], and also in [13,
Section 6].
The element 𝜌𝜏ℎ1 ⋅ 𝜏𝑃ℎ1 ⋅ ℎ1 maps to a non-zero permanent cycle in

Ext(1)(𝕄2,𝕄2),

so it cannot be the target of a differential.

Lemma 8.16. 𝑑3(ℎ0ℎ4) = ℎ0𝑑0 + 𝜌ℎ1𝑑0

Proof. The classical differential 𝑑3(ℎ0ℎ4) = ℎ0𝑑0 implies that in the ℝ-motivic case, 𝑑3(ℎ0ℎ4)
equals either ℎ0𝑑0 or ℎ0𝑑0 + 𝜌ℎ1𝑑0.
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1780 BELMONT and ISAKSEN

Note that 𝜏ℎ1 ⋅ ℎ0𝑑0 = 𝜌𝜏ℎ1 ⋅ ℎ1𝑑0 is non-zero on the 𝐸3-page, but 𝜏ℎ1 ⋅ ℎ0ℎ4 = 𝜌𝜏ℎ1 ⋅ ℎ1ℎ4 is a
permanent cycle, as shown in Table 11. Therefore, 𝑑3(ℎ0ℎ4) cannot equal ℎ0𝑑0. □

Lemma 8.17.

(1) 𝑑3(𝜏ℎ
2
2
⋅ 𝜏2𝑒0) = 𝜌𝜏𝑃ℎ1 ⋅ 𝑑0.

(2) 𝑑3(𝜌𝑗) = 𝜏𝑃ℎ1 ⋅ ℎ1𝑑0.

Proof. Let 𝛼 be an element of 𝜋24,13 that is represented by 𝜏𝑃ℎ1 ⋅ ℎ1𝑑0. By comparison of Adams
spectral sequences, extension of scalarsmust take𝛼 to zero in𝜋ℂ

24,13
.Moreover, 𝜏𝑃ℎ1 ⋅ ℎ1𝑑0 cannot

be the target of a hidden 𝜌 extension. Therefore, by Corollary 3.5, 𝜏𝑃ℎ1 ⋅ ℎ1𝑑0must be the target of
an ℝ-motivic Adams differential, and there is only one possible such differential. This establishes
the second formula.
The first formula follows immediately from the second one, using the relation ℎ1 ⋅ 𝜏ℎ

2
2
⋅ 𝜏2𝑒0 =

𝜌𝑐0 ⋅ 𝜏
2𝑒0. □

9 HIDDEN EXTENSIONS IN THE ADAMS SPECTRAL SEQUENCE

We have now obtained the Adams 𝐸∞-page through coweight 11. It remains to determine exten-
sions that are hidden in theℝ-motivicAdams spectral sequence. As in Section 7,we use the precise
definition of a hidden extension given in [19, Section 4.1.1]. We will analyze all hidden extensions
by 𝜌, 𝗁, and 𝜂 through coweight 11.
We begin by analyzing all hidden extensions by 𝜌. The main tools are Corollaries 3.5 and 3.8.

Proposition 9.1. Table 14 lists all hidden 𝜌 extensions in the Adams spectral sequence, through

coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

0 → (coker 𝜌)𝑠,𝑤 → 𝜋ℂ
𝑠,𝑤 → (ker 𝜌)𝑠,𝑤+1 → 0.

The rank of 𝜋ℂ
𝑠,𝑤, which is entirely known in our range [19, 20], severely constrains the possible

ranks of coker 𝜌 and ker 𝜌. From these constraints, we can generally deduce the presence and
absence of hidden 𝜌 extensions, and there is typically only one possibility in each case in the
range under consideration. The only exception is considered below in Lemma 9.2. □

Lemma 9.2. There is a hidden 𝜌 extension from 𝜏ℎ1𝑐0𝑑0 to 𝑃ℎ0𝑑0.

Proof. Table 16 shows that there is a hidden 𝜂 extension from 𝜌𝜏𝑐0 ⋅ 𝑑0 to 𝑃ℎ0𝑑0. Therefore, there
must be a hidden 𝜌 extension from ℎ1 ⋅ 𝜏𝑐0 ⋅ 𝑑0 to 𝑃ℎ0𝑑0. □

Theorem 9.3. Table 15 lists all hidden 𝗁 extensions in the ℝ-motivic Adams spectral sequence,

through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

0 → (coker 𝜌)𝑠,𝑤 → 𝜋ℂ
𝑠,𝑤 → (ker 𝜌)𝑠,𝑤+1 → 0.
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Some of the extensions can be determined via these short exact sequences, using known 2 exten-
sions in 𝜋ℂ

∗,∗. For example, the element 𝜌
6𝑒0 in theℝ-motivic Adams 𝐸∞-page lies in (coker 𝜌)11,4,

and it maps to the element 𝜏2𝜁11 in 𝜋
ℂ
11,4

that is detected by 𝜏2𝑃ℎ2. But 2𝜏
2𝜁11 is non-zero in 𝜋

ℂ
11,4

,

so 𝗁{𝜌6𝑒0}must also be non-zero. It follows that 𝜌
6𝑒0 supports a hidden 𝗁 extension.

Wemust also show thatmany elements do not support hidden 𝗁 extensions. Inmost of the cases
through coweight 11, the non-existence follows from simplemultiplicative relations. For example,
if 𝑥 is a multiple of 𝜌 or of ℎ1, then 𝑥 cannot support a hidden 𝗁 extension because of the relations
𝜌𝗁 = 0 and 𝗁𝜂 = 0. Similarly, if ℎ1𝑦 or 𝜌𝑦 is non-zero, then 𝑦 cannot be the target of a hidden
𝗁 extension.
The following lemmas handle a few additional more complicated cases. □

Lemma 9.4. There is a hidden 𝗁 extension from ℎ2𝑓0 to 𝜌𝑐0𝑑0.

Proof. Table 10 shows that ℎ2𝑓0 detects the Toda bracket ⟨𝜌, {ℎ2𝑒0}, 𝜂⟩. Shuffle to obtain

⟨𝜌, {ℎ2𝑒0}, 𝜂⟩𝗁 = 𝜌⟨{ℎ2𝑒0}, 𝜂, 𝗁⟩.

Table 10 shows that 𝑐0𝑑0 detects the latter bracket. □

Lemma 9.5. There is no hidden 𝗁 extension on 𝜏ℎ2
2
⋅ ℎ4.

Proof. The only possible target is 𝜌𝜏𝑐0 ⋅ 𝑑0. Table 16 shows that 𝜌𝜏𝑐0 ⋅ 𝑑0 supports a hidden 𝜂

extension, so it cannot be the target of a hidden 𝗁 extension. □

Lemma 9.6. There is a hidden 𝗁 extension from 𝜏𝑐0 ⋅ 𝑑0 to 𝑃ℎ0𝑑0.

Proof. Let 𝛼 be an element of𝜋8,4 that is detected by 𝜏𝑐0, so 𝜏𝑐0 ⋅ 𝑑0 detects 𝛼𝜅. Table 14 shows that
there is a hidden 𝜌 extension from ℎ1 ⋅ 𝜏𝑐0 ⋅ 𝑑0 to 𝑃ℎ0𝑑0, so 𝑃ℎ0𝑑0 detects 𝜌𝜂𝛼𝜅. But (𝗁 + 𝜌𝜂)𝜅 is
zero, so (𝗁 + 𝜌𝜂)𝛼𝜅 must also be zero. This implies that 𝗁𝛼𝜅 is also detected by 𝑃ℎ0𝑑0. □

Lemma 9.7. There is no hidden 𝗁 extension on ℎ4𝑐0.

