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convergence rate as the exact method. We build our results
by first developing an inexact adaptive accelerated Bregman
proximal gradient method for general optimization problems
under relative smoothness and strong convexity assumptions,
which may be of independent interest. Moreover, we explore
the properties of the auxiliary problem in the InSPAG algo-
rithm assuming Lipschitz third-order derivatives and strong
convexity. For such problem class, we develop a linearly con-
vergent Hyperfast second-order method and estimate the total
complexity of the InNSPAG method with hyperfast auxiliary
problem solver. Finally, we illustrate the proposed method’s
practical efficiency by performing large-scale numerical ex-
periments on logistic regression models. To the best of our
knowledge, these are the first empirical results on implement-
ing high-order methods on large-scale problems, as we work
with data where the dimension is of the order of 3 million,
and the number of samples is 700 million.
© 2022 The Author(s). Published by Elsevier Ltd on behalf
of Association of European Operational Research Societies
(EURO). This is an open access article under the CC
BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The efficient parallelization of large-scale learning is one of the most challenging prob-
lems in modern machine learning. Among several approaches, distributed computation
and preconditioning have been shown effective in accelerating optimization algorithms,
especially with increasing amounts of data [2,1,3]. In this paper, we propose an efficient
distributed optimization algorithm for solving the empirical risk minimization (ERM)
problem:

min {f(:c) 2 P(z) + h(x)} : (1)

z€R4
where h(z) is a convex regularizer and F(z) is the empirical loss
L
Fle) 2 23 1) @)

i=1

Here D £ {¢; = (&, m) N | is a set of N training data samples, and ¢ is a convex loss
function with respect to z. We assume that F' is Lp-smooth and pp-strongly convex,
ie.,

prls = V2F(x) < Lply, (3)

where I; is the d-dimensional identity matrix. The condition number of F' is denoted
as kp = Lp/pr, and the solution to (1) is denoted as .
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Sum-type optimization problems of the form (1) are used to model various statistical
learning problems, including least squares regression, logistic regression, and support
vector machines. One characteristic of modern uses of models like (1) is the so-called
large-scale regime, i.e., when N is very large. Large N poses additional challenges re-
lated to the storage and processing of data, which in turn drives the need for modern
distributed/federated architectures [4] that take advantage of parallel processing capa-
bilities [5], e.g., Apache Spark [6], Parameter Server [7] and MapReduce [8].

In practice, when N is very large, the complete set of data points D cannot be stored
or is not accessible at a single machine. Instead, data is distributed among m comput-
ing units/nodes/agents such that D = {Dy,..., Dy, }. Moreover, the distributed setup
assumes there is a central node, that is able to communicate with all the worker nodes.
Without loss of generality we assume that N = mn, i.e., machine j € {1,...,m} locally

stores n samples D; = {fi(J ), nlj )}” 1- Specifically, each agent 7 has a local emplrlcal risk,

denoted as Fj(z) £ (1/n) S, £(z; €9 1i?). Thus,

F)=— 3 Filo= 3> bl e ) (®)
j=1

j=11i=1

The centralized distributed optimization architecture described above, with a central
node and a number of workers, typically involves two resources: communication and
computation. Communication is usually regarded as the most valuable resource [9]. Thus,
recent efforts [2,1,3] have been focused on the efficiency of communications, where one
seeks to minimize (4) with a minimal number of communication rounds between the
workers and the central node.

Recent distributed optimization approaches: The distributed approximate Newton-
type method (DANE) [2] has been one of the most popular second-order methods
for communication-efficient distributed machine learning. DANE improves the polyno-
mial dependency of the iteration complexity on the condition number kg of first-order
methods for distributed empirical risk minimization problems, compared to the geo-
metric rates available for centralized, i.e., non-distributed, methods [10]. Particularly,
DANE has an iteration (communication) complexity of 6(&% /n)! for quadratic func-
tions, and 5(/@}7) for convex non-quadratic functions. However, DANE requires the
exact solution of a carefully constructed subproblem, which can be impractical [2].
An inexact version of DANE, termed InexactDANE [11], and its accelerated variant,
termed AIDE [11], achieve an iteration complexity of O(kp), and 6(\/@) respectively,
without requiring exact solutions of the auxiliary subproblem. For quadratic functions
InexactDANE and AIDE have an iteration complexity of O(x2 /n) and 5(% /nt/4)
respectively. Nevertheless, the advantage of preconditioning, where the condition number
is effectively reduced as n increases, was only shown for quadratic problems. Recently,

