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1 | INTRODUCTION

The goal of this article is to compute the stable homotopy groups of the R-motivic sphere spectrum
in a range. These stable homotopy groups are the most fundamental invariants of the R-motivic
stable homotopy category, and thus lead to a deeper understanding of many of the computa-
tional aspects of R-motivic homotopy theory. More specifically, we work in cellular R-motivic
stable homotopy theory, completed appropriately at 2 so that the R-motivic Adams spectral
sequence converges.

Our main tool is the R-motivic Adams spectral sequence, which takes the form

Here A is the R-motivic Steenrod algebra, M, is the R-motivic cohomology of a point, and 7, ,
is the bigraded homotopy groups of the 2-complete R-motivic sphere. We obtain complete results
about 7, for s — w < 11. This approach follows [12], which computed 7, for s —w < 3.
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1756 | BELMONT AND ISAKSEN

See [7] for large-scale R-motivic Adams charts. These charts are an essential companion to
this article. In a sense, this article consists of a series of arguments for the computational facts
displayed in the Adams charts.

1.1 | The p-Bockstein spectral sequence

The first step in an Adams spectral sequence program is to obtain the algebraic E,-page. We study
this computation in Sections 5-7. We use the p-Bockstein spectral sequence, which takes the form

Ext 4c(M$, M$) = Ext 4 (M,, M,).

Here A® is the C-motivic Steenrod algebra, and Mg is the C-motivic cohomology of a point.

The p-Bockstein spectral sequence is a tool that passes from C-motivic Ext groups to R-motivic
Ext groups. We discuss the general properties of this spectral sequence in Section 5, and we
describe an unexpectedly effective strategy for computing differentials. The key idea is to compute
the p-periodic groups Ext ,(M,, M,)[p~!] in advance. Then naive combinatorial considerations
force a very large number of Bockstein differentials. We discuss specific Bockstein differential
computations in Section 6.

Having obtained the E_ -page of the p-Bockstein spectral sequence, we do not yet have a
complete knowledge of Ext ,(M,, M,). It remains to resolve extensions that are hidden by the
p-Bockstein filtration. There is an unmanageable quantity of hidden extensions, so we do not
attempt to analyze them completely, not even in a range. Nevertheless, we do analyze all exten-
sions by h, and h; in the range under consideration. These computations are carried out in
Section 7.

1.2 | The R-motivic Adams spectral sequence

Having obtained the E,-page of the R-motivic Adams spectral sequence, the next step is to deter-
mine Adams differentials. We carry out these computations in Section 8. These differentials can be
obtained by a variety of techniques. One important technique is the use of the Moss Convergence
Theorem 8.2 to compute Toda brackets, which determine that certain elements are permanent
cycles. Another technique is comparison to previously established computations in the C-motivic
and classical computations. See Section 1.4 for more discussion of these comparisons.

After computing Adams differentials and obtaining the Adams E_ -page, there are once again
hidden extensions to resolve. As in the algebraic case, there are too many extensions to study
exhaustively, but we do consider all extensions by p, h, and 7 exhaustively (where p, h, and 7 are
stable homotopy elements detected by p, ), and h,, respectively). These computations are carried
out in Section 9. Once again, the key techniques are shuffling relations involving Toda brackets
and comparison to the C-motivic and classical cases.

1.3 | Milnor-Witt K-theory

Our computations describe the structure of 7, , as a module over &, 7, ,, that is, the 2-completed
Milnor-Witt K-theory of R. Milnor-Witt K-theory is multiplicatively generated over the 2-adic
integers Z, by p and 7.
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R-MOTIVIC STABLE STEMS | 1757

We make a change of generators that makes the computation easier to understand. Instead of
describing motivic stable homotopy groups as a module over the 2-adic integers Z, (that is, in
terms of the action of 2), it is easier to describe the homotopy groups in terms of the action of h.
More precisely, let hZ, be the non-unital subring of 7, , that is generated by h. The elements of
hz,, consist of power series Y, €;h!, where each ¢; is either 0 or 1. Multiplication of power series
occurs in the usual way, but addition is determined by the formulas h’ + hi = hi*!. The ring hz,,
is abstractly isomorphic to the ideal 27, of Z,, but it differs from 27, as a subring of 7, ,.

With this notation, the Milnor K-theory of R is easily described as

Zh[p’ 77]

he,hny

This is much cleaner and more practical than the alternative

Z5[p,m]
2+ pnp, 2+ pnn’

1.4 | Comparison of homotopy theories

An essential ingredient in our computations is comparison between the R-motivic, C-motivic,
C,-equivariant, and classical stable homotopy theories, as depicted in the diagram

realization

R-motivic C,-equivariant

extension of scalars l \L forgetful (1.1)

C-motivic ———————— classical.
realization

The horizontal arrows labeled ‘realization’ refer to the Betti realization functors that take a variety
over C (respectively, over R) to the space (respectively, C,-equivariant space) of C-valued points.
The vertical arrow labeled ‘extension of scalars’ refers to the functor that takes a variety over R
and views it as a variety over C. The vertical arrow labeled ‘forgetful’ refers to the functor that
takes a C,-equivariant object to its underlying non-equivariant object.

Our philosophy in this article is to accept computational information about the C-motivic and
classical stable homotopy groups as given, and to use this information to study the R-motivic
stable homotopy groups. See [19] for an extensive summary of computational information about
the C-motivic and classical Adams spectral sequences. The presence of the C,-equivariant stable
homotopy category in this diagram is relevant for our consideration of Mahowald invariants, to
be discussed below in Section 1.5.

There is a surprising connection between C-motivic and R-motivic that enables many of our
detailed computations. Namely, Theorem 3.4 shows that the C-motivic stable homotopy groups
are isomorphic to the R-motivic homotopy groups of the cofiber S/p of p. This means that the
structure of C-motivic stable homotopy groups governs both the cokernel and the kernel of mul-
tiplication by p. This allows us to deduce many R-motivic computational facts with relative ease
from known C-motivic information.
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1758 BELMONT AND ISAKSEN

TABLE 1 Some Mahowald invariants

Stem a R(x) Indeterminacy
0 2 7

0 4 7?

0 8 73

1 ] v 2v, 4y

2 7? v?

3 v o 20,40, 80
3 2y no €

3 4y n’c ne

6 v? o? x

7 o o?

7 20 N P15

7 40 M, VK, 7°P15
8 no Vy 2v,,4v,

8 € o

9 n’c vy, K

1.5 | Mahowald invariants

Let a be a non-zero classical stable homotopy element. The Mahowald invariant (or root invari-
ant) R(ar) is a non-zero equivalence class of classical stable homotopy elements in a stem that is
higher than the stem of a. One source of interest in Mahowald invariants is that R(«) appears to
have greater chromatic complexity than «. Thus one can construct more exotic stable homotopy
elements out of elements that are better understood [21].

Bruner and Greenlees reformulated the definition of the Mahowald invariant in terms of C,-
equivariant stable homotopy groups [10]. Although we do not study C,-equivariant homotopy
groups directly, we have indirectly obtained information about them because the R-motivic and
C,-equivariant stable homotopy groups are isomorphic in a range [6]. In Section 4, we show how
many Mahowald invariants can be immediately deduced from our R-motivic computations. While
these results only recover previously known Mahowald invariants [4, 21], we believe that our
techniques can be extended into uncharted territory without much more effort.

Theorem 1.6. Table 1 gives some values of the Mahowald invariant.

Proof. Theorem 4.10 reduces the computation to an R-motivic Mahowald invariant, as defined in
Section 4.3. Table 3 gives the values of the R-motivic Mahowald invariant. Finally, Table 17 gives
the Betti realizations of the R-motivic Mahowald invariants. O

See Examples 4.9 and 4.11 for detailed illustrations of how this technique plays out in practice.

‘We have computed the Mahowald invariant of most, but not every, a through the 11-stem. In
particular, we do not compute the Mahowald invariants of 2% for k > 4, 80, n¢, g, 9y, nor ¢;; and
its multiples. In these cases, the problem is that the inequality of Theorem 4.10 does not apply, so
our R-motivic computations do not determine C,-equivariant behavior.
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R-MOTIVIC STABLE STEMS 1759

2 | NOTATION

We write M, for the R-motivic homology of a point with coefficients in F,. Recall that M, is
isomorphic to F,[p, 7], where p and 7 have degrees (—1, —1) and (0, —1), respectively, [27].
We write A for the R-motivic dual Steenrod algebra. Recall that A is described by the equations

A =My[tg, 71, e E1,Ep o 1/ (02 = Téi gy + PTigy + PT0Ek41)
(@ =1, nr(®)=1+p7, nle)=nrle)=p
M) =181+ ) & ®1,
A=Y &2 ®¢E,

where 7; and £, have degrees (21*! — 1,2/ — 1) and (2! — 2,2/ — 1), respectively, [28].

‘We write Mg for the C-motivic homology of a point with coefficients in F,, and we write AL:
for the C-motivic dual Steenrod algebra. These objects are easily described in terms of M, and A.
Namely, they are the result of setting p equal to 0.

‘We write Af} for the classical dual Steenrod algebra, which can be obtained from .4 by setting
p and 7 to be 0 and 1 respectively.

We write Ext or Exty for Ext ,(M,, M,), that is, the cohomology of the R-motivic Steenrod
algebra. We write Ext. and Ext for the cohomologies of the C-motivic and classical Steenrod
algebras, respectively.

We write 7, , or ﬂﬁ’q for the stable homotopy groups of the R-motivic sphere spectrum. Simi-
larly, we write ng q for the stable homotopy groups of the C-motivic sphere spectrum. We adopt
the usual motivic grading convention, so that 7, ;X denotes maps out of SP4, where SP4 is the
smash product of p — g copies of the simplicial sphere and g copies of A' — 0. There is an incon-
sistency in the literature regarding the definition of p; we take p = —[—1], though some authors
take p = [—1].

We write 7TC2 for the stable homotopy groups of the C,-equivariant sphere spectrum. We use
an equlvarlant gradlng convention that is compatible with the motivic grading convention, so that
7, X denotes maps out of SP9, where S is the one-point compactification of R”, with C, acting
by negating the last g coordinates. Betti realization takes R-motivic SP-9 to C,-equivariant SP9.

We write 7, for the classical stable homotopy groups.

All stable homotopy groups are suitably 2-completed so that Adams spectral sequences
converge [18].

Grading conventions

Following [19] and [12], we use the following grading convention for the motivic Adams spectral
sequence: s denotes the stem, f denotes the Adams filtration, and w denotes the motivic weight.
Then the internal degree is s + f. In this grading, Adams differentials take the form

S, f,w s—1,f+r,
d, 2E,f - E, frrw,

The coweight of an element in degree (s, f,w) is defined to be s — w. This quantity has pre-
viously been referred to as Milnor-Witt stem in the literature. Note that p has coweight 0. In
particular, an element x and its p-multiple px lie in the same coweight. This makes coweights
particularly useful in the p-Bockstein perspective that we adopt.
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1760 | BELMONT AND ISAKSEN

2.1 | Stable homotopy elements

We adopt conventional notation, as used (for example) in [19, 20], for the names of elements in
the classical stable homotopy groups 7, and the C-motivic stable homotopy groups 7¢ .

