
Unbounded Gradients in Federated Learning with Buffered

Asynchronous Aggregation

Mohammad Taha Toghani and CÂesar A. Uribe

AbstractÐ Synchronous updates may compromise the effi-
ciency of cross-device federated learning once the number
of active clients increases. The FedBuff algorithm (Nguyen
et al. [1]) alleviates this problem by allowing asynchronous
updates (staleness), which enhances the scalability of training
while preserving privacy via secure aggregation. We revisit
the FedBuff algorithm for asynchronous federated learning
and extend the existing analysis by removing the boundedness
assumptions from the gradient norm. This paper presents a the-
oretical analysis of the convergence rate of this algorithm when
heterogeneity in data, batch size, and delay are considered.

I. INTRODUCTION

Federated learning (FL) is an approach in machine learn-

ing theory and practice that allows training models on

distributed data sources [2], [3]. The distributed structure

of FL has numerous benefits over traditional centralized

methods, including parallel computing, efficient storage, and

improvements in data privacy. However, this framework also

presents communication efficiency, data heterogeneity, and

scalability challenges. Several works have been proposed

to improve the performance of FL [4]±[6]. Existing works

usually address a subset of these challenges while imposing

additional constraints or limitations in other aspects. For

example, the work in [7] shows a trade-off between privacy,

communication efficiency, and accuracy gains for the dis-

tributed discrete Gaussian mechanism for FL with secure

aggregation.

One of the most important advantages of FL is scalability.

Training models on centralized data stored on a single server

can be problematic when dealing with large amounts of

data. Servers may be unable to handle the load, or clients

might refuse to share their data with a third party. In FL,

the data is distributed across many devices, potentially im-

proving data privacy and computation scalability. However,

this also presents some challenges. First, keeping the update

mechanism synchronized across all devices may be very

difficult when the number of clients is large [8]. Second,

even if feasible, imposing synchronization results in huge

(unnecessary) delays in the learning procedure [6]. Finally,

each client often might have different data distributions,

which can impact the convergence of algorithms [9], [10].

In synchronous FL, e.g., FedAvg [2], [3], the server first

sends a copy of the current model to each client. The clients

The authors are with the Department of Electrical and Computer En-
gineering, Rice University, 6100 Main St, Houston, TX 77005, USA,
{mttoghani, cauribe}@rice.edu. This work was partially funded by ARPA-H
Strategic Initiative Seed Fund #916012. Part of this material is based upon
work supported by the National Science Foundation under Grants #2211815
and #2213568.

then train the model locally on their private data and send the

model updates back to the server. The server then aggregates

the client updates to produce a new shared model. The

process is repeated for many rounds until the shared model

converges to the desired accuracy. However, the existence

of delays, message losses, and stragglers hinders the per-

formance of distributed learning. Several works have been

proposed to improve the scalability of federated/distributed

learning via enabling asynchronous communications [6],

[8], [11]±[16]. In the majority of these results, each client

immediately communicates the parameters to the server after

applying a series of local updates. The server updates the

global parameter once it receives any client update. This has

the benefit of reducing the training time and better scalability

in practice and theory [6], [12], [16], [17] since the server

can start aggregating the client updates as soon as they are

available.

The setup, known as ªvanillaº asynchronous FL, has

several challenges that must be addressed. First, due to the

nature of asynchronous updates, the clients are supposed to

deal with staleness, where the client updates are not up-to-

date with the current model on the server [1]. Moreover, the

asynchronous setup may imply potential risks for privacy

due to the lack of secure aggregation, i.e., the immediate

communication of every single client to the server [18], [19].

In [1], the authors proposed an algorithm called federated

learning with buffered asynchronous aggregation (FedBuff),

which modifies pure asynchronous FL by enabling secure

aggregation while clients perform asynchronous updates.

This novel method is considered a variant of asynchronous

FL while serving as an intermediate approach between

synchronous and asynchronous FL.

FedBuff [1] is shown to converge for the class of smooth

and non-convex objective functions under the boundedness of

the gradient norm. By removing this assumption, we provide

a new analysis for FedBuff and improve the existing theory

by extending it to a broader class of functions. We derive our

bounds based on stochastic and heterogeneous variance and

the maximum delay between downloads and uploads across

all the clients. Table I summarizes the properties and rate of

our analysis for FedBuff algorithm alongside and provides

a comparison with existing analyses for FedAsync [8] and

FedAvg [2], [3]. The rates reflect the complexity of the num-

ber of updates performed by the central server. The speed

of asynchronous algorithms is faster since the constraint for

synchronized updates is removed in asynchronous variations.

To our knowledge, this is the first analysis for (a variant

of) asynchronous federated learning with no boundedness20
22

 5
8t

h
An

nu
al

 A
lle

rt
on

 C
on

fe
re

nc
e

on
 C

om
m

un
ica

tio
n,

 C
on

tr
ol

, a
nd

 C
om

pu
tin

g
(A

lle
rt

on
) |

 9
79

-8
-3

50
3-

99
98

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
OI

: 1
0.

11
09

/A
LL

ER
TO

N4
99

37
.2

02
2.

99
29

40
9

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 12,2023 at 19:20:28 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of the characteristics considered in our analysis with relevant works for federated learning for smooth

& non-convex objective functions. Parameter τ denotes the maximum delay.