L The é—notagion means non-asymptotic inequality up to constant and poly-logarithmic factors. More
precisely, A = O(B) if there exist constants C,a > 0 such that A < CBIn* 1
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in [3], the authors showed that the preconditioning effect holds locally for a variation of
DANE termed DANE-HB with inexact solutions to the local subproblem. Specifically, an
iteration complexity of O(d"/ 4 /kr/nt/*) was shown to hold in a neighborhood around
the optimal point for non-quadratic convex functions. Additionally, for linear prediction
models, an improved global bound of 6(\/5 /n'/*) was shown [3] to be achieved by
the D2ANE Algorithm. In [12] the authors propose the DiSCO algorithm with global
bounds 6(\/5 /nt/4) for quadratic functions and O(d'/ 4 /Er/nt/*) for self-concordant
functions which are a different class than functions satisfying (3). One of the main ob-
servations in [3] is that the looseness in the bounds of DANE and AIDE came from
the reduce (model aggregation) step done by the central node. Thus, DANE-HB and
D2ANE build their results from a modified structure. The worker nodes compute gradi-
ents and communicate them back to the central node, which solves the preconditioned
auxiliary subproblem. Such algorithmic structure was used in [1] recently, where the au-
thors proposed the Statistically Preconditioned Accelerated Gradient (SPAG) method.
SPAG has an iteration complexity of 6(\/5 /n'/*) for quadratic functions with direct
acceleration, instead of using the Catalyst framework [13]. SPAG was also shown to
have an asymptotic iteration complexity of 5(\/5 /n'/*), with empirical evidence that
such rate behavior holds non-asymptotically in practice. However, exact solvers for the
auxiliary subproblem on the central node are required. Such convergence rates match
complexity lower bounds [14,15]. In a more challenging setup (which we do not consider
in this paper) of decentralized distributed optimization [16] propose an algorithm with
iteration complexity O(kp /+/n) and similar up to a network-dependent factor commu-
nication complexity.

Although SPAG obtains the near-optimal iteration complexity for distributed algo-
rithms applied to (1) and (4), it strongly depends on the ability to exactly solve an
intermediate auxiliary optimization subproblem (usually in the form of a non-Euclidean
Bregman projection), whose complexity was not explicitly taken into account in [1].
More importantly, as pointed out in [1], such an intermediate problem is computation-
ally hard, and the accuracy of its solution dramatically affects the performance of the
whole method. We solve this issue in this paper.

Our solution’s key innovation is explicitly considering the auxiliary subproblem’s in-
exactness and quantifying how it affects the convergence rate of the whole algorithm.
Moreover, for the case of functions with high-order bounded derivatives (e.g., logistic
regression or softmax problems [17]), we provide a Hyperfast second-order method that
efficiently computes the approximate solution of the subproblem. This approach builds
upon the line of works on implementable tensor methods for conver problems recently
initiated” by Yu. Nesterov [22], where it was shown that the third-order method for
convex problems with Lipschitz third-order derivative could have a convex subproblem

2 We underline that the main words here are implementable and convez. Adaptive tensor methods with
optimal complexity guarantees for non-convex problems were proposed earlier in [18-20], and previously
known tensor methods for convex problems [21] did not necessarily have convex auxiliary problem in each
iteration.
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and its solution can be efficiently implemented. Later, [23] proposed near-optimal ten-
sor methods with complexity bounds which match up to a logarithmic factor the lower
bounds for highly-smooth convex optimization. [24] proposes a third-order tensor method
with third-order derivative approximated by finite-difference of gradients, which leads to
a Superfast second-order method with convergence rate O(1/k*) for convex functions
with Lipschitz third-order derivative. As a next step, [25] proposes an inexact acceler-
ated high-order proximal point method which allows improving, compared to Superfast
second-order method, the convergence rate to O(1/k%) up to logarithmic factors. In par-
allel to the previous work and inspired by [24], the authors of [26] proposed a Hyperfast
second-order method with the same convergence rate, but based on another accelerated
high-order method developed in [23]. In this paper, we extend both methods to the set-
ting of strongly convex minimization problems and apply them to solve the intermediate
auxiliary optimization subproblem in each iteration of our inexact version of SPAG.