Table 9 gives the notation that we use for elements of 7 . We define these elements in terms
of the elements of the Adams E -page that detect them. These definitions have indeterminacy
parametrized by elements of the Adams E_ -page in higher Adams filtration. As a general rule,
this indeterminacy does not matter to our computations. It is possible to use Toda brackets, or
geometric constructions (see [11]), to eliminate the indeterminacy in many cases.

Remark 2.2. We use the symbol h to denote an element of 7, that is detected by h,. The symbol
stands for ‘hyperbolic’ because it corresponds to the hyperbolic plane in the Grothendieck-Witt
group interpretation of 7, ; [23, Remark 6.4.2]. (Alternatively, it can also stand for ‘Hopf’, since h
is the zeroth Hopf map.) Beware that h does not equal 2; in fact, 2 = h — pn.

Remark 2.3. The element o requires more discussion. We write o for an element of 7, 4 that is
detected by h5. There are 256 possible choices for o, because of the presence of elements in higher
Adams filtration. One such element in higher filtration is pc,. Lemma 7.19 shows that 2k, - pc,
equals p*d,. Therefore, some possible choices of o have the property that 7%v - o is detected by
p*dyin T10.4» While other possible choices of o have the property that 72v - g is zero. (The elements
Thy - TPh, and ph, - Th; - TPh, are not relevant, by comparison to kq as in Remark 8.15.)

We will need to use the relation 72v - ¢ = 0 in later computations, so we must assume that our
choice of o satisfies this condition.

Remark 2.4. In some cases, we have chosen names for elements of ﬂf* that reflect the values of
the extension of scalars functor given in Table 17. For example, we write o2 for an element of
7'[?4’7 that is detected by ph,, since this element maps to 7o in 7'[104,7.

Remark 2.5. Beware that our use of the symbol ¥ is inconsistent with its usage in [19]. In this
article, tx refers to a non-zero element of ”go 1; thatis detected by 7g. The symbol k is used in [19]
for the same element.

Remark 2.6. Occasionally we refer to stable homotopy elements that have no standard name. In
these cases, we use the symbol {x} to indicate a stable homotopy element that is detected by an
element x of an Adams E  -page.

3 | COMPARISON BETWEEN R-MOTIVIC AND C-MOTIVIC
HOMOTOPY

We first discuss the relationship between R-motivic and C-motivic stable homotopy theory. We
will use these ideas frequently in later sections to obtain R-motivic information from known C-
motivic information.

Consider the cofiber sequence

§-1-1_* _g00 —~S/p.

d ¥ “TTOT “vTY8ESLL

ssdny woxy

sdi1y) SUONIPUOD) PUE SULIO L U1 938 “[£Z02/60/S1] U0 ATRIqIT SUIUQ) ADJ1AN *ANSIOAIU) 9AIDSOY WIANSIM 958D Kq 9677 1°0doV/Z | [ 1701 10p/wod Ko Areaqy

suLioywosKojim-Areiqrpou

pue

591 sUOWWIOY) 9ANEAI)) A[qEt[ddE Uy £q POUIDAOS I SADILIE V() $a5n JO SO[MI 10} AIIqI] FUIUQ AOIAL UO



R-MOTIVIC STABLE STEMS | 1761

The cofiber S/p of p is a 2-cell complex whose structure governs multiplication by p in the R-
motivic stable homotopy groups, in a sense to be made precise in this section. In addition, we will
draw an unexpected connection between the R-motivic homotopy groups of S/p and C-motivic
stable homotopy groups.

As shown in diagram (1.1), there is an extension of scalars functor from R-motivic stable homo-
topy theory to C-motivic stable homotopy theory, and a Betti realization functor from C-motivic
stable homotopy theory to classical stable homotopy theory. These functors take Eilenberg-
Mac Lane spectra to Eilenberg-Mac Lane spectra, and thus interact nicely with Adams spectral
sequences. In particular, they induce highly structured morphisms of Adams spectral sequences.
We will frequently use these comparison functors to deduce information about the R-motivic
Adams spectral sequence from already known information about the C-motivic and classical
Adams spectral sequences. See [19] for an extensive summary of computational information about
the C-motivic and classical Adams spectral sequences.

Extension of scalars takes the element p of 7_; _; to zero. In particular, it induces the map
M, — Mg that takes p to zero, and it similarly induces the map A — At that takes p to zero.

For an R-motivic spectrum, we write Extg (X) for the E,-page of the R-motivic Adams spectral
sequence that converges to 7, ,(X), that is, for Ext ,(M,, H**(X)), and similarly for Extc(X).

Extension of scalars induces a diagram

— Extp(S71) —2 > Extg(S%%) — > Extp(S/p) —

| | |

—— Exte(S™4 D) L Exte(S%9) —— Exte(S%0v §7271) —— |

Because p becomes zero after extension of scalars, the bottom row of the diagram splits. The
map Extp(S/p) — Ext (S v S~271) lifts to a map Extgy(S/p) — Ext-(S*?) that makes the
diagram

Extg (§%°) — Extr(S/p)

T

Eth:(SO’O)
commute.
Proposition 3.1. The map Ext,(S/p) — Ext.(S™) is an isomorphism.
Proof. Let C;; and C;: be the cobar complexes for Exty (%) and Ext,(S°), respectively. Note that
C¢ is isomorphic to C}, /p. Because multiplication by p is injective on C, this is also isomorphic
to the cobar complex that computes Exty (S/p). O
Remark 3.2. Because of the isomorphism of Proposition 3.1, the object Ext. is a module over Extg.

By careful inspection of definitions, this module action is easy to describe. Using the p-Bockstein
spectral sequence notation from Section 5, a typical element of Exty, is of the form p¥x, where x
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1762 | BELMONT AND ISAKSEN

belongs to Extc. The Exty-module action on Ext is described by

K 0 ifk>0
prx-y= .
xy ifk=0,

where the last expression xy is to be interpreted as the usual Yoneda product of elements in Ext.
Remark 3.3. Proposition 3.1 implies that there is a long exact sequence

EXtR P EXtR i EXtC L EXtR P EXtR

of Extp-module maps, where Ext. is an Extp-module as in Remark 3.2. If x is a permanent cycle
in the p-Bockstein spectral sequence, then the map i takes x in Exty to the element of Ext of the
same name.

Now consider the diagram

o
T o n2.(S/p)
J{ / (3.1)
77:C

c

in which the diagonal arrow exists because p maps to zero in 7.

Theorem 3.4. The map 7% (S/p) — n<_ is an isomorphism.

Proof. Proposition 3.1 shows that there is an isomorphism of E,-pages of Adams spectral
sequences, so the targets of the spectral sequences are also isomorphic. O

Corollary 3.5. Let a be an element of 71'5*. Extension of scalars takes o to zero in ﬂg* if and only if
a is divisible by p.

Proof. Chase the diagram (3.1), using that the diagonal map is an isomorphism. O
Remark 3.6. Corollary 3.5 has a C,-equivariant analogue, as stated later in Proposition 4.2.

Remark 3.7. The isomorphism of Theorem 3.4 can be strengthened to an equivalence of cate-
gories [5, Corollary 8.6]. Namely, the 2-complete C-motivic cellular stable homotopy category is
equivalent to the homotopy category of S/p-modules in the 2-complete R-motivic cellular stable

homotopy category.

Corollary 3.8. There is a long exact sequence

P

7o (S) 7&u(S) ”Sw+1(s)*>"' .

R
7Ts+1,w+1 (S)
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R-MOTIVIC STABLE STEMS 1763

Proof. This is the long exact sequence in homotopy for the fiber sequence
S—Lss—~S/p

in R-motivic spectra, after applying the identification in Theorem 3.4. 1

4 | MAHOWALD INVARIANTS

The goal of this section is to use R-motivic computations to recompute some Mahowald invariants.
See [4, Section 4] for a careful discussion of the definition, using Lin’s theorem that RP%_ is
equivalent to S~1.

4.1 | C,-equivariant homotopy theory and Mahowald invariants

Using C,-equivariant homotopy theory, Bruner and Greenlees [10] gave an alternative definition
of the Mahowald invariant. We will summarize this definition, but first we need some background
on C,-equivariant homotopy theory.

Let S%" be the one-point compactification of R%, where C, acts by negating the last b coordi-
nates. Then p : S0 — Sb1 is the inclusion of fixed points. Note that the cofiber of this map is
2(C,),, that is, the suspension of the based free C,-space.

We use the same notation p for the map S~%~! — S%0 in the C,-equivariant stable homotopy
group 71521,_1. The identification of the cofiber of p leads immediately to the following proposition,

whose short proof appears in [13, Proposition 11.2].

Proposition 4.2. Let a be a C,-equivariant stable homotopy element. The underlying classical stable
homotopy element U(c) of a is zero if and only if a is divisible by p.

I . . c
Geometric fixed points gives a map 7Ta2b

groups 71'?2* [p~1] are isomorphic to 7, ® Z[p*!], that is, to the classical stable homotopy groups
with p and p~! adjoined [9, Proposition] [2, Proposition 7.0].

With this background on C,-equivariant stable homotopy groups, we now give the Bruner-
Greenlees definition of the Mahowald invariant. Start with a classical stable homotopy element
a in 7, which we identify with the obvious element of 7, ® Z[p*!] in degree (0, —n). Using the
isomorphism

— 7,_p, and this map takes p to 1. The p-periodic

7, ® Z[p* = 7 [p7 1],

write o = p¥B for some § in 7752* and some integer k, with k maximal. Finally, the Mahowald
invariant R(«) is the underlying classical stable homotopy element U(3) of 3.

Note that the Mahowald invariant is not strictly defined; it is a set of classical stable homotopy
elements. While the choice of k is unique, the choice of § is not. Different choices of § can lead
to different values of U(f3).

Also note that U(3) is necessarily non-zero by Proposition 4.2. The point is that 3 is not divisible
by p, since k was chosen to be maximal.
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1764 | BELMONT AND ISAKSEN

4.3 | R-motivic homotopy theory and Mahowald invariants

We will now adapt the framework of Bruner and Greenlees [10] from the C,-equivariant to the
R-motivic settings. In order to carry this out, we need to observe some key R-motivic properties.

First, the p-periodic groups nE*[p‘l] are isomorphic to 7, ® Z[p*'], that is, to the classical
stable homotopy groups with o and p~! adjoined [12]. See also [3] for a more structured version
of this isomorphism. Second, Corollary 3.5 relates p-divisibility to the kernel of the extension of
scalars map.

Definition 4.4. Let o be a classical stable homotopy element in 7,,. The R-motivic Mahowald
invariant RR(a) is defined as follows. Identify a with the obvious element of

7, ®Z[p* = 7wy [p7]

in degree (0, —n). Write = p* 8 for some § in 7%, and some integer k, with k maximal. Define
R®(a) in 7€ _ to be the extension of scalars of j.

Remark 4.5. As for the traditional Mahowald invariant, the R-motivic Mahowald invariant is not
strictly defined. Different choices of 8 can have different values in 7& _ under extension of scalars.

Remark 4.6. As for the traditional Mahowald invariant, the R-motivic Mahowald invariant is
always non-zero by Corollary 3.5. The point is that § is not divisible by p, since k was chosen to
be maximal.

Remark 4.7. See [25] and [26] for a different consideration of Mahowald invariants in the motivic
context. Our construction does not compare directly.

Theorem 4.8. Some values of the R-motivic Mahowald invariant are given in Table 3.