Algorithm Reference
Asynchronous Buffered Unbounded Convergence

Update Aggregation Gradient Rate

McMahan et al. [2] ✗ ✓ - -

FedAvg Yu et al. [20] ✗ ✓ ✗ O
(

1√
T

)

Wang et al. [10] ✗ ✓ ✓ O
(

1√
T

)

FedAsync Xie et al. [8] ✓ ✗ ✗ O
(

1√
T

)

+O
(

τ2

T

)

FedBuff
Nguyen et al. [1] ✓ ✓ ✗ O

(
1√
T

)

+O
(

τ2

T

)

This Work ✓ ✓ ✓ O
(

1√
T

)

+O
(

τ2

T

)

assumption on the gradient norm.

Following is an outline of the remainder of this paper.

The problem setup and FedBuff algorithm are presented

in Section II. Moreover, our convergence result and its

corresponding assumptions are provided in Section II. We

state detailed proof of our result in section III. Finally,

we conclude remarks and prospects for future research in

Section IV.

II. PROBLEM SETUP, ALGORITHM, & MAIN RESULT

In this section, we first state the problem setup, and after

explaining the FedBuff algorithm [1], we present our main

result along with the underlying assumptions.

⋄ Problem Setup: We consider a set of n clients and one

server, where each client i ∈ [n] owns a private function

fi : R
d → R and the goal is to jointly minimize the average

local cost functions via finding a d-dimensional parameter

w ∈ R
d that

min
w∈Rd

f(w) :=
1

n

n∑

i=1

fi(w),

with fi(w) := Eξi∼pi
[ℓi(w, ξi)],

(1)

where ℓi : R
d × Si → R is a cost function that determines

the prediction error of w over a single data point ξi ∈ Si
on user i, and pi represents user i’s data distribution over

Si, for i ∈ [n]. In the above definition, fi(·) is the local cost

function of client i, and f(·) denotes the global (average) cost

function which the clients try to collaboratively minimize.

Now, let Di be a data batch sampled from pi. Similar to (1),

we denote the stochastic cost function f̃i(w,Di) as follows:

f̃i(w,Di) :=
1

|Di|
∑

ξi∈Di

ℓi(w, ξi). (2)

Minimization of (1) by having access to an oracle of samples

and its variants are extensively studied for many different

frameworks [4]. Now, we are ready to explain the FedBuff.

⋄ FedBuff Algorithm: Let w0 be the initialization parameter

at the server. The ultimate goal is to minimize the cost

function in (1), using an algorithm via access to the stochastic

gradients. All clients can communicate with the server, and

each client i ∈ [n] communicates when its connection to the

server is stable. First, let us explain the FedBuff algorithm

from the client and server perspectives.

1) Client Algorithm: Each client i requests to read the

server’s parameter w ∈ R
d once the connection is stable

and the server is ready to send the parameter.1 There is

often some delay in this step which we call the download

delay. This may be originated from factors such as

unstable connection, bandwidth limit, or communication

failure. For example, maybe the server seeks to reduce the

simultaneously active users by setting client i on hold.

The download delay can model all these factors. Once

the parameter is received (downloaded) from the server,

client i performs Q steps of local stochastic gradient

descent starting from the downloaded model w for its

cost function fi(·). In words, agent i runs a Q-step

algorithm (loop of size Q), where at each local round

q ∈ {0, 1, . . . Q−1}, client i samples a data batch Di,q

with respect to distribution pi and performs one step

of gradient descent with local stepsize η > 0. Finally,

agent i returns the updates (the difference between the

initial and final parameters) to the server. We refer to

the time required to broadcast parameters to the server

as the upload delay, which could have similar factors

as the download delay. Agent repeats all this procedure

until the server sends a termination message. Algorithm 1

summarizes the pseudo-code of operations at client i ∈
[n], where Steps 4-8 show the local updates performed at

the agent. Moreover, ∆i in Step 9 denotes the difference

communicated to the server.

2) Server Algorithm: The server considers an initialization

1We drop the timestep from the parameters in the client algorithm, for
clarity of exposition. We use the time notation in our analysis in Section III.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 12,2023 at 19:20:28 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 FedBuff (Client i)

1: input: number of local steps Q, local stepsize η.

2: repeat

3: read w from the server {download phase}
4: wi,0 ← w

5: for q = 0 to Q−1 do

6: sample a data batch Di,q

7: wi,q+1 ← wi,q − η∇f̃i(wi,q,Di,q)
8: end for

9: ∆i ← wi,0 − wi,Q

10: client i broadcasts ∆i to the server{upload phase}
11: until not interrupted by the server

for parameter w0 ∈ R
d. Then, starting from timestep t =

0, the server repeats an iterative procedure in addition to

sending its parameters to the clients upon their request.

Algorithm 2 describes the server operations in FedBuff. In

a nutshell, the algorithm consists of two parts, (i) secure

aggregation of client updates in a buffer with size K ≥
1, and (ii) update the parameters using the aggregated

updates. In other words, let k, t respectively denote the

indices associated with buffer and server updates.2 The

server starting from t = 0, receives updates broadcast by

the agents asynchronously depending on their upload &

download delays as well as the time required for Q local

updates. A secure buffered aggregates these updates, up to

K separate updates received by the clients in ∆
0
, initially

set to zero. By indexing k, we keep track of uploaded

updates on the server. When the buffer saturates of K

different updates, the server uses the aggregator parameter

∆
0

and updates its parameter w0 according to line 9 of

Algorithm 2. Then, the server increases its update counter

t and removes all updates from the buffer, i.e., k = 0.

