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Abstract— Modern machine learning, especially deep learn-
ing, features models that are often highly expressive and over-
parameterized. They can interpolate the data by driving the
empirical loss close to zero. We analyze the convergence rate
of decentralized stochastic gradient descent (SGD), which is at
the core of decentralized federated learning (DFL), for these
over-parameterized models. Our analysis covers the setting of
decentralized SGD with time-varying networks, local updates
and heterogeneous data. We establish strong convergence guar-
antees with or without the assumption of convex objectives that
either improves upon the existing literature or is the first for
the regime.

Index Terms— Decentralized Federated Learning, Decentral-
ized Optimization, Local SGD, Overparameterization

I. INTRODUCTION

Federated Learning [1] has gained much attention as

an important learning paradigm where many agents col-

laboratively train a model while keeping the training data

decentralized. Federated Learning has shown great potential

in communication efficiency and its capability of preserving

data privacy [2], and has exhibited outstanding performance

in real-world applications such as keyboard prediction [3]

and healthcare [4], [5].

The fundamental and most well-studied Federated Learn-

ing algorithm has been the Local Stochastic Gradient Descent

(or Local SGD, also known as Federated Averaging) algo-

rithm, where agents communicate with a central server, and

during a communication round, a number of local SGD iter-

ations are performed at each agent before the central server

computes the average [6], [7]. There has been a number

of works studying the theoretical convergence guarantees of

Local SGD in various settings [8]–[12].

However, having a central server can sometimes incur a

single point of failure or cause communication traffic jam

that harms the algorithm’s performance [13]. As an alter-

native, Decentralized Federated Learning (DFL) has gained

much popularity recently, where agents conly synchronize

with their neighbors in a communication network to achieve

model consensus. Numerical experiments have also shown

that decentralized algorithms are able to outperform their

centralized counterparts [14]. While DFL can be traced back

to decentralized optimization and decentralized SGD, which
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has a long history [14]–[16], a number of recent works have

adapted decentralized SGD to the DFL setting [13], [17]–

[19]. Specifically, [18] provides a unified theory of Decen-

tralized SGD with time-varying networks and local updates,

and [13] further incoporates compressed communication to

the framework.

On the other hand, [20] makes a key observation for

explaining the fast convergence of SGD in modern machine

learning , which says modern machine learning architectures

are often highly expressive, they are over-parameterized,

and can interpolate the data by driving the empirical loss

close to zero. For such over-parameterized models, a faster

convergence rate of SGD was proven [20], [21]. Recently,

[10] studies the convergence rate of Local SGD for these

over-parameterized models and provides better theoretical

convergence guarantees for Local SGD in the setting.

Motivated by the above studies, in this paper, we analyze

the convergence rate of decentralized SGD for these over-

parameterized models. Our analysis covers the setting of

decentralized SGD with time-varying networks, local updates

and heterogeneous data. We establish strong convergence

guarantees with or without the assumption of convex ob-

jectives that either improves upon the existing literature or

is the first for the regime.

A. Contributions

To summarize our main results, in this work we show:

• For strongly convex loss functions, an error bound of

O(exp(−T )) can be achieved, where T is the total

number of iterations. Before our work, the best-known

convergence rate was O(exp(−pT/τ)) [18], where p ≤
1, τ ≥ 1 are parameters related to network connectivity.

(Illustration in Assumption 5)

• For general convex loss functions, we establish an

error bound of O(1/T ) under a mild data similarity

assumption and an error bound of O(τ/pT ), otherwise.

To the best of our knowledge, no convergence rate has

been established in the past literature under this setting.

• For nonconvex loss functions, we prove an error bound

of O(τ/pT ). To the best of our knowledge, no theoreti-

cal analysis of decentralized SGD in this setting existed

in the literature.