Proof. This follows immediately from the computations carried out later in the article. In partic-
ular, one needs the values of the extension of scalars map, as shown in Table 17 and discussed in
Section 10 O

Example 4.9. We illustrate Theorem 4.8 by describing the computation of MR(c). The element o
in 7, is identified with the element a of 7% ® Z[p*'] in degree (0, —7) that is detected by p'>h,.
Then a equals p'#B, where § is detected by ph,. Finally, Table 17 shows that the realization of 8
o752 in #C

isto®inmy, ..

In general, the relationship between R(a) and R®(«) is not obvious. The choices involved in the
definitions are not necessarily compatible. For example, it is possible that an element 8 in 7% _ is
not divisible by p, while its realization in 71'52* is divisible by p.

The main result of [6] tells us that the R-motivic and C,-equivariant stable homotopy groups
agree in a range. In this range, R(a) and R®(«) are easier to compare.

Theorem 4.10. Let R®(«) belong to n'fw, and suppose that 2w — s < 4. Then R(a) equals the Betti
realization of R® ().
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R-MOTIVIC STABLE STEMS | 1765

Proof. The isomorphism between R-motivic and C,-equivariant stable homotopy groups [6]
implies that the choice of 8 in the definition of R®(«) realizes to the choice of 8 in the definition
of R(a). By the commutativity of the diagram (1.1), the realization of R® () equals R(«). O

c
14,7°

tion of Theorem 4.10 is satisfied. It follows that R(c) equals ¢? in 74, since o2 is the realization
of 702

Example 4.11. We showed in Example 4.9 that R®(o) equals 7¢? in 7 The numerical condi-

Remark 4.12. Theorem 4.10, together with our computations of R-motivic stable homotopy groups,
can be used to compute the Mahowald invariants R(c) for most « up to the 11-stem. The excep-
tions are 2 for k > 4, 87, ne, Ky, Ny, and ¢, and its multiples. In these cases, R® () can still be
computed as shown in Table 3. However, the numerical condition of Theorem 4.10 does not hold,
so we cannot draw a conclusion about R(«) in these cases.

5 | THE p-BOCKSTEIN SPECTRAL SEQUENCE

We briefly recall some background on the p-Bockstein spectral sequence that computes the
cohomology of the R-motivic Steenrod algebra. See [17] and [12] for additional details.

Begin with the observation that the C-motivic cohomology of a point Mg equals M, /p, and the
C-motivic dual Steenrod algebra A equals .A/p. Then filter the cobar complex by powers of p to
obtain the p-Bockstein spectral sequence

E, = ExtjE(MC, M3)[p] = Ext’(M,, My). (5.1)

Our goal is to analyze the p-Bockstein spectral sequence (5.1) in computational detail in a range

of degrees. We recall some structural results about this spectral sequence from [12].

Proposition 5.1 [12, Lemma 3.4]. If d,.(x) is non-trivial in the p-Bockstein spectral sequence, then
x and d,(x) are both p-torsion free on the E,-page.

Recall that Ail is the classical dual Steenrod algebra. The following theorem is the algebraic ana-
logue to the identification of the p-periodic motivic stable homotopy category with the classical
stable homotopy category [3].

Proposition 5.2 [12, Theorem 4.1]. There is an isomorphism
EXtAil([Fz’ [Fz)[Pil] =~ Ext (M, Mz)[P_l]
that takes elements of degree (s, f) in Ext ;a(F,,F,) to elements of degree (2s + f, f,s + f) in
Ext ,(M,, M,). In particular, the classical element h, corresponds to the R-motivic element h,_ ;.
Moreover, the isomorphism is highly structured, that is, preserves products and Massey products.
The point of Proposition 5.2 is that we a priori know the elements of Ext that are p-periodic, in

the sense that they support infinitely many non-zero multiplications by p. In the range considered
in this article, these p-periodic elements are hy, h,, h3, hy, ¢, h, g, h; g, as well as products of these
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1766 | BELMONT AND ISAKSEN

elements. This corresponds to the fact that through the 11-stem, Ext,; is generated by the classical
elements hy, hy, h,, hs, ¢y, Phy, and Ph,. We may effectively ignore these p-periodic elements
when analyzing the p-Bockstein spectral sequence, since they can be neither source nor target of
any p-Bockstein differential.

Let {x;} be an F,-linear basis for Ext, that is, an F,[p]-linear basis for the p-Bockstein E; -page,
excluding the p-periodic permanent cycles described in the previous paragraph. For every i, either
X; supports a differential, or p"x; is the target of the d, differential for some r. In other words, the
set {x;} may be partitioned into pairs (x;, x;) such that d,(x;) = p"x; for some j. Actually, one
must be somewhat careful about the choice of basis in situations where two or more elements of
the basis have the same degree. Nevertheless, it is always possible to change basis so that the basis
elements can be partitioned into pairs.

The Bockstein differential d, : Ef’f Y S E preserves the quantity s + f — w, and p lies
in a degree satisfying s + f — w = 0. Thus we may consider one value of s + f — w at a time when
analyzing the p-Bockstein spectral sequence.

We exploit this structure in the following strategy for analyzing the p-Bockstein spectral
sequence.

s—1,f+1w
.

Strategy 5.3.

(1) FixavalueN =s+ f —w.

(2) Find an F,[p]-basis By for the part of the p-Bockstein E;-page in degrees (s, f, w) satisfying
N=s+f—-w.

(3) Remove elements from By that detect p-periodic elements of Exty.

(4) Use avariety of techniques, to be described below, to identify some differential d,(x;) = p"x i
where x; and x; belong to By.

(5) Remove x; and x; from By.

(6) Repeat steps (4) and (5) until By is empty.

For this strategy to be effective, we need to know that the basis By chosen in step 2 is finite.
Lemma 5.4 establishes this fact.

Lemma 5.4. Let N be fixed. In degrees (s, f,w) satisfying N = s + f — w, the p-Bockstein E,-page
is a finitely generated F,[p]-module.

Proof. Recall that Ext. is non-zero only in degrees (s, f, w) satisfying s + f — 2w > 0 [19, Remark
2.20]. This inequality can be rewritten in the form

s+f—-—w> %(s+f).
In other words, we only need consider the part of Ext. in total degree at most 2N. O

One consequence of our strategy is that we do not compute the Bockstein differentials d, in
order of increasing r. Rather, we obtain all differentials as part of the same process.

Step (4) is the limiting factor in the practical effectiveness of our algorithm. The ad hoc argu-
ments required to establish specific differentials become more difficult as the value of N increases.
However, these difficulties increase at a surprisingly slow rate, and we are able to carry out the
computation remarkably far without much difficulty.
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R-MOTIVIC STABLE STEMS | 1767

Our goal is to compute the p-Bockstein spectral sequence through coweight 13. Unfortunately,
infinitely many values of N in Step 1 are relevant in this range. For example, consider the elements
hi‘ of coweight 0, which belong to degrees satisfying s + f —w = k.

Similarly, any h,-periodic sequence of elements h’l‘x of Ext lies in degrees for which s + f — w
is unbounded. Fortunately, it is only these h,-periodic families that are problematic.

Lemma 5.5. Let x be a non-zero element of Ext of degree (s, f,w) whose coweight is at most k.
Then:

(1) xis an h,-periodic element, in the sense that hix is non-zero forall i > O; or
2) s+ f—-—w<3k+3.

Proof. If 2f — s > 4, then x is h;-periodic [15]. So we may assume that 2f —s < 4.
By [19, Remark 2.20], we also have the inequality s+ f — 2w > 0. Combining with the
assumption s — w < k, we conclude that

s+ f—-w=0Q2f—-s5)—G+f—-2w)+3(s—w)<4+0+3k =3k +4. m

As we wish to consider elements up to coweight 13, Lemma 5.5 suggests we need to look at
degrees satisfying the inequality s + f — w < 42, in addition to studying h,-periodic elements.
However, inspection of elements in Ext. shows that s + f —w < 28 for all elements that are
relevant in our range.

The h,-periodic elements of Ext. are well understood [14]. Up to coweight 13, all such ele-
ments are of the form 1, PXh,, P*c,, P*d,, P*e,, P*c,d,, dé, or cye,, as well as the h;-multiples
of these elements. Lemma 5.5 indicates that the behavior of the p-Bockstein spectral sequence
on these elements must be studied separately. See Proposition 6.2 for the analysis of these
h,-periodic elements.

6 | p-BOCKSTEIN DIFFERENTIALS

The goal of this section is to describe a variety of methods for determining p-Bockstein differen-
tials. These methods are applied in Step (4) of Strategy 5.3. Taken together, these methods allow
us to determine all p-Bockstein differentials through coweight 13.

We begin with a result that describes all p-Bockstein differentials on the elements of Adams
filtration zero.

Proposition 6.1 [12, Proposition 3.2].

(D) dy() = phy. R
(2) du(*)=p* % hyfork > 1.

Next we consider h, -periodic elements. These elements must be treated as special cases because
of Case (1) of Lemma 5.5.

Proposition 6.2. Table 4 gives some Bockstein differentials that are non-zero after inverting h,.
Through coweight 13, these are the only h,-periodic p-Bockstein differentials.
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1768 BELMONT AND ISAKSEN

TABLE 2 Bockstein differentialsfors + f —w =6

Coweight (s, f,w) x d, d.(x)
0 (6,6,6) h®

3 (9,3,6) hih,

6 (0,0,—6) 6 d, °h,
5 (0,1,-5) °h, d; *hd
3 0,3,-3) h} d 2h}
1 (0,5,-1) th? d, h$

4 (3,2,-1) 3hyh, d, h}
5 (7,1,2) 2h, d, thyh,
4 (7,2,3) thyh, d, h2h,
5 (3,1,-2) *h, d, 2h?
4 (2,2,-2) *h? d, Co

For legibility, we have not included powers of p in the values of the Bockstein differentials in
Table 4. For example, the first row of the table is to be interpreted as d;(Ph,) = p>h’c,.

Proof. The differentials in the h,-periodic p-Bockstein spectral sequence are completely known
[16]. For each h,-periodic element x, this determines d,(h’l‘x) for large values of k. However, it is
possible that the elements h’l‘x support shorter differentials for small values of k. By inspection,
no such shorter differentials occur. O

Remark 6.3. The phenomenon considered at the end of the proof of Proposition 6.2 turns out not
to occur through coweight 13. However, it does occur in higher coweights.

The following examples are representative arguments for establishing p-Bockstein differentials.
In many situations, more than one argument leads to the same result.

Example 6.4. Table 2 summarizes the analysis of Bockstein differentials in degrees (s, f, w) sat-
isfying s + f —w = 6. In these degrees, the E;-page consists of p multiples of twenty elements.
The first part of Table 2 lists the two elements that are p-periodic, as in Proposition 5.2. They
correspond to the classical elements hg and h(z)hz.

The second section of Table 2 lists some differentials that are easily deduced from Proposition 6.1
and the Leibniz rule. At this point, only the elements 1'4]’1% and ¢, remain unaccounted. The third
section of Table 2 gives the only possibility.

These differentials are illustrated in Figure 1.

Example 6.5. In some situations, a more careful analysis of multiplicative structure establishes
a differential. For example, d,(f,) cannot equal ph, e, because h, f, = 0 but phfeo is not zero.