Proof. By comparison to the ℂ-motivic (or classical) case, ℎ4𝑐0 detects the product 𝜎𝜂4. By
inspection, 𝗁𝜂4 is zero in 𝜋16,9. □

Theorem 9.8. Table 16 lists all hidden 𝜂 extensions in the ℝ-motivic Adams spectral sequence,

through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

0 → (coker 𝜌)𝑠,𝑤 → 𝜋ℂ
𝑠,𝑤 → (ker 𝜌)𝑠,𝑤+1 → 0.

Many of these extensions can be obtained by comparison to the ℂ-motivic case, using these short
exact sequences, as in the proof of Theorem 9.3. For example, the element 𝜌𝜏ℎ1 ⋅ 𝜏𝑃𝑐0 detects an
element 𝛼 in (ker 𝜌)16,7. The pre-image 𝛽 of 𝛼 in 𝜋

ℂ
16,6

is detected by 𝜏3𝑃𝑐0. There is a ℂ-motivic

hidden 𝜂 extension from 𝜏3ℎ3
0
ℎ4 to 𝜏

3𝑃𝑐0, so 𝛽 is divisible by 𝜂. This implies that 𝛼 is also divisible
by 𝜂, and that there is an ℝ-motivic hidden 𝜂 extension from 𝜏2ℎ0 ⋅ ℎ

3
0
ℎ4 to 𝜌𝜏ℎ1 ⋅ 𝜏𝑃𝑐0.
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1782 BELMONT and ISAKSEN

Wemust also show thatmany elements do not support hidden 𝜂 extensions. In all cases through
coweight 11, the non-existence follows from simple multiplicative relations. For example, if 𝑥
is a multiple of ℎ0, then 𝑥 cannot support a hidden 𝜂 extension because of the relation 𝗁𝜂 = 0.
Similarly, if ℎ0𝑦 is non-zero, then 𝑦 cannot be the target of a hidden 𝜂 extension. □

Lemma 9.9. There is no hidden 𝜂 extension on 𝜏2ℎ2
3
.

Proof. Table 10 shows that 𝜏2ℎ2
3
detects the Toda bracket ⟨𝜏2𝜈, 𝜎, 𝜈⟩. Shuffle to obtain

⟨
𝜏2𝜈, 𝜎, 𝜈

⟩
𝜂 = 𝜏2𝜈⟨𝜎, 𝜈, 𝜂⟩.

The latter bracket is zero. □

Lemma 9.10. There is no hidden 𝜂 extension on 𝜏𝑐1.

Proof. The possible target 𝜌ℎ2𝑓0 is ruled out by the fact that 𝜌ℎ2𝑓0 supports an ℎ2 extension, as
shown in Lemma 7.20. The possible target 𝜏ℎ2

2
⋅ 𝑑0 is ruled out by comparison to the ℂ-motivic

case. □

10 EXTENSION OF SCALARS

We will now study the values of the extension of scalars map 𝜋ℝ
∗,∗ → 𝜋ℂ

∗,∗. Corollary 3.5 tells us
exactly which elements of 𝜋ℝ

∗,∗ have non-trivial images in 𝜋
ℂ
∗,∗. This information about extension

of scalars is essential to our approach to the Mahowald invariant described in Section 4.
For the most part, the extension of scalars map is detected by the map from the ℝ-motivic

Adams 𝐸∞-page to the ℂ-motivic Adams 𝐸∞-page. For example, the element (𝜏𝜂)
2 of 𝜋ℝ

2,0
is

detected by 𝜏ℎ2
1
in the ℝ-motivic Adams 𝐸∞-page, so its image in 𝜋ℂ

2,0
must be 𝜏2𝜂2, which is

detected by 𝜏2ℎ2
1
in the ℂ-motivic Adams 𝐸∞-page.

However, there are a fewvalues that are hidden by theAdams spectral sequence. In otherwords,
there exist elements 𝛼 in 𝜋ℝ

∗,∗ such that the Adams filtration of 𝛼 is strictly less than the Adams
filtration of its image in 𝜋ℂ

∗,∗.

Theorem 10.1. Through coweight 11, Table 17 lists all hidden values of the extension of scalars map

𝜋ℝ
∗,∗ → 𝜋ℂ

∗,∗.

Proof. We inspect all elements of the ℝ-motivic Adams 𝐸∞-page that are not targets of 𝜌 exten-
sions. Most of these elements map non-trivially to the ℂ-motivic Adams 𝐸∞-page. For example,
(𝜏ℎ1)

2 maps to 𝜏2ℎ2
1
.

A few elements map to zero in the ℂ-motivic Adams 𝐸∞-page. We treat these elements indi-
vidually. In some cases, there is only one possible target in sufficiently high Adams filtration. The
remaining cases are handled by the following lemmas. □

Lemma 10.2. Extension of scalars takes elements detected by 𝜌ℎ4 to elements detected by 𝜏ℎ
2
3
.

Proof. Table 10 shows that 𝜌ℎ4 detects the Toda bracket ⟨𝜌, 𝗁, 𝜎2⟩. Extension of scalars takes
⟨𝜌, 𝗁, 𝜎2⟩ in 𝜋ℝ

14,7
to ⟨0, 2, 𝜎2⟩ in 𝜋ℂ

14,7
, which equals {0, 𝜏𝜎2}. The only non-zero value is 𝜏𝜎2, which

is detected by 𝜏ℎ2
3
. □
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Lemma 10.3. Extension of scalars takes elements detected by 𝜌𝑓0 to elements detected by 𝜏ℎ2𝑑0.

Proof. Table 10 shows that 𝜌𝑓0 detects the Toda bracket ⟨𝜌, 𝗁, 𝜈𝜅⟩. Extension of scalars takes
⟨𝜌, 𝗁, 𝜈𝜅⟩ in𝜋ℝ

17,9
to ⟨0, 2, 𝜈𝜅⟩ in𝜋ℂ

17,9
, which equals {0, 𝜏𝜈𝜅}. The only non-zero value is 𝜏𝜈𝜅, which

is detected by 𝜏ℎ2𝑑0. □

Lemma 10.4. Extension of scalars takes elements detected by 𝜌3𝜏2𝑓0 to elements detected by 𝜏
4ℎ1𝑑0.

Proof. The long exact sequence of Corollary 3.8 gives a short exact sequence

0 → (coker 𝜌)15,5 → 𝜋ℂ
15,5 → (ker 𝜌)15,6 → 0.

