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AbstractÐ In this work, we propose an algorithm for solving
exact sparse linear regression problems over a network in
a distributed manner. Particularly, we consider the problem
where data is stored among different computers or agents
that seek to collaboratively find a common regressor with a
specified sparsity k, i.e., the L0-norm is less than or equal to
k. Contrary to existing literature that uses L1 regularization
to approximate sparseness, we solve the problem with exact
sparsity k. The main novelty in our proposal lies in showing a
problem formulation with zero duality gap for which we adopt
a dual approach to solve the problem in a decentralized way.
This sets a foundational approach for the study of distributed
optimization with explicit sparsity constraints. We show theo-
retically and empirically that, under appropriate assumptions,
where each agent solves smaller and local integer programming
problems, all agents will eventually reach a consensus on the
same sparse optimal regressor.

I. INTRODUCTION

Data regression analysis is a fundamental task in many

modern research fields, ranging from natural sciences and

engineering to management and social sciences [1]. Linear

regression is one of the most popular and well-studied

methods to efficiently capture the relations between variables

of interest and their predictors [2]. Analyzing the linear

regressor is a common practice that yields meaningful inter-

pretations of the data [3]. However, due to the high dimen-

sionality of real-world data, such as RNA sequencing [4],

it is a common practice to assume the linear regressor is

sparse [5]. A sparse regressor is not only computationally

more efficient but also more interpretable compared to a

dense solution [6]±[8].

Although sparse linear regression is a well-studied prob-

lem on a single machine [6], [9], it remains a challenge when

dealing with modern distributed data storage. Distributed

data stored and data transfer between agents can be costly or

access-controlled due to privacy policies. Thus, it becomes

non-trivial to solve the sparse linear regression problem

subject to strict communication and information constraints.

In this work, we propose a distributed sparse linear re-

gression algorithm. Formally, given N agents, where each

agent i ∈ JNK only has access to its local data Xi :=
(xi1, . . . , x

i
ni
)T ∈ R

ni×p and local observations Y i :=
(yi1, . . . , y

i
ni
) ∈ R

ni . Ultimately, we want the group of agents
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to jointly solve the following optimization problem:

min
w∈Rp

1

2

N
∑

i=1

∥Y i −Xiw∥22 +
1

γ
∥w∥22

such that ∥w∥0 ≤ k,

(1)

where p is the dimension of the regressor. Here, γ > 0 is

a fixed parameter that controls the effect of the Tikhonov

regularization term, and k > 0 is a predefined number

which is interpreted as the number of non-zero coefficient

of w needed to model the data {(Xi, Y i)}i∈JNK. Since data

transfer is prohibited in this setting, our proposed algorithm

allows agents to exchange their intermediate parameters wi

with their neighbors. We show that the algorithm not only

returns a sparse regressor but also guarantees a consensus

across all agents.

A good amount of effort has been devoted to studying

distributed linear regression over the last decades. In [10],

[11], the authors study the problem where data are dis-

tributed vertically among units. In the setting where data is

distributed among agents instead of features, Dobriban and

Sheng [12] study the scheme where each machine solves a

linear regression problem locally and then sends the result

to a central processing unit for averaging. Mateos et al. [13]

developed techniques for obtaining sparsity in distributed

linear regression using Lasso. However, Mateos’s approach

does not guarantee to return the optimal solution of (1). In

this work, instead of using Lasso to attain a desired sparsity

approximately, we focus on solving (1) to optimality. To the

best of our knowledge, we are the first to consider such a

problem in a distributed manner.

Most of the work done on sparse linear regression solves

(1) heuristically by replacing the combinatorial condition

∥w∥0 ≤ k by a L1-norm constraint [7]. Elastic Net or

Lasso is usually favored over solving (1) exactly because

of its computational feasibility and scalability. However,

they possess innate drawbacks as the L1-constraint penalizes

both large and small coefficients while, in contrast, the L0-

constraint does not, and thus the sparsity pattern is not well

recovered [14]. Despite the NP-hardness of (1), Bertsimas et

al. [6] have recently developed a cutting plane algorithm for

solving (1) in a matter of minutes where the number of data

n and the number of features p is in order of 100, 000s. With

the ability to solve such a large combinatorial problem, we

can compare the performance between Elastic Net and sparse

regression. As shown in [6], the solution of (1) is superior

in both accuracy and true support recovery. Moreover, it has

been shown both empirically and theoretically that the new

cutting plane method requires much less data than Elastic
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Net to attain phase transition - the phenomenon in which the

true support of regressors is recovered with enough data with

high probability [15]±[17]. Interestingly, in contradiction to

the common intuition for the complexity of (1), solving times

for (1) drops significantly as the number of data increases [6].