For a slightly more complicated example, consider the relation h, - 7g = 7 - hyg. This implies
that

hy - dy(tg) = dy(7) - hyg = phyg,

so d,(7g) must equal phyg.
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R-MOTIVIC STABLE STEMS 1769

10

p-BOCKSTEIN SPECTRAL SEQUENCE, s+ f —w =6

hg hi

NG < h3hy
-— (—0—07_3 h? (—o—oh% h3 -—e

172
472 T Thoh 232 thohs
5 h (—01 (—00 2 T h2<—‘ Th1h3

-2 0 2 4 6 8 10

FIGURE 1 The p-Bockstein spectral sequence for s + f — w = 6. Cyan lines are p-Bockstein differentials,
and red lines denote p-multiplication

Example 6.6. Sometimes, the multiplicative structure and an already known differential imply
that a certain element is killed by p*. Then that element must be killed by a differential d, with
r < k. For example, the element t*h7h; = (t2h,)*h, is a permanent cycle because it is a prod-
uct of permanent cycles. There are two possible differentials that could hit a p-multiple of it:
dy(°h32) or dg(r8h?). Note that 7*h?h is killed by p* because of the differential d,(t*) = p*z2h,.
Therefore, p*r*h2h; must be hit by a d, differential with r < 4. The only possibility is that
dy(t°h3) = p*c*hihs.

This differential can be obtained another way using the Leibniz rule, the multiplicative relation
°h3 = t* . 72h, - h,, and the differential d,(*) = p*zh,.

Example 6.7. Sometimes one must look ahead to larger values of s + f — w in order to use multi-
plicative relations to rule out differentials. For example, in order to show that d,(i) = p*h,ce, (in
degrees satisfying s + f — w = 18), we first use other techniques to rule out possible differentials
until it suffices to eliminate the possibility that d,(t*Pc,) might equal p!''h,c,e,. But this would
imply that d, (t*Ph; c,) equals hfcoeo (in degrees satisfying s + f — w = 19), and this contradicts
the h;-periodic differential d;(Pe,) = p3hfc0e0 from Table 4.
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1770 | BELMONT AND ISAKSEN

Example 6.8. The Leibniz rule implies that certain elements survive at least to a certain page of
the spectral sequence. For example, the element T6h§ cannot be hit by a differential, so it must
support a differential. There are two possibilities: d,(z°h3) might equal p*c*h?hy, or dys(z°h3)
might equal p°7c;. The Leibniz rule and the relation 7°h; = t* - 72k imply

d4(r6h§) =d,(t)- T2h§ = p*c’h, - 12h§ =0.
Therefore, d(z°h3) must equal p°7c;.

Example 6.9. The multiplicative structure implies that certain elements do not support any
differentials because they are the product of elements that do not support any differentials.

Extending Example 6.6, sometimes the Massey product structure of Exty implies that some
element p¥x must be zero. Then p*x must be the target of a Bockstein d, differential for r < k.
Through coweight 12, we apply this method only once in the following Lemma 6.10. However, we
anticipate that this approach will become more and more important in higher coweights. Massey
products in Exty are discussed below in Section 7 and Table 6.

Lemma 6.10. d,(t2g) = p?h, f,.
Proof. Table 6 shows that h, f, equals the Massey product (th;, h‘l‘, h,) in Extg. Shuffle to obtain
p2<‘[h1, h‘lt, h4> = <p2, Th'l’ h41‘>h4,

which equals 0 because the last bracket is zero. Therefore, p?h, f, is hit by a d; or d, differential,
and the only possibility is that d,(%g) = p?h, f,. O

Theorem 6.11 summarizes the results of the analysis of p-Bockstein differentials.

Theorem 6.11. Table 5 lists some values of the p-Bockstein d, differentials on multiplicative gen-
erators of the E,-page. Through coweight 13, the d, differential vanishes on all other multiplicative
generators of the E,-page.

For legibility, we have not included powers of p in the values of the Bockstein differentials in
Table 5. For example, the first row of the table is to be interpreted as d;(7) = ph,,.

7 | HIDDEN EXTENSIONS IN THE p-BOCKSTEIN SPECTRAL
SEQUENCE

Section 6 explains how to obtain the E_ -page of the p-Bockstein spectral sequence through
coweight 12. As usual, this E -page is an associated graded object of Extp.

We abuse notation and use the same name for generators of the p-Bockstein E -page and ele-
ments of Exty that they represent. A generator of the p-Bockstein E -page can represent more
than one element in Exty, where the indeterminacy is parametrized by elements of the E_ -page
in higher filtration. For example, the element t2h, of the E_ -page represents two elements of
Extp whose difference is p*h;.
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R-MOTIVIC STABLE STEMS | 1771

We adopt the following convention in selecting generators in Exty. We always choose an ele-
ment of Exty that is annihilated by the same power of p as its representative in the E_ -page.
For example, 72h, is annihilated by p* in the E_, -page. Therefore, we write t2h, for the (unique)
element of Exty, that is annihilated by p*. (The other possible choice is p-periodic.)

This convention concerning annihilation by powers of p eliminates much of the ambigu-
ity in passing from the E_ -page to Exty. In some cases, our convention does not eliminate all
ambiguities. However, the remaining ambiguities make little practical difference.

In order to recover the full structure of Exty from the p-Bockstein E -page, we must determine
hidden multiplicative extensions. We adopt the precise definition of a hidden extension given in
[19, Section 4.1.1]. In this section, we will analyze all hidden extensions by &, and h; through
coweight 12.

The p-Bockstein spectral sequence has numerous hidden extensions by other elements. There
are so many examples that it is not practical to enumerate them exhaustively. In practice, these
other hidden extensions are occasionally useful, and we treat them on an ad hoc basis as necessary.

Definition 7.1. A hidden a extension from x to y is decomposable if there exists a hidden a
extension from u to v, and there exists z such that x = zu and y = zv in the E_ -page.

Example 7.2. There is a hidden h, extension from th, to ,orhf. Multiplication by 7h; gives the
decomposable hidden hj, extension from t2h? to pr2h?.

Definition 7.1 allows us to focus only on the hidden extensions that are most significant. In prac-
tice, decomposable hidden extensions are easy to understand, once the indecomposable hidden
extensions have been studied.

Remark 7.3. The structure of the p-Bockstein spectral sequence guarantees that there are no hid-
den extensions by p. For degree reasons, if there is a possible hidden p extension from x to y, then
in fact y is a multiple of p. According to the definition of a hidden extension [19, Section 4.1.1],
this means that y cannot be the target of a hidden p extension.

7.4 | Massey products

Our main tool for establishing hidden extensions is the May Convergence Theorem [22, Theorem
4.1], restated here for convenience.

Theorem 7.5 (May Convergence Theorem). Let «, ;, and o, be elements of Exty such that the
Massey product («,, a;, @, ) is defined. For each i, let a; be a permanent cycle in the Bockstein E,-page
that detects a;. Suppose further that:

(1) there exist elements ay, and a,, in the Bockstein E,-page such that d,(ay,) equals aya, and
d,(a,,) equals a,a,;

(2) ifeither ay, or a,, has degree (s, f,w) and p-Bockstein degree m, and x is an element in degree
(s, f,w) and p-Bockstein degree m' such that m' < m, thend,(x) = 0 forall t such thatm’ + t >
(m—-m')+r.

Then aya,, + ay,a, is a permanent cycle in the p-Bockstein spectral sequence, and it detects an
element of (ay, &y, o, ) in Exty.
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1772 | BELMONT AND ISAKSEN

We will often use Theorem 7.5 in the situation when a,; has p-Bockstein degree 0 and a;,
has negative p-Bockstein degree. Since the p-Bockstein spectral sequence is zero in negative p-
Bockstein degrees, condition (2) of Theorem 7.5 simplifies to the condition that no element in the
same degree as a,; with p-Bockstein degree 0 supports a longer differential.

Proposition 7.6. Table 6 lists some Massey products in Extg.

Proof. Most of these Massey products are straightforward applications of the May Convergence
Theorem 7.5. In those cases, the sixth column of Table 6 gives the p-Bockstein differential that is
relevant for computing the Massey product.

In some cases, the Massey products follow by comparison to the C-motivic case. This is denoted
by the word ‘C-motivic’ in the sixth column of Table 6. However, this only determines the Massey
product up to multiples of p. These ambiguities can typically be eliminated by the multiplicative
structure. In particular, if the Massey product (x, y, z) is defined and p%x and p?z are both zero,
then

p“(x, y,2) = p(p%, x, )z = 0.
The indeterminacies can be computed by inspection. O

Table 6 is not meant to be an exhaustive list of Massey products. It merely provides an
assortment of Massey products that are needed for various specific computations throughout
the manuscript.

7.7 | Hidden h, extensions

Proposition 7.8. Table 7 lists all indecomposable hidden h, extensions in the p-Bockstein spectral
sequence, through coweight 12.

Proof. All of the hidden h,, extensions in Table 7 are proved using a single technique, which was
introduced in the proof of [12, Lemma 6.2]. To illustrate this technique, we will show that there is
a hidden h,, extension from 72h, ¢, to p*>Ph,.

First we show that the product h, - T2h; ¢, is non-zero in Extg. If not, then the Massey product
(p, hy, T*h,c,) would be defined in Exty. The May Convergence Theorem 7.5, together with the
p-Bockstein differential d, () = phy, would then imply that 73h; ¢, is a permanent cycle. But this
contradicts the p-Bockstein differential d;(73h,c,) = p>Ph,.

This shows that there must be a hidden h, extension on 72k, ¢,. The target of this hidden exten-
sion can only be p?>Ph, or tPh,. But the target must have higher p-Bockstein filtration than the
source, which rules out tPh;.

In some cases, one needs to use multiplicative relations to rule out possible hidden h, exten-
sions. For example, the target of a hidden h, extension cannot support a p multiplication, since
phy = 0in Extg.

We must also show that many elements do not support hidden h, extensions. In all cases
through coweight 12, the non-existence follows from simple multiplicative relations. For example,
if x is already known to not support an h,, extension, then the product xy cannot support an h,
extension. Similarly, if 4,y or py is non-zero, then y cannot be the target of a hidden extension
because of the relations hyh; = 0 and ph; = 0 in Exty. O
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R-MOTIVIC STABLE STEMS 1773

7.9 | Hidden h, extensions

Proposition 7.10. Table 8 lists all indecomposable hidden h, extensions in the p-Bockstein spectral
sequence, through coweight 12.

Proof. Many of the extensions are established using the map
p
EXtC HEXtR

of Remark 3.3. To illustrate this technique, we will show that there is a hidden h; extension from
72h,c, to pPh,. The relation h, - T3¢, = 3h,c, in Extc implies h; - p(z3c,) = p(z3h,c,). Observe
that p(t3c,) = pth, - ¢y and p(th,c,) = p*Ph,. This shows that there is a hidden h; extension
from pt2h, ¢, to p?Ph,, and it follows that there is also a hidden h, extension from t2h;,c, to pPh,.

Several more difficult cases are established in the following lemmas.

We must also show that many elements do not support hidden h; extensions. In most cases
through coweight 12, the non-existence follows from simple multiplicative relations. For example,
if x is already known to not support an h; extension, then the product xy cannot support an
h, extension. Similarly, if h,y is non-zero, then y cannot be the target of a hidden h; extension
because of the relation hyh; = 0 in Exty.

Additionally, the map p : Ext. — Extp can be used to detect the absence of some h;
extensions. O

Remark 7.11. The first three extensions in Table 8 were established in [12].
Lemma 7.12. There is a hidden h, extension from T*h3 to p*d,,.

