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Abstract— Modern machine learning, especially deep learn-
ing, features models that are often highly expressive and over-
parameterized. They can interpolate the data by driving the
empirical loss close to zero. We analyze the convergence rate
of decentralized stochastic gradient descent (SGD), which is at
the core of decentralized federated learning (DFL), for these
over-parameterized models. Our analysis covers the setting of
decentralized SGD with time-varying networks, local updates
and heterogeneous data. We establish strong convergence guar-
antees with or without the assumption of convex objectives that
either improves upon the existing literature or is the first for
the regime.

Index Terms— Decentralized Federated Learning, Decentral-
ized Optimization, Local SGD, Overparameterization

I. INTRODUCTION

Federated Learning [1] has gained much attention as
an important learning paradigm where many agents col-
laboratively train a model while keeping the training data
decentralized. Federated Learning has shown great potential
in communication efficiency and its capability of preserving
data privacy [2], and has exhibited outstanding performance
in real-world applications such as keyboard prediction [3]
and healthcare [4], [5].

The fundamental and most well-studied Federated Learn-
ing algorithm has been the Local Stochastic Gradient Descent
(or Local SGD, also known as Federated Averaging) algo-
rithm, where agents communicate with a central server, and
during a communication round, a number of local SGD iter-
ations are performed at each agent before the central server
computes the average [6], [7]. There has been a number
of works studying the theoretical convergence guarantees of
Local SGD in various settings [8]-[12].

However, having a central server can sometimes incur a
single point of failure or cause communication traffic jam
that harms the algorithm’s performance [13]. As an alter-
native, Decentralized Federated Learning (DFL) has gained
much popularity recently, where agents conly synchronize
with their neighbors in a communication network to achieve
model consensus. Numerical experiments have also shown
that decentralized algorithms are able to outperform their
centralized counterparts [14]. While DFL can be traced back
to decentralized optimization and decentralized SGD, which
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has a long history [14]-[16], a number of recent works have
adapted decentralized SGD to the DFL setting [13], [17]-
[19]. Specifically, [18] provides a unified theory of Decen-
tralized SGD with time-varying networks and local updates,
and [13] further incoporates compressed communication to
the framework.

On the other hand, [20] makes a key observation for
explaining the fast convergence of SGD in modern machine
learning , which says modern machine learning architectures
are often highly expressive, they are over-parameterized,
and can interpolate the data by driving the empirical loss
close to zero. For such over-parameterized models, a faster
convergence rate of SGD was proven [20], [21]. Recently,
[10] studies the convergence rate of Local SGD for these
over-parameterized models and provides better theoretical
convergence guarantees for Local SGD in the setting.

Motivated by the above studies, in this paper, we analyze
the convergence rate of decentralized SGD for these over-
parameterized models. Our analysis covers the setting of
decentralized SGD with time-varying networks, local updates
and heterogeneous data. We establish strong convergence
guarantees with or without the assumption of convex ob-
jectives that either improves upon the existing literature or
is the first for the regime.

A. Contributions

To summarize our main results, in this work we show:

o For strongly convex loss functions, an error bound of
O(exp(—T)) can be achieved, where T is the total
number of iterations. Before our work, the best-known
convergence rate was O(exp(—pT'/7)) [18], where p <
1,7 > 1 are parameters related to network connectivity.
(IMustration in Assumption 5)

o For general convex loss functions, we establish an
error bound of O(1/T') under a mild data similarity
assumption and an error bound of O(7/pT), otherwise.
To the best of our knowledge, no convergence rate has
been established in the past literature under this setting.

« For nonconvex loss functions, we prove an error bound
of O(7/pT). To the best of our knowledge, no theoreti-
cal analysis of decentralized SGD in this setting existed
in the literature.

The paper is organized as follows. Section II describes
the problem statement, and assumptions. Section III states
our main results and proof sketches. Section IV describes
concluding remarks and future work. Omitted proofs are
relegated to Appendix L
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II. PROBLEM FORMULATION

We formalize the problem of n agents [n] = {1,2,...,n}
collaboratively learning an over-parameterized model as the
following decentralized stochastic optimization problem:

. RS

min f(x):= ;fz(X), (D
where the function f;(x) £ E¢,p, fi(x, &) denotes the local
loss function, &; is a stochastic sample that agent ¢ has access
to, and D; denotes the local data distribution over the sample
space €); of agent i.