The group 𝜋ℂ
15,5

is generated by an element of order 32, detected by 𝜏3ℎ3
0
ℎ4, and an element of

order 2, detected by 𝜏4ℎ1𝑑0. Also (ker 𝜌)15,6 is generated by an element of order 32, detected
by 𝜏2ℎ0 ⋅ ℎ

3
0
ℎ4. It follows that (coker 𝜌)15,5 maps onto an element of order 2 that is detected

by 𝜏4ℎ1𝑑0. □

11 TABLES

TABLE 3 Some values of the ℝ-motivic Mahowald invariant

𝒔 𝜶 𝑴ℝ(𝜶) Indeterminacy

0 2𝑘 𝜂𝑘

1 𝜂 𝜈 2𝜈, 4𝜈

2 𝜂2 𝜈2

3 𝜈 𝜎 2𝜎, 4𝜎, 8𝜎

3 2𝜈 𝜂𝜎 𝜖

3 4𝜈 𝜂2𝜎 𝜂𝜖

6 𝜈2 𝜎2 𝜅

7 𝜎 𝜏𝜎2

7 2𝜎 𝜂4 𝜂𝜌15

7 4𝜎 𝜂𝜂4 𝜂2𝜌15, 𝜈𝜅

7 8𝜎 𝜂2𝜂4 𝜂3𝜌15

8 𝜂𝜎 𝜈4 2𝜈4, 4𝜈4

8 𝜖 𝜎

9 𝜂2𝜎 𝜈𝜈4 𝜏𝜂𝜅

9 𝜂𝜖 𝜈𝜎 𝜏𝜂2𝜅

9 𝜇9 𝜈𝜅 2𝜈𝜅, 4𝜈𝜅

10 𝜂𝜇9 𝜈 ⋅ 𝜈𝜅

11 𝜁11 𝜏𝜈2𝜅 𝜂3𝜌23

11 2𝜁11 {ℎ1ℎ3g} 𝜂5𝜌23

11 4𝜁11 𝜂{ℎ1ℎ3g} 𝜂6𝜌23
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1784 BELMONT and ISAKSEN

TABLE 4 ℎ1-periodic Bockstein differentials

Coweight (𝒔, 𝒇,𝒘) 𝒙 𝒅𝒓 𝒅𝒓(𝒙)

4 (9, 5, 5) 𝑃ℎ1 𝑑3 ℎ3
1
𝑐0

7 (16, 7, 9) 𝑃𝑐0 𝑑3 ℎ4
1
𝑑0

8 (17, 9, 9) 𝑃2ℎ1 𝑑7 ℎ6
1
𝑒0

10 (22, 8, 12) 𝑃𝑑0 𝑑3 ℎ2
1
𝑐0𝑑0

11 (25, 8, 14) 𝑃𝑒0 𝑑3 ℎ2
1
𝑐0𝑒0

12 (25, 13, 13) 𝑃3ℎ1 𝑑3 𝑃2ℎ3
1
𝑐0

13 (30, 11, 17) 𝑃𝑐0𝑑0 𝑑3 ℎ4
1
𝑑2
0

TABLE 5 Bockstein differentials

Coweight (𝒔, 𝒇,𝒘) 𝒙 𝒅𝒓 𝒅𝒓(𝒙)

1 (0, 0, −1) 𝜏 𝑑1 ℎ0

2 (0, 0, −2) 𝜏2 𝑑2 𝜏ℎ1

4 (0, 0, −4) 𝜏4 𝑑4 𝜏2ℎ2

4 (1, 1, −3) 𝜏4ℎ1 𝑑6 𝜏ℎ2
2

4 (2, 2, −2) 𝜏4ℎ2
1

𝑑7 𝑐0

4 (7, 4, 3) 𝜏ℎ3
0
ℎ3 𝑑4 ℎ2

1
𝑐0

4 (9, 5, 5) 𝑃ℎ1 𝑑3 ℎ3
1
𝑐0

5 (6, 2, 1) 𝜏3ℎ2
2

𝑑3 𝜏𝑐0

6 (7, 4, 1) 𝜏3ℎ3
0
ℎ3 𝑑3 𝜏𝑃ℎ1

6 (9, 4, 3) 𝜏3ℎ1𝑐0 𝑑3 𝑃ℎ2

7 (8, 3, 1) 𝜏4𝑐0 𝑑7 𝑑0

7 (11, 5, 4) 𝜏2𝑃ℎ2 𝑑6 ℎ2
1
𝑑0

7 (14, 6, 7) 𝜏ℎ2
0
𝑑0 𝑑4 ℎ3

1
𝑑0

7 (16, 7, 9) 𝑃𝑐0 𝑑3 ℎ4
1
𝑑0

8 (0, 0, −8) 𝜏8 𝑑8 𝜏4ℎ3

8 (2, 2, −6) 𝜏8ℎ2
1

𝑑13 𝜏ℎ0ℎ
2
3

8 (3, 3, −5) 𝜏8ℎ3
1

𝑑15 𝑒0

8 (7, 4, −1) 𝜏5ℎ3
0
ℎ3 𝑑12 ℎ1𝑒0

8 (9, 5, 1) 𝜏4𝑃ℎ1 𝑑11 ℎ2
1
𝑒0

8 (15, 8, 7) 𝜏ℎ7
0
ℎ4 𝑑8 ℎ5

1
𝑒0

8 (17, 9, 9) 𝑃2ℎ1 𝑑7 ℎ6
1
𝑒0

9 (3, 1, −6) 𝜏8ℎ2 𝑑12 𝜏2ℎ2
3

9 (14, 3, 5) 𝜏3ℎ0ℎ
2
3

𝑑5 𝑓0

9 (14, 6, 5) 𝜏3ℎ2
0
𝑑0 𝑑3 𝜏𝑃𝑐0

9 (20, 4, 11) 𝜏g 𝑑1 ℎ0g

10 (6, 2, −4) 𝜏8ℎ2
2

𝑑14 𝜏𝑐1

10 (9, 3, −1) 𝜏7ℎ2
1
ℎ3 𝑑9 𝜏2𝑒0

10 (14, 4, 4) 𝜏4𝑑0 𝑑5 𝜏2ℎ1𝑒0

10 (15, 8, 5) 𝜏3ℎ7
0
ℎ4 𝑑3 𝜏𝑃2ℎ1

10 (17, 8, 7) 𝜏3𝑃ℎ1𝑐0 𝑑3 𝑃2ℎ2

(Continues)
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TABLE 5 (Continued)

Coweight (𝒔, 𝒇,𝒘) 𝒙 𝒅𝒓 𝒅𝒓(𝒙)