In this algorithm, we denote the agent which sends the

k-th update at round t by index it,k ∈ [n]. Basically,

server repeats Steps 5-14 until some convergence criteria

be satisfied. After the convergence, the server sends a

termination message to all the clients.

As we described above, the crucial novelty of this algorithm

is on the server side, where the server operations, with the

help of a secure buffered aggregation, control the staleness

and prevent unnecessary access to individual updates. Note

that for K = 1, the presented algorithm reduces to vanilla

asynchronous federated learning with no buffer aggregation.

Figure 1 illustrates the update schedule for FedBuff and

provides a comparison with the asynchronous updates in

FedAvg [2]. As shown on the left of Figure 1, the vertical

lines with light blue color are associated with uploaded

updates. Note that the buffer size is K = 2 in this example.

These vertical lines are of two types, (i) solid or (ii) hatched.

The solid lines reflect the time the buffer is full, so the

server performs an update. Contrary to FedBuff, under the

2As explained in [1], the buffer and secure aggregation may be performed
on a secure channel which prevents the server from observing individual
local updates received from the clients.

Algorithm 2 FedBuff (Server)

1: input: model w0, server stepsize β, buffer size K

2: t← 0, k ← 0
3: ∆

0 ← 0
4: repeat

5: if the server receives an update ∆it,k from some client

it,k∈[n] then

6: ∆
t ← ∆

t
+∆it,k

7: k ← k + 1
8: if k = K then

9: wt+1 ← wt − β∆
t

10: k ← 0
11: t← t+ 1
12: ∆

t ← 0
13: end if

14: end if

15: until not converged

synchronous updates (as shown in the right figure), the server

should halt the training procedure until all clients selected

within one round receive the updates.

Next, we present our assumptions on staleness, bounded

stochasticity, and population diversity (heterogeneity).

⋄ Assumptions & Main Result: Here, we present our

main result alongside a few standard assumptions. First, to

be coherent with the proof in [1], let us denote τ ti to be

the timestep of the last downloaded parameter on client

i ∈ [n] up to the t-th update at the server. We are ready

to introduce the assumptions in our analysis for FedBuff,

i.e., Algorithms 1 & 2.

Assumption 1 (Bounded Staleness). For all clients, i ∈ [n]
and server steps t ≥ 0, the staleness or effective delay

between the download and upload steps is bounded by some

constant τ , i.e.,

sup
t≥0

max
i∈[n]

∣
∣t− τ ti

∣
∣ ≤ τ, (3)

and the server receives updates uniformly, i.e., it,k ∼
Uniform([n]).

Note that τ ti is the timestep of the last parameter down-

loaded via agent i up to timestep t at the server. Therefore,

if agent i contributes in the (t+1)-th update, i.e., it,k = i,

for some k ∈ {0, 1, . . . ,K−1}, the difference between the

download and upload rounds is bounded. This is a standard

assumption in the analysis of asynchronous algorithms with

heterogeneous data on the clients.3

Assumption 2 (Smoothness). For all clients i ∈ [n], function

fi : R
d → R is bounded below, differentiable, and L-smooth,

i.e., for all w, u ∈ R
d,

∥∇fi(w)−∇fi(u)∥ ≤ L∥w − u∥ (4)

3It is worth mentioning that Mishchenko et al. [16] relaxed this as-
sumption (to unbounded delay) for the analysis of homogeneous smooth
& strongly convex functions.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 12,2023 at 19:20:28 UTC from IEEE Xplore. Restrictions apply.

i.e., uniformly bounded heterogeneity4, nγ2 can be replaced

with γ2 in the third term of the rate.

Next, we will provide detailed proof for Theorem 1.

III. CONVERGENCE RESULT

This section provides a detailed explanation of the proof

of the convergence result in Section II.

Proof of Theorem 1. Before proceeding with the proof, let

us state some inequalities. For any set of m vectors {wi}mi=1

such that wi ∈ R
d, and a constant α > 0, the following

properties hold: for all i, j ∈ [m]:

∥wi + wj∥2 ≤ (1+α)∥wi∥2 + (1+α−1)∥wj∥2, (10a)

2⟨wi, wj⟩ ≤ α∥wi∥2 + α−1∥wj∥2, (10b)
∥
∥
∥
∥
∥

m∑

i=1

wi

∥
∥
∥
∥
∥

2

≤ m

(
m∑

i=1

∥wi∥2
)

. (10c)

For simplicity, let us denote ∇̃fi (w) = ∇f̃i (w,Di).
Therefore, at round t, the server updates its parameter by

receiving ∆
t
, as follows:

wt+1 = wt − β∆
t
= wt − β

K−1∑

k=0

∆it,k

= wt − ηβ

K−1∑

k=0

Q−1
∑

q=0

∇̃fit,k
(

w
τt
it,k

it,k,q

)

. (11)

Due to Assumption 2, we can infer that f is L-smooth, thus

f(wt+1)
(4)

≤ f(wt) +
Lη2β2

2

∥
∥
∥
∥
∥

K−1∑

k=0

Q−1
∑

q=0

∇̃fit,k
(

w
τt
it,k

it,k,q

)
∥
∥
∥
∥
∥

2

︸ ︷︷ ︸

=:S1

+ ηβ

〈

∇f(wt),
K−1∑

k=0

Q−1
∑

q=0

∇̃fit,k
(

w
τt
it,k

it,k,q

)〉

︸ ︷︷ ︸

=:S2

(12)

We first provide a lower bound on term S2 in (12).