Following previous works such as [8], [9], we assume
throughout the paper that f(x) is bounded below by f* (i.e.,
a global minimum exists), f;(x,&;) is L-smooth for every
i € [n], and Vf;(x,€;) is an unbiased stochastic gradient
of f;(x). Moreover, for some of our results, we will require
functions f;(x,&;) to be u-strongly convex with respect to
the parameter x as defined next.

Assumption 1 (u-strong convexity): There exists a con-
stant ;> 0, such that for any x,y € R i € [n], and
& € Q;, we have

[i(x,&) = fi(y, &) +(Vfily, &), x —y) + %HX -yl*
2

If 4 = 0, we simply say that each f; is convex.

We characterize the over-parameterized setting, i.e., when
the model can interpolate the data completely such that the
loss at every data point is minimized simultaneously (usually
means zero empirical loss) by the following two assumptions
as in [20], [21]:

Assumption 2 (Interpolation): Let x* € argmin, cpa f(x).
Then, Vfi(X*,fi) =0, Vi € [n], fl € Q.

Assumption 3 (Strong Growth Condition (SGC)): There
exists constant p > 1 such that Vx € R?, i € [n],

Ee,~p, |V fi(x, &)1 < pllVF (). 3)
Notice that for the functions to satisfy SGC, local gradients
at every data point must all be zero at the optimum z*. This
means Assumption 3 implies Assumption 2.

Assumption 2 is commonly satisfied by modern machine
learning model such as deep neural networks [22] and
kernel machines [23]. [21] discussed functions satisfying
Assumption 3 and showed that under additional assumptions
on the data, the squared-hinge loss satisfies the assumption.

Finally, as in [10] we consider the following assumption
that allows us to measure dissimilarity among local functions.

Assumption 4 (c-Bounded Optimality Gap (c-BOG)):

For some constant ¢ € [0, 1], we have

fi(X)_fi* ZC(f(X)—f*), VXERd, S [n]v (4)

where f = min,cpa fi(x).

We note that Assumption 4 always holds if ¢ =0, and as
the local loss functions become more similar, it will hold
for larger values of c. In the case of homogeneous local loss
functions, i.e., f; = f, Vi, Assumption 4 holds with ¢ = 1.

Algorithm 1 Decentralized Local SGD
1: Input: x? = x for i € [n], total number of iterations T,
step-size 7 and the mixing matrix sequence {W*}7 '
2. fort=0,...,T—1do

3 fori=1,...,ndo

4 Sample ¢!, compute g! = V f; (x4 &L)
tts _ ¢ ¢

5: X; T =X N8 .
t+1 t+3

6: Xi+ = Z;LEN;’ wjj,xi 2

7 end for

8: end for

III. CONVERGENCE OF DECENTRALIZED SGD

This section reviews decentralized SGD and then analyzes
its convergence rate under the over-parameterized setting.

In decentralized SGD, each agent can only exchange
information (through gossip averaging) with its neighboring
agents in the communication network. In every iteration ¢,
the algorithm does the following: i) each agent performs
stochastic gradient updates locally based on V f;(x,¢&;),
which is an unbiased estimation of Vf;(x), and ii) each
agent performs consensus operations, where agents average
their values with their neighbors.

The communication network at time t is encoded by a
mixing matrix W*, where the neighbors of agent i at iteration
t are denoted as N := {j : wj; > 0}.

The pseudo-code for the decentralized SGD algorithm is
provided in Algorithm 1.

If we write all the variables and the gradient values in a
matrix form,

[I>

Xt A [xt, o
G'2[gl, -

,XH e R,
t d
,8,] € R,

then the update of decentralized SGD algorithm can be
compactly written as:

X = (X! - nGHWE. (5)

As in [18], we make the following mild assumptions on
the mixing matrix {W*}]_' that reflects the setting of
decentralized SGD with time-varying networks and local
updates.

Assumption 5: The mixing matrices {W*}7 ! are sym-
metric and doubly stochastic, i.e., w;?j > O,wfj =
w;, W'l,, = 1, Vt € [T — 1]. Moreover, there exists two
constants p € (0,1] and integer 7 > 1 such that for all
matrices X € R4™ and all integers [ € {0,...,T/7},

IXW,,; = X[[F < (1 -p)IIX - X7, (6)

where W, , = WHDT=1... W™ and X := X%.