The paper is organized as follows. Section II describes

the problem statement, and assumptions. Section III states

our main results and proof sketches. Section IV describes

concluding remarks and future work. Omitted proofs are

relegated to Appendix I.
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II. PROBLEM FORMULATION

We formalize the problem of n agents [n] = {1, 2, . . . , n}
collaboratively learning an over-parameterized model as the

following decentralized stochastic optimization problem:

min
x∈Rd

f(x) :=
1

n

n∑

i=1

fi(x), (1)

where the function fi(x) , Eξi∼Di
fi(x, ξi) denotes the local

loss function, ξi is a stochastic sample that agent i has access

to, and Di denotes the local data distribution over the sample

space Ωi of agent i.
Following previous works such as [8], [9], we assume

throughout the paper that f(x) is bounded below by f? (i.e.,

a global minimum exists), fi(x, ξi) is L-smooth for every

i ∈ [n], and ∇fi(x, ξi) is an unbiased stochastic gradient

of fi(x). Moreover, for some of our results, we will require

functions fi(x, ξi) to be µ-strongly convex with respect to

the parameter x as defined next.

Assumption 1 (µ-strong convexity): There exists a con-

stant µ ≥ 0, such that for any x,y ∈ R
d, i ∈ [n], and

ξi ∈ Ωi, we have

fi(x, ξi) ≥ fi(y, ξi) + 〈∇fi(y, ξi),x− y〉+
µ

2
‖x− y‖2.

(2)

If µ = 0, we simply say that each fi is convex.

We characterize the over-parameterized setting, i.e., when

the model can interpolate the data completely such that the

loss at every data point is minimized simultaneously (usually

means zero empirical loss) by the following two assumptions

as in [20], [21]:

Assumption 2 (Interpolation): Let x?∈argminx∈Rdf(x).
Then, ∇fi(x

?, ξi) = 0, ∀i ∈ [n], ξi ∈ Ωi.

Assumption 3 (Strong Growth Condition (SGC)): There

exists constant ρ ≥ 1 such that ∀x ∈ R
d, i ∈ [n],

Eξi∼Di
‖∇fi(x, ξi)‖

2 ≤ ρ‖∇f(x)‖2. (3)

Notice that for the functions to satisfy SGC, local gradients

at every data point must all be zero at the optimum x?. This

means Assumption 3 implies Assumption 2.

Assumption 2 is commonly satisfied by modern machine

learning model such as deep neural networks [22] and

kernel machines [23]. [21] discussed functions satisfying

Assumption 3 and showed that under additional assumptions

on the data, the squared-hinge loss satisfies the assumption.

Finally, as in [10] we consider the following assumption

that allows us to measure dissimilarity among local functions.

Assumption 4 (c-Bounded Optimality Gap (c-BOG)):

For some constant c ∈ [0, 1], we have

fi(x)− f∗
i ≥ c(f(x)− f∗), ∀x ∈ R

d, i ∈ [n], (4)

where f∗
i = minx∈Rd fi(x).

We note that Assumption 4 always holds if c = 0, and as

the local loss functions become more similar, it will hold

for larger values of c. In the case of homogeneous local loss

functions, i.e., fi = f, ∀i, Assumption 4 holds with c = 1.

Algorithm 1 Decentralized Local SGD

1: Input: x0
i = x0 for i ∈ [n], total number of iterations T ,

step-size η and the mixing matrix sequence {Wt}T−1
t=0 .

2: for t = 0, . . . , T − 1 do

3: for i = 1, . . . , n do

4: Sample ξti , compute gt
i := ∇fi(x

t
i, ξ

t
i)

5: x
t+ 1

2

i = xt
i − ηgt

i

6: xt+1
i =

∑n

j∈N t
i
wjix

t+ 1

2

i

7: end for

8: end for

III. CONVERGENCE OF DECENTRALIZED SGD

This section reviews decentralized SGD and then analyzes

its convergence rate under the over-parameterized setting.

In decentralized SGD, each agent can only exchange

information (through gossip averaging) with its neighboring

agents in the communication network. In every iteration t,
the algorithm does the following: i) each agent performs

stochastic gradient updates locally based on ∇fi(x, ξi),
which is an unbiased estimation of ∇fi(x), and ii) each

agent performs consensus operations, where agents average

their values with their neighbors.

The communication network at time t is encoded by a

mixing matrix Wt, where the neighbors of agent i at iteration

t are denoted as N t
i := {j : wt

ij > 0}.