The result in [6] enables the computation of solutions

of (1) in high-dimensional regimes. Moreover, sparse linear

regression is a more promising candidate in the distributed

setup than methods relying on L1 regularization. Specif-

ically: 1) Sparse linear regression tends to attain higher

accuracy than L1-based methods given the same amount

of data, and the performance gap between these is larger

when the number of samples is small. This is the case for

distributed problems because each agent is not allowed to

share data and thus can only process a limited number of

data. 2) The phase transition of sparse linear regression

occurs sooner than L1-based methods. Thus sparse linear

regression has a good chance to recover the support of the

true regressor.

We employ a dual approach to solve exact sparse linear

regression in a distributed manner. We first show that,

even though the problem we want to solve involves binary

variables, we can still achieve zero gap between the primal

problem and the Lagrangian dual. A simple gradient ascent

algorithm can converge to a sparse regressor. However, each

agent must solve a local quadratic integer program in the

proposed dual framework at every iteration. As we shall see

later, this problem is the sparse linear regression for the local

data and observations at each agent plus an additional linear

function. To this end, we extend the outer approximation

used in [6] for solving sparse regression to solve the local

quadratic integer programming problem at every agent. This

reformulation of the approximation method proposed in [6]

effectively makes the sparse linear regression problem dual-

friendly in the sense of [18, Definition 2]

The rest of the paper is organized as follows: In Section

II, we show that by using the distributed dual framework,

we will converge to a sparse regressor. Section III provides

an alternative transformation of the local quadratic integer

programming problem within an agent so that we can solve

it efficiently. In Section IV, we evaluate our distributed

algorithm on a synthetic dataset and observe the convergence

behavior with a different number of features, various network

structures, and different network sizes.

Notation: We define JnK := {1, 2, . . . , n}. Given a graph

G, we denote V (G) and E(G) as its vertices and edges set

respectively. For a node i ∈ V (G), we let N(i) := {j ∈
V (G)|(i, j) ∈ E(G)} be its neighbor set. For any set S, we

use ∥S∥ to represent the cardinality of S, and conv(S) as its

convex hull. We denote R+ = {x ∈ R|x ≥ 0}.

II. ALGORITHMS AND RESULTS

We construct the distributed algorithm for exact sparse

linear regression using the dual approach from [18]. First,

we transform (1) to a quadratic mixed-integer program using

a big-M formulation [19], which is a traditional technique to

model L0-constraints as linear inequalities with additional

integer variables. Without the sparsity constraint ∥w∥0 ≤ k,

the optimization (1) is a minimization of a strictly convex

function, which has an unique minimizer w∗. Hence, there

exists a real number M ∈ R+ such that ∥w∗∥2 ≤ M . In

practice, we do not need to compute the value of M , and

we only use M for the argument of the big-M formulation.

In addition, we assume that there exists an underlying

undirected graph G that represents which pair of agents can

communicate with each other. The graph G is assumed to

be connected, and we denote its Laplacian by L ∈ R
n×n.

With these assumptions, (1) can be rewritten as a quadratic

integer programming (QIP) problem:

zQIP = min
wi∈Rp,∀i∈JpK

N
∑

i=1

(

1

2
∥Y i −Xiwi∥22 +

1

γN
∥wi∥22

)

such that Lvj = 0 ∀j ∈ JpK (2a)

−Msi ≤ wi ≤Msi ∀i ∈ JNK (2b)

si ∈ Sp
k ∀i ∈ JNK, (2c)

where vj = (w1
j , . . . , w

N
j )T denotes the vector consist-

ing of the j-th entries of w1, . . . , wN , and S
p
k = {s ∈

{0, 1}p|1T s ≤ k}. In (2), the coupling constraints (2a)

assures that every agent has the same regressor. Since the

elements of the vector si for every i ∈ JNK can only be 0 or

1, wi
j must be 0 when sij = 0 for some j ∈ JpK, and takes an

arbitrary value otherwise. Thus, the two constraints (2b) and

(2c) enforces the sparsity on wi. The next result shows that

we can apply Lagrangian multiplier theory for the coupling

constraints and derive strong duality.