Assumption 5 is a very mild assumption on the connectivity
of the underlying communication network structure among
the agents, and the setting incorporates Local SGD [9],
Periodic Decentralized SGD [17] and Local Decentralized
SGD [19] as special cases. We refer to [18] to a detailed
discussion about the examples covered in the setting.
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A. Convergence Rate Analysis

We now state our main results on the convergence rate
of decentralized SGD under over-parameterized settings. To
that end, let us first introduce some useful notations. Let x(®)
and g(¥) be the average of agents’ iterates and the average
of their stochastic gradients at time ¢, respectively, i.e.,

I~y L t
= szia g = Ezgz
i=1
Moreover, define the following parameters

ry = E[x’ x'[|?,

1 n
= EE; |x! —x
er = E[f(X)] - f(x*), he= |V

which represent, respectively, the expected distance of the
averaged iterates at time ¢ to the optimum solution, the ex-
pected consensus error among agents at time ¢, the expected
optimality gap and the gradient norm of the average iterates
at time .

For strongly convex loss functions we have the following
rate.

Theorem 1 (Strongly convex functions): Let Assumptions
1,2, 4 and 5 hold with i > 0. If we follow algorithm 1 with
stepsize n = 1/L, we will have

x| < (1

—X*”Q,

- BNT X
E[|x™ S L €
where (1) := % Z?:l xgt) is the average of all nodes iterates
at time step t.

To prove Theorem 1, we need to first state the following
proposition and lemma.

Proposition 1: Forany X € R"*4 x’ € R? and W which
is a symmetric and doubly stochastic matrix, we have

IXW — x5 = [|(X = x"L) W[ < X = x"L, ||

®)
Lemma 1: Let Assumptions 1 and 2 hold with p > 0. If

we follow Algorithm 1 with stepsize n = %, we will have
Egellxt — ng! —x"[2 < (1= D)l —x"[7. )
Now we state the proof of Theorem 1.
Proof: Let x* € argmin,cpa f(x). Using Proposition
1 and Lemma 1 we have,

< ©®) ]
E[X™ - x"1,[% = El|(X = 9G)W, = x 1,7

< EIX" =G — x"1, %

= E[Z Ee:||x; — ngi — x"|1%]

Z < —

-a ffmwcfxlmp

x*|]

Therefore, from Jensen’s inequality we have

1
Ex™) —x*||* < ~E[IX" - x"1,|%

1 H T—1
—(1-=)E|X
A LE|

1(1 - B)TEIXY - <1,

u—ﬁﬁﬂ—fw

IN

—x"L||%

IN

|

The next theorem states the convergence rates for general
convex loss functions when mild assumption on data simi-
larity is satisfied, i.e. Assumption 4 is satisfied with ¢ > 0.
Theorem 2 (General convex functions): Let Assumptions
1,2, 4 and 5 hold With nw=0,c > O If we follow Algorithm
1 with stepsize n = and let X7 £ T ZT ! %) we have

2L)|x° — x*||?

2L’

E[f(x") - f7] < (10)
To prove Theorem 2, we need to ﬁ:rst state the following
proposition and lemma.
Proposition 2: Let Assumptions 1, 2, and 4 hold with p >
0. Let x* € argmin,ga f(x). For all x1,...x, € R? and
x=1 L 3" X4, we have

fZﬂ& F(x)) = e(f(R) = f(x7). (1)

Lemma 2. Let Assumptions 1, 2, and 4 hold with p = 0.
If we follow Algorithm 1 with stepsize 1, = we will
have

L
2L

—x'? <l - xT)? -

1 t *
o (Fi(xd) = fi(x")
(12)

Ee: ||x; — ng;

Now we state the proof of Theorem 2.
Proof: Let x* € argmin,cga f(x). Using Proposition
1,2, Lemma 2 and similar to the proof of Theorem 1 we
have,

E[[ X —x*1, [ <E[>  Eelx! —ngl — x|

i=1
E[; Ix; —x* HLi%(Xf)—ﬁ(X*))]
(2) cn

E[IX = x"Lall} — S (F(=) — F(x)].