The pseudo-code for the decentralized SGD algorithm is

provided in Algorithm 1.

If we write all the variables and the gradient values in a

matrix form,

Xt ,
[
xt
1, · · · ,x

t
n

]
∈ R

d×n,

Gt ,
[
gt
1, · · · ,g

t
n

]
∈ R

d×n,

then the update of decentralized SGD algorithm can be

compactly written as:

Xt+1 = (Xt − ηGt)Wt. (5)

As in [18], we make the following mild assumptions on

the mixing matrix {Wt}T−1
t=0 that reflects the setting of

decentralized SGD with time-varying networks and local

updates.

Assumption 5: The mixing matrices {Wt}T−1
t=0 are sym-

metric and doubly stochastic, i.e., wt
ij ≥ 0, wt

ij =
wt

ji,W
t1n = 1, ∀t ∈ [T − 1]. Moreover, there exists two

constants p ∈ (0, 1] and integer τ ≥ 1 such that for all

matrices X ∈ R
d×n and all integers l ∈ {0, . . . , T/τ},

‖XWl,τ − X̄‖2F ≤ (1− p)‖X− X̄‖2F , (6)

where Wl,τ = W(l+1)τ−1 · · ·Wlτ and X̄ := X11
T

n
.

Assumption 5 is a very mild assumption on the connectivity

of the underlying communication network structure among

the agents, and the setting incorporates Local SGD [9],

Periodic Decentralized SGD [17] and Local Decentralized

SGD [19] as special cases. We refer to [18] to a detailed

discussion about the examples covered in the setting.
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A. Convergence Rate Analysis

We now state our main results on the convergence rate

of decentralized SGD under over-parameterized settings. To

that end, let us first introduce some useful notations. Let x̄(t)

and ḡ(t) be the average of agents’ iterates and the average

of their stochastic gradients at time t, respectively, i.e.,

x̄t =
1

n

n∑

i=1

xt
i, ḡt =

1

n

n∑

i=1

gt
i .

Moreover, define the following parameters

rt = E‖x̄t − x∗‖2, Vt =
1

n
E

n∑

i=1

‖xt
i − x̄t‖2,

et = E[f(x̄t)]− f(x∗), ht = ‖∇f(x̄t)‖2,

which represent, respectively, the expected distance of the

averaged iterates at time t to the optimum solution, the ex-

pected consensus error among agents at time t, the expected

optimality gap and the gradient norm of the average iterates

at time t.
For strongly convex loss functions we have the following

rate.

Theorem 1 (Strongly convex functions): Let Assumptions

1, 2, 4 and 5 hold with µ > 0. If we follow algorithm 1 with

stepsize η = 1/L, we will have

E‖x̄(T ) − x∗‖2 ≤
(
1−

µ

L

)T
‖x0 − x∗‖2, (7)

where x̄(t) := 1
n

∑n

i=1 x
(t)
i is the average of all nodes iterates

at time step t.
To prove Theorem 1, we need to first state the following

proposition and lemma.

Proposition 1: For any X ∈ R
n×d,x′ ∈ R

d and W which

is a symmetric and doubly stochastic matrix, we have

‖XW − x′1n‖
2
F = ‖(X− x′1n)W‖2F ≤ ‖X− x′1n‖

2
F .
(8)

Lemma 1: Let Assumptions 1 and 2 hold with µ > 0. If

we follow Algorithm 1 with stepsize η = 1
L

, we will have

Eξt
i
‖xt

i − ηgt
i − x∗‖2 ≤ (1−

µ

L
)‖xt

i − x∗‖2. (9)

Now we state the proof of Theorem 1.