Contributions SPAG is one of the fastest distributed methods (in terms of communi-
cation steps number) for the minimization of (1) and (4) with i.i.d. samples [1]. More-
over, the Hyperfast second-order method is the best known (near-optimal) second-order
method to minimize convex functions with Lipschitz third-order derivatives. We argue
that the extended combination of the proposed inexact SPAG and the new Hyperfast
second-order method provides a useful approach to construct new efficient distributed
algorithms. Specifically, in SPAG, the central node solves a problem with a similar struc-
ture as (1), but with a smaller number n of data samples. Therefore, with a reduced
number of samples, the complexity of calculating the Hessian is comparable (due to
the sum-type structure of F') with its inversion by the matrix inversion lemma [27] and
modern practical versions of Strassen-type algorithm [28]. In this regime, at the central
node, Hyperfast second-order methods outperform existing variance-reduced stochastic
first-order schemes. We extend the theoretical analysis of inexact statistical precondition-
ing methods alongside high-order methods and show that they jointly provide an efficient
second-order method that outperforms (from theoretical and practical points of view)
well-known (stochastic) first-order schemes.
The main contributions of this paper are as follows:

e Since SPAG is based on the accelerated Bregman proximal gradient method for rela-
tively smooth and strongly-convex problems, we first propose an inexact accelerated
Bregman proximal gradient method for general convex optimization problems. Our
algorithm is based on an inexact model for the objective, which subsumes the set-
ting of relatively smooth and (strongly-)convex problems and the setting of inexact
first-order oracles. Our algorithm also allows for approximate Bregman projections.
We estimate the convergence rate and rates of inexactnesses accumulation.

o We propose an Inexact Statistically Preconditioned Accelerated Gradient (InSPAG)
method for distributed optimization problem (1), (4), and explicitly characterize the
accuracy by which the corresponding auxiliary subproblem needs to be solved to
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guarantee the same convergence rate as the exact method, i.e., 6(\/5/111/4). Our
method is not a direct extension and has a slightly simpler structure than the method
in [1].

o We extend and generalize the Hyperfast second-order method [25,26], recently pro-
posed for smooth and convex problems, to the class of uniformly, and especially
strongly, convex functions. We show a linear convergence rate for this problem class.

¢ Based on an example of sparse logistic regression, we discuss the distributed opti-
mization problem regime, for which Hyperfast second-order optimization methods
provide a theoretical advantage over classical first-order methods for the problem
size, dimension, and desired accuracy of the solution.

o We provide experimental results in application to large-scale machine learning prob-
lems that show the efficiency of the use of high-order methods in practice. To the
authors’ best knowledge, this is one of the first attempts to apply near-optimal tensor
methods for real data and applications. Specifically, we test the proposed algorithm
on a proprietary data set with 710 million entries and a dimension of 3.2 million.

Outline In Section 2, we introduce the inexact accelerated Bregman proximal gradient
method for general convex optimization problems. This includes defining the concept of
the inexact model of the objective, illustrating it by examples, presenting the algorithm
and its convergence rate theorem together with its proof. Section 3 presents the setting
for statistically preconditioned distributed algorithms, introduces InSPAG algorithm and
its convergence rate theorem. After that, we present the Hyperfast second-order method
for the auxiliary subproblem of the InSPAG, estimate its complexity and combine the
building blocks to obtain the total complexity of the whole approach. We finish this
section by discussing the regime in which our approach is superior to applying stochastic
variance-reduced algorithms. Section 4 presents our experimental results. For the sake
of completeness in Section 5 we present Hyperfast second-order method for uniformly
convex functions. We finalize with conclusions in Section 6.

2. Accelerated gradient method under inexactness and relative smoothness

In this section, we propose a general accelerated first-order algorithm that will be
used in the next section to propose our InSPAG method for distributed optimization.
We believe that the results of this section may be of independent interest. This section
is, to an extent, independent of the other sections and the reader interested in the
distributed optimization may skip this section since in what follows only the main result
of this section (Theorem 2.6) will be used. We consider the following general optimization
problem

min f(x), (5)
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where @ is a convex subset of finite-dimensional vector space E. Our goal is to develop a
general accelerated inexact gradient method capable to work under relative smoothness
and strong convexity assumptions [29,30]. We consider two types of inexactness: inexact
information on the objective function and inexact generalized projection.