Proof. The element T3h; of the p-Bockstein E_ -page detects the element 72h, - T]’l% in Extg.
Table 8 shows that h, - Th3 = pc,, and h? - 7%h, = p3c,. Therefore,

hi’ -T%h, -‘L'h% = p3cy - pcy = p4hfd0.
It follows that h, - T%h, - Th3 equals p*d,. O
Lemma 7.13. Thereis a hidden h, extension from T2 f, to p>t2h, g.

Proof. Table 6 shows that 72 f, belongs to the Massey product (t2h,, hy, h}h). Table 8 shows that
there is a hidden h, extension from 72k, to p®th;. Therefore, we have

where the equalities follow from inspection of indeterminacies. Table 6 shows that the element
72k g of the Bockstein E,-page detects both elements of the Massey product (th3, hs, hihs), so

p?7%hy g is the target of the hidden h, extension. O

Lemma 7.14.

(1) Thereis a hidden h, extension from t8h;c, to pt®Ph,.
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1774 | BELMONT AND ISAKSEN

(2) Thereis a hidden h, extension from t°Ph, to p*t>hld,.
(3) Thereis a hidden h, extension from t*Ph,c, to pt*>P?h,.
(4) Thereis a hidden h, extension from t2P*h, to p*tPhd,,.

Proof. We will show that h? - 78¢, equals pc°h2d,. This will establish the first two exten-
sions simultaneously.

Table 6 shows that h; - T8¢, equals the Massey product (th, - T°¢,, Thy, p*). By inspection of
indeterminacies,

]’l%(‘[l’ll . TSCO, Th'l’ p2> = h1<h1 . Th’l . TSCO, Thl’ p2>.
This expression equals h,{pt*Ph,,th,,p?), since Table 8 shows that there is a hidden h,
extension from 7°h,c, to pr*Ph,. By inspection of indeterminacies again, this also equals
phi(t*Ph,, Thy, ).
Now shulffle to obtain
ph (t*Ph,,Thy, p*) = p>(hy,T*Phy,Th ).
Finally, Table 6 shows that (h,, 7*Ph,, Th, ) equals 7°h7d,. This establishes the first two extensions.
The argument for the last two extensions is essentially identical. The Massey product
(th, - TPcy, Thy, p?) equals h, - 7*Pc,. We have
h2(th, - tPcy, Thy, p*) = hy(hy - Thy - TPcy, Thy, 0*),
which equals
hl <PP2h2, Thl’ p2> = Phl <P2h2, Thl, P2>.
Finally, shuffle to obtain
phy{P?h,,thy,p*) = p*(hy,P*hy, Thy ) = p>TPhld,. O]
Lemma 7.15. There is a hidden h,-extension from t3c; to p*t2h,c;.
Proof. Table 6 shows that 73¢; is contained in the Massey product (o?, th,, 7¢c; ). Shuffle to obtain

(p?,thy,Te) Yhy = p*(thy, ey, hy).

Table 6 shows that the element t2h,c; of the Bockstein E. -page detects both elements of
(thy, Ty, hy), s0 p?T2h,c, is the target of the hidden h, extension. O
Lemma 7.16.

(1) Thereis a hidden h, extension from t3h3e, to p?.
(2) Thereis a hidden h, extension from j to pdé.
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R-MOTIVIC STABLE STEMS | 1775

Proof. Table 8 shows that h, - th? = pcy, and h - ¢, = h, - pth? - d; = pc,d,. Therefore,
h‘l‘ . Th% Tley = p3c(2)d0 = p3hfd(2).

Both hidden extensions are immediate consequences. O

7.17 | Miscellaneous relations

We briefly consider a few other types of hidden extensions.

In the Bockstein E-page, we have the relation h? - t*h; + (2h,)*h, = 0. However, in Extg,
it is possible that the sum h - 7*h; + (t>h,)*h, equals a non-zero element that is detected in
higher p-Bockstein filtration. Lemma 7.18 demonstrates that this does in fact occur. It provides
one additional piece of information about the multiplicative structure of Exty.

Lemma 7.18. In Exty, we have the relation

Proof. This follows by comparison along the map p : Ext. — Exty of Remark 3.3. The rela-
tion h; - h; = 78h? in Ext. implies that h, - p(th;) = p(r®h}) in Extg. Observe that p(t8h,) =
p’t*hyhy and p(t8h?) = p'2thyh?. This shows that there is a hidden h, extension from p”z*h, h,
to p*2thyh3, which implies the desired relation. O

Lemma 7.19. There is a hidden t2h, extension from c, to p>d,,.

Proof. Table 8 shows that there are hidden h, extensions from 7h2 to pc,, and from 73h? to p*d,.
Therefore,

2%h, - pcy = 2hy - Iy -Th% = p*d,.

Lemma 7.20. There is a hidden h, extension from h, f, to ph%h4co.

Proof. We use the map p : Ext. — Extp of Remark 3.3. The relation h, - 72g = 72h, g in Extc

implies h, - p(t?g) = p(t*h,g). Observe that p(2g) = ph, f,, and p(t*h,g) = p*h2h,c,.
Therefore, there is a hidden h, extension from ph,f, to pzhfh4co, and also a hidden h,

extension from h, f, to ph?h,c. O

8 | ADAMS DIFFERENTIALS

Sections 6 and 7 describe how to compute Exty, which serves as the E,-page of the R-motivic
Adams spectral sequence. We now proceed to analyze Adams differentials. We remind the reader
of the notation for stable homotopy elements discussed in Section 2.1 and Table 9.
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1776 | BELMONT AND ISAKSEN

Recall from Section 3 that extension of scalars induces a map from the R-motivic Adams
spectral sequence to the C-motivic Adams spectral sequence. We will frequently use these compar-
ison functors to deduce information about the R-motivic Adams spectral sequence from already
known information about the C-motivic and classical Adams spectral sequences. See [19] for
an extensive summary of computational information about the C-motivic and classical Adams
spectral sequences.

8.1 | Toda brackets

The Moss Convergence Theorem 8.2 is a key tool for determining Toda brackets [24] [19, Sec-
tion 3.1]. See also [8] for a modern treatment of the theorem, which specifically covers the
R-motivic Adams spectral sequence that we use.

Theorem 8.2 (Moss Convergence Theorem). Let «,,, &1, and a, be elements of the R-motivic stable
homotopy groups such that the Toda bracket {«,, &}, a,) is defined. Let a; be a permanent cycle on
the Adams E,-page that detects a; for each i. Suppose further that:

(1) the Massey product (ay,a,,a,)g, is defined (in Exty when r = 2, or using the Adams d,_,
differential when r > 3);

(2) if (s, f,w) is the degree of either aya, or ajay; f' < f—r+1; f"" > fyandt = f"" — f’; then
every Adams differential d, : Ef“’f o, Ef’f " s zero.

Then (ay,a,,a,)p, contains a permanent cycle that detects an element of the Toda bracket
(atg, ay, ay).

Theorem 8.3. Table 10 lists some Toda brackets in 7, ,.

Proof. Most of these Toda brackets are straightforward applications of the Moss Convergence
Theorem 8.2. When a Massey product appears in the fifth column of Table 10, the Toda bracket
follows from the Moss Convergence Theorem 8.2 with r = 2. When an Adams differential
appears in the fifth column of Table 10, the Toda bracket follows from the Moss Convergence
Theorem 8.2 with r > 2, and the given Adams differential is relevant for computing the Toda
bracket.

In some cases, the Toda brackets follow by comparison along the extension of scalars functor
to the C-motivic case. This is denoted by the word ‘C-motivic’ in the fifth column of Table 10.

One slightly different case is handled below in Lemma 8.4. O

Table 10 is not meant to be exhaustive in any sense. It merely provides the Toda brackets that
are needed for various specific computations. Beware that these brackets have non-trivial inde-
terminacies, although we have not specified the indeterminacies because they are not generally
relevant to our specific needs.

Beware that some of the Toda brackets in Table 10 require knowledge of Adams differentials
that are established below in Section 8.5.

Lemma 8.4. The Toda bracket {p?,t1,v,) is detected by 2h, - h,.
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R-MOTIVIC STABLE STEMS | 1777

. LSS

0 2 4 6 s 10 12 1 16 18 20 22 21

FIGURE 2 Some Adams d, differentials from coweight 7 to 6. Some of the E,-page in coweight 6 is
displayed in black. Some of the E,-page in coweight 7 is displayed in green. Differentials connecting these
elements are shown in cyan. Beware that additional elements in coweights 6 and 7 have been removed for
clarity

Proof. Table 6 shows that 72h, is contained in the Massey product {(0?, th,, h,). By inspection of
indeterminacies,

Tzhz . h.4 = <p2, Thl, h2>h4 = <p2, Thl, h2h4>.

The Moss Convergence Theorem 8.2 implies that 72h, - h, detects the corresponding Toda
bracket. O

8.5 | Adams d, differentials

We now proceed to analyze Adams differentials. Recall that the Adams d, differential takes ele-
ments of degree (s, f,w) to elements of degree (s — 1, f + r,w); in particular, it decreases the
coweight by 1. This means that our charts organized by coweight do not display Adams differ-
entials. While the charts in [7] and the tables in Section 11 are the primary references for this
calculation, to orient the reader we illustrate in Figure 2 the first nontrivial d, differentials, which
are from coweight 7 to 6.

Theorem 8.6. Table 12 lists some values of the R-motivic Adams d, differential. Through coweight
12, the d, differential is zero on all other multiplicative generators of the R-motivic Adams E,-page.

Proof. The multiplicative structure rules out many possible differentials. For example, d,(t°h;)
cannot equal 7*h, - h{ because h{ - T5h, = 0, while t*h, - hy is non-zero.
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1778 | BELMONT AND ISAKSEN

Other multiplicative generators are known to be permanent cycles, because the Moss Conver-
gence Theorem 8.2 shows that they must survive to detect various Toda brackets. These instances
are shown in Table 11. In one case, the element h, - 7¢, must survive to detect the product o - 77,,
by comparison to the C-motivic stable homotopy groups.

Many non-zero differentials follow by comparison to the C-motivic or classical Adams
spectral sequences.

Several more difficult cases are established in the following lemmas. 1

Remark 8.7. Table 11 shows that t#h; is a permanent cycle because it detects the Toda bracket
(p* 1%v,0). We give an alternative proof that is geometrically interesting, following the method
of [12, Lemma 7.3].

There is a functor from classical homotopy theory to R-motivic homotopy theory that takes
the sphere SP to SP0. Let 0y, : S — %0 be the image of the classical Hopf map o : §'°> — §®
under this functor.

The cohomology of the cofiber of oy, is free on two generators x and y of degrees (8,0)
and (16,0), satisfying Sq®(x) = t*y and Sq'°(x) = p®y. The proof of these formulas is essentially
identical to the proof of [12, Lemma 7.4].

This shows that t#h; + p8h, is a permanent cycle in the Adams spectral sequence, since it
detects the stabilization of o,, in 7;. Also, p3h, is a permanent cycle because there are no
possible values for differentials. Therefore, t#h, is a permanent cycle.