Let us denote g̃ti =
∑Q−1

q=0 ∇̃fi(w
τt
i

i,q), g̃t = 1
n

∑n

i=1 g̃
t
i ,

gti =
∑Q−1

q=0 ∇fi(w
τt
i

i,q), and gt = 1
n

∑n

i=1 g
t
i . Therefore,

E [S2] = E

[

Eit,k

〈

∇f(wt),
K−1∑

k=0

Q−1
∑

q=0

∇̃fit,k
(

w
τt
it,k

it,k,q

)〉]

= E

〈

∇f(wt),
1

n

n∑

i=1

K−1∑

k=0

Epi

[
g̃ti
]

〉

(13)

= KQE
∥
∥∇f(wt)

∥
∥
2
+K

[
E
〈
∇f(wt), gt −Q∇f(wt)

〉]

(10b)

≥ K(2Q−1)
2

E
∥
∥∇f(wt)

∥
∥
2 − K

2
E
∥
∥gt −Q∇f(wt)

∥
∥
2
.

4This stronger assumption is considered in the analysis of works such
as [23][Assumption 3] and [24][6.1.1 Assumptions and Preliminaries, (vii)])

Moreover, the following holds for S1 in (12):

E [S1] = E



Eit,k

∥
∥
∥
∥
∥

K−1∑

k=0

Q−1
∑

q=0

∇̃fit,k
(

w
τt
it,k

it,k,q

)
∥
∥
∥
∥
∥

2




=
1

n
E





n∑

i=1

∥
∥
∥
∥
∥

K−1∑

k=0

Q−1
∑

q=0

∇̃fi
(

w
τt
i

i,q

)
∥
∥
∥
∥
∥

2


 (14)

=
K2

n

n∑

i=1

E

∥
∥
∥
∥
∥

Q−1
∑

q=0

∇̃fi
(

w
τt
i

i,q

)
∥
∥
∥
∥
∥

2

=
K2

n

n∑

i=1

E
∥
∥g̃ti
∥
∥
2
.

Now, according to (12), (13), and (14), we have:

Ef
(
wt+1

)
≤ Ef(wt)− ηβK(2Q−1)

2
E
∥
∥∇f(wt)

∥
∥
2

(15)

+
ηβK

2
E
∥
∥gt −Q∇f(wt)

∥
∥
2

︸ ︷︷ ︸

=:S3

+
Lη2β2K2

2n
E

[
n∑

i=1

∥
∥g̃ti
∥
∥
2

]

︸ ︷︷ ︸

=:S4

,

where we bound S3, S4 as follows:

S3 =

∥
∥
∥
∥
∥

1

n

n∑

i=1

(
gti −Q∇fi(wt)

)

∥
∥
∥
∥
∥

2

(10c)

≤ 1

n

n∑

i=1

∥
∥gti −Q∇fi(wt)

∥
∥
2

=
1

n

n∑

i=1

∥
∥
∥
∥
∥

Q−1
∑

q=0

[

∇fi
(

w
τt
i

i,q

)

−∇fi(wt)
]
∥
∥
∥
∥
∥

2

(10c)

≤ Q

n

n∑

i=1

Q−1
∑

q=0

∥
∥
∥∇fi

(

w
τt
i

i,q

)

−∇fi(wt)
∥
∥
∥

2

, (16)

and

S4 =
n∑

i=1

∥
∥
∥

Q−1
∑

q=0

∇̃fi
(

w
τt
i

i,q

)∥
∥
∥

2

(10c)

≤ Q

n∑

i=1

Q−1
∑

q=0

∥
∥
∥∇̃fi

(

w
τt
i

i,q

)∥
∥
∥

2

= Q

n∑

i=1

Q−1
∑

q=0

∥
∥
∥∇̃fi

(

w
τt
i

i,q

)

−∇fi
(

w
τt
i

i,q

)

+∇fi
(

w
τt
i

i,q

)

−∇fi
(
wt
)

+∇fi
(
wt
)
−∇f

(
wt
)
+∇f

(
wt
)
∥
∥
∥

2

(10c)

≤ 4Q
n∑

i=1

Q−1
∑

q=0

[
∥
∥
∥∇̃fi

(

w
τt
i

i,q

)

−∇fi
(

w
τt
i

i,q

)∥
∥
∥

2

+
∥
∥
∥∇fi

(

w
τt
i

i,q

)

−∇fi
(
wt
)
∥
∥
∥

2

+
∥
∥
∥∇fi

(
wt
)
−∇f

(
wt
)
∥
∥
∥

2

+
∥
∥
∥∇f

(
wt
)
∥
∥
∥

2
]

, (17)

therefore, by taking expectations, we can show that:

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 12,2023 at 19:20:28 UTC from IEEE Xplore. Restrictions apply.