Before we give more details, we introduce some general notations. Let E be an d-
dimensional real vector space and E* be its dual. We denote the value of a linear
function ¢ € E* at ¢ € E by (g,x). Let || - | be some norm on E, || - |. be its
dual, defined by ||g|. = mfux{(g,:c), |z < 1}. Let ¢ be a convex function on @Q,
which is continuously differentiable on the relative interior ri@ of Q. Let Dyly|(z) =
o(x) — o(y) — (Vo(y),x — y), x € Q,y € riQ be the corresponding Bregman diver-
gence. Based on the Bregman divergence we introduce the following two definitions of
inexactness.

Definition 2.1 (Inezact model [31]). Let §, L, u,m > 0. We say that (fs(y),¢¥s(z,y)) is
a (9, L, u, m, ¢)-model of the function f at a given point y iff, for all € @,

uDg[yl(x) < f(z) — (f5(y) + Ys(z,y)) < LDglyl(z) + 6, (6)

Ys(x,y) is convex in x, satisfies ¥5(x,2) = 0 for all € Q) and

V() 2 Y(2) + (9,2 — 2) + mDy[2](x), Va,z€Q, Vg € 0Y(z), (7)
where for fixed y € Q and any x € Q we denote ¥ (z) = s(x, y).

Definition 2.2 (Ineract generalized projection [32]). For a convex optimization problem
mingeg ¥(x) and § > 0, we denote by Arg minieQ U(x) a set of points Z such that

Jhed¥(z): Ve e @ — (h,x —1x)> —0. (8)
We denote by arg minieQ U(z) some element of Arg miniEQ U(x).

Optimization algorithms with inexact model of the objective were extensively studied
in [31] and are generalizations of first-order algorithms with inexact oracle [33,34]. We
now give two particular examples that are covered by the inexact model framework and
refer to [31] for further examples.

Example 2.3. Relative smoothness and relative strong convexity, [29,30]. Assume that

@(x) is differentiable, and in (5), the objective f is differentiable, relatively smooth [29,30]
and strongly convex [30] relative to ¢, i.e., for some p > 0 and L > 0,

pDglyl(x) < f(x) = f(y) = (Vf(y),z —y) < LDylyl(x), Va,y € Q.
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Then, clearly, Definition 2.1 holds with m = 0, § = 0, fs(y) = f(v), ¥s(z,y) =
(Vf(y),z — y). Importantly, the function ¢ is not required to be strongly convex. Our
InSPAG relies on this particular example.

Example 2.4. Composite optimization, [35,36]. Assume that in (5), f(x) = g(x) + h(x)
with convex L-smooth w.r.t. norm || - || term g(x) and simple convex term h(x) which is
usually called composite. In this case we assume that ¢(z) is 1-strongly-convex w.r.t || -||,

and define f5(y) = g(y) +h(y) and ¥5(x,y) = (Vg(y),z —y) + h(z) — h(y). Then, clearly,

f(@) = (fs(y) +vs(z,y) = g(x) — (9(y) + (Vg(y), z — y)).

By convexity of g, we have 0 < g(x) — (g(y) + (Vg(y),x — y)). At the same time, by
the L-smoothness of g and 1-strong-convexity of ¢(z),

9(w) = (9(y) +(Vg(y),z —y)) < éllx —ylI> < LDy[yl(x).

From the combination of the above two relations, it is clear that (6) holds with § = 0
and g = 0 and we are in the situation of Definition 2.1 with m = 0 since ¥s(z,y) is
convex in x.

In [31], to develop an accelerated algorithm, the authors use a different assumption
where in the r.h.s. of (6) the Bregman divergence Dy[y](x) is substituted with %[z —yl|?,
and assume that ¢ is 1-strongly-convex w.r.t. || -||. This, unfortunately, restricts the range
of applications of the algorithm, and we use a weaker set of assumptions in Definition 2.1.
At the same time, [14] showed that it is not possible to develop an accelerated algorithm
in the relative smoothness setting without additional assumptions. Thus, we introduce
the following assumption on the Bregman divergence Dy[y](z) and note that the range of
applications is still wider than for the approach of [31]. We also note that this assumption
is simpler than the one in [1] and is a version of triangle scaling gain introduced in [37]
and triangle lower bound property of [38].

Assumption 2.5. There exists a constant G > 1 such that for all z,y,u,uy € ri dome
such that © — y = 7(us — u) for some 7 € [0,1] it holds that

Dy[yl(z) < GT*Dylu](us). 9)

This assumption can be seen as a relaxation of homogeneity of degree 2. The simplest
example when this property holds is when Dy[y](z) = 3|ly — 2*. In this case G = 1. We
also note that our algorithm is adaptive to constant G which means that the property
(9) is sufficient to hold only locally.