10 (20, 4, 10) 𝜏2g 𝑑2 𝜏ℎ1g

10 (22, 8, 12) 𝑃𝑑0 𝑑3 ℎ2
1
𝑐0𝑑0

11 (8, 2, −3) 𝜏8ℎ1ℎ3 𝑑12 𝜏2𝑐1

11 (14, 3, 3) 𝜏5ℎ0ℎ
2
3

𝑑5 𝜏2𝑓0

11 (17, 4, 6) 𝜏4𝑒0 𝑑5 𝜏2ℎ1g

11 (20, 6, 9) 𝜏3ℎ0ℎ2𝑒0 𝑑6 𝑐0𝑒0

11 (23, 5, 12) 𝜏2ℎ2g 𝑑3 ℎ2
1
ℎ4𝑐0

11 (23, 7, 12) 𝑖 𝑑4 ℎ1𝑐0𝑒0

11 (25, 8, 14) 𝑃𝑒0 𝑑3 ℎ2
1
𝑐0𝑒0

12 (7, 4, −5) 𝜏9ℎ3
0
ℎ3 𝑑5 𝜏6𝑃ℎ2

12 (9, 5, −3) 𝜏8𝑃ℎ1 𝑑6 𝜏5ℎ2
0
𝑑0

12 (10, 6, −2) 𝜏8𝑃ℎ2
1

𝑑7 𝜏4𝑃𝑐0

12 (14, 2, 2) 𝜏6ℎ2
3

𝑑6 𝜏3𝑐1

12 (15, 8, 3) 𝜏5ℎ7
0
ℎ4 𝑑5 𝜏2𝑃2ℎ2

12 (17, 9, 5) 𝜏4𝑃2ℎ1 𝑑6 𝜏𝑃ℎ2
0
𝑑0

12 (18, 10, 6) 𝜏4𝑃2ℎ2
1

𝑑7 𝑃2𝑐0

12 (23, 12, 11) 𝜏ℎ5
0
𝑖 𝑑4 𝑃2ℎ2

1
𝑐0

12 (25, 13, 13) 𝑃3ℎ1 𝑑3 𝑃2ℎ3
1
𝑐0

13 (14, 3, 1) 𝜏7ℎ0ℎ
2
3

𝑑7 𝜏4g

13 (17, 4, 4) 𝜏6𝑒0 𝑑5 𝜏4ℎ1g

13 (18, 5, 5) 𝜏6ℎ1𝑒0 𝑑6 𝜏3ℎ0ℎ2g

13 (20, 6, 7) 𝜏5ℎ0ℎ2𝑒0 𝑑7 𝑗

13 (22, 10, 9) 𝜏3𝑃ℎ2
0
𝑑0 𝑑3 𝜏𝑃2𝑐0

13 (23, 7, 10) 𝜏2𝑖 𝑑6 𝑑2
0

13 (25, 8, 12) 𝜏2𝑃𝑒0 𝑑5 ℎ1𝑑
2
0

TABLE 6 Some Massey products in Extℝ

Coweight (𝒔, 𝒇,𝒘) Bracket Contains Indeterminacy Proof Used in

3 (3, 1, 0) ⟨𝜌2, 𝜏ℎ1, ℎ2⟩ 𝜏2ℎ2 𝜌4ℎ3 𝑑2(𝜏
2) = 𝜌2𝜏ℎ1 ⟨𝜌2, 𝜏𝜂, 𝜈⟩,

Lemma 8.4

4 (8, 3, 4) ⟨𝑐0, ℎ0, 𝜌⟩ 𝜏𝑐0 𝜌𝜏ℎ1 ⋅ ℎ1ℎ3 𝑑1(𝜏) = 𝜌ℎ0 ⟨𝜖, 𝗁, 𝜌⟩
7 (7, 1, 0) ⟨𝜌4, 𝜏2ℎ2, ℎ3⟩ 𝜏4ℎ3 𝜌8ℎ4 𝑑4(𝜏

4) = 𝜌4𝜏2ℎ2 ⟨𝜌4, 𝜏2𝜈, 𝜎⟩
9 (21, 5, 12) ⟨𝜏ℎ1, ℎ41 , ℎ4⟩ ℎ2𝑓0 0 ℂ-motivic Lemma 6.10

9 (21, 5, 12) ⟨𝜌, ℎ2𝑒0, ℎ1⟩ ℎ2𝑓0 𝜌2ℎ2g 𝑑1(𝜏g) = 𝜌ℎ2𝑒0 ⟨𝜌, {ℎ2𝑒0}, 𝜂⟩
10 (18, 4, 8) ⟨𝜏2ℎ2, ℎ3, ℎ20ℎ3⟩ 𝜏2𝑓0 𝜏2ℎ2 ⋅ ℎ

2
0
ℎ4, 𝜌

5ℎ4𝑐0 ℂ-motivic Lemma 7.13

10 (21, 5, 11) ⟨𝜏ℎ2
2
, ℎ3, ℎ

2
0
ℎ3⟩ 𝜏2ℎ1g 𝜌3ℎ1ℎ4𝑐0 ℂ-motivic Lemma 7.13

11 (3, 1, −8) ⟨𝜌2, 𝜏9ℎ1, ℎ2⟩ 𝜏10ℎ2 0 𝑑2(𝜏
10) = 𝜌2𝜏9ℎ1 ⟨𝜌2, 𝜏9𝜂, 𝜈⟩

11 (9, 4, −2) ⟨𝜏ℎ1 ⋅ 𝜏5𝑐0, 𝜏ℎ1, 𝜌2⟩ ℎ1 ⋅ 𝜏
8𝑐0 0 𝑑2(𝜏

2) = 𝜌2𝜏ℎ1 Lemma 7.14

11 (11, 5, 0) ⟨𝜌2, 𝜏5ℎ1, 𝑃ℎ2⟩ 𝜏6𝑃ℎ2 𝜌16ℎ3g 𝑑2(𝜏
6) = 𝜌2𝜏5ℎ1 ⟨𝜌2, 𝜏5𝜂, 𝜁11⟩

11 (14, 6, 3) ⟨ℎ1, 𝜏4𝑃ℎ2, 𝜏ℎ1⟩ 𝜏5ℎ2
0
𝑑0 0 ℂ-motivic Lemma 7.14
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TABLE 6 (Continued)

Coweight (𝒔, 𝒇,𝒘) Bracket Contains Indeterminacy Proof Used in

11 (17, 8, 6) ⟨𝜏ℎ1 ⋅ 𝜏𝑃𝑐0, 𝜏ℎ1, 𝜌2⟩ ℎ1 ⋅ 𝜏
4𝑃𝑐0 0 𝑑2(𝜏

2) = 𝜌2𝜏ℎ1 Lemma 7.14

11 (19, 3, 8) ⟨𝜌, ℎ0, 𝜏2𝑐1⟩ 𝜏3𝑐1 𝜌2𝜏2ℎ2 ⋅ ℎ2ℎ4 𝑑1(𝜏) = 𝜌ℎ0 ⟨𝜌, 𝗁, 𝜏2𝜎⟩
11 (19, 3, 8) ⟨𝜌2, 𝜏ℎ1, 𝜏𝑐1⟩ 𝜏3𝑐1 𝜌2𝜏2ℎ2 ⋅ ℎ2ℎ4 𝑑2(𝜏