E[S4]
(7), (9)

≤ 4nQ2

[

σ̂2 + γ2 + E

∥
∥
∥∇f

(
wt
)
∥
∥
∥

2
]

+ 4Q
n∑

i=1

Q−1
∑

q=0

E

∥
∥
∥∇fi

(

w
τt
i

i,q

)

−∇fi(wt)
∥
∥
∥

2

. (18)

Therefore, due to (15)-(18), we have

Ef
(
wt+1

)
≤ Ef(wt)

−
[
ηβK(2Q−1)

2
− 2η2Lβ2K2Q2

]

E
∥
∥∇f(wt)

∥
∥
2

+
ηβKQ

2n

n∑

i=1

Q−1
∑

q=0

E

∥
∥
∥∇fi

(

w
τt
i

i,q

)

−∇fi(wt)
∥
∥
∥

2

+
2η2β2K2QL

n

n∑

i=1

Q−1
∑

q=0

E

∥
∥
∥∇fi

(

w
τt
i

i,q

)

−∇fi(wt)
∥
∥
∥

2

+ 2η2Lβ2K2Q2σ̂2 + 2η2Lβ2K2Q2γ2

(4)

≤ Ef(wt)

−
[
ηβK(2Q−1)

2
− 2η2Lβ2K2Q2

]

E
∥
∥∇f(wt)

∥
∥
2

+
ηβKQL2 (1+4ηβKL)

2n

n∑

i=1

Q−1
∑

q=0

E

∥
∥
∥w

τt
i

i,q − wt
∥
∥
∥

2

︸ ︷︷ ︸

=:S5

+ 2η2Lβ2K2Q2σ̂2 + 2η2Lβ2K2Q2γ2. (19)

Hence, it is sufficient to bound S5 in (19) as follows:

S5 =
∥
∥
∥w

t − w
τt
i

i,q

∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥

t−1∑

s=τt
i

(
ws+1 − ws

)
+ wτt

i − w
τt
i

i,q

∥
∥
∥
∥
∥
∥

2

(10a)

≤
(

1+
1

β2K2

)
∥
∥
∥
∥
∥
∥

t−1∑

s=τt
i

(
ws+1 − ws

)

∥
∥
∥
∥
∥
∥

2

+
(
1+β2K2

)
∥
∥
∥w

τt
i − w

τt
i

i,q

∥
∥
∥

2

(10c),(3)

≤ τ

(

1+
1

β2K2

)






t−1∑

s=t−τ

∥
∥ws+1 − ws

∥
∥
2

︸ ︷︷ ︸

=:S7






+
(
1+β2K2

)
∥
∥
∥w

τt
i − w

τt
i

i,q

∥
∥
∥

2

︸ ︷︷ ︸

=:S6

. (20)

Now, we show a bound on the evolution of local updates

at an arbitrary round s ≥ 0, i.e., the distance between ws
i,q

and ws, which we will use to provide a bound on S7.

E
∥
∥ws

i,q − ws
∥
∥
2
= E

∥
∥
∥w

s
i,q−1 − η∇̃fi

(
ws

i,q−1

)
− ws

∥
∥
∥

2

= E

∥
∥
∥w

s
i,q−1 − ws − η∇f (ws)

− η∇̃fi
(
ws

i,q−1

)
+ η∇fi

(
ws

i,q−1

)

− η∇fi
(
ws

i,q−1

)
+ η∇fi (ws)

− η∇fi (ws) + η∇f (ws)
∥
∥
∥

2

(10a)

≤
(

1+
1

2Q

)

E

∥
∥
∥w

s
i,q−1 − ws

∥
∥
∥

2

+ 4(1+2Q)η2E

[
∥
∥
∥∇̃fi

(
ws

i,q−1

)
−∇fi

(
ws

i,q−1

)
∥
∥
∥

2

+
∥
∥
∥∇fi

(
ws

i,q−1

)
−∇fi (ws)

∥
∥
∥

2

+
∥
∥
∥∇fi (ws)−∇f (ws)

∥
∥
∥

2

+
∥
∥
∥∇f (ws)

∥
∥
∥

2
]

(21)

(4), (7)

≤
(

1+
1

2Q

)

E

∥
∥
∥w

s
i,q−1 − ws

∥
∥
∥

2

+ 4(1+2Q)η2

[

σ̂2 + L2
E

∥
∥
∥w

s
i,q−1 − ws

∥
∥
∥

2

+ E

∥
∥
∥∇fi (ws)−∇f (ws)

∥
∥
∥

2

+ E

∥
∥
∥∇f (ws)

∥
∥
∥

2
]

. (22)

Note that we can select stepsize η ≤ 1
4L(Q+1) such that

η2 ≤ 1

8L2Q(2Q+1)
⇒ 4(1 + 2Q)η2L2 ≤ 1

2Q
, (23)

therefore, due to (21)-(22) and (23), we have:

E
∥
∥ws

i,q − ws
∥
∥
2

︸ ︷︷ ︸

:=P s
i,q

≤
(

1+
1

Q

)