Lemma 8.8. d,(thyh3) = p*h,d,,.
Proof. Table 12 shows that d,(e,) = h?d,. Therefore,

dy(hy - Thohg) = d,(p%e) = ch%do-
It follows that d,(th,h3) equals ph,d,. O
Lemma 8.9. d,(f,) = hie,.
Proof. Comparison to the C-motivic or classical case shows that d,(f,) equals either h(z)eo or h(z]e0 +
p*hiey. But hy - fo = 0 in the E,-page, while h,; (hje, + p*hie,) is non-zero. The only possibility
is that d,(f ) equals hZe. O
Lemma 8.10. d,(t%f,) = h - t%¢y + p°th; - d,,.
Proof. The C-motivic differential d,(t*f,) = t°hZe, implies that d,(*f,,) equals either h; - 7%¢
or h - T%ey + p>th; - dy. We rule out the first possibility by noting that (k] + p*h?) - 72f, = 0 in
Exty, whereas (h§ + p*h?) - T2hge, = phycd,. O
Lemma 8.11. d,(t%h,g) = p’cyd,.
Proof. Table 8 shows that h, - 7h, g = pth; - ¢,. Therefore,

which equals p*h, ¢,d, because Table 8 shows that h, - Th3 = pc. O
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R-MOTIVIC STABLE STEMS 1779

8.12 | Higher Adams differentials

Theorem 8.6 completely describes the Adams d, differential through coweight 12. From this infor-
mation, one can compute the Adams E;-page in a range. We now proceed to analyze higher
differentials.

Theorem 8.13. Table 13 lists some values of the R-motivic Adams d, differential for r > 3. Through
coweight 12, the d, differential is zero on all other multiplicative generators of the R-motivic Adams
E;-page. Moreover, through coweight 12, there are no higher differentials, and the R-motivic Adams
E,-page equals the R-motivic Adams E . -page.

Proof. As in the proof of Theorem 8.6, many multiplicative generators cannot support differen-
tials because there are no possible targets. Comparison to the C-motivic and classical cases also
determines some differentials. For example, d;(h, h,) cannot equal h,d,,.

Other multiplicative generators are known to be permanent cycles, because the Moss Conver-
gence Theorem 8.2 shows that they must survive to detect various Toda brackets. These instances
are shown in Table 11.

The multiplicative structure rules out additional cases. For example d;(oh,) cannot equal pd,,
because of the relation h, - ph, = p - h; hy, together with the fact that d;(h, h,) is already known
to be zero.

The harder cases are established in the following lemmas. O

Lemma 8.14. d;(p%¢,) = 0.

Proof. 1f d;(pCe,) equaled ph, - Th, - TPh,, then p’e, would be a permanent cycle that detected
an element « of 77 3, and a could not be divisible by p. Therefore, by Corollary 3.5, « would map
to a non-zero element § in 71‘1130,3. Then 8 would have to be detected by 1'3th, so nf3 would also
have to be non-zero in 7%

11,4°
But na would be detected by p”h, e, and would be divisible by p, so it would map to zero in
71'101 4 This contradicts that n/3 is non-zero. O

Remark 8.15. Lemma 8.14 can also be proved using the R-motivic spectrum kq, which is the very
effective slice cover of the Hermitian K-theory spectrum KQ [1]. The cohomology of kq is iso-
morphic to A/ /A(1), where A(1) is the M,-subalgebra of the R-motivic Steenrod algebra that is
generated by Sq! and Sq°.

By a change-of-rings isomorphism, the homotopy of kq is computed by an Adams spectral
sequence whose E,-page is Ext 4;)(M,, M,). This E,-page was computed in [17], and also in [13,
Section 6].

The element pth, - TPh; - h; maps to a non-zero permanent cycle in

Ext 4(1)(My, M),
so it cannot be the target of a differential.

Proof. The classical differential d;(hyh,) = hyd, implies that in the R-motivic case, d;(hyhy)
equals either hyd,, or hyd, + ph;d,.

d ¥ “TTOT “vTY8ESLL

o1y

Sn1as0y WSO 58D £q 9677 1°0doY/Z | | 1701 10p/woa Ko

Kvaqr outuQ Kofi A “Ausioatun

S “[£20T/60/51] uo

ONIPUOD) PUE SULIA, A1 O

1) su

sdy

suLioywosKojim-Areiqrpou

N1 10y K1eIqr] QUIUQ KO[1AN UO

Jo sy

are saore YO tasn

5U9d1 suowwoy) dAnEaI) A[qEaridde auy £q pourorod



1780 | BELMONT AND ISAKSEN

Note that th, - hyd, = pth, - h,d, is non-zero on the E;-page, but th, - hyh, = pth; - hjh,isa
permanent cycle, as shown in Table 11. Therefore, d;(hyh,) cannot equal hyd,,. O

Lemma 8.17.

(1) dy(th3 - %)) = pTPh, - d,.
(2) d3(pj) = TPhy - hyd,.

Proof. Let a be an element of 7,, ;; that is represented by 7Ph;, - h,d,. By comparison of Adams
spectral sequences, extension of scalars must take a to zero in 7754,13. Moreover, TPh, - h,d, cannot
be the target of a hidden p extension. Therefore, by Corollary 3.5, 7Ph; - h,d, must be the target of
an R-motivic Adams differential, and there is only one possible such differential. This establishes
the second formula.

The first formula follows immediately from the second one, using the relation A, - T]’l% -1te,

pcy - T2ey. O

9 | HIDDEN EXTENSIONS IN THE ADAMS SPECTRAL SEQUENCE

We have now obtained the Adams E  -page through coweight 11. It remains to determine exten-
sions that are hidden in the R-motivic Adams spectral sequence. As in Section 7, we use the precise
definition of a hidden extension given in [19, Section 4.1.1]. We will analyze all hidden extensions
by p, h, and 7 through coweight 11.

We begin by analyzing all hidden extensions by p. The main tools are Corollaries 3.5 and 3.8.

Proposition 9.1. Table 14 lists all hidden p extensions in the Adams spectral sequence, through
coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

C

0 — (coker p)g,, = 7,

— (ker p)g 41 = 0.

The rank of ngw, which is entirely known in our range [19, 20], severely constrains the possible
ranks of coker p and ker p. From these constraints, we can generally deduce the presence and
absence of hidden p extensions, and there is typically only one possibility in each case in the
range under consideration. The only exception is considered below in Lemma 9.2. O

Lemma 9.2. There is a hidden p extension from th,cyd, to Phyd,,.

Proof. Table 16 shows that there is a hidden 7 extension from ptc - d, to Phyd,. Therefore, there
must be a hidden p extension from h, - tc, - d, to Phyd,. O

Theorem 9.3. Table 15 lists all hidden h extensions in the R-motivic Adams spectral sequence,
through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

C

0 — (coker p)y,, = 7y, — (kerp)g .1 — 0.
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R-MOTIVIC STABLE STEMS | 1781

Some of the extensions can be determined via these short exact sequences, using known 2 exten-

sions in 7 _ . For example, the element p°e, in the R-motivic Adams E, -page lies in (coker p);; 4,

C C
114 11,4

so h{p®e,} must also be non-zero. It follows that p°e, supports a hidden h extension.

We must also show that many elements do not support hidden h extensions. In most of the cases
through coweight 11, the non-existence follows from simple multiplicative relations. For example,
if x is a multiple of p or of h;, then x cannot support a hidden h extension because of the relations
ph =0 and hn = 0. Similarly, if h,;y or py is non-zero, then y cannot be the target of a hidden
h extension.

The following lemmas handle a few additional more complicated cases. O

and it maps to the element t2¢,; in 7% | that is detected by t>Ph,. But 272¢;, is non-zero in 7

Lemma 9.4. There is a hidden h extension from h, f to pcyd,.
Proof. Table 10 shows that h, f, detects the Toda bracket (p, {h,e,}, 7). Shuffle to obtain

(P, {haeo}, mh = p({h,eo}, n, h).

Table 10 shows that cyd,, detects the latter bracket. 1
Lemma 9.5. There is no hidden h extension on Th% - hy.

Proof. The only possible target is ptc, - di,. Table 16 shows that ptc, - d, supports a hidden 7
extension, so it cannot be the target of a hidden h extension. O

Lemma 9.6. There is a hidden h extension from tc - d;, to Phyd,.

Proof. Let a be an element of g 4 that is detected by ¢, so 7¢ - d, detects ax. Table 14 shows that
there is a hidden p extension from h, - 7¢, - d,, to Phyd,, so Phd,, detects pnax. But (h + pn)x is
zero, so (h + pn)ax must also be zero. This implies that hax is also detected by Phd,. [

Lemma 9.7. There is no hidden h extension on h,c,,.

Proof. By comparison to the C-motivic (or classical) case, h,c, detects the product o7,. By
inspection, h), is zero in 74 g. 1

Theorem 9.8. Table 16 lists all hidden 7 extensions in the R-motivic Adams spectral sequence,
through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

C

0 — (cokerp)g,, = 7,

— (kerp)g 41 = 0.

Many of these extensions can be obtained by comparison to the C-motivic case, using these short
exact sequences, as in the proof of Theorem 9.3. For example, the element p7h; - 7Pc, detects an
element a in (ker p);4 7. The pre-image § of « in 71&’6 is detected by 73Pc,. There is a C-motivic
hidden 7 extension from r3h(3)h4 to 73Pc,, so B is divisible by 7. This implies that « is also divisible
by 7, and that there is an R-motivic hidden 7 extension from 72h, - h8h4 to pth; - TPc,.
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1782 | BELMONT AND ISAKSEN

‘We must also show that many elements do not support hidden 7 extensions. In all cases through
coweight 11, the non-existence follows from simple multiplicative relations. For example, if x
is a multiple of h,, then x cannot support a hidden 7 extension because of the relation hy = 0.
Similarly, if h,y is non-zero, then y cannot be the target of a hidden 7 extension. O

Lemma 9.9. There is no hidden 1) extension on t*hs.

Proof. Table 10 shows that 72h3 detects the Toda bracket (7*v, g, v). Shuffle to obtain

(1'21/, o, V) = 2v(0,v,7).
The latter bracket is zero. O
Lemma 9.10. There is no hidden 7 extension on tc;.

Proof. The possible target ph, f, is ruled out by the fact that ph, f,, supports an h, extension, as
shown in Lemma 7.20. The possible target Th% - d, is ruled out by comparison to the C-motivic
case. O

10 | EXTENSION OF SCALARS

We will now study the values of the extension of scalars map nR - 7r .- Corollary 3.5 tells us
exactly which elements of 7% have non-trivial images in ﬂ'C ThlS 1nf0rmat10n about extension
of scalars is essential to our approach to the Mahowald 1nvar1ant described in Section 4.

For the most part, the extension of scalars map is detected by the map from the R-motivic
Adams E_ -page to the C-motivic Adams E_ -page. For example, the element (71)? of 77.'50 is
detected by 7h? in the R-motivic Adams E,-page, so its image in ”éc,o must be 272, which is
detected by 72h? in the C-motivic Adams E, -page.

However, there are a few values that are hidden by the Adams spectral sequence. In other words,
there exist elements o in 7% _ such that the Adams filtration of « is strictly less than the Adams
filtration of its image in n'C o

Theorem 10.1. Through coweight 11, Table 17 lists all hidden values of the extension of scalars map
nE, =,
Proof. We inspect all elements of the R-motivic Adams E,-page that are not targets of p exten-
sions. Most of these elements map non-trivially to the C-motivic Adams E  -page. For example,
(thy)* maps to T2k,

A few elements map to zero in the C-motivic Adams E -page. We treat these elements indi-
vidually. In some cases, there is only one possible target in sufficiently high Adams filtration. The
remaining cases are handled by the following lemmas. O

Lemma 10.2. Extension of scalars takes elements detected by ph, to elements detected by rhg.