Lemma 1 Let γ > 0, and the Lagrangian function of the

mixed-integer optimization Problem (2) be given by

ϕ(y) = min
si∈S

p

k
,

−Msi≤wi≤Msi
∀i∈JNK

f(w, y), (3)

where

f(w, y):=

N
∑

i=1

(

1

2
∥Y i−Xiwi∥22+

1

γ̄
∥wi∥22

)

+

p
∑

j=1

⟨yj , Lvj⟩,

and the constant γ̄ = γN . Then, maxy ϕ(y) = zQIP , where

zQIP is the optimal value of (2) 1.

In the big-M formulation (2), we impose the consensus

constraint by Lvj = 0, ∀j ∈ JpK. Therefore, we do not need

to impose the sparsity condition on every agent. Indeed, we

can still derive the same result from Lemma 1 when we

only require a subset of agents to solve the exact sparse

linear regression. Lemma 1 implies that even though (2) is a

quadratic integer programming problem, we still have zero

gap between the primal objective and its Lagrangian dual.

Hence, instead of minimizing (2) with the hard coupling

constraints, we can maximize ϕ(y).

1Please refer to [20] for the extended version of this paper with detail on
the proof
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Algorithm 1 Distributed Exact Sparse Linear Regression

1: procedure INITIALIZATION

2: Each agent initializes its own local multipliers:

ψ
i,1
L ← (yi1, . . . , y

i
p) ∀i ∈ JNK

3: procedure DISTRIBUTED SPARSE LINEAR REGRES-

SION({(Xi, Y i)}i∈JNK, G, k, γ, T )

4: for t = 1, 2, . . . , T do

5: Agents receive multipliers from their neighbor

ψ
i,t
N ← [ψj,t

L ]j∈N(i) ∀i ∈ JNK

6: Agents compute their dual multiplier

Di,t ← Li,iψ
i,t
L +

∑

j∈N(i)

Li,jψ
i,t
N,j

7: Agents solve their respective local problem:

min
∥wi∥0≤k

1

2
∥Y i −Xiwi∥22 +

1

γ̄
∥wi∥22 + ⟨D

i,t, wi⟩

and obtaining local regressor wi,t

8: Agents send and receive new regressor from their

neighbor, then update their local multiplier

ψ
i,t+1
L ← ψ

i,t
L + αt(Li,iw

i,t +
∑

j∈N(i)

Li,jw
j,t)

Next, we state some useful properties of the function ϕ(y)
that will enable us to propose a gradient ascent method for

our dual problem.

Proposition 2 The function ϕ(y) in (3) is a concave and

continuous function, whose gradient is given by

∇ϕ(y) =
[

Lv̂1, Lv̂2, . . . , Lv̂p
]T
, (4)

where

(v̂1, . . . , v̂p, s) = argmin
si∈S

p

k
,

−Msi≤wi≤Msi,
∀i∈JNK

f(w, y)

Proposition 2 follows directly from Danskin’s theo-

rem [21]. Given that the function ϕ(y) is concave and has an

explicit formulation for computing its gradient, we can find

its maximum using the classical gradient ascent.

We can derive the general framework for solving (2) as

described in Algorithm 1. In Algorithm 1, we use ψ
i,t
L and

ψ
i,t
N to denote the local multiplier and neighbor multiplier

of agent i at iteration t respectively. We should keep in

mind that the variable ψ
i,t
L is just a rearrangement of the La-

grangian multiplier y in the function ϕ. Based on the strong

duality from Lemma 1 and the distributed dual framework

[18], we derive the following result. We note that in step

7 of Algorithm 1, we solve a mixed-integer programming

problem, which makes the problem more difficult then the

continuous version of linear regression.