2) = 𝜌2𝜏ℎ1 Lemma 7.15

11 (19, 9, 8) ⟨𝜌2, 𝜏ℎ1, 𝑃2ℎ2⟩ 𝜏2𝑃2ℎ2 0 𝑑2(𝜏
2) = 𝜌2𝜏ℎ1 ⟨𝜌2, 𝜏𝜂, 𝜁19⟩

11 (22, 4, 11) ⟨𝜏ℎ1, 𝜏𝑐1, ℎ1⟩ ℎ2 ⋅ 𝜏
2𝑐1 𝜌ℎ4 ⋅ 𝜏𝑐0 ℂ-motivic Lemma 7.15

11 (22, 10, 11) ⟨ℎ1, 𝑃2ℎ2, 𝜏ℎ1⟩ 𝜏𝑃ℎ2
0
𝑑0 0 ℂ-motivic Lemma 7.14

12 (20, 4, 8) ⟨𝜌, 𝜏2ℎ0, 𝜌, ℎ2𝑒0⟩ 𝜏4g 𝜌2ℎ2 ⋅ 𝜏
3𝑐1 𝑑1(𝜏

3) = 𝜌𝜏2ℎ0, ⟨𝜌, 𝜏2𝗁, 𝜌, {ℎ2𝑒0}⟩
𝑑1(𝜏g) = 𝜌ℎ2𝑒0

TABLE 7 Hidden ℎ0 extensions in the 𝜌-Bockstein spectral sequence

Coweight (𝒔, 𝒇,𝒘) Source Target

1 (1, 1, 0) 𝜏ℎ1 𝜌𝜏ℎ2
1

3 (3, 3, 0) 𝜏2ℎ2
0
ℎ2 𝜌6ℎ1𝑐0

3 (7, 4, 4) ℎ3
0
ℎ3 𝜌3ℎ2

1
𝑐0

4 (6, 2, 2) 𝜏2ℎ2
2

𝜌2𝜏𝑐0

4 (8, 3, 4) 𝜏𝑐0 𝜌𝜏ℎ1𝑐0

5 (1, 1, −4) 𝜏5ℎ1 𝜌𝜏5ℎ2
1

5 (7, 4, 2) 𝜏2ℎ3
0
ℎ3 𝜌2𝜏𝑃ℎ1

5 (9, 4, 4) 𝜏2ℎ1𝑐0 𝜌2𝑃ℎ2

5 (9, 5, 4) 𝜏𝑃ℎ1 𝜌𝜏𝑃ℎ2
1

6 (6, 2, 0) 𝜏4ℎ2
2

𝜌3𝜏3ℎ3
2

6 (14, 6, 8) ℎ2
0
𝑑0 𝜌3ℎ3

1
𝑑0

7 (3, 3, −4) 𝜏6ℎ2
0
ℎ2 𝜌14𝑒0

7 (7, 4, 0) 𝜏4ℎ3
0
ℎ3 𝜌11ℎ1𝑒0

7 (11, 7, 4) 𝜏2𝑃ℎ2
0
ℎ2 𝜌10ℎ4

1
𝑒0

7 (15, 8, 8) ℎ7
0
ℎ4 𝜌7ℎ5

1
𝑒0

8 (8, 3, 0) 𝜏5𝑐0 𝜌𝜏5ℎ1𝑐0

8 (14, 3, 6) 𝜏2ℎ0ℎ
2
3

𝜌4𝑓0

8 (14, 6, 6) 𝜏2ℎ2
0
𝑑0 𝜌2𝜏𝑃𝑐0

8 (16, 7, 8) 𝜏𝑃𝑐0 𝜌𝜏𝑃ℎ1𝑐0

9 (1, 1, −8) 𝜏9ℎ1 𝜌𝜏9ℎ2
1

9 (7, 4, −2) 𝜏6ℎ3
0
ℎ3 𝜌2𝜏5𝑃ℎ1

9 (9, 3, 0) 𝜏6ℎ2
1
ℎ3 𝜌8𝜏2𝑒0

9 (9, 4, 0) 𝜏6ℎ1𝑐0 𝜌2𝜏4𝑃ℎ2

9 (9, 5, 0) 𝜏5𝑃ℎ1 𝜌𝜏5𝑃ℎ2
1

9 (15, 8, 6) 𝜏2ℎ7
0
ℎ4 𝜌2𝜏𝑃2ℎ1

9 (17, 8, 8) 𝜏2𝑃ℎ1𝑐0 𝜌2𝑃2ℎ2

9 (17, 9, 8) 𝜏𝑃2ℎ1 𝜌𝜏𝑃2ℎ2
1

10 (14, 3, 4) 𝜏4ℎ0ℎ
2
3

𝜌4𝜏2𝑓0

10 (18, 5, 8) 𝜏2ℎ0𝑓0 𝜌5𝜏ℎ2
2
𝑒0
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TABLE 7 (Continued)

Coweight (𝒔, 𝒇,𝒘) Source Target

10 (20, 6, 10) 𝜏2ℎ0ℎ2𝑒0 𝜌5𝑐0𝑒0

11 (3, 3, −8) 𝜏10ℎ2
0
ℎ2 𝜌6𝜏8ℎ1𝑐0

11 (7, 4, −4) 𝜏8ℎ3
0
ℎ3 𝜌4𝜏6𝑃ℎ2

11 (11, 7, 0) 𝜏6𝑃ℎ2
0
ℎ2 𝜌6𝜏4𝑃ℎ1𝑐0

11 (15, 8, 4) 𝜏4ℎ7
0
ℎ4 𝜌4𝜏2𝑃2ℎ2

11 (19, 3, 8) 𝜏3𝑐1 𝜌3𝜏2ℎ2𝑐1

11 (19, 11, 8) 𝜏2𝑃2ℎ2
0
ℎ2 𝜌6𝑃2ℎ1𝑐0

11 (23, 12, 12) ℎ5
0
𝑖 𝜌3𝑃2ℎ2

1
𝑐0

12 (6, 2, −6) 𝜏10ℎ2
2

𝜌2𝜏9𝑐0

12 (8, 3, −4) 𝜏9𝑐0 𝜌𝜏9ℎ1𝑐0

12 (14, 3, 2) 𝜏6ℎ0ℎ
2
3

𝜌6𝜏4g

12 (14, 6, 2) 𝜏6ℎ2
0
𝑑0 𝜌2𝜏5𝑃𝑐0

12 (16, 7, 4) 𝜏5𝑃𝑐0 𝜌𝜏5𝑃ℎ1𝑐0

12 (18, 5, 6) 𝜏6ℎ0𝑓0 𝜌5𝜏3ℎ2
2
𝑒0

12 (20, 6, 8) 𝜏4ℎ2
0
g 𝜌6𝑗

12 (22, 10, 10) 𝜏2𝑃ℎ2
0
𝑑0 𝜌2𝜏𝑃2𝑐0

12 (24, 11, 12) 𝜏𝑃2𝑐0 𝜌𝜏𝑃2ℎ1𝑐0

12 (26, 9, 14) ℎ2
0
𝑗 𝜌4ℎ2

1
𝑑2
0

TABLE 8 Hidden ℎ1 extensions in the 𝜌-Bockstein spectral sequence

Coweight (𝒔, 𝒇,𝒘) Source Target Proof

2 (0, 1, −2) 𝜏2ℎ0 𝜌𝜏2ℎ2
1

3 (3, 1, 0) 𝜏2ℎ2 𝜌2𝜏ℎ2
2

3 (6, 2, 3) 𝜏ℎ2
2

𝜌𝑐0

5 (9, 4, 4) 𝜏2ℎ1𝑐0 𝜌𝑃ℎ2

6 (0, 1, −6) 𝜏6ℎ0 𝜌𝜏6ℎ2
1

6 (9, 3, 3) 𝜏3ℎ3
2

𝜌4𝑑0 Lemma 7.12

7 (14, 3, 7) 𝜏ℎ0ℎ
2
3

𝜌2𝑒0

9 (9, 3, 0) 𝜏6ℎ2
1
ℎ3 𝜌7𝜏2𝑒0

9 (9, 4, 0) 𝜏6ℎ1𝑐0 𝜌𝜏4𝑃ℎ2

9 (17, 8, 8) 𝜏2𝑃ℎ1𝑐0 𝜌𝑃2ℎ2

9 (18, 5, 9) 𝜏2ℎ1𝑒0 𝜌𝜏ℎ2
2
𝑑0

10 (0, 1, −10) 𝜏10ℎ0 𝜌𝜏10ℎ2
1

10 (14, 2, 4) 𝜏4ℎ2
3

𝜌4𝜏2𝑐1

10 (18, 4, 8) 𝜏2𝑓0 𝜌2𝜏2ℎ1g Lemma 7.13

10 (19, 3, 9) 𝜏2𝑐1 𝜌2𝜏ℎ2𝑐1

11 (3, 1, −8) 𝜏10ℎ2 𝜌2𝜏9ℎ2
2

11 (6, 2, −5) 𝜏9ℎ2
2

𝜌𝜏8𝑐0

11 (9, 4, −2) 𝜏8ℎ1𝑐0 𝜌𝜏6𝑃ℎ2 Lemma 7.14

11 (11, 5, 0) 𝜏6𝑃ℎ2 𝜌2𝜏5ℎ2
0
𝑑0 Lemma 7.14
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TABLE 8 (Continued)