Proof. Table 10 shows that ph4 detects the Toda bracket (p, h,o?). Extension of scalars takes
(p,h,a?)in 7 47 10(0,2, o?)inz, 4.7 Which equals {0, 702}. The only non-zero value is 7o, which

is detected by 7h3. O
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R-MOTIVIC STABLE STEMS | 1783

Lemma 10.3. Extension of scalars takes elements detected by p f, to elements detected by Th,d,).

Proof. Table 10 shows that pf|, detects the Toda bracket (p, h, vx). Extension of scalars takes

. R . C . . .
(p, h,vx) in )5 o 10 (0,2,vx)in T g0 which equals {0, 7vx}. The only non-zero value is 7vx, which
is detected by th,d,,. O

Lemma 10.4. Extension of scalars takes elements detected by p>t f, to elements detected by t*h, d,,.
Proof. The long exact sequence of Corollary 3.8 gives a short exact sequence

0 — (coker p);5 5 = 7y s = (kerp)is6 — 0.

C
15,5

order 2, detected by 7*h,d,. Also (kerp);s¢ is generated by an element of order 32, detected
by 7%hy - h3h4. It follows that (coker p);5ss maps onto an element of order 2 that is detected
by *h,d,. O

The group 77 . is generated by an element of order 32, detected by T3h(3)h4, and an element of

11 | TABLES

TABLE 3 Some values of the R-motivic Mahowald invariant

s a MR (x) Indeterminacy
0 ok 7"

1 v 2v, 4y

2 2 v?

3 o 20,40, 80
3 2y no €

3 4y n’c ne

6 2 o? x

7 o 702

7 20 N4 P15

7 40 M4 n%p1s, VK
7 8o 01, n*p1s

8 no Vy 2v,,4v,
8 € o

9 n’c vy, ™mK

9 ne Vo ™m*

9 Ho VK 20K, 4vK
10 ity V- VK

1 S ™K UM

1 2n {hhsg} UM

1 4n nihyhsg} %02
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1784 BELMONT AND ISAKSEN
TABLE 4  h,-periodic Bockstein differentials
Coweight (s, f,w) x d, d.(x)
4 (9,5,5) Phy d, hic,
7 (16,7,9) Pc, d, hid,
8 (17,9,9) P%h, d, hle,
10 (22,8,12) Pd, d, h2cod,
il (25,8,14) Pe, d, hcye,
12 (25,13,13) P3h, d, P?h3c,
13 (30,11,17) Pcyd, 5 hid?
TABLE 5 Bockstein differentials
Coweight (s, f,w) x - d.(x)
1 (0,0,-1) T d, hy
2 (0,0,-2) w2 d, Th,
4 (0,0,—4) ™ d, 2h,
4 (1,1,-3) iy d, Th?
4 (2,2,-2) *h? d, Co
4 (7,4,3) Thihs d, hZc,
4 (9,5,5) Phy d, ke,
5 (6,2,1) 3h3 d, Gan
6 (7,41 *hih, d, TPh,
6 9,4,3) 3hyc, d, Ph,
7 (8,3,1) The, d, d,
7 (11,5,4) 72Ph, dg hd,
7 (14,6,7) thid, d, hd,
7 (16,7,9) Pc, d, hid,
8 (0,0,-8) 8 dg *h,
8 (2,2,-6) h? @ Thyh?
8 (3,3,-5) ™h? dis ey
8 (7,4,-1) Thih, dy, hye,
8 9,5,1) ™Ph, d;, hZe,
8 (15,8,7) thlh, dg hle,
8 (17,9,9) P%h, d, hSe,
9 (3,1,-6) 8h, 12 rzh§
9 (14,3,5) 3hyh? ds fo
9 (14,6, 5) hid, d, 7Pc,
9 (20,4,11) Tg d, hyg
10 (6,2,—4) 8h3 s ¢,
10 9,3,-1) ' hih, dy T2e,
10 (14,4,4) 7*d, ds 2h,e,
10 (15,8,5) hlh, d, TP%h,
10 (17,8,7) Tl @ A P?h,

(Continues)
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R-MOTIVIC STABLE STEMS

| 1785

TABLE 5
Coweight
10
10
1
1
1
11
1
11
11
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13

TABLE 6

Coweight
3

O O 9 b

(Continued)

(s, f, w)
(20,4,10)
(22,8,12)
(8,2,-3)
(14,3,3)
(17,4,6)
(20,6,9)
(23,5,12)
(23,7,12)
(25,8,14)
(7,4,-5)
9,5,-3)
(10,6, —2)
(14,2,2)
(15,8,3)
(17,9,5)
(18,10, 6)
(23,12,11)
(25,13,13)
(14,3,1)
(17,4,4)
(18,5,5)
(20,6,7)
(22,10,9)
(23,7,10)
(25,8,12)

Some Massey products in Ext,

(s, f, w)
(3,1,0)

(8,3,4)
(7,1,0)
(21,5,12)
(21,5,12)
(18,4,8)
(21,5,11)
(3,1,-8)
(9,4,-2)
(11,5,0)
(14,6,3)

Bracket
<p2 ’ Th'l ’ h’2>

(co» ho» P)
(p*, 7%y, hs)
(thy, h‘f, hy)
(P, haeo, hy)
(z%h,, h3,h§h3)
(th2, hs, h(z)h3)

(P, 7y, hy)

(thy - Ty, Thy, )

(p?,T°hy, Phy)
(h,,t*Ph,,Th,)

x

729

Pd,
8h, h,
°hyh?
e,
3hyh,e,
’hyg

i

Pe,
°hhy
8Ph,
8Ph?
°h2
°hlh,
4P2h,
*P*h?
Thi
Pih,

7’ hyh3
7%¢,
7%h,e,
Thyh,e,
3 Phld,
72i

72Pe,

Contains Indeterminacy

72h,

p*hy

pthy - hyhy
poh,

0

P*hyg

72h, - hlhy, p°hyc,

phihyc
0
0

0hg

&

N ~

w

Q 8 o o o
SR

Proof
dy(t%) = p’th,

d,(7) = ph,
dy(t) = p*t’h,
C-motivic
d,(rg) = ph,e,
C-motivic

C-motivic

dy('%) = p*°h,

dy(%) = p’thy
dy(7%) = p*v°hy

C-motivic

d,(x)
thyg
hic,d,
720
©fo
T’hyg
o€
h2h,c,
h,cqe,
hicye,
7°Ph,
°hid,
74Pc,
3¢
72P%h,
TPhid,
g,
P2hic,
Phic,
9
*hg
Thyhyg

2
TP,
2
dO

hyd>

Used in
(p* 0, ),
Lemma 8.4
(e,h, p)
(p*,7%v,0)
Lemma 6.10
(o, {hye}, 1)
Lemma 7.13
Lemma 7.13
(P, 71,v)
Lemma 7.14
(0%, 7°1,$11)
Lemma 7.14

(Continues)
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1786 | BELMONT AND ISAKSEN
TABLE 6 (Continued)
Coweight (s, f,w) Bracket Contains Indeterminacy Proof Used in
1 (17,8,6)  (th, -tPcy,thy,0*) hy-7*Pc, 0 d,(z?) = p?>th; Lemma7.14
1 (19,3,8)  {p, hy,7%c;) 7l p*t*h, - hyh, d,(z) = ph, {p,h,7%0)
1 (19,3,8)  (p?,7hy,TCy) 3¢, p*t%hy - hyhy, d,(t%) = p°th; Lemma 7.15
1 (19,9,8)  (p? 7hy,P?h,) 72P%h, 0 d,(z%) = p?thy  {p%,11,¢19)
1 (22,4,11) (thy,tcy, hy) h,-t%*c, phy-1c, C-motivic Lemma 7.15
1 (22,10,11) (hy,P*h,,Th,) TPhid, 0 C-motivic Lemma 7.14
12 (20,4,8)  (p,7*hy, p, hyey) g p*h, - T d, (%) = pt?hy, (p,7h, p,{hye.})
d,(g9) = ph,e,
TABLE 7 Hidden h, extensions in the p-Bockstein spectral sequence
Coweight (s, f,w) Source Target
1 (1,1,0) Th, pth?
3 (3,3,0) *hlh, p°hyc,
3 (7,4,4) h3h; p*hic,
4 (6,2,2) ‘rzhg P3¢,
4 (8,3,4) TCy pthic,
5 1,1,-4) °h, pth?
5 (7,4,2) 2 h)h, p?tPh,
5 9,4,4) 2hc, p>Ph,
5 9,5,4) TPh, pTPh?
6 (6,2,0) *h] p*Th3
6 (14,6,8) hid, p*hid,
7 (3,3,—4) °h2h, plte,
7 (7,4,0) *hh, p'lhie,
7 (11,7,4) T2Ph2h, p'hie,
7 (15,8,8) hlh, p'he,
8 (8,3,0) GGy pThic,
8 (14,3,6) *h,h3 o*fo
8 (14,6, 6) *hid, p?TPc,
8 (16,7,8) 7Pc, pTPhyc,
9 (1,1,-8) iy pt’h?
9 (7,4,-2) °h3hy p*T°Phy
9 (9,3,0) r6hfh3 pite,
9 (9,4,0) %h,c, p?t*Ph,
9 (9,5,0) T°Ph, pT°Ph?
9 (15,8,6) ?hlh, p*tP%h,
9 (17,8,8) 72Ph,c, 0?P%h,
9 (17,9, 8) TP?h, ptP?h?
10 (14,3,4) *h,h3 p*Tf,
10 (18,5,8) 2h,f, p thie,

(Continues)
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R-MOTIVIC STABLE STEMS

1787

TABLE 7 (Continued)
Coweight
10
11
1
1
1
11
11
11
12
12
12
12
12
12
12
12
12
12

(s, f,w)
(20,6,10)
(3,3,-8)
(7,4,-4)
(11,7,0)
(15,8,4)
(19,3,8)
(19,11,8)
(23,12,12)
(6,2,—6)
(8,3,-4)
(14,3,2)
(14,6,2)
(16,7,4)
(18,5,6)
(20,6,8)
(22,10, 10)
(24,11,12)
(26,9,14)

TABLE 8 Hidden h, extensions in the p-Bockstein spectral sequence

Coweight

O O VW OV N9 &0 O U1 W W N

e e e =
= =B B B o5 o o o

(s, f, w)
0,1,-2)
(3,1,0)
(6,2,3)
(9,4,4)
0,1, -6)
9,3,3)
(14,3,7)
(9,3,0)
(9,4,0)
(17,8,8)
(18,5,9)
(0,1, -10)
(14,2,4)
(18,4,8)
(19,3,9)
(3,1,-8)
(6,2,-5)
9,4,-2)
(11,5,0)

Source
2h,
72h,
Th?
2hc,
%h,
°h3
thyh3
°hh,
%h,¢,
72Phyc,
2h,e,
%,
T*h?
°fo
T2
0k,
°h3
8hyc,
78Ph,

Source Target
2hyh,e, 0°Coe
°h2h, p°78h,c,
hh, p0*t°Ph,
°Phlh, p°T*Phyc,
*hlh, o*t?P%h,
3¢, p3t2hyc,
2P*hlh, p%P%hyc,
hi p*P?hic,
0h2 p?t%¢,
g pt’hic,
°h,h? o0ty
°hld, g,
73Pc, pTPhyc,
°hofo P r*hie,
™hig e
72Phld, p%tP%c,
P2, pTtP%hyc,
h3j p*hidy

Target Proof

pt*hi

p*th]

PC

pPPh,

ptth?

ptd, Lemma 7.12

P

p't’e

pT*Ph,

pP*h,

pthid,

pr1h?

pitie

p?t2hyg Lemma 7.13

p*thye,

p*t°h2

pic,

pT°Ph, Lemma 7.14

P’ hd, Lemma 7.14

(Continues)
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1788 | BELMONT AND ISAKSEN
TABLE 8 (Continued)

Coweight (s, f,w) Source Target Proof

1 (14,6,3) hid, pT*Pc,

1 (17,8,6) *Phyc, pT*P?h, Lemma 7.14

1 (19,3,8) 3¢ p°12hyc; Lemma 7.15

1 (19,9, 8) 72P%h, p*TPhid, Lemma 7.14

11 (22,10,11) TPhld, pP%c,

12 (21,5,9) hyg pr3hie,

12 (22,9,10) 2Phyd, pt*Phld,

12 (23,6,11) hie, 0%j Lemma 7.16

12 (26,7,14) j pd? Lemma 7.16
TABLE 9 Multiplicative generators of 71’5*

Coweight (s, w) Element Detected by

0 (-1,-1) P P

0 (0,0) h hy

0 1,1) n hy

1 (1,0) ™ Thy

1 (3,2) v h,

2 0,-2) 72h 72h,

3 (3,0 2y 72h,

3 (6,3) ™2 Th?