The proposed accelerated gradient method with inexact model is listed below as Al-

gorithm 1. Unlike [1,37,38], our algorithm is simultaneously adaptive to the “Lipschitz”
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constant L (see Definition 2.1) and constant G in Assumption 2.5, which is expressed in
constant M that plays the role of the product LG. Also, unlike [1,37,38], our algorithm
allows two types of inexactness covered by Definitions 2.1 and 2.2. Finally, unlike [37,38],
our algorithm has linear convergence when p > 0. We also note that we allow the accura-
cies 9, § in Definition 2.1 and 2.2 to depend on the iteration counter k&, which is expressed
by the sequences {dx, gk}kzo-

Algorithm 1 Accelerated gradient method with (9, L, u, m, ¢)-model.

1: Input: z¢ is the starting point, > 0, m > 0, {dx} k>0 and Lo > 0.
2: Set Yo = T, Ug = Tg, (g = O, A[) = Qo

3: for k > 0 do

4: Find the smallest integer i, > 0 such that

2
Mk+10‘k+1

for(@r+1) < fo, (Yk+1) + Vs, (Th1, Yr+1) + Az, Dy [ur](uk+1) + Ok, (10)

where M4, = 2u =L 0Ly a1 is the largest root of the equation
App1(1+ Agp+ Apgm) = Mk+1ai+1, Apt1 := A + ap41, and (11)
yrpy = D1t Akl (12)

Apt1

Ppi1(2) = apt1¥s, (@, ye+1) + (1 + Ax(p + m)) Dy [ur](z) + ar+14Dg[yr+1](),

Up41 = argrginskék+1(x), for some &5 > 0 (13)
ze
App1Up+1 + ArTi
5: Set k :=k+ 1. Tr41 = % (14)
6: end for k+1
7: Output: xj

The following is the convergence rate result for the proposed algorithm.

Theorem 2.6. Assume that (f5(y), vs(x,y)) is a (8, L, u, m, d)-model according to Defini-
tion 2.1. Also assume that Dyly](x) satisfies Assumption 2.5. Then, after N iterations
of Algorithm 1, we have

Dyluol(z.) | 23cg Aktide | Yicg O
AN AN Ay

flen) — flz.) < (15)
Dy luo](z+) 250 A1 A

D ) < .
slunl(@.) < (I+Ayp+Aym)  (1+Anvp+Aym) (14 Ayp+ Aym)

(16)
In order to prove Theorem 2.6 we need the following technical Lemma.

Lemma 2.7 ([31, Lemma 3.5.]). Let ¢(x) be a relatively m-strongly convex function rel-
ative to ¢ with m >0, i.e. (7) holds, and
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y = arg %in‘*{wcr) + BDg|z](x) + vDg[u](2)},
xEe

where § >0 and v > 0. Then, for oll x € Q,

¥(x) +BDy[2](x) +vDgul(x) > ¥(y) + BV [2](y) +vDy[u](y) + (B +~+m)Dyly](z) — 9.

Proof of Theorem 2.6. We start by proving the correctness of the algorithm, i.e. that if
we fix iteration k, there exists ix > 0 such that (10) holds. By Definition 2.1 with x = y,
we have f5, (y) < f(y). Thus, from (6)

for(@is1) < fo, (Wr+1) + Vs (@rt1, Y1) + LDg[yn+1](wr41) + O (17)
Combining this with Assumption 2.5 and using (12), (14), we further obtain

LGaj

for (@rv1) < for, (Yrr1) + Vo, (Thr1, Y1) + ye
k1

Dy [ug](ur1) + O (18)

Since M1 = 21 M}, we see that as soon as Myy1 > LG, (10) holds. Thus, the
algorithm is correctly defined. Note also that by the same reason we have

My <2LG. (19)
Our next goal is to prove that, for all z € ), we have

Apir f(wpg1) — Apf(or) + (1 + Appap + Appam) Dglug 1] ()
— (14 Agpe + Apm)Dylug)(z) < oy f(z) + 205 Ag+1 + Ok (20)

Since by Definition 2.1 with @ = y, we get f(z) —dr < f5,(x) < f(x), and, using (10),
we have