Proof: Let x∗ ∈ argminx∈Rd f(x). Using Proposition

1 and Lemma 1 we have,

E‖Xt+1 − x∗1n‖
2
F

(5)
= E‖(Xt − ηGt)Wt − x∗1n‖

2
F

(8)

≤ E‖Xt − ηGt − x∗1n‖
2
F

= E[

n∑

i=1

Eξt
i
‖xt

i − ηgt
i − x∗‖2]

(9)

≤ (1−
µ

L
)E[

n∑

i=1

‖xt
i − x∗‖2]

= (1−
µ

L
)E‖Xt − x∗1n‖

2
F .

Therefore, from Jensen’s inequality we have

E‖x̄(T ) − x∗‖2 ≤
1

n
E‖XT − x∗1n‖

2
F

≤
1

n
(1−

µ

L
)E‖XT−1 − x∗1n‖

2
F

≤ · · · ≤
1

n

(
1−

µ

L

)T
E‖X0 − x∗1n‖

2
F

=
(
1−

µ

L

)T
‖x0 − x∗‖2

The next theorem states the convergence rates for general

convex loss functions when mild assumption on data simi-

larity is satisfied, i.e. Assumption 4 is satisfied with c > 0.

Theorem 2 (General convex functions): Let Assumptions

1, 2, 4 and 5 hold with µ = 0, c > 0. If we follow Algorithm

1 with stepsize η = 1
2L , and let x̂T , 1

T

∑T−1
i=0 x̄(t) we have

E[f(x̂T )− f∗] ≤
2L‖x0 − x∗‖2

cT
. (10)

To prove Theorem 2, we need to first state the following

proposition and lemma.

Proposition 2: Let Assumptions 1, 2, and 4 hold with µ ≥
0. Let x∗ ∈ argminx∈Rd f(x). For all x1, . . .xn ∈ R

d and

x̄ := 1
n

∑n

i=1 xi, we have

1

n

n∑

i=1

(fi(xi)− fi(x
∗)) ≥ c(f(x̄)− f(x∗)). (11)

Lemma 2: Let Assumptions 1, 2, and 4 hold with µ = 0.

If we follow Algorithm 1 with stepsize ηt = 1
2L , we will

have

Eξt
i
‖xt

i − ηgt
i − x∗‖2 ≤ ‖xt

i − x∗‖2 −
1

2L
(fi(x

t
i)− fi(x

∗))

(12)
Now we state the proof of Theorem 2.

Proof: Let x∗ ∈ argminx∈Rd f(x). Using Proposition

1,2, Lemma 2 and similar to the proof of Theorem 1 we

have,

E‖Xt+1−x∗1n‖
2
F ≤E[

n∑

i=1

Eξt
i
‖xt

i − ηgt
i − x∗‖2]

(12)

≤E[
n∑

i=1

‖xt
i−x∗‖2−

1

2L
(fi(x

t
i)−fi(x

∗))]

(11)

≤E
[
‖Xt − x∗1n‖

2
F −

cn

2L
(f(x̄t)− f(x∗))

]
.

Summing over t = 0, . . . , T − 1 and notice E‖XT −
x∗1n‖

2
F ≥ 0 we have

cn

2L

T−1∑

t=0

E[f(x̄t)−f(x∗)] ≤ ‖X0−x∗1n‖
2
F = n‖x0−x∗‖2.

Theorem 2 now follows from Jensen’s inequality.

When local data can be arbitrarily dissimilar, i.e. Assump-

tion 4 is satisfied with c = 0, we provide the following

convergence rate for general convex loss functions.

Theorem 3 (General convex functions): Let Assumptions

1, 2, 4 and 5 hold with µ = 0, c = 0. If we follow Algorithm

1 with stepsize η = 1
2L , and let x̂T , 1

T

∑T−1
i=0 x̄(t) we have

E[f(x̂T )− f∗] ≤
40Lτ‖x(0) − x∗‖2

pT
. (13)

To prove Theorem 3, we need to first state the following

lemma.
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Lemma 3: Let Assumptions 1, 2 hold with µ = 0. If we

follow Algorithm 1 with stepsize η ≤ 1
4L , then,

rt+1 ≤ rt − ηet +
3

2
LηVt. (14)

Lemma 4: Let Assumptions 1,2,5 hold with µ = 0. If we

follow Algorithm 1 with stepsize η = p
28Lτ

, then,

Vt ≤
30Lτ

p
η2

t−1∑

j=0

(1−
p

4
)b

t−j

τ
cej . (15)

Now we state the proof of Theorem 3.