Coweight (𝒔, 𝒇,𝒘) Source Target Proof

11 (14, 6, 3) 𝜏5ℎ2
0
𝑑0 𝜌𝜏4𝑃𝑐0

11 (17, 8, 6) 𝜏4𝑃ℎ1𝑐0 𝜌𝜏2𝑃2ℎ2 Lemma 7.14

11 (19, 3, 8) 𝜏3𝑐1 𝜌2𝜏2ℎ2𝑐1 Lemma 7.15

11 (19, 9, 8) 𝜏2𝑃2ℎ2 𝜌2𝜏𝑃ℎ2
0
𝑑0 Lemma 7.14

11 (22, 10, 11) 𝜏𝑃ℎ2
0
𝑑0 𝜌𝑃2𝑐0

12 (21, 5, 9) 𝜏4ℎ1g 𝜌𝜏3ℎ2
2
𝑒0

12 (22, 9, 10) 𝜏2𝑃ℎ0𝑑0 𝜌𝜏2𝑃ℎ2
1
𝑑0

12 (23, 6, 11) 𝜏3ℎ2
2
𝑒0 𝜌2𝑗 Lemma 7.16

12 (26, 7, 14) 𝑗 𝜌𝑑2
0

Lemma 7.16

TABLE 9 Multiplicative generators of 𝜋ℝ
∗,∗

Coweight (𝒔,𝒘) Element Detected by

0 (−1, −1) 𝜌 𝜌

0 (0, 0) 𝗁 ℎ0

0 (1, 1) 𝜂 ℎ1

1 (1, 0) 𝜏𝜂 𝜏ℎ1

1 (3, 2) 𝜈 ℎ2

2 (0, −2) 𝜏2𝗁 𝜏2ℎ0

3 (3, 0) 𝜏2𝜈 𝜏2ℎ2

3 (6, 3) 𝜏𝜈2 𝜏ℎ2
2

3 (7, 4) 𝜎 ℎ3

3 (8, 5) 𝜖 𝑐0

4 (0, −4) 𝜏4𝗁 𝜏4ℎ0

4 (8, 4) 𝜏𝜖 𝜏𝑐0

5 (1, −4) 𝜏5𝜂 𝜏5ℎ1

5 (9, 4) 𝜏𝜇9 𝜏𝑃ℎ1

5 (11, 6) 𝜁11 𝑃ℎ2

6 (0, −6) 𝜏6𝗁 𝜏6ℎ0

6 (14, 8) 𝜅 𝑑0

7 (7, 0) 𝜏4𝜎 𝜏4ℎ3

7 (11, 4) 𝜏2𝜁11 𝜌6𝑒0

7 (14, 7) 𝜏𝜎2 𝜌ℎ4

7 (15, 8) 𝜌15 ℎ3
0
ℎ4

7 (16, 9) 𝜂4 ℎ1ℎ4

8 (0, −8) 𝜏8𝗁 𝜏8ℎ0

8 (8, 0) 𝜏5𝜖 𝜏5𝑐0

8 (14, 6) 𝜏2𝜎2 𝜏2ℎ2
3

8 (16, 8) 𝜏𝜂4 𝜏ℎ1 ⋅ ℎ4

8 (17, 9) 𝜏𝜈𝜅 𝜌𝑓0

(Continues)
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TABLE 9 (Continued)

Coweight (𝒔,𝒘) Element Detected by

8 (18, 10) 𝜈4 ℎ2ℎ4

8 (19, 11) 𝜎̄ 𝑐1

8 (20, 12) {ℎ2𝑒0} ℎ2𝑒0

9 (1, −8) 𝜏9𝜂 𝜏9ℎ1

9 (9, 0) 𝜏5𝜇9 𝜏5𝑃ℎ1

9 (11, 2) 𝜏4𝜁11 𝜏4𝑃ℎ2

9 (15, 6) 𝜏3𝜂𝜅 𝜌2𝜏2𝑒0

9 (17, 8) 𝜏𝜇17 𝜏𝑃2ℎ1

9 (19, 10) 𝜏𝜎 𝜏𝑐1

9 (19, 10) 𝜁19 𝑃2ℎ2

9 (21, 12) 𝜏𝜂𝜅 ℎ2𝑓0

9 (23, 14) 𝜈𝜅 ℎ2g

10 (0, −10) 𝜏10𝗁 𝜏10ℎ0

10 (15, 5) 𝜏4𝜂𝜅 𝜌3𝜏2𝑓0

10 (18, 8) 𝜏2𝜈4 𝜏2ℎ2 ⋅ ℎ4

10 (19, 9) 𝜏2𝜎 𝜏2𝑐1

10 (20, 10) 𝜏2𝗁𝜅 ℎ2 ⋅ 𝜏
2𝑒0

10 (21, 11) 𝜏𝜈𝜈4 𝜏ℎ2
2
⋅ ℎ4

11 (3, −8) 𝜏10𝜈 𝜏10ℎ2

11 (6, −5) 𝜏9𝜈2 𝜏9ℎ2
2

11 (8, −3) 𝜏8𝜖 𝜏8𝑐0

11 (11, 0) 𝜏6𝜁11 𝜏6𝑃ℎ2

11 (15, 4) 𝜏4𝜌15 𝜏4ℎ3
0
ℎ4

11 (17, 6) 𝜏4𝜈𝜅 𝜏2ℎ0 ⋅ 𝜏
2𝑒0

11 (19, 8) 𝜏3𝜎 𝜏3𝑐1

11 (19, 8) 𝜏2𝜁19 𝜏2𝑃2ℎ2

11 (23, 12) 𝜌23 ℎ2
0
𝑖

11 (26, 15) 𝜏𝜈2𝜅 𝜌ℎ3g

11 (28, 17) {ℎ1ℎ3g} ℎ1ℎ3g

TABLE 10 Some Toda brackets in 𝜋∗,∗

Coweight (𝒔,𝒘) Bracket Detected by Proof Used in

3 (3, 0) ⟨𝜌2, 𝜏𝜂, 𝜈⟩ 𝜏2ℎ2 ⟨𝜌2, 𝜏ℎ1, ℎ2⟩ Table 11

4 (8, 4) ⟨𝜖, 𝗁, 𝜌⟩ 𝜏𝑐0 ⟨𝑐0, ℎ0, 𝜌⟩ Table 11

7 (7, 0) ⟨𝜌4, 𝜏2𝜈, 𝜎⟩ 𝜏4ℎ3 ⟨𝜌4, 𝜏2ℎ2, ℎ3⟩ Table 11

7 (14, 7) ⟨𝜌, 𝗁, 𝜎2⟩ 𝜌ℎ4 𝑑2(ℎ4) = ℎ0ℎ
2
3

Lemma 10.2

8 (8, 0) ⟨𝜏5𝜂, 𝗁𝜈, 𝜈⟩ 𝜏5𝑐0 ℂ-motivic Table 11

8 (14, 6) ⟨𝜏2𝜈, 𝜎, 𝜈⟩ 𝜏2ℎ2
3

ℂ-motivic Table 11, Lemma 9.9

8 (16, 8)(16,8) ⟨𝜎2, 2, 𝜏𝜂⟩ 𝜏ℎ1 ⋅ ℎ4 𝑑2(ℎ4) = (ℎ0 + 𝜌ℎ1)ℎ
2
3

Table 11

8 (16, 8) ⟨𝜏𝜇9, 𝗁𝜈, 𝜈⟩ 𝜏𝑃𝑐0 ℂ-motivic Table 11

(Continues)
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TABLE 10 (Continued)