(6) (10)
f@rs1) < for (@rgr) + 0k < fo, Wrt1) + Vs, (Tht1, Yit1)

2
My a4

1 Dy[ug](ug11) + 205
k+1

Substituting in this expression definition (14) of the point zj41, using that Ap41 =
Aj + ag1 and that, by Definition 2.1, 95, (-, y) is convex, we have

A
Flanen) € = (o Wrsn) + Vs (@0 e 11)) + 5 (B (Uksn) + g (U1, Ves1))
Ak+1 Ak+1

2
Mk+lak+1

2
Ak-H

Dy [uk] (uk+1) + 20
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In view of the definition (11) of the sequence ay41 and left inequality in (6), we obtain

A
Fenpn) < 2 flaw) + Ohil (fzik (Yr+1) + Yoy, (k415 Yr41)
A1 Aptr

(21)
14+ Agp + Apm
B Dy k) (i) ) + 20k
Q41

By Lemma 2.7, for the optimization problem in (13) with ¢(z) = arr19s, (2, Yk+1), B =
14+ Agp + Apm, 2z = ug, v = apr144, and u = yx41, it holds that

et 195, (k415 Y1) + (14 Agp + Apm) Dy [ug] (upt1) + k1 Do Y1) (ur11)
+ (14 Apgap+ Aggprm) Dglugia) () — O
< ap1¥s, (T, Y1) + (1 + Agp + Agm) Dy lug)(x) + ag 114D glyr1] ().

From the fact that Dy[ykt1](uk+1) > 0, we have

15, (U1 Yrr1) + (1 + Agpe+ Apgm) Dy [ug ] (ug41)
< apr1¥s, (T, Y1) + (L + A+ Agm) Dy ug] () (22)
— (14 Agap+ Apyrm) Doluria (@) + k11D [y 41) (%) + O

Combining (21) and (22), we obtain

Flin) < i ) + (i (i) + v, 2, vin) + 1Dl (@)
Ay Akt

1+ Agp + Agm
+ 3% k

D [ur](x)
A1

1+ A + Ariim
- T R D g ) () +
kg1 Qf41

We finish the proof of (20) applying the left inequality in (6):

A « 14+ App+ Arm
Fanen) € - flan) + S5 (@) + = EZEEE DLy ()
Ak+1 Ak+1 Ak+1
1+ App1p+ Agrim o

D¢[uk+1](:c) + 20 +

Apt1 Ayt

We now telescope the inequality (20) for k from 0 to N — 1 and take z = z.:

An f(zn) SANf(22) + Dgluol(2s) — (1 + An(p + m)) Dylun](2.)

N—-1 N71~
+2 Z Ak+15k + Z 0. (23)
k=0 k=0
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Since V[ug41](x«) > 0 for all k > 0, we have

N-1 N-1
Anflen) = Anf(@.) < Dyluo)(@s) +2 D Apdi+ ) O
k=0 k=0

The last inequality proves (15). Inequality (16) is a straightforward from (23) since f(z) >
flzy) forallz € Q. O

To finish the analysis of Algorithm 1 we estimate the growth rate of the sequence Ay .
The result is proved in the same way as Lemma 3.7 in [31] with the change Ly — M.

Lemma 2.8. For all N > 0, we have

2 1 N-1 o\ 2
ANn > max Z < )
0 VM1 i} M1
N2 1
>max{ ——,—exp | NV ﬂim ,
/2

1 N-1,,-1/2
whereM =~ k=0 M1 -

Note that from (19) we have that M_l/2 =+ 2[;01 M,;_ll/2 >

> m, which leads to

the following estimate for the convergence rate of Algorithm 1

f(xN)_f@*)<Dm<x*)mm{is—f,mexp SE)

3. Inexact statistically preconditioned accelerated gradient method

In this section, we return to the distributed empirical risk minimization problem (1),
(4), where we deal with m machines or worker nodes, with sample size n at each. More-
over, without loss of generality we index the central node as node 1. Following the same
algorithmic structure as DANE [2] and SPAG [1], we define a reference function