Proof: Summing (14) over t = 0, . . . , T − 1 we have

T−1∑

t=0

ηet ≤ r0 − rT +
3

2
Lη

T−1∑

t=0

Vt

(15)

≤ r0 +
3

2
Lη

T−1∑

t=0

30Lτ

p
η2

t−1∑

j=0

(1−
p

4
)b

t−j

τ
cej

=r0 +
45L2τη3

p

T−2∑

j=0

ej

T−1∑

t=j+1

(1−
p

4
)b

t−j

τ
c

≤r0 +
180L2τ2η3

p2

T−2∑

j=0

ej .

Substituting η = p
28Lτ

and notice 1
28 × (1− 180

282 ) ≥
1
40 , we

have,

p

40Lτ

T−1∑

t=0

et ≤ r0.

Theorem 3 now follows from Jensen’s inequality.

Finally, for the case of non-convex loss functions, we have

the following result.

Theorem 4 (Non-convex functions): Let Assumption 3

hold. If we follow Algorithm 1 with stepsize η = p
28Lτρ

,

we will have

min
0≤t≤T−1

E‖∇f(x̄t)‖2 ≤
100Lτρ(f(x0)− f∗)

pT
. (16)

To prove Theorem 4, we need to first state the following

lemma.

Lemma 5: Let Assumption 3 hold. If we follow Algorithm

1 with stepsize η ≤ 1
6Lρ

, we have

et+1 ≤ et −
1

3
ηht +

2

3
ηL2Vt (17)

Lemma 6: Let Assumptions 3 and 5 hold. If we follow

Algorithm 1 with stepsize η = p
28Lτρ

, then,

Vt ≤
15τρ

p
η2

t−1∑

j=0

(1−
p

4
)b

t−j

τ
chj . (18)

Now we state the proof of Theorem 4.

Proof: Summing (17) over t = 0, . . . , T − 1 we have

1

3

T−1∑

t=0

ηht ≤ e0 − eT +
2

3
L2η

T−1∑

t=0

Vt

(18)

≤ e0 +
2

3
L2η

T−1∑

t=0

15τρ

p
η2

t−1∑

j=0

(1−
p

4
)b

t−j

τ
chj

=e0 +
10L2τρη3

p

T−2∑

j=0

hj

T−1∑

t=j+1

(1−
p

4
)b

t−j

τ
c

≤e0 +
40L2τ2ρη3

p2

T−2∑

j=0

hj .

Substituting η = p
28Lτρ

and notice ρ ≥ 1, 1
28∗3 ×(1− 120

282 ) ≥
1

100 , we have,

p

100Lτρ

T−1∑

t=0

ht ≤ e0 ⇒ min
0≤t≤T−1

ht ≤
100Lτρe0

pT
.

Thus we proved Theorem 4.

IV. CONCLUSION

Inspired by the supurior performance of DFL algorithms

both in practice and in numerical experiments, in this paper

we theoretically analyzed the convergence rate of decen-

tralized SGD for over-parameterized models. Our analysis

covers the setting of decentralized SGD with time-varying

networks, local updates and heterogeneous data. We estab-

lished strong convergence guarantees with or without the

assumption of convex objectives that either improves upon

the existing literature or is the first for the regime.

APPENDIX I: OMITTED PROOFS

For the proof of Lemma 1, 2 and 5 we refer the reader to

[10].

We first state some propositions that would be useful for

our proof.

Proposition 3: Let f : Rd → R be an L-smooth function

and x∗ ∈ argminx∈Rd f(x). Then,

1

2L
‖∇f(x)‖2 ≤ f(x)− f(x∗) (19)

Proof: Proof can be found in [24].

Proposition 4: Let Assumptions 1 and 2 hold with µ = 0.

Then,

1

n

n∑

i=1

E‖gt
i‖

2 ≤ 4Let + 2L2Vt. (20)

Proof: We have

1

n

n∑

i=1

E‖gt
i‖

2 =
1

n

n∑

i=1

E‖∇fi(x
t
i, ξ

t
i)‖

2

≤
2

n

n∑

i=1

(E‖∇fi(x̄
t, ξti)‖

2 + E‖∇fi(x̄
t, ξti)−∇fi(x

t
i, ξ

t
i)‖

2)

(19)

≤
2

n

(
2L

n∑

i=1

E[fi(x̄
t)− fi(x

∗)] +

n∑

i=1

L2
E‖x̄t − xt

i‖
2
)

=4Let + 2L2Vt.

