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confront is ensuring that the available healthcare facilities
do not get overwhelmed. In this context, this means that
one of the questions of interest is the following: What
kind of interventions are needed to guarantee that the
proportion of infected in a district or city stays within an
acceptable limit? One approach towards addressing this
question would be to make the individuals aware of the
proportion of infected in the population, so that they can
regulate their interactions with others and increase their
means of protection in real-time. From a systems theory
viewpoint, the interest, then, is in designing a (possibly
closed-loop) control strategy so that the state trajectories
(which means the infected proportion dynamics of each
population) never exceed a certain pre-specified bound. In
this paper, each agent is equipped with a local pre-specified
infection level which can be different from agent to agent.
From the practical viewpoint, such pre-specified bound is
considered as the overwhelmed limit for the healthcare
facilities in each agent.

Control strategies for epidemic models have been pre-
sented in (Pasqualetti et al., 2014; Preciado et al., 2014;
Liu et al., 2019; Ye et al., 2022; Morris et al., 2021;
Wang et al., 2021). More specifically, the control schemes
proposed in (Pasqualetti et al., 2014) are for a class of
linearized SIS models. The paper (Preciado et al., 2014)
studies the problem of cost-optimal distribution of re-
sources (such as vaccines and antidotes) in networked SIS
models, whereas, by regarding the healing rate as the
local control input, distributed feedback controllers are
proposed in (Liu et al., 2019; Ye et al., 2022). Note that the
goals in (Preciado et al., 2014; Ye et al., 2022; Liu et al.,
2019) do not necessarily ensure the infection levels always
staying below a pre-specified level. In the absence of drugs
and vaccines, the control scheme in (Morris et al., 2021)
regards the effective infection rate of each agent as the
control input, and proposed an optimal strategy to reduce
the peak in the macroscopic susceptible-infected-recovered
(SIR) model. A similar control scheme was adopted in
(Wang et al., 2022) in the context of opinion dynamics.

For discrete-time networked SIS models, a state feedback
controller is proposed in (Wang et al., 2021), to guarantee
that the fraction of infected in each sub-population stays
below half for all time instants. Note that the discrete-
time SIS model is an approximation of the continuous-time
SIS model (Paré et al., 2020b), which in turn is a mean
field approximation of a 2n state Markov chain model. In
order to ensure that the approximation error is low, several
additional assumptions are needed on the sampling period
for the model in (Wang et al., 2021), and furthermore the
pre-specified level is the same for all agents. It is natural to
ask how well would the controller behave in a continuous-
time setting. For this reason, we consider a continuous-
time counterpart of the work (Wang et al., 2021) in this
paper. Furthermore, we do not insist on the pre-specified
level being the same for all agents, and we are interested
in guaranteeing that even for the closed-loop SIS system,
the local proportion of infected individuals in each node
converges either to zero or to a scalar that is strictly less
than said pre-specified level.

Contributions: The main contribution of this paper is to
devise a control scheme for guaranteeing that the fraction
of infected individuals in a sub-population stays within a

pre-specified level for all time instants. Our approach is as
follows: First, we modify the continuous-time SIS model
in (Liu et al., 2019) by introducing a parameter that scale
the strength of interconnections between agents, based on
their current infection levels. We then show that for this
modified SIS model the following properties hold:

(i) The proportion of infected individuals in a sub-
population does not exceed a pre-specified level; see
Proposition 2.

(ii) If the spectral abscissa of the state matrix linearized
around the healthy state is not greater than zero, then
the DFE is asymptotically stable; see Proposition 3

(iii) If the spectral abscissa of the state matrix linearized
around the healthy state is greater than zero, then
there exists an endemic equilibrium to which the
dynamics converge for all non-zero initial conditions;
see Proposition 4.

This paper is structured as follows. In Section 2, the
continuous-time networked SIS model and feedback con-
trol problem of interest are formally introduced. Our main
results and related discussions are given in Section 3. A
numerical example is presented to illustrate our theoretical
findings in in Section 4. Finally, we conclude this paper,
and provide future directions in Section 5.