3 (7,4) o hs

3 (8,5) € Co

4 (0,—4) *h *h,

4 (8,4) T€ TC,

5 (1,-4) 1 oh,

5 9,4) Ty TPh,

5 (11,6) $n Ph,

6 (0,—6) 7%h %h,

6 (14,8) x d,

7 (7,0) o T*h,

7 (11,4) 24 JN

7 (14,7) 70? ohy

7 (15,8) P1s hoh,

7 (16,9) 74 hyh,

8 (0,-8) 8h 5h,

8 (8,0) 6 e

8 (14,6) 7202 2h2

8 (16,8) T, th, - h,

8 17,9) VK ofo

(Continues)

d ¥ “TTOT “vTY8ESLL

ssdny woxy

sd) SUONIPUOD) PUE SULIO L U1 938 “[£Z02/60/S 1] U0 AIRIqIT SUIUQ) AD[1AY *ANSIOAIU) 9AIDSOY WINNSIM 958D Kq 9677 1°0dOV/Z | [ 101 10p/woa Kot

suwioywoo Koy

pue

591 sUOWWIOY) 9ANEAI)) A[qEt[ddE Uy £q POUIDAOS I SADILIE V() $a5n JO SO[MI 10} AIIqI] FUIUQ AOIAL UO



R-MOTIVIC STABLE STEMS

1789

TABLE 9
Coweight

O VW VW VW VW VW VW YV VOV W 0 o

e e e e e e e T T e T e e T S
= B B B B B B B B B B oo o o o o©

TABLE 10

Coweight

O O 0 o0 NN A~ W

(Continued)

Some Toda brackets in 7,

(s, w)
(3,0)

(8,4)

(7,0)
14,7)
(8,0)
(14,6)
(16,8)(16,8)
(16,8)

(s, w)
(18,10)
(19,11)
(20,12)
1,-8)
9,0
11,2)
(15,6)
17,8)
(19,10)
(19,10)
(21,12)
(23,14)
(0,—10)
@s,5)
(18,8)
19,9)
(20,10)
(21,11)
(3,-8)
(6,—5)
(8,-3)
(11,0)
(15,4)
17,6)
(19,8)
(19,8)
(23,12)
(26,15)
(28,17)

Bracket
(p*,11,7)
(e, h, p)
(p*,7%v,0)
(p,h,0?)
(59, hw,v)
(t?v,0,v)
(0%,2,1)
(T, hv, v)

Detected by
72h,

Gy

*h,

phy

3¢,

2h?

thy - hy

TPc,

Element

4
™
3K
THy7
0
$10
™mK
174
1%

K

¢,
o5
Ty
0

¢
P23

™

{hihsg}

Proof

(P, Thy, hy)
(Cos 1os P)
(p*,7%hy, hy)
dy(hy) = h0h§
C-motivic

C-motivic

dy(hy) = (hy + phy)h3

C-motivic

Detected by
hoh,

&

h,e,
°h;
T3Ph,
*Ph,
p*te
TP%h,
1)

P,
hyfo
hyg
0%,
p*t*fo
2h, - h,
72,

h, - T?e,
ths - h,
7108,
°h;
8¢,
7%Ph,
*hh,
2h, - T2,
3¢
72P%h,
hli
phsyg
hihyg

Used in

Table 11

Table 11

Table 11

Lemma 10.2

Table 11

Table 11, Lemma 9.9
Table 11

Table 11

(Continues)
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1790 BELMONT AND ISAKSEN
TABLE 10 (Continued)

Coweight (s,w) Bracket Detected by Proof Used in

8 (17,9)(17,9) (o, h,vx) ofo d,y(fo) = hie, Lemma 10.3

8 (18,10) (v,0,ha) h,h, d,(hy) = hoh Table 11

9 (15,6) {p, pTN, TN - k) p’tle, d,(t%ey) = T°hid, Table 11

9 (21,12) (P> ihyeedm) hyfo (ps hyeg, ) Lemma 9.4

9 (21,13) ({hyeo}, m, h) cody C-motivic Lemma 9.4

10 (18,8) (P2, 11, v,) 2h, - h, Lemma 8.4 Table 11

10 (19,9) (t?v,790,0) T2 C-motivic Table 11

1 (3,-8) (0%, 7°n,v) 710h, (p%,7°hy, hy) Table 11

1 (11,0) (% 7°n,¢1,) 7°Ph, (p*,7°hy, Phy) Table 11

1 (19,8) (P2, 19, ¢10) 72P%h, (0% th,, P*h,) Table 11

1 (19,8) {p,h,725) T3¢ {p, hy, T2Cy) Table 11

12 (8,—4) (%9, hv, v) 7%¢, C-motivic Table 11

12 (16,4) (02,2,7°n) >h, - hy dy(hy) = (hy + phy)h?  Tablell

12 (16,4) (T3 g, hv, ) 3Pc, C-motivic Table 11

12 (20,8) (p,72h, p,{hye }) g (p,T2hy, p, hye,) Table 11

12 (24,12) (tiy;, v, v) P2%¢, C-motivic Table 11
TABLE 11 Some permanent cycles in the R-motivic Adams spectral sequence

Coweight (s, f,w) Element Proof

3 (3,1,0) 2h, {(p%, 1, V)

4 (8,3,4) Tc, (e, h,p)

7 (7,1,0) h, {(p*,%v,0)

7 11, 4) poe, Lemma 8.14

8 (8,3,0) T3¢, (°n,hv, )

8 (14, 6) ’h; (t?v,0,7)

8 (16,7, 8) 7Pc, (THg, hv,v)

8 (16, 2, 8) th, - h, (02,2,71)

8 (18, 2,10) h,h, (v,0,ho)

9 @15, 4, 6) e, {p, pTN, TN - )

10 (18,2, 8) 2h, - hy, (%11, v,)

10 19,3,9) 72, (t*v,m0o,0)

1 (3,1,-8) 710k, (0%, 7°n,v)

1 @11, 5, 0) 7%Ph, (P, 0, ¢01)

1 19,3,8) 3¢ {p,h,725)

1 (19,9, 8) 72P?h, (%11, ¢19)

1 (23,4,12) h, - Tc, o1,

12 (8,3,—4) 7%¢, (1, hv, v)

12 (16,2, 4) ohy - hy (02,2,7°7)

12 16,7, 4) =Py (T3 ug, hv, V)

12 (20,4,8) ' (p, T*hy, p, hyey)

12 (24,11, 12) 7P%¢, (Tpy7, 0, ¥)
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TABLE 12

Coweight
7
7
7
8
9

10
10
1
1
12

TABLE 13

Coweight
7

12

12

Adams d, differentials

(s, f, w)
(15,1, 8)
(17, 4, 10)
(14,3,7)
(18, 4,10)
(17,4,8)
(18,4,8)
(21,5,11)
(23,8,12)
(27,5,16)
(26,7,14)

Adams d, differentials

(s, f,w)
(15,2,8)
(23,6,11)
(25,7,13)

x d,(x)
n, hoh?
€ hid,
thh? o2hyd,
fo hie
’e, (thy)*d,
2 f, *hie, + p°Th: - d,
T’hyg preyd,
hyi Ph2d,
hyg 3 hye,
J Ph, - d,
x d,(x)
hoh, hod, + phyd,
Th: - ¢, ptPh; - d,
Co - Teg TPh, - hid,

TABLE 14 Hidden p extensions in the R-motivic Adams spectral sequence

Coweight
7
7
8
8
10
10
10
11
11
11
11

TABLE 15

Coweight
7

9

9

10

11

(s, f,w)
(15,4,8)
(17, 5,10)
(15,2,7)
(15, 4,7)
(15,2,5)
(15, 4, 5)
(23,8,13)
(15, 4, 4)
(17,5, 6)
(18,5,7)
(23,9,12)

(s, w)
(11, 4)
(21,12)
(23,14)
(22,12)
(23,12)

Source
h3h,

h,d,

pthy - hy
P*fo
p*t’h, - hy
P’ fo

h, -tcy - d,
*hy - hih,
2h, - T2¢,
p*fo-7*hy

2
hgi

Hidden h extensions in the R-motivic Adams spectral sequence

Source
e

hyfo
hyhyg
7Cy - d,
2hy - hyg

Proof
classical
classical
Lemma 8.8
Lemma 8.9
classical
Lemma 8.10
Lemma 8.11
classical
C-motivic

classical

Proof
Lemma 8.16
Lemma 8.17

Lemma 8.17

Target
phie,

th, - hyd,
hy - T2h3
2h, - d,
*h, - hoh,
thy - d,
Phyd,
ohid,
oh, - hyd,
hy - T2h, - T2e,
TPhld,

Target
72h, - Ph,
peody
h,cyd,
Phyd,
TPh, - d,
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1792 BELMONT AND ISAKSEN
TABLE 16 Hidden 7 extensions in the R-motivic Adams spectral sequence
Coweight (s, f,w) Source Target
7 (15,4,8) hh, p*hie,
9 (15,5,6) T*h, - h3h, pth, - tPc,
9 (21,5,12) hyf, cod,
10 (20, 5, 10) h, - Te, pTC, - d
10 (21,7,11) pte, - d, Phyd,
1 (5.4,4) *hy - hih, 74P,
1 (23,9,12) hi P¢,
TABLE 17 Hidden values of extension by scalars
Coweight (s, f,w) Source Target
7 (11,4,4) 0%, 2Ph,
7 (14,1,7) oh, Th?
7 (16 +k,6 +k,9+k) p*ht*e, Phke,
8 (17,4,9) ofo Th,d,
9 (15, 4, 6) p’tle, 3h,d,
10 (15,4,5) Pt f, *h,d,
10 (22,7,12) e, - d, Pd,
10 (23,8,13) h, - ¢, - d, Ph,d,
1 (20,5,9) 2h, - pf, hig
1 (26, 5,15) phyg thig
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