Summing over ¢t = 0,...,7 — 1 and notice E|[XT —

x*1, % > 0 we have

T-1

cn — * * *

Y B ()] < X0 Ll =l x|
t=0

Theorem 2 now follows from Jensen’s inequality. [ ]

When local data can be arbitrarily dissimilar, i.e. Assump-
tion 4 is satisfied with ¢ = 0, we provide the following
convergence rate for general convex loss functions.

Theorem 3 (General convex functions): Let Assumptions
1, 2, 4 and 5 hold with w=0,c=0.If we follow Algorithm

1 with stepsize np = 5 L, and let X7 £ 1 3":—01 x®) we have
40 (0) k|2
Blf () - 5] < T =X (13)

To prove Theorem 3, we need to fﬁst state the following
lemma.
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Lemma 3: Let Assumptions 1, 2 hold with g = 0. If we

follow Algorithm 1 with stepsize n < 4 7 then,
3
rep1 <1 —nec+ s LnVy. (14)
Lemma 4: Let Assumptions 1,2, 52 hold with © = 0. If we
follow Algorithm 1 with stepsize 7 = 57—, then,
t—1
30L =
Vi< =y - D (15)
p =0

Now we state the proof of Theorem 3.
Proof: Summing (14) over t =0,. ..,

T—1 3 T—1
et <rog—rp+ =L Vi
;7715 0 T B 77; t

T — 1 we have

t—1

L 30LT
<7+ Ln Z — 2(1
i—o P =0
45L2 3122
SRR DI S ES
t=j+1
180 L2212 =
<rgp 5 e;.
j=0
Substituting 17 = 52— and notice 55 x (1 — 359) > 45, we
have,
» T-1
< rg.
A0L7 ; Gt =To
Theorem 3 now follows from Jensen’s inequality. [ ]

Finally, for the case of non-convex loss functions, we have
the following result.

Theorem 4 (Non-convex functions): Let Assumption 3

hold. If we follow Algorithm 1 with stepsize n = 28%7;»’
we will have
100L7p(f(x0) = f*)
E 2 < . (e
Jmin E|[VF(x)|? < > (16)

To prove Theorem 4, we need to first state the following
lemma.
Lemma 5: Let Assumption 3 hold. If we follow Algorithm
1 with stepsize n < GL , we have
2 1o
etr1 < ep — *Uht + onL“Vi (17)
Lemma 6: Let Assumptions 3 amcziI 5 hold. If we follow

401272
SEO + > Gl hj.
o=
Substituting 7 = 5gf— and notice p > 1, 555 x (1 - 539) >
145, we have,
T-1
p . 100 L7 peq
he < = hy <
100L7p ; t=co oter-1 = T T

Thus we proved Theorem 4. [ ]

IV. CONCLUSION

Inspired by the supurior performance of DFL algorithms
both in practice and in numerical experiments, in this paper
we theoretically analyzed the convergence rate of decen-
tralized SGD for over-parameterized models. Our analysis
covers the setting of decentralized SGD with time-varying
networks, local updates and heterogeneous data. We estab-
lished strong convergence guarantees with or without the
assumption of convex objectives that either improves upon
the existing literature or is the first for the regime.

APPENDIX I: OMITTED PROOFS

For the proof of Lemma 1, 2 and 5 we refer the reader to
[10].

We first state some propositions that would be useful for
our proof.

Proposition 3: Let f : R — R be an L-smooth function
and x* € argmin,cpa f(x). Then,

S IVII? < () — f(x°) (19)

Proof: Proof can be found in [24]. |

Proposition 4: Let Assumptions 1 and 2 hold with p = 0.
Then,

1 n
~ > Ellgt|® < 4Le, +2L°Vi. (20)

i=1
Proof: We lhave

1 n n
*Z gt = Z]E||Vfi(><§7§f)||2
i=1 i:l

3

Algorithm 1 with stepsize n = , then, 2 n -
e <= Z EIVFE, D +E|VAE, &) — Vilxh€)?)
157’p 9 =1
Vi < Z (18) (19)2
ZE filx +ZL2EHX —x!|2)
Now we state the proof of Theorem 4. i=1
Proof: Summing (17) over t =0,...,T — 1 we have =4Le, _|_ 2L V.
T-1 T-1
1 2, m
3 vt nmhe < eo —er + §L U tz; Vi Proposition 5: Let Assumptions 3 hold. Then,
(18) 2 157’p 9 il t—j 1 ¢ L2 2
<eo+ 3L Z Z D=n, ~ D Ellglll® < 2k +2L°pVi. @1
t=0 i=1
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Proof: We have