Notation: Let R+ denote the sets of non-negative real
numbers. We use [n] to denote the set {1, 2, ..., n} for any
positive integer n. For any two vectors a,b ∈ R

n, we write
a > b if ai > bi for every i ∈ [n]. For a matrix A, let s(A)
denote the largest real part among the eigenvalues of A.
A diagonal matrix is denoted as diag(·).

2. PROBLEM FORMULATION

2.1 Open-loop networked SIS model

Consider a disease spreading over a network of n agents.
The interconnection among the various agents is rep-
resented by a directed graph G = (V, E), where V =
{1, 2, . . . , n} is the set of agents. Let A = [aij ]n×n be
the weighted adjacency matrix of G. The edge set E is
defined as follows: E = {(j, i) | aij > 0}. More specifically,
if a pair of vertices (j, i) ∈ E , there is a directed edge
from node j to node i. The set of in-neighbors for agent
i is denoted as Ni. Throughout the rest of this paper, an
agent can be interpreted as a sub-population. The weight
between agents can be considered as the frequency of inter-
action between the sub-populations. Each sub-population
is comprised of individuals and the number of individuals
in a sub-population is fixed. Each individual is assumed
to be either Infected (I) with the disease, or not infected
but Susceptible (S) to the disease. The disease can spread
both due to the interaction between individuals in a sub-
population and also across sub-populations.

Let xi(t) ∈ [0, 1] denote the proportion of (sub)population
i ∈ [n] that is infected with the disease at time t ∈ R+

(thus 1− xi(t) is the proportion of (sub)population i who
are susceptible). Let βi and γi denote the infection rate
and healing rate, respectively, of agent i. The evolution of
the infection level of agent i can, then, be captured by the
following differential equation (Fall et al., 2007):

ẋi(t) = βi(1− xi(t))
∑n

j=1
aijxj(t)− γixi(t), (1)
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where βi > 0 and γi ≥ 0.

Define x(t) := [x1(t), x2(t), . . . , xn(t)]
T , B := diag(βi),

Γ := diag(γi), and X(t) := diag(x(t)) being the diagonal
matrices. Then in vector form the open-loop system (1)
can be written as

ẋ(t) =
[

(I −X(t))BA− Γ
]

x(t). (2)

It is clear that 0n is an equilibrium of the open-loop
system (2). This equilibrium point is referred to as the
healthy state, or the disease-free equilibrium (DFE). Any
equilibrium other than 0n is referred to as the endemic
equilibrium, under which the disease persists in at least
one agent.

We need the following assumptions to ensure that sys-
tem (2) is well-defined.

Assumption 1. For each i ∈ [n], βi > 0 and γi ≥ 0.

Assumption 2. The matrix A is irreducible.

Assumption 1 stipulates that all infection and healing
rates must be positive and non-negtaive, respectively.
Assumption 2 states that the adjacency matrix A is
irreducible, which is fulfilled if and only if the underlying
graph G is strongly connected. A graph G is strongly
connected if and only if each node i ∈ V has a path to
every other node j ∈ V.

2.2 Modified SIS models with local control inputs

Our objective is to ensure that, for all i ∈ [n] and
t > 0, xi(t) remains upper bounded by a constant 1/ci,
for some ci > 1, and that the dynamics converge to one
of the equilibria of the closed-loop system. That is, we
are interested in ensuring that the fraction of infected
population in each node stays below a pre-specified value
for all times. Furthermore, we would like to ensure that
limt→∞ xi(t) = x̄i, where x̄i denotes some equilibrium
of the closed-loop system. To this end, each agent i ∈
[n] is equipped with a local control input ui(t). As a
consequence, System (1) can be modified as follows:

ẋi(t) = βi(1− xi(t))
∑n

j=1
aijxj(t)− γixi(t) + ui(t), (3)

where ui(t) is a state feedback control of the form:

ui(t) = fi (xi(t), {xj(t)}j∈Ni
) . (4)