Proposition 5: Let Assumptions 3 hold. Then,

1

n

n∑

i=1

E‖gt
i‖

2 ≤ 2ρht + 2L2ρVt. (21)
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Proof: We have

1

n

n∑

i=1

E‖gt
i‖

2
(3)

≤
ρ

n
E

n∑

i=1

‖∇f(xt
i)‖

2

≤
2ρ

n
E

n∑

i=1

‖∇f(x̄t)‖2 +
2ρ

n
E

n∑

i=1

‖∇f(xt
i)−∇f(x̄t)‖2

≤2ρht + 2L2ρVt.

Proof of Lemma 3

Proof: Using Proposition 4 we have

rt+1 = E‖x̄t+1 − x∗‖2 = E‖x̄t − ηḡt − x∗‖2

=rt+
η2

n2
E‖

n∑

i=1

∇fi(x
t
i, ξ

t
i)‖

2−
2η

n
E[

n∑

i=1

〈∇fi(x
t
i), x̄

t−x∗〉]

(20)

≤ rt+4Lη2et + 2L2η2Vt −
2η

n
E[

n∑

i=1

〈∇fi(x
t
i), x̄

t−x∗〉]

︸ ︷︷ ︸

T1

.

For T1 we can bound it by

T1 = E[

n∑

i=1

〈∇fi(x
t
i), x̄

t−x∗〉]

= E[

n∑

i=1

〈∇fi(x
t
i), x̄

t − xt
i + xt

i − x∗〉]

≥E

n∑

i=1

(
fi(x̄

t)−fi(x
t
i)−

L

2
‖x̄t−xt

i‖
2+fi(x

t
i)−fi(x

∗)
)

= net −
Ln

2
Vt.

Therefore we have

rt+1 ≤ rt+4Lη2et + 2L2η2Vt −
2η

n
(net −

Ln

2
Vt)

(η≤ 1

4L
)

≤ rt − ηet +
3

2
LηVt.

Proof of Lemma 4

Proof: Let m = b t
τ
c− 1, and using the fact that ‖X−

X̄‖2F ≤ ‖X‖2F , ∀X and ‖a + b‖2 ≤ (1 + q)‖a‖2 + (1 +
1
q
)‖b‖2, ∀q > 0, we have

nVt = E‖Xt−X̄mτ−(X̄mτ−X̄t)‖2F ≤ E‖Xt − X̄mτ‖2F

=E‖Xmτ

t−1∏

i=mτ

Wi − η

t−1∑

i=mτ

Gi

t−1∏

j=i

Wj − X̄mτ‖2F

(6)

≤(1 +
p

2
)(1− p)nVmτ + (1 +

2

p
)E‖η

t−1∑

i=mτ

Gi

t−1∏

j=i

Wj‖2F

≤(1−
p

2
)nVmτ + (1 +

2

p
)(t−mτ)η2

t−1∑

i=mτ

E‖Gt‖2F

(20)

≤ (1−
p

2
)nVmτ+

6τ

p
η2

t−1∑

i=mτ

n(4Lei+2L2Vi).

Substituting η = p
28Lτ

and p ≤ 1 we have

Vt ≤ (1−
p

2
)Vmτ +

p

64τ

t−1∑

i=mτ

Vi +
24τLη2

p

t−1∑

i=mτ

ei. (22)

Similarly, let m = b t
τ
c we can have

Vt ≤ (1 +
p

2
)Vmτ +

p

64τ

t−1∑

i=mτ

Vi +
24τLη2

p

t−1∑

i=mτ

ei. (23)

Now, using (23) we can prove by recursion that for mτ ≤
i ≤ (m+ 1)τ − 1 we have

(1−
p

2
)Vmτ +

p

64τ

t−1∑

i=mτ

Vi +
24τLη2

p

t−1∑

i=mτ

ei

≤
(
(1−

p

2
)Vmτ +

24τLη2

p

t−1∑

i=mτ

ei
)
(1 +

p

16τ
)i−mτ .