) p
- ZEII gll2 < EZ IV f(xH)I?
<2pE v 2 QpE v Sty 12
< ZH FEHI*+ ZH fxi) = Vi)
=1 =1
<2ph; + 2L°pV;.
|
Proof of Lemma 3
Proof: Using Proposition 4 we have
reen = E - x*|? = E|x* —ng’ — x|
n? - ¢ etz 2N - By ot *
=rit-SEI| Y VALEIP =B (Vi(x), %' —x")]

=1 =1

n

E[Y (Vfi(x!), &

=1

(20)
<ry+4Ln’e, + 2L*n*V, — ) —x"].

Substituting 77 = 55— and p < 1 we have

— | 7Ly —
Similarly, let m = [ %] we can have
t—1 t—1
241 Ln?
Vi< (142 Zv 1 Zez (23)

Now, using (23) we can prove by recursion that for mr <
1 < (m+1)T — 1 we have

D P 241 Ln? =
1 PYAS Py % i
( 2)V +64T7,:ZTV+ p i:zm:'re
t—1
P 2471 L P -
<((1 =5\ Vs (14 ==y
<(1-% 5 L )+

Similarly, using (22) we can prove by recursion that for (m+
1)1 <i<(m+2)T —1 we have

T: t—1 24TL77 t—1
For T we can bound it by (1- er + Yy Z Vi+ Z
n i=mT i=mT
_ m+1 7—1
Ty =E[Y_(Vfilx),x'—x")]
i=1 S(( )V””—’—GT Z Vi
_ A A R g t—1
= E[Y(V(x), % x4 x ) i A
i=1 p ! 647 '
< 2
ZEZ (fi(x") = falxi) — 5 S =X+ fi(x)) = fi(x"))  Therefore, let m = |£] — 1 we have
i=1
Ln 247 Ln? =
=ne; — —-V; Vi < (-2, T )7 (14 =
o e < (A= Vmrt— i_ZmT ei)( +16 ) +647-)
Therefore we have o L2 1
9 I P TLn _
rop1 < re+4ALn?e, + 2L 0%V, — ;n(net - 7”1/,5) <(a 2)er I Z ei)(1+ 4)
(”Igﬁ 3 307L 9 t—1
< ~ = : _P kil .
< re—nect gLnl < (1=7)Vanr . i:zm:T e
. 30LT 5 :
Proof of Lemma 4 < <V + 22(1_ *)ije
Proof: Letm = |L|—1, and using the fact that || X — i 7=0
Xt < X, VX and fla+ b < (Lt @lelf + (14 30L7 88 pe,
q)||b\|2 Vg > 0, we have gt
=EHXt—X””—(X’”T—Xt)II2 E[X" = X"7|[% u
mr i i mr Proof of Lemma 6
=E|X HanZGHWJ X" -
e Pl Proof: The proof of Lemma 6 is similar to the proof
(6) i—1 -1 of Lemma 4, where the difference is that instead of using
<(1+ )(1 — p)nVir + (1 Jr EHU Z G’LHWJ”Q Propos%tion 4 to bo'unfi E|G!||2 we use Proposition 5 to
iomr jei bound it. Actually, similar to the proof of Lemma 4 we have,
t—1
P 2 p
(1= )nVinr + (14 5)(t —m7)n? Z-;TE“Gt”% Ve < (1= 5)nVme + (1 + )(t —mT)n Z E|G!|2
(20) (21) 6T
<(1- )nvmr+—n2 Z (4Le;+2L7V;). < (1- )nvmf+—n2 Z (2phs + 2L2pVy).
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Substituting n =

Vi <

and pp > 1 we have

127;)17 —
Z Vi + Z hi. (24)

=mT

p
28LTp

(1-2y,

_2) m‘r+

Similarly, let m = [ %] we can have

127pn
Vi< (1+9) m7+—ZV th (25)

i=mT i=mT

Now, using (25) we can prove by recursion that for m7 <
1< (m+ 1)T — 1 we have

p — 127[)77
o 2 Vit S

(]- - 5) mT

[5]

[6]
[7]

[8]

[9]

(10]

(1]