The state feedback controller ui(t) can be considered as
the expected reduction for growth rate of infection at
time t because of pharmaceutical or non-pharmaceutical
interventions. From a practical standpoint, the non-
pharmaceutical interventions may include hand-washing,
mask-wearing, social distancing, etc. The typical phar-
maceutical intervention is the distribution of immunity-
boosting or therapeutic drugs. A rough approach to es-
timating such ui(t) is to compare the growth rate of
infection before and after the interventions in a short time
period. However, we note that these consequences of the
mentioned pharmaceutical or non-pharmaceutical inter-
ventions are very hard to measure or estimate accurately.
There are some practical limitations on how the mentioned
interventions can affect the spread. The effective disease
prevention measures, according to the type of disease, are
quite different. As a simple example, mask-wearing may
slow down the spreading of airborne diseases. However,
it may not mitigate the infection of waterborne diseases.

The modeling for effects of detailed interventions are out of
scope in this paper. See Remarks 1 and 2 for a slightly more
detailed explanation for the proposed feedback controller.

We formally state the problem being investigated in this
paper.

Problem 1. Consider the closed-loop System (3). Based on
knowledge of βi, xi(t), ci, aij and xj(t) where j ∈ Ni,
design a local state feedback controller in accordance
with (4) such that

i) for all i ∈ [n] and t > 0, xi(t) ≤ 1/ci; and
ii) limt→∞ xi(t) = x∗

i , where either x∗
i = 0 or x∗

i > 0.

A discrete-time version of Problem 1 has been partially
solved in (Wang et al., 2021) with the local state feedback
controller having a specific structure, namely, i) ci = 2 for
all i ∈ [n], and ii) the strength of interconnections modified
as a function of the current infection levels of each node
and all of its neighbors.

Our approach towards addressing Problem 1 involves two
steps: First, given some ci > 1, we identify ui(t) that
obeys (4), such that xi(t) ≤ 1/ci for all t. Second, we
show that, for the proposed feedback controller ui(t), the
closed-loop system (1) always converges to some equilibria.
To elucidate more on the second part of our solution, we
now recall a result which fully characterizes the class of
equilibria for the open-loop system (1), and admits γi = 0.

Proposition 1. (Liu et al., 2019, Propositions 2 and 3)
Consider the open-loop System (2) under Assumptions 1
and 2. The following statements hold:

(1) If s(BA−Γ) ≤ 0, then, the disease-free equilibrium is
the unique equilibrium, and it is globally asymptoti-
cally stable.

(2) If s(BA − Γ) > 0, then, other than the disease-
free equilibrium, there exists a unique endemic equi-
librium, which is globally asymptotically stable on
[0, 1]n \ {0n}.

In the rest of this paper, we will show that the result in
Proposition 1 can be, with a suitable choice of ui(t) as
in (4), extended for the closed-loop system in (3).

3. MAIN RESULTS

In this section, we devise a local state feedback controller
to solve Problem 1. Observe that for the closed-loop
System (3), since the term βi(1 − xi(t))

∑n

j=1
aijxj(t) is

positive, the terms that contribute to the increase in the
state value are exactly the aforementioned ones. Hence,
in order to ensure that the state trajectories remain
below 1/ci for all times, it is natural to consider the
controller that partially offsets the increase caused by the
aforementioned terms. For this reason, we consider the
following control input

ui(t) = −βicixi(t)(1− xi(t))
∑n

j=1
aijxj(t). (5)

Consequently, by plugging (5) into (3), we obtain:

ẋi(t) = βi(1− cixi(t))(1− xi(t))
∑n

j=1
aijxj(t)− γixi(k).

(6)

Let D := diag(ci). Then, the closed-loop System (6) can
be written as

ẋ(t) =
[

(I −DX(t))(I −X(t))BA− Γ
]

x(t). (7)
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We refer to System (7) as the controlled system.

Remark 1. Define bi(t) := 1 − cixi(t), and observe that
bi(t) ∈ [0, 1]. That is, the term bi(t) scales the infection
rate for agent i at time instant t. More concretely, and
especially from a practical standpoint, the parameter
bi(t) may be thought of as a term/quantity, possibly
communicated to all the agents by a central entity such
as health administration officials, that informs each agent
as to by how much should it modify the strength of its
interactions with its neighbors. As a consequence, the
infection rate of agent i is reduced from βi to bi(t)βi.