Ze xZ; Cz ‘xHQa (24)

where the samples (; are taken from the node which is chosen to be central. It is easy
to see from (2) and (3) that ¢(x) is Lg-smooth, and pe-strongly convex since it has a
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similar form as F(z). The value of the parameter o is set to be an upper bound that
quantifies how similar the function F} is to F, i.e., we assume that with high probability,
it holds that

|V2F(z) — V2Fy(z)|]2 < 0, Vo € domh (25)

where the norm is the operator norm for matrices (i.e., the largest singular value). The
rationale behind this statistical similarity assumption are statistical arguments that allow
to show [1] that (25) holds with o proportional to ﬁ Further, it follows that F(x)
is Lp;-relatively smooth and pp/4-relatively strongly convex with respect to ¢(z) [12,1],
ie.,

tr/eDolz)(y) < Drlz](y) < Lo Dslz](y), (26)

with Lp/y =1, piryy = pr/(pr +20), and kpjy = Lpg/pire = 1+ 20/ pp.
Once the specific Bregman divergence has been defined based on statistical similarity

and using the reference function (statistical preconditioner) ¢(z) as in (24), distributed
statistical preconditioning methods rely on Bregman proximal steps, where the algorithm
needs to solve at every iteration the problem of the form (here o > 0)

al;gegldin {a((VF(2),xz—2) + h(x))+Dgy[u](x)} . (27)

Non-accelerated methods based on steps of the form (27) have an iteration complexity
of 5(& F/e) [39,30,31]. Thus, statistical preconditioning allows for the relative condition
number kg4 to determine the convergence rate instead of k. The authgrs in [1] showed
that for quadratic functions ¢ = O(Lp/y/n), which implies kp/y = 1+ O(kr//n). Sim-
ilarly, for non-quadratic functions o = O(kp+/d/n), thus Kp/p =1+ O(kp+/d/n). This,
in turn, leads to the total number of communication rounds O (kF/g), which is quantita-
tively better than for methods that do not use such statistical preconditioning [15,40,5].
A similar argument follows for accelerated algorithms, where the iteration complexity
will be O (r /1) [1].

Next, we study the building blocks of our approach to advance this line of works.
First, we consider the inexact version of the SPAG algorithm [1] wherein each iteration
subproblems of the form (27) are solved inexactly with such accuracy that the over-
all performance of the algorithm is affected only by a logarithmic factor. Notably, the
required accuracy decreases as iterations go, meaning that the approximate solution’s
quality may not be high in the first iterations. Next, we introduce and analyze a Hyper-
fast second-order method for third-order smooth and uniformly convex functions, which
we will apply to solve subproblems (27) in each iteration of our inexact SPAG (InSPAG)
algorithm when h(z) = 0. Finally, we analyze the total complexity for the combination
of InSPAG plus the Hyperfast second-order method to solve our problem of interest.
This combination is advantageous because we only use first-order information on the
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individual losses from the whole dataset and obtain a small subproblem on the central
node. Then, a fast second-order method is used to solve this subproblem on the central
node.

3.1. InSPAG and its convergence rate theorem

This subsection introduces the InSPAG algorithm together with its convergence rate
analysis. The main idea is to implement Algorithm 1 on the central node and use
Theorem 2.6. Inexactness in statistically preconditioned problems has been studied for
DANE, resulting in Inexact DANE, AIDE [11], and D2ANE [3]. To propose our InSPAG
algorithm we rely on the results of Section 2. From (26) and Examples 2.3 and 2.4
we see that fs(y) = f(y) and ¥s(z,y) = (VF(y),xz — y) + h(xz) — h(y) constitute
a (0,Lp/g, fiF/p,0,¢)-model of the function f defined in (1). Thus, the main idea of
InSPAG is to implement Algorithm 1 for problem (1) using distributed computations.
We further assume that the solution z, of the problem (1) belongs to some Euclidean
ball B5(0, R), and define Ri = 2L4R?. Using this quantity we set the inexactness of the

projection in each iteration to be 05 = RTﬁ, (cf. (13)).

The pseudocode of the proposed InSPAG algorithm is presented as Algorithm 2.
Unlike [1], our algorithm is inspired by a similar-triangles type of accelerated meth-
ods [41-44,31,45], which leads to a slightly simpler algorithm. Another important dif-
ference with [1] is that our algorithm is adaptive simultaneously to the constants Lp /4

Algorithm 2 InSPAG (Lp/¢, tr/¢, To, RR).

1: Input: R s.t. x. € B2(0, R), RS = 2Ly R?, up/y, Mo.
2: Set yo = up = g € B2(0, R), Ag := ap := 0.