Similarly, using (22) we can prove by recursion that for (m+
1)τ ≤ i ≤ (m+ 2)τ − 1 we have

(1−
p

2
)Vmτ +

p

64τ

t−1∑

i=mτ

Vi +
24τLη2

p

t−1∑

i=mτ

ei

≤
(
(1−

p

2
)Vmτ +

p

64τ

(m+1)τ−1
∑

i=mτ

Vi

+
24τLη2

p

t−1∑

i=mτ

ei
)
(1 +

p

64τ
)i−(m+1)τ .

Therefore, let m = b t
τ
c − 1 we have

Vt ≤
(
(1−

p

2
)Vmτ+

24τLη2

p

t−1∑

i=mτ

ei
)
(1+

p

16τ
)τ (1+

p

64τ
)τ

≤
(
(1−

p

2
)Vmτ+

24τLη2

p

t−1∑

i=mτ

ei
)
(1 +

p

4
)

≤ (1−
p

4
)Vmτ+

30τLη2

p

t−1∑

i=mτ

ei

≤ · · · ≤ V0 +
30Lτ

p
η2

t−1∑

j=0

(1−
p

4
)b

t−j

τ
cej

=
30Lτ

p
η2

t−1∑

j=0

(1−
p

4
)b

t−j

τ
cej .

Proof of Lemma 6

Proof: The proof of Lemma 6 is similar to the proof

of Lemma 4, where the difference is that instead of using

Proposition 4 to bound E‖Gt‖2F we use Proposition 5 to

bound it. Actually, similar to the proof of Lemma 4 we have,

nVt ≤ (1−
p

2
)nVmτ + (1 +

2

p
)(t−mτ)η2

t−1∑

i=mτ

E‖Gt‖2F

(21)

≤ (1−
p

2
)nVmτ+

6τ

p
η2

t−1∑

i=mτ

n(2ρht + 2L2ρVt).
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Substituting η = p
28Lτρ

and pρ ≥ 1 we have

Vt ≤ (1−
p

2
)Vmτ +

p

64τ

t−1∑

i=mτ

Vi +
12τρη2

p

t−1∑

i=mτ

hi. (24)

Similarly, let m = b t
τ
c we can have

Vt ≤ (1 +
p

2
)Vmτ +

p

64τ

t−1∑

i=mτ

Vi +
12τρη2

p

t−1∑

i=mτ

hi. (25)

Now, using (25) we can prove by recursion that for mτ ≤
i ≤ (m+ 1)τ − 1 we have

(1−
p

2
)Vmτ +

p

64τ

t−1∑

i=mτ

Vi +
12τρη2

p

t−1∑

i=mτ

hi

≤
(
(1−

p

2
)Vmτ +

12τρη2

p

t−1∑

i=mτ

hi

)
(1 +

p

16τ
)i−mτ .

Similarly, using (24) we can prove by recursion that for (m+
1)τ ≤ i ≤ (m+ 2)τ − 1 we have

(1−
p

2
)Vmτ +

p

64τ

t−1∑

i=mτ

Vi +
12τρη2

p

t−1∑

i=mτ

hi

≤
(
(1−

p

2
)Vmτ +

p

64τ

(m+1)τ−1
∑

i=mτ

Vi

+
12τρη2

p

t−1∑

i=mτ

hi

)
(1 +

p

64τ
)i−(m+1)τ .

Therefore, let m = b t
τ
c − 1 we have

Vt ≤
(
(1−

p

2
)Vmτ+

12τρη2

p

t−1∑

i=mτ

hi

)
(1+

p

16τ
)τ (1+

p

64τ
)τ

≤
(
(1−

p

2
)Vmτ+

12τρη2

p

t−1∑

i=mτ

hi

)
(1 +

p

4
)

≤ (1−
p

4
)Vmτ+

12τρη2

p

t−1∑

i=mτ

hi

≤ · · · ≤
12τρη2

p
η2

t−1∑

j=0

(1−
p

4
)b

t−j

τ
chj .
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