Remark 2. The proposed feedback controller is based on
the ideal environment, and there are certain assumptions
made for practical implementation as follows: Agents must
be able to get the exact states, including their own and
their neighbors, and the proposed control strategy must
be faithfully implemented by agents. We must implement
that, in practice, there are asymptomatic members (who
are in the latent period), and it is hard to handle the exact
proportion of infected people. The design of a feedback
controller which is based on noisy state estimation, as well
as the epidemic control policy within the antagonistic en-
vironment (where some agents may not follow the control
strategy) are left for our future studies.

We have the following assumption.

Assumption 3. For each i ∈ [n], xi(0) ∈ [0, 1/ci].

Assumption 3 ensures that all initial states are within
the desired bound, since otherwise the control objectives
cannot be achieved.

With ui(t) as in (4), the infection levels in the closed-loop
System (3) do not exceed the pre-specified level, 1/ci. We
have the following propositions. We skip the proof of the
propositions due to space reasons.

Proposition 2. Consider the controlled System (7) under
Assumptions 1 and 3. Then xi(t) ∈ [0, 1/ci] for all i ∈ [n]
and t ≥ 0.

Proposition 2 establishes that the set [0, 1/ci] is positively
invariant for each agent i with respect to the closed-loop
System (6). Positive invariance of the set [0, 1]n with re-
spect to the uncontrolled System (1) has been established
in (Liu et al., 2019, Lemma 8). Under Assumptions 1 and 3,
the proposed controller shrinks the positive invariant set
for each agent i from [0, 1] to [0, 1/ci]. In a practical sense,
the local infection upper bound 1/ci can be regarded as
the capacity of healthcare facilities in a local population
i. As one of the main advantages of the controlled system,
if the initial infection level do not get overwhelmed, then
the epidemic remains manageable.

While Proposition 2 guarantees that the infection level
does not exceed a certain pre-specified level, it does not
give any guarantees regarding the long-term behavior of
the system. That is, with the aforementioned controller in
place, does the disease die out, or does it become endemic?
We address the same in the rest of this subsection.

It turns out that convergence guarantees, similar to that
for the open-loop case discussed in Proposition 1, can be
given even for the closed-loop System (7). The next two
propositions handle the case when s(BA − Γ) ≤ 0 and
s(BA− Γ) > 0, respectively.

Proposition 3. Consider the controlled System (7) under
Assumptions 1–3. If s(BA− Γ) ≤ 0, then the disease-free
equilibrium is asymptotically stable with the domain of
attraction [0, 1/ci] for each i ∈ [n].

Proposition 3 states that, irrespective of whether an agent
is initially infected or healthy, as long as s(BA−Γ) ≤ 0 the
infection levels of the closed-loop system converge to the
disease-free equilibrium. Note that Proposition 2 depends
only on the healing rate, infection rate and the network
structure. If the healing rate of each agent dominates
the infection rate (which is scaled by the interconnection
weights between agents), the epidemic dies out naturally.

Proposition 4. Consider the controlled System (7) under
Assumptions 1–3. If s(BA − Γ) > 0, then there exists a
unique endemic equilibrium x such that 0 < [x]i ≤ 1/ci for
each i ∈ [n], and ci > 1. Furthermore, if for each i ∈ [n],
ci ≥ 2, then the endemic equilibrium is asymptotically
stable with the domain of attraction (0, 1/ci].

Proposition 4 states that when s(BA−Γ) > 0 System (7)
has two equilibria, namely, the disease-free equilibrium and
the endemic equilibrium x. Furthermore, as long as the
initial state is non-trivial and ci ≥ 2, the state of the
closed-loop system asymptotically converges to x, which
means that the disease-free equilibrium is unstable. In
other words, our proposed controller cannot eradicate the
disease; rather, it ensures that each population i has a
stable non-trivial infection level strictly smaller than 1/ci.