E

∥
∥
∥w

s
i,q−1 − ws

∥
∥
∥

2

︸ ︷︷ ︸

:=P s
i,q−1

+ 4(1+2Q)η2

[

σ̂2 + E

∥
∥
∥∇fi (ws)−∇f (ws)

∥
∥
∥

2

+E

∥
∥
∥∇f (ws)

∥
∥
∥

2
]

︸ ︷︷ ︸

:=Rs
i

⇒ (24)

P s
i,q ≤

(

1+
1

Q

)

P s
i,q−1 +Rs

i

= Rs
i

q−1
∑

k=0

(

1+
1

Q

)k

≤ Rs
i

Q−1
∑

k=0

(

1+
1

Q

)k

= Rs
i

(

1+ 1
Q

)Q

− 1
(

1+ 1
Q

)

− 1
= Rs

iQ

[(

1+
1

Q

)Q

− 1

]

≤ Rs
iQ(e− 1) ≤ 2Rs

iQ, (25)

for all q ∈ [Q]. Note that according to Algorithm 2, we have:

ws+1 = ws − β

K−1∑

k=0

[

wτs
is − w

τs
is

is,Q

]

⇒ (26)

E
∥
∥ws+1 − ws

∥
∥
2 ≤ β2

E

∥
∥
∥
∥
∥

K−1∑

k=0

[

wτs
is − w

τs
is

is,Q

]
∥
∥
∥
∥
∥

2

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 12,2023 at 19:20:28 UTC from IEEE Xplore. Restrictions apply.

(10c)

≤ β2K2

[

E

[

Eis

∥
∥
∥w

τs
is − w

τs
is

is,Q

∥
∥
∥

2
]]

=
β2K2

n

n∑

j=1

E

∥
∥
∥w

τs
j − w

τs
j

j,Q

∥
∥
∥

2

(24)−(25)

≤ 8Q(1+2Q)η2β2K2σ̂2

+
8Q(1+2Q)η2β2K2

n

n∑

j=1

E

∥
∥
∥∇fj

(

wτs
j

)

−∇f
(

wτs
j

)∥
∥
∥

2

+
8Q(1+2Q)η2β2K2

n

n∑

j=1

E

∥
∥
∥∇f

(

wτs
j

)∥
∥
∥

2

. (27)

Let ϕ = 8η2Q2(1+2Q)(1+β2K2), then according to (20)-

(??), we have

1

nϕ

n∑

i=1

Q−1
∑

q=0

E[S5]

≤ τ

[
t−1∑

s=t−τ

∥
∥ws+1 − ws

∥
∥
2

]

+
1

n

n∑

i=1

∥
∥
∥w

τt
i − w

τt
i

i,q

∥
∥
∥

2

≤ τ2σ̂2 +
τ

n

t−1∑

s=t−τ

n∑

j=1

E

∥
∥
∥∇fj

(

wτs
j

)

−∇f
(

wτs
j

)∥
∥
∥

2

+
τ

n

t−1∑

s=t−τ

n∑

j=1

E

∥
∥
∥∇f

(

wτs
j

)∥
∥
∥

2

+
1

n

n∑

i=1

E

∥
∥
∥∇f

(

wτt
i

)∥
∥
∥

2

+ σ̂2 +
1

n

n∑

i=1

E

∥
∥
∥∇fi

(

wτt
i

)

−∇f
(

wτt
i

)∥
∥
∥

2

. (28)

Note that according to (3), we know that: τ ti ∈ {t−τ . . . , t},
therefore:

E

∥
∥
∥∇f

(

wτt
i

)∥
∥
∥

2

≤
t∑

s=t−τ

E

∥
∥
∥∇f (ws)

∥
∥
∥

2

, (29)

and similarly, for any s ∈ {t−τ . . . , t} and j ∈ [n],

E

∥
∥
∥∇f

(

wτs
j

)∥
∥
∥

2

≤
s∑

u=s−τ

E

∥
∥
∥∇f (wu)

∥
∥
∥

2

. (30)

Moreover, we have:
∥
∥
∥∇fj

(

wτs
j

)

−∇f
(

wτs
j

)∥
∥
∥

2

≤
n∑

i=1

∥
∥
∥∇fi

(

wτs
j

)

−∇f
(

wτs
j

)∥
∥
∥

2

. (31)

Therefore, due to (28)-(31), we have:

1

nϕ

n∑

i=1

Q−1
∑

q=0

E[S5]
(28)−(31)

≤ τ2σ̂2 + τ2nγ2

+ τ

t−1∑

s=t−τ

s∑

u=s−τ

E

∥
∥
∥∇f (wu)

∥
∥
∥

2

+ σ̂2 + nγ2 +
t∑

s=t−τ

E

∥
∥
∥∇f (ws)

∥
∥
∥

2

= (1+τ2)
[
σ̂2 + nγ2

]

+ τ

t−1∑

s=t−τ

s∑

u=s−τ

E

∥
∥
∥∇f (wu)

∥
∥
∥

2

+
t∑

s=t−τ

E

∥
∥
∥∇f (ws)

∥
∥
∥

2

. (32)

By combining (19) and (32), we have the following inequal-

ity:

Ef
(
wt+1

)
≤ Ef(wt) + 2η2Lβ2K2Q2

[
σ̂2 + γ2

]