Coweight (𝒔,𝒘) Bracket Detected by Proof Used in

8 (17, 9)(17,9) ⟨𝜌, 𝗁, 𝜈𝜅⟩ 𝜌𝑓0 𝑑2(𝑓0) = ℎ2
0
𝑒0 Lemma 10.3

8 (18, 10) ⟨𝜈, 𝜎, 𝗁𝜎⟩ ℎ2ℎ4 𝑑2(ℎ4) = ℎ0ℎ
2
3

Table 11

9 (15, 6) ⟨𝜌, 𝜌𝜏𝜂, 𝜏𝜂 ⋅ 𝜅⟩ 𝜌2𝜏2𝑒0 𝑑2(𝜏
2𝑒0) = 𝜏2ℎ2

1
𝑑0 Table 11

9 (21, 12) ⟨𝜌, {ℎ2𝑒0}, 𝜂⟩ ℎ2𝑓0 ⟨𝜌, ℎ2𝑒0, ℎ1⟩ Lemma 9.4

9 (21, 13) ⟨{ℎ2𝑒0}, 𝜂, 𝗁⟩ 𝑐0𝑑0 ℂ-motivic Lemma 9.4

10 (18, 8) ⟨𝜌2, 𝜏𝜂, 𝜈4⟩ 𝜏2ℎ2 ⋅ ℎ4 Lemma 8.4 Table 11

10 (19, 9) ⟨𝜏2𝜈, 𝜂𝜎, 𝜎⟩ 𝜏2𝑐1 ℂ-motivic Table 11

11 (3, −8) ⟨𝜌2, 𝜏9𝜂, 𝜈⟩ 𝜏10ℎ2 ⟨𝜌2, 𝜏9ℎ1, ℎ2⟩ Table 11

11 (11, 0) ⟨𝜌2, 𝜏5𝜂, 𝜁11⟩ 𝜏6𝑃ℎ2 ⟨𝜌2, 𝜏5ℎ1, 𝑃ℎ2⟩ Table 11

11 (19, 8) ⟨𝜌2, 𝜏𝜂, 𝜁19⟩ 𝜏2𝑃2ℎ2 ⟨𝜌2, 𝜏ℎ1, 𝑃2ℎ2⟩ Table 11

11 (19, 8) ⟨𝜌, 𝗁, 𝜏2𝜎̄⟩ 𝜏3𝑐1 ⟨𝜌, ℎ0, 𝜏2𝑐1⟩ Table 11

12 (8, −4) ⟨𝜏9𝜂, 𝗁𝜈, 𝜈⟩ 𝜏9𝑐0 ℂ-motivic Table 11

12 (16, 4) ⟨𝜎2, 2, 𝜏5𝜂⟩ 𝜏5ℎ1 ⋅ ℎ4 𝑑2(ℎ4) = (ℎ0 + 𝜌ℎ1)ℎ
2
3

Table 11

12 (16, 4) ⟨𝜏5𝜇9, 𝗁𝜈, 𝜈⟩ 𝜏5𝑃𝑐0 ℂ-motivic Table 11

12 (20, 8) ⟨𝜌, 𝜏2𝗁, 𝜌, {ℎ2𝑒0}⟩ 𝜏4g ⟨𝜌, 𝜏2ℎ0, 𝜌, ℎ2𝑒0⟩ Table 11

12 (24, 12) ⟨𝜏𝜇17, 𝗁𝜈, 𝜈⟩ 𝜏𝑃2𝑐0 ℂ-motivic Table 11

TABLE 11 Some permanent cycles in the ℝ-motivic Adams spectral sequence

Coweight (𝒔, 𝒇,𝒘) Element Proof

3 (3, 1, 0) 𝜏2ℎ2 ⟨𝜌2, 𝜏𝜂, 𝜈⟩
4 (8, 3, 4) 𝜏𝑐0 ⟨𝜖, 𝗁, 𝜌⟩
7 (7, 1, 0) 𝜏4ℎ3 ⟨𝜌4, 𝜏2𝜈, 𝜎⟩
7 (11, 4) 𝜌6𝑒0 Lemma 8.14

8 (8, 3, 0) 𝜏5𝑐0 ⟨𝜏5𝜂, 𝗁𝜈, 𝜈⟩
8 (14, 6) 𝜏2ℎ2

3
⟨𝜏2𝜈, 𝜎, 𝜈⟩

8 (16, 7, 8) 𝜏𝑃𝑐0 ⟨𝜏𝜇9, 𝗁𝜈, 𝜈⟩
8 (16, 2, 8) 𝜏ℎ1 ⋅ ℎ4 ⟨𝜎2, 2, 𝜏𝜂⟩
8 (18, 2, 10) ℎ2ℎ4 ⟨𝜈, 𝜎, 𝗁𝜎⟩
9 (15, 4, 6) 𝜌2𝜏2𝑒0 ⟨𝜌, 𝜌𝜏𝜂, 𝜏𝜂 ⋅ 𝜅⟩
10 (18, 2, 8) 𝜏2ℎ2 ⋅ ℎ4 ⟨𝜌2, 𝜏𝜂, 𝜈4⟩
10 (19, 3, 9) 𝜏2𝑐1 ⟨𝜏2𝜈, 𝜂𝜎, 𝜎⟩
11 (3, 1, −8) 𝜏10ℎ2 ⟨𝜌2, 𝜏9𝜂, 𝜈⟩
11 (11, 5, 0) 𝜏6𝑃ℎ2 ⟨𝜌2, 𝜏5𝜂, 𝜁11⟩
11 (19, 3, 8) 𝜏3𝑐1 ⟨𝜌, 𝗁, 𝜏2𝜎̄⟩
11 (19, 9, 8) 𝜏2𝑃2ℎ2 ⟨𝜌2, 𝜏𝜂, 𝜁19⟩
11 (23, 4, 12) ℎ4 ⋅ 𝜏𝑐0 𝜎 ⋅ 𝜏𝜂4

12 (8, 3, −4) 𝜏9𝑐0 ⟨𝜏9𝜂, 𝗁𝜈, 𝜈⟩
12 (16, 2, 4) 𝜏5ℎ1 ⋅ ℎ4 ⟨𝜎2, 2, 𝜏5𝜂⟩
12 (16, 7, 4) 𝜏5𝑃𝑐0 ⟨𝜏5𝜇9, 𝗁𝜈, 𝜈⟩
12 (20, 4, 8) 𝜏4g ⟨𝜌, 𝜏2ℎ0, 𝜌, ℎ2𝑒0⟩
12 (24, 11, 12) 𝜏𝑃2𝑐0 ⟨𝜏𝜇17, 𝗁𝜈, 𝜈⟩
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TABLE 1 2 Adams 𝑑2 differentials