We are now ready to state the main result of the paper. It
summarizes the results from Propositions 2–4. Recall that
the overall closed-loop system in (7) consists of the agent
dynamics in (3) and the local control inputs in (5).

Theorem 1. Consider the closed-loop System (3) under
Assumptions 1–3. The local nonlinear state feedback con-
trol law (5), guarantees xi(t) ≤ 1/ci for all i ∈ [n] and t ≥
0. Furthermore, if s(BA− Γ) ≤ 0, then limt→∞ xi(t) = 0;
otherwise if s(BA−Γ) > 0, and ci ≥ 2 for all i ∈ [n], then
limt→∞ xi(t) = x∗

i
, where x∗

i
> 0.

As a practical consequence, Theorem 1 indicates how the
faithfully implemented epidemic prevention interventions
influence the infection spreading. Note that the conver-
gence result for the case when s(BA − Γ) > 0, and
1 < ci < 2 is not provided. From a technical viewpoint,
the main hindrance is that the current Lyapunov candi-
date is not strictly decreasing for the aforementioned case.
Simulations, however, indicate that even for the case when
s(BA−Γ) > 0, and 1 < ci < 2 convergence to the endemic
equilibrium can be achieved. A rigorous analysis of the
aforementioned case is left for future work.

4. NUMERICAL EXAMPLE

In this section, we first illustrate the results from Section 3,
and then show some interesting behavior via simulations.

The simulations are presented in a multi-agent network
with n = 100 sub-populations. The sub-populations are
uniformly and randomly located in an area of 100 ×

100. All agents within a distance of r = 25 are allowed
to communicate with each other. Following a geometric
graph model, for any two sub-population i and j with the
distance between them being less than r, there exists an
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Fig. 1. Network topology 1 with communication radius
r = 25.

Fig. 2. Time responses for both uncontrolled and con-
trolled systems when s(BA− Γ) = −0.313.

undirected edge between the said nodes, with the weight
0 < aij < 1. The nodes are indexed from 1 to 100. Each
simulation follows the same initial conditions, such that
the nodes 1 to 10 have 10 percent of their population
infected, and the other nodes, i.e., numbered 11 to 100 are
susceptible. The first topology of the multi-agent network
is as depicted in Fig. 1, where the nodes that are healthy
(or susceptible) are marked blue, while the nodes that are
infected are marked red. It can be easily verified that this
network is strongly connected. The edge weights aii and
aij are set to aii = 0.3, aij = 0.003, for all connected nodes
i and j such that aij ̸= 0.

The pre-specified infection level 1/ci is chosen as follows:
For 1 ≤ i ≤ 20, choose 1/ci = 0.5; for 21 ≤ i ≤ 40,
choose 1/ci = 0.45; for 41 ≤ i ≤ 60, choose 1/ci = 0.3; for
61 ≤ i ≤ 80, choose 1/ci = 0.25; and for 81 ≤ i ≤ 100,
choose 1/ci = 0.2. Hence, for all i ∈ [n], the initial states,
which are at most 0.1, are strictly less than 1/ci.

We illustrate the case s(BA − Γ) ≤ 0 in the first simu-
lation. Set βi = 0.3, γi = 0.5 for all i. Then, we have
s(BA − Γ) = −0.313 for the network in Fig. 1. The
trajectories of the states are shown in Fig. 2. Both the
states in uncontrolled and controlled systems stays strictly
below the minimum pre-specific infection level 1/ci = 0.2.
Furthermore, the dynamics of the closed-loop system con-
verges to the disease-free equilibrium, which is in line with
the result in Theorem 1.

Then, we study the case where s(BA−Γ) > 0. Set βi = 0.8,
γi = 0.3 for all i, and consequently, s(BA−Γ) = 0.198. The
disease persists in both the uncontrolled and controlled
systems; see Fig. 3. The uncontrolled system converges to

Fig. 3. Time responses for both uncontrolled and con-
trolled systems when s(BA− Γ) = 0.198, and ci ≥ 2.