− ηβK

2

[

(2Q−1)− 4ηLβKQ2

−QL2(1+τ2) (1+4ηβKL)ϕ
]

E
∥
∥∇f(wt)

∥
∥
2

+
ηβKQL2 (1+4ηβKL)ϕ

2
t−1∑

s=t−τ

[

E

∥
∥
∥∇f (ws)

∥
∥
∥

2

+ τ

s∑

u=s−τ

E

∥
∥
∥∇f (wu)

∥
∥
∥

2
]

+
ηβKQL2(1+τ2) (1+4ηβKL)ϕ

2

[
σ̂2 + nγ2

]

≤ Ef(wt) + 2η2Lβ2K2Q2
[
σ̂2 + γ2

]

− ηβKQ

2

[

1− 4ηLβKQ

−QL2(1+τ2) (1+4ηβKL)ϕ
]

E
∥
∥∇f(wt)

∥
∥
2

+
ηβKQL2 (1+4ηβKL)ϕ

2
t−1∑

s=t−τ

[

E

∥
∥
∥∇f (ws)

∥
∥
∥

2

+ τ

s∑

u=s−τ

E

∥
∥
∥∇f (wu)

∥
∥
∥

2
]

+
ηβKQL2(1+τ2) (1+4ηβKL)ϕ

2

[
σ̂2 + nγ2

]
. (33)

Now, we can obtain the following inequality by rearranging

the terms in (33):
[
1− 4ηLβKQ−QL2(1+τ2) (1+4ηβKL)ϕ

]
E
∥
∥∇f(wt)

∥
∥
2

− L2 (1+4ηβKL)ϕ
t−1∑

s=t−τ

[

E

∥
∥
∥∇f (ws)

∥
∥
∥

2

+ τ

s∑

u=s−τ

E

∥
∥
∥∇f (wu)

∥
∥
∥

2]

≤ 2
[
Ef(wt)− Ef

(
wt+1

)]

ηβKQ
+ 4ηβKQL

[
σ̂2 + γ2

]

+ 2L2(1+τ2) (1+4ηβKL)ϕ
[
σ̂2 + nγ2

]
, (34)

whereby mixing the terms in (34), we obtain:

[
1− 4ηLβKQ− L2(τ2+1) (1+4ηβKL)ϕ

]
E
∥
∥∇f(wt)

∥
∥
2

− L2 (1+4ηβKL) (τ+1)ϕ
t−1∑

s=t−τ

s∑

u=s−τ

E

∥
∥
∥∇f (wu)

∥
∥
∥

2

≤ 2
[
Ef(wt)− Ef

(
wt+1

)]

ηβKQ
+ 4ηβKQL

[
σ̂2 + γ2

]

+ 2L2(1+τ2) (1+4ηβKL)ϕ
[
σ̂2 + nγ2

]
. (35)

Finally, we add (35), for t = 0, 1, . . . T−1, and divide by T

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 12,2023 at 19:20:28 UTC from IEEE Xplore. Restrictions apply.

to show that:
[

1− 4ηLβKQ− L2(τ2+1) (1+4ηβKL)ϕ

− L2 (1+4ηβKL) τ(τ+1)2ϕ

]
T−1∑

t=0
E ∥∇f(wt)∥2

T

≤ 2
[
f(w0)− Ef

(
wT
)]

ηβKQ
+ 4ηβKQL

[
σ̂2 + γ2

]

+ 2L2(1+τ2) (1+4ηβKL)ϕ
[
σ̂2 + nγ2

]
. (36)

Let us fix β = 1
K

and η = 1
Q
√
LT

. Thus, we know that the

following inequality holds

max
{

4ηβKLQ, L2(τ2+1)(1+4ηβKL)ϕ,

L2τ(τ+1)2(1+4ηβKL)ϕ
}

≤ 1

4
, (37)

for T ≥ 160L(Q+7)(τ+1)3. Note that under this choices

for η and β, we also have η ≤ 1
4L(Q+1) , which we used

in (23). Therefore, we can conclude the result in Theorem 1

as follows:

1

T

T−1∑

t=0

E
∥
∥∇f(wt)

∥
∥
2 ≤ 8

√
L
(
f(w0)− Ef

(
wT
))

√
T

+
16
√
L
(
σ̂2 + γ2

)

√
T

(38)

+
320L(Q+1)(τ2+1)

(
σ̂2 + nγ2

)

T
.

IV. CONCLUSION

This paper studied the convergence properties of asyn-

chronous federated learning via secure buffered aggregation.

By removing the boundedness assumption on the gradient

norms, we presented a novel analysis of the convergence of

the FedBuff algorithm, where we showed a sublinear conver-

gence rate of O(ϵ2) +O(τ2ϵ) to an ϵ-first-order stationary

solution. We also discussed the dependence of this rate on

the batch size, stochasticity variance, data heterogeneity, and

maximum delays. We leave the privacy analysis of Fed-Buff

with gradient clipping and noise addition to future studies.

Also, the communication complexity of this method and the

extensions to decentralized setups remain for future work.

REFERENCES

[1] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour,
Mike Rabbat, Mani Malek, and Dzmitry Huba, ªFederated learning
with buffered asynchronous aggregation,º in International Conference

on Artificial Intelligence and Statistics. PMLR, 2022, pp. 3581±3607.