Theorem 3 Assume that Problem (2) admits a unique solu-

tion (ŝ1, . . . , ŝN ) and (ŵ1, . . . , ŵN ). Furthermore, if at every

iteration t in Algorithm 1, the step size αt is chosen to be

square summable but not summable, i.e.,

∞
∑

t=1

αt = +∞, and

∞
∑

t=1

α2
t <∞,

then for every ϵ > 0, there exist T such that

1

∥E(G)∥

∑

(i,j)∈E(G)

∥wi
T − w

j
T ∥ ≤ ϵ. (5)

Furthermore, we have that limt→∞ wi
T = ŵ, where ŵ is the

optimal solution of (2).

Proof. By [22, Theorem 7], we have limt→∞ yt = ŷ, where

ŷ = argmaxy ϕ(y). Hence we only need to show that the

sequence of optimal solutions s1t , . . . , s
N
t and w1

t , . . . , w
N
t of

min−Msit≤wi≤Msit,

∀i∈JNK

f(w, yt) at each iteration will converge

to the optimal sparse regressor. To prove the desired result,

we first show that the sequence of optimal solutions of the

sparsity variables converges. Let

g(s1, . . . , sN , y) = min
−Msi≤wi≤Msi

∀i∈JNK

f(w, y).

Since (Sp
k)

N is a compact set, there exist a subsequence

{s1tj , . . . , s
N
tj
}∞j=1 of the sequence {s1t , . . . , s

N
t }

∞
t=1 such that

lim
j→∞

(s1tj , . . . , s
N
tj
) = (s̄1, . . . , s̄N ) ∈ (Sp

k)
N .

Moreover, because (Sp
k)

N is finite, there exist a positive

number K1 > 0, such that for every j ≥ K1, we have

(s1tj , . . . , s
N
tj
) = (s̄1, . . . , s̄N ). Furthermore, for every j ≥

K1, it holds that

g(s1tj , . . . , s
N
tj
, yt) = g(s̄1, . . . , s̄N , ytj ) ≤ g((ŝ

1, . . . , ŝN , ytj ),

by the optimality of s̄1, . . . , s̄N . Nevertheless, when

(s̄1, . . . , s̄N ) is fixed, the function g(s̄1, . . . , s̄N , y) is con-

tinuous with respect to the variables y, thus

lim
j→∞

g(s̄1, . . . , s̄N , ytj ) = g(s̄1, . . . , s̄N , ŷ)

≤ g(ŝ1, . . . , ŝN , ŷ).

However, by definition of ŷ, we also have g(s̄1, . . . , s̄N , ŷ) ≥
g(ŝ1, . . . , ŝN , ŷ). Thus, by the uniqueness of optimal solution

of (2), we must have (s̄1, . . . , s̄N ) = (ŝ1, . . . , ŝN ). There-

fore, there exist K2 > 0 such that for every t > K2, we

have

(s1t , . . . , s
N
t ) = (ŝ1, . . . , ŝN ),

and

(w1
t , . . . , w

N
t ) ∈ argmin

−Mŝi≤wi≤Mŝi,
∀i∈JNK

f(w, yt),

which is a strictly convex quadratic optimization problem.

Hence, w1
t , . . . , w

N
t is unique. Therefore,

lim
t→∞

(w1
t , . . . , w

N
t ) = (ŵ1, . . . , ŵN ).
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The conclusion of the theorem follows, because ŵ1, . . . , ŵN

satisfies the coupling constraints, i.e., ŵ1 = · · · = ŵN .

The consensus error in (5) can be interpreted as the

average difference between two adjacent agents. When this

error goes to zero, the agents reach a consensus on a

sparse regressor. In the next section, we present an outer

approximation algorithm [23] for solving the inner problem

in Step 7 of Algorithm 1.

III. QUADRATIC INTEGER PROGRAMMING LOCAL

SOLVER

In this section, we provide an algorithm for solving the

local problem in step 7 of Algorithm 1. In particular, at each

iteration, we need to solve a quadratic integer programming

problem, which is given as

c∗ = min
∥w∥≤k

1

2
∥Y −Xw∥22 +

1

γ
∥w∥22 + ⟨D,w⟩. (6)

In (6), for simplicity of notations, we drop the superscript

denoting agents and the number of iterations. The case where

D = 0 is, in fact, a sparse linear regression problem, which

can be solved effectively using an outer approximation algo-

rithm [6]. Motivated by the success of solving sparse linear

regression in a very high-dimensional regime, we provide an

alternative transformation of the objective function of (6),

which is favorable for an outer approximation algorithm.