Fig. 4. Time responses for both uncontrolled and con-
trolled systems when s(BA− Γ) = 0.198 and ci < 2.

the endemic equilibrium around 0.48. For the controlled
system, the states asymptotically converge to the endemic
equilibrium, and they are all strictly below the minimum
pre-specific infection level 1/ci = 0.2, which is consistent
with the result in Theorem 1. In the controlled system,
even though the disease persists, the infection levels are
significantly suppressed in all sub-populations. Comparing
the states with different pre-specific infection levels, the
sub-populations that choose a smaller 1/ci generally have
a lower infection level.

We check the convergence result for the case when s(BA−
Γ) > 0, and 1 < ci < 2. Set βi = 0.8, γi = 0.3 for all i,
and consequently, s(BA− Γ) = 0.198. For 1 ≤ i ≤ 20, we
reset the pre-specified infection level by 1/ci = 0.9, and
thus 1 < ci < 2 for these agents. The agent dynamics are
shown in Fig. 4. It can be seen that the infection level for
1 ≤ i ≤ 20 (blue lines) reach the endemic equilibrium.

We next study how the higher proximity between agents
affects the spreading dynamics. Keep the location of all
agent as that in Fig. 1, and improve the communication
radius by r = 50. Set βi = 0.8, γi = 0.3 for all i, and
consequently, s(BA − Γ) = 0.276. The time responses
are shown in Fig. 5. The disease spreading is strictly
suppressed below the local pre-specific infection levels in
all sub-populations. However, comparing with the time
responses in Fig. 3 (where communication radius is r =
25), the disease persists with higher infection proportions
in both the uncontrolled and controlled systems.

Finally, we check the influence of higher concentration of
agents. We test the disease spreading within a network
topology as shown in Fig 6, where the communication
radius is set by r = 25. Comparing with that in Fig 1,
there is a cluster of sub-populations on the left bottom
side. Set aii = 0.3, aij = 0.003, and βi = 0.8, γi = 0.3
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Fig. 5. Time responses for both uncontrolled and con-
trolled systems when s(BA− Γ) = 0.276 and r = 50.

Fig. 6. Network topology 2 with communication radius
r = 25.

Fig. 7. Time responses within network topology 2 for both
uncontrolled and controlled systems when s(BA −

Γ) = 0.214 and ci ≥ 2.

for all i. Consequently, s(BA − Γ) = 0.214. The infection
dynamics are shown in Fig. 7. Comparing with that in
Fig. 3, it can be seen that with higher concentration of
agents, the disease persists with higher infection propor-
tions. As a practical consequence of the simulation results,
avoiding crowd aggregation is beneficial to the suppression
of infectious diseases.

5. CONCLUSION

We considered an SIS epidemic spreading over a networked
population. We designed a state feedback controller where
the objective was to ensure that the infection level of
each agent never exceeded a pre-specified value. With
the controller in place, we identified a condition under
which the disease gets eradicated (resp. remains persistent
in the population). One of the future directions would
be to extend both the feedback controller and analysis

approaches for the other disease-spreading models, such
as SIR, SEIR, etc. Another interesting direction would
be to design state feedback controllers that maintain the
infection below a certain level for time-varying graphs, as
well as the epidemic control strategy with noisy data in
the antagonistic environment.

REFERENCES

Bernoulli, D. (1760). Essai d’une nouvelle analyse de la
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de l’inoculation pour la prévenir. Histoire de l’Acad.,
Roy. Sci.(Paris) avec Mem, 1–45.

Fall, A., Iggidr, A., Sallet, G., and Tewa, J.J. (2007).
Epidemiological models and Lyapunov functions. Math-
ematical Modelling of Natural Phenomena, 2(1), 62–83.

Hethcote, H.W. (2000). The mathematics of infectious
diseases. SIAM Review, 42(4), 599–653.

Kermack, W.O. and McKendrick, A.G. (1927). A contri-
bution to the mathematical theory of epidemics. Pro-
ceedings of the Royal Society of London. Series A,
115(772), 700–721.
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