[2] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Aguera y Arcas, ªCommunication-efficient learning of
deep networks from decentralized data,º in Artificial intelligence and

statistics. PMLR, 2017, pp. 1273±1282.

[3] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter RichtÂarik,
Ananda Theertha Suresh, and Dave Bacon, ªFederated learning:
Strategies for improving communication efficiency,º arXiv preprint

arXiv:1610.05492, 2016.

[4] Peter Kairouz, H Brendan McMahan, Brendan Avent, AurÂelien
Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz,
Zachary Charles, Graham Cormode, Rachel Cummings, et al., ªAd-
vances and open problems in federated learning,º arXiv preprint

arXiv:1912.04977, 2019.
[5] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar, ªPersonalized

federated learning with theoretical guarantees: A model-agnostic meta-
learning approach,º Advances in Neural Information Processing

Systems, vol. 33, 2020.
[6] Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael

Johansson, and Michael G Rabbat, ªAdvances in asynchronous parallel
and distributed optimization,º Proceedings of the IEEE, vol. 108, no.
11, pp. 2013±2031, 2020.

[7] Peter Kairouz, Ziyu Liu, and Thomas Steinke, ªThe distributed
discrete gaussian mechanism for federated learning with secure ag-
gregation,º in International Conference on Machine Learning. PMLR,
2021, pp. 5201±5212.

[8] Cong Xie, Sanmi Koyejo, and Indranil Gupta, ªAsynchronous feder-
ated optimization,º arXiv preprint arXiv:1903.03934, 2019.

[9] Ahmed Khaled, Konstantin Mishchenko, and Peter RichtÂarik, ªTighter
theory for local sgd on identical and heterogeneous data,º in Inter-

national Conference on Artificial Intelligence and Statistics. PMLR,
2020, pp. 4519±4529.

[10] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent
Poor, ªTackling the objective inconsistency problem in heterogeneous
federated optimization,º Advances in neural information processing

systems, vol. 33, pp. 7611±7623, 2020.
[11] Yanan Li, Shusen Yang, Xuebin Ren, and Cong Zhao, ªAsynchronous

federated learning with differential privacy for edge intelligence,º
arXiv preprint arXiv:1912.07902, 2019.

[12] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson,
ªAn asynchronous mini-batch algorithm for regularized stochastic
optimization,º IEEE Transactions on Automatic Control, vol. 61, no.
12, pp. 3740±3754, 2016.

[13] Kenta Niwa, Guoqiang Zhang, W Bastiaan Kleijn, Noboru Harada,
Hiroshi Sawada, and Akinori Fujino, ªAsynchronous decentralized
optimization with implicit stochastic variance reduction,º in Interna-

tional Conference on Machine Learning. PMLR, 2021, pp. 8195±8204.
[14] Mohammad Taha Toghani, Soomin Lee, and CÂesar A. Uribe, ªPars-

push: Personalized, asynchronous and robust decentralized optimiza-
tion,º IEEE Control Systems Letters, vol. 7, pp. 361±366, 2023.

[15] Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi, ªSharper
convergence guarantees for asynchronous sgd for distributed and
federated learning,º arXiv preprint arXiv:2206.08307, 2022.

[16] Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake
Woodworth, ªAsynchronous sgd beats minibatch sgd under arbitrary
delays,º arXiv preprint arXiv:2206.07638, 2022.

[17] Feng Niu, Benjamin Recht, Christopher RÂe, and Stephen J Wright,
ªHogwild!: A lock-free approach to parallelizing stochastic gradient
descent,º arXiv preprint arXiv:1106.5730, 2011.

[18] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal,
and Karn Seth, ªPractical secure aggregation for federated learning
on user-held data,º arXiv preprint arXiv:1611.04482, 2016.

[19] Wei-Ning Chen, Christopher A Choquette-Choo, and Peter Kairouz,
ªCommunication efficient federated learning with secure aggregation
and differential privacy,º in NeurIPS 2021 Workshop Privacy in

Machine Learning, 2021.
[20] Hao Yu, Sen Yang, and Shenghuo Zhu, ªParallel restarted sgd with

faster convergence and less communication: Demystifying why model
averaging works for deep learning,º in Proceedings of the AAAI

Conference on Artificial Intelligence, 2019, vol. 33, pp. 5693±5700.
[21] Sebastian Urban Stich, ªLocal sgd converges fast and communicates

little,º in ICLR 2019-International Conference on Learning Represen-

tations, 2019, number CONF.
[22] Anastasia Koloskova, Tao Lin, Sebastian U Stich, and Martin Jaggi,

ªDecentralized deep learning with arbitrary communication compres-
sion,º arXiv preprint arXiv:1907.09356, 2019.

[23] Canh T Dinh, Nguyen H Tran, and Tuan Dung Nguyen, ªPerson-
alized federated learning with moreau envelopes,º arXiv preprint

arXiv:2006.08848, 2020.
[24] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan

McMahan, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr,
Katharine Daly, Deepesh Data, et al., ªA field guide to federated
optimization,º arXiv preprint arXiv:2107.06917, 2021.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 12,2023 at 19:20:28 UTC from IEEE Xplore. Restrictions apply.