Coweight (𝒔, 𝒇,𝒘) 𝒙 𝒅𝟐(𝒙) Proof

7 (15, 1, 8) ℎ4 ℎ0ℎ
2
3

classical

7 (17, 4, 10) 𝑒0 ℎ2
1
𝑑0 classical

7 (14, 3, 7) 𝜏ℎ0ℎ
2
3

𝜌2ℎ1𝑑0 Lemma 8.8

8 (18, 4, 10) 𝑓0 ℎ2
0
𝑒0 Lemma 8.9

9 (17, 4, 8) 𝜏2𝑒0 (𝜏ℎ1)
2𝑑0 classical

10 (18, 4, 8) 𝜏2𝑓0 𝜏2ℎ2
0
𝑒0 + 𝜌3𝜏ℎ2

2
⋅ 𝑑0 Lemma 8.10

10 (21, 5, 11) 𝜏2ℎ1g 𝜌2𝑐0𝑑0 Lemma 8.11

11 (23, 8, 12) ℎ0𝑖 𝑃ℎ2
0
𝑑0 classical

11 (27, 5, 16) ℎ3g ℎ3
1
ℎ4𝑐0 ℂ-motivic

12 (26, 7, 14) 𝑗 𝑃ℎ2 ⋅ 𝑑0 classical

TABLE 13 Adams 𝑑3 differentials

Coweight (𝒔, 𝒇,𝒘) 𝒙 𝒅𝒓(𝒙) Proof

7 (15, 2, 8) ℎ0ℎ4 ℎ0𝑑0 + 𝜌ℎ1𝑑0 Lemma 8.16

12 (23, 6, 11) 𝜏ℎ2
2
⋅ 𝜏2𝑒0 𝜌𝜏𝑃ℎ1 ⋅ 𝑑0 Lemma 8.17

12 (25, 7, 13) 𝑐0 ⋅ 𝜏
2𝑒0 𝜏𝑃ℎ1 ⋅ ℎ1𝑑0 Lemma 8.17

TABLE 14 Hidden 𝜌 extensions in the ℝ-motivic Adams spectral sequence

Coweight (𝒔, 𝒇,𝒘) Source Target

7 (15, 4, 8) ℎ3
0
ℎ4 𝜌4ℎ1𝑒0

7 (17, 5, 10) ℎ2𝑑0 𝜏ℎ1 ⋅ ℎ1𝑑0

8 (15, 2, 7) 𝜌𝜏ℎ1 ⋅ ℎ4 ℎ0 ⋅ 𝜏
2ℎ2

3

8 (15, 4, 7) 𝜌3𝑓0 𝜏2ℎ0 ⋅ 𝑑0

10 (15, 2, 5) 𝜌3𝜏2ℎ2 ⋅ ℎ4 𝜏4ℎ3 ⋅ ℎ0ℎ3

10 (15, 4, 5) 𝜌3𝜏2𝑓0 𝜏4ℎ0 ⋅ 𝑑0

10 (23, 8, 13) ℎ1 ⋅ 𝜏𝑐0 ⋅ 𝑑0 𝑃ℎ0𝑑0

11 (15, 4, 4) 𝜏4ℎ0 ⋅ ℎ
2
0
ℎ4 𝜏5ℎ2

0
𝑑0

11 (17, 5, 6) 𝜏2ℎ0 ⋅ 𝜏
2𝑒0 𝜏5ℎ1 ⋅ ℎ1𝑑0

11 (18, 5, 7) 𝜌3𝑓0 ⋅ 𝜏
2ℎ2 ℎ0 ⋅ 𝜏

2ℎ0 ⋅ 𝜏
2𝑒0

11 (23, 9, 12) ℎ2
0
𝑖 𝜏𝑃ℎ2

0
𝑑0

TABLE 15 Hidden 𝗁 extensions in the ℝ-motivic Adams spectral sequence

Coweight (𝒔,𝒘) Source Target

7 (11, 4) 𝜌6𝑒0 𝜏2ℎ0 ⋅ 𝑃ℎ2

9 (21, 12) ℎ2𝑓0 𝜌𝑐0𝑑0

9 (23, 14) ℎ0ℎ2g ℎ1𝑐0𝑑0

10 (22, 12) 𝜏𝑐0 ⋅ 𝑑0 𝑃ℎ0𝑑0

11 (23, 12) 𝜏2ℎ0 ⋅ ℎ2g 𝜏𝑃ℎ1 ⋅ 𝑑0

 1
7
5
3
8
4
2
4
, 2

0
2
2
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
2
/to

p
o

.1
2

2
5

6
 b

y
 C

ase W
estern

 R
eserv

e U
n

iv
ersity

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
5

/0
9

/2
0

2
3

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n

s L
icen

se



1792 BELMONT and ISAKSEN

TABLE 16 Hidden 𝜂 extensions in the ℝ-motivic Adams spectral sequence

Coweight (𝒔, 𝒇,𝒘) Source Target

7 (15, 4, 8) ℎ3
0
ℎ4 𝜌3ℎ2

1
𝑒0

9 (15, 5, 6) 𝜏2ℎ0 ⋅ ℎ
3
0
ℎ4 𝜌𝜏ℎ1 ⋅ 𝜏𝑃𝑐0

9 (21, 5, 12) ℎ2𝑓0 𝑐0𝑑0

10 (20, 5, 10) ℎ2 ⋅ 𝜏
2𝑒0 𝜌𝜏𝑐0 ⋅ 𝑑0

10 (21, 7, 11) 𝜌𝜏𝑐0 ⋅ 𝑑0 𝑃ℎ0𝑑0

11 (15, 4, 4) 𝜏4ℎ0 ⋅ ℎ
2
0
ℎ4 𝜏4𝑃𝑐0

11 (23, 9, 12) ℎ2
0
𝑖 𝑃2𝑐0

TABLE 17 Hidden values of extension by scalars

Coweight (𝒔, 𝒇,𝒘) Source Target

7 (11, 4, 4) 𝜌6𝑒0 𝜏2𝑃ℎ2

7 (14, 1, 7) 𝜌ℎ4 𝜏ℎ2
3

7 (16 + 𝑘, 6 + 𝑘, 9 + 𝑘) 𝜌3ℎ𝑘+2
1

𝑒0 𝑃ℎ𝑘
1
𝑐0

8 (17, 4, 9) 𝜌𝑓0 𝜏ℎ2𝑑0

9 (15, 4, 6) 𝜌2𝜏2𝑒0 𝜏3ℎ1𝑑0

10 (15, 4, 5) 𝜌3𝜏2𝑓0 𝜏4ℎ1𝑑0

10 (22, 7, 12) 𝜏𝑐0 ⋅ 𝑑0 𝑃𝑑0

10 (23, 8, 13) ℎ1 ⋅ 𝜏𝑐0 ⋅ 𝑑0 𝑃ℎ1𝑑0

11 (20, 5, 9) 𝜏2ℎ2 ⋅ 𝜌𝑓0 𝜏3ℎ2
0
g

11 (26, 5, 15) 𝜌ℎ3g 𝜏ℎ2
2
g
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