Initially, we have

1

2
∥Y −Xw∥22 +

1

2γ
∥w∥22 =

1

2
wT (

I

γ
+XTX)w

+ Y TXw +
1

2
Y TY.

For γ > 0, we have ( I
γ
+XTX) is a positive-definite matrix.

Hence, there exists an invertible matrix X̄ ∈ R
p×p such that

( I
γ
+ XTX) = X̄T X̄ . Since X̄ is invertible2, there exist

Ȳ ∈ R
p such that Ȳ T X̄ = Y TX . Thus, we can rewrite the

optimization problem (6) as

c∗ = min
∥w∥0≤k

1

2
(∥Ȳ − X̄w∥22 +

1

γ
∥w∥22) + dT X̄w + const,

(7)

where d = (X̄−1)TD. The constant term in (7) equals to
1
2 (Y

TY − Ȳ T Ȳ ) and is dropped for simplicity. For a fixed

s ∈ S
p
k , we define c(s) as the optimal value of (7) with

additional constraints −Ms ≤ w ≤Ms, i.e.,

c(s) := min
−Ms≤w≤Mw

1

2
||Ȳ − X̄sw||

2
2 +

1

2γ
||w||22 + dT X̄sw,

(8)

where X̄s = X̄Is and Is ∈ R
p×p is the diagonal matrix

whose diagonal is s. Moreover, (8) becomes a (continuous)

quadratic programming problem, c(s) can be explicitly com-

puted as:

2c(s) =− (Ȳ T X̄s − d
T X̄s)× (

I

γ
+XT

s Xs)
−1

× (X̄T
s Ȳ − X̄

T
s d) + Ȳ T Ȳ .

(9)

2Indeed, we do not need the L2 regularization term as long as the matrix
X

T
X is invertible

Algorithm 2 Outer Approximation for Solving Local Prob-

lem

1: procedure OUTER APPROXIMATION((X̄, Ȳ ), γ, d)

2: s1 ← warm start

3: η1 ← 0
4: t← 1
5: while ηt < c(st) do

6: Compute c(st) using Proposition 4

7: Compute ∇c(st) using Proposition 5

8: st+1, ηt+1 ← argmins,η

{η|s ∈ Sp
k , η ≥ c(si) +∇c(si)(s− si) ∀i ∈ JtK}

9: t← t+ 1

10: ŝ← st
11: d̂← (Ȳ − d)T X̄s

12: ŵ ←
(

Ip
γ
+ X̄T

s X̄s)
)−1

d̂

In the next proposition, we provide a simpler equivalent

transformation for c(s), which enables a simple computation

of the value of c(s) and its gradient.

Proposition 4 For a fixed s ∈ Sp
k , we have

c(s) =
1

2
(Ȳ T−dT )(I+γ

p
∑

i=1

siKi)
−1(Ȳ −d)−

1

2
dT d+Ȳ T d,

where Ki = X̄iX̄
T
i and X̄i is the ith column of X̄ .

By Proposition 4, the optimization problem (6) can now

be reformulated as

min
s∈S

p

k

1

2
(Y T−dT )(I+γ

p
∑

i=1

siKi)
−1(Y−d)−

1

2
dT d+Y T d.

(10)

The next proposition allows us to take the derivative of

c(s) for s ∈ conv(Sp
k).

Proposition 5 The function

c(s) =
1

2
(Y T−dT )(I+γ

p
∑

i=1

siKi)
−1(Y −d)−

1

2
dT d+Y T d

is convex and continuous on conv(Sp
k). Furthermore, its

gradient is given by

∇sc(s) = −
1

2
α(s)TKiα(s),

where α(s) = (I + γ
∑p

i=1 siKi)
−1(Y − d), for i ∈ JpK.

Proposition 4 and Proposition 5 derive a simple represen-

tation of c(s) and its derivative. These results help us to

attain an outer approximation algorithm for solving (7), see

Algorithm (2).

According to [24, Theorem 2], Algorithm 2 will stop after

a finite number of iterations and return the optimal solution

of (7). This implies that Problem (1) is dual-friendly [18],

[25]±[27]. Certainly, to the best of our knowledge, a closed

form or a polynomial algorithm does not exist for solving a
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