1=mT 1=mr
9 t—1
P 127pn _
(L= 5)Vir + —= Y ) (L =)™ [12]
<(( = G War + = 30 )1+ 50)
i=mT [13]
Similarly, using (24) we can prove by recursion that for (m-+
)7 <i<(m+2)T —1 we have
i1 [14]
p p 12Tp?7
1= Wor+—— > Vit h;
( 2) mT 641 Z v Z
1=mT i=mT
(m+1)7—1 [15]
p p
<(1-5v,.,+ L v
>~ (( 9 ) mT 647 Z A
i=mt [16]
127pn? = P
= B (1 + 17(m+1)r.
» Z i)( e, [17]
1=mT
t
Therefore, let m = |- | — 1 we have [18]
9 t—1
p 127pm
Vi < (1= )WV - —2 3 1) 1+— 14y
1=mT
P 127p1% P
< ((1*§)me+ » Z hi)(lJrz) [20]
1=mT
9 t—1
p 127pm
<(1- Z)Vmﬁ' Z hi [21]
1=mT
127p7% 55,y Dy
2 |52
1—=)=1h
e 2 0= o
Jj=0
- [23]
REFERENCES
[24]

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Artificial intelligence and statistics. PMLR, 2017, pp.
1273-1282.

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

[3] A.Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[4] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni,

S. Bakas, M. N. Galtier, B. A. Landman, K. Maier-Hein et al., “The
future of digital health with federated learning,” NPJ digital medicine,
vol. 3, no. 1, pp. 1-7, 2020.

5205

J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang,
“Federated learning for healthcare informatics,” Journal of Healthcare
Informatics Research, vol. 5, no. 1, pp. 1-19, 2021.

S. U. Stich, “Local sgd converges fast and communicates little,” arXiv
preprint arXiv:1805.09767, 2018.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the conver-
gence of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189,
2019.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” in International Conference on Machine Learning. PMLR,
2020, pp. 5132-5143.

A. Khaled, K. Mishchenko, and P. Richtérik, “Tighter theory for local
sgd on identical and heterogeneous data,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2020, pp. 4519-4529.
T. Qin, S. R. Etesami, and C. A. Uribe, “Faster convergence of local
sgd for over-parameterized models,” arXiv preprint arXiv:2201.12719,
2022.

E. Gorbunov, F. Hanzely, and P. Richtdrik, “Local sgd: Unified theory
and new efficient methods,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2021, pp. 3556-3564.

T. Qin, S. R. Etesami, and C. A. Uribe, “The role of local steps in
local sgd,” arXiv preprint arXiv:2203.06798, 2022.

W. Liu, L. Chen, and W. Zhang, “Decentralized federated learning:
Balancing communication and computing costs,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 8, pp. 131—
143, 2022.

X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient descent,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
transactions on automatic control, vol. 31, no. 9, pp. 803-812, 1986.
A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48-61, 2009.

J. Wang and G. Joshi, “Cooperative sgd: A unified framework for the
design and analysis of communication-efficient sgd algorithms,” arXiv
preprint arXiv:1808.07576, 2018.

A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich, “A unified
theory of decentralized sgd with changing topology and local updates,”
in International Conference on Machine Learning. PMLR, 2020, pp.
5381-5393.

X. Li, W. Yang, S. Wang, and Z. Zhang, “Communication-efficient
local decentralized sgd methods,” arXiv preprint arXiv:1910.09126,
2019.

S. Ma, R. Bassily, and M. Belkin, “The power of interpolation:
Understanding the effectiveness of sgd in modern over-parametrized
learning,” in International Conference on Machine Learning. PMLR,
2018, pp. 3325-3334.

S. Vaswani, F. Bach, and M. Schmidt, “Fast and faster convergence
of sgd for over-parameterized models and an accelerated perceptron,”
in The 22nd International Conference on Artificial Intelligence and
Statistics. PMLR, 2019, pp. 1195-1204.

L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou, “Empirical
analysis of the hessian of over-parametrized neural networks,” arXiv
preprint arXiv:1706.04454, 2017.

M. Belkin, S. Ma, and S. Mandal, “To understand deep learning we
need to understand kernel learning,” in International Conference on
Machine Learning. PMLR, 2018, pp. 541-549.

X. Zhou, “On the fenchel duality between strong convexity and
lipschitz continuous gradient,” arXiv preprint arXiv:1803.06573, 2018.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 12,2023 at 19:25:26 UTC from IEEE Xplore. Restrictions apply.