3: for k > 0 do

4: Set i, =0

5 repeat
6: At the central node set My = 24~ 1M, and find a1 from Apyq(1+ AkHF/<i>) = Mk,+1oci+1‘
Set Ak+1 = Ap + Qg1
7 At the central node set yj41 := %:Am and send to each worker.
8: At every worker node j compute % " V@(yk+1; ij)) and send it to the central node.
9: At the central node compute VF(yr41) = - 2 i Ve(Yr+1; ng)).
2
10: At the central node solve up41 = arg minfé;i(o R Pri1(z),
where @11(z) = a1 ((VF(Yk+1), T — Yr+1) + h(z))+
+ (14 Arprse)Dolur](z) + art1pr/¢ Do [yr+1](z). (28)
11: At the central node set xjy1 := %W
12: Set i = i + 1.
13: until
Mk+1o‘i+1
F(zr11) < F(yk+1) + (VF(Yrt1)s Tht1 — Yet1) + TDMW](UMA)‘ (29)
k+1
14: end for

15: Output: zj
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and G (see Assumption 2.5), which may lead to further acceleration in practice since
locally, the constant Ly,,G can be smaller leading to larger step-sizes. Note that Line 10
of Algorithm 2 requires approximate minimization of the auxiliary function (28). First,
we present the complexity analysis of Algorithm 2 in Theorem 3.1 assuming the ap-
proximate solution to (28). In Subsection 3.2, we show the complexity of obtaining said
approximate solution efficiently when h(z) = 0 using high-order methods.

We are now in a position to state the main result on InSPAG.

Theorem 3.1. Assume that the function F in (1) is pp;4-strongly convex and Lp;q-
smooth with respect to the function ¢, where ¢ satisfies Assumption 2.5. Moreover,
let xp, k > 0 be the sequence generated by Algorithm 2. Then, after K iterations it
holds that

2L,R%(1+InK)
Ax '

fle) = f(z.) < (30)

Moreover, the value Ax grows as follows:

K? 1
Ag >maxq —,—exp | K 'uF—,V/(b , (31)
AMy M AM g

where M 12 2 11( 2{:701 M,;rll/Q

Proof. Clearly, Algorithm 2 is a distributed implementation of Algorithm 1 with §; =
0, kK > 0. We only note that for this particular setting with f5(y) = f(y) and ¢s5(z,y) =
(VF(y),z —y) + h(z) — h(y), inequality (10) becomes

F(xpi1) + h(@rp1) <F(Yrt1) + h(Yrs1) + (VF (Y1), Thop1 — Y1)
Myy105 4

2
Ak+1

+ h(@kt1) — M(yr+1) + D luk](ur+1),

which is equivalent to (29). Thus, we can apply Theorem 2.6, which gives the following
estimate

Dyluo)(z.) ~ Yniy 0r _ Ls(2R)?® | 1 = R}
—_ < = < i E @
f(xK) f(x*) > Ax + Ax = 24k A ~ k

_ R}(1+IK) _ 2LyR*(1+InK)
- Ay A

The lower bound for Ax follows from Lemma 2.8. 0O

To apply Theorem 3.1 we need to ensure that Assumption 2.5 is satisfied.
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Lemma 3.2. Under the assumption that ¢ is pg-strongly convex and Lg-smooth Assump-
tion 2.5 is satisfied with G = Ly /g = Ke.

Proof. Since ¢ is pg-strongly convex and Lg-smooth, we have that

" L
ol =yl < Dylal(y) < Frllx —yll?, v,y € dom o,
Thus, for all z,y,u,u, such that z —y = 7(uy — u) for some 7 € [0, 1], we have

L¢T2 L¢7‘2

2

L
Dylyl(e) < il = yll* = 22 luy —ulf® <

Dylu](uy). O

From Lemma 3.2, we see that if ¢ is a quadratic function, then, G = kg and by
(19) we have that My 1 < 2Lp/4k¢. Then, the number of iterations K to reach accu-
racy €, i.e., the number of communications between the central node and the worker
nodes, is bounded as O(\/m In %) As we see below, for quadratic functions the
estimate for G can be improved to G = 1, which gives a better communication com-
plexity O(\/m In %) In the general case, where ¢ is not quadratic, similarly to [1,46],
we next show that Myy1 — Lp/, linearly with rate 5(@) This means that the
convergence rate of InSPAG quickly approaches the convergence rate with condition

number | /Kr/4-

Lemma 3.3. Under the assumptions of Theorem 3.1 and Lemma 3.2 assume additionally
that the Hessian of ¢ is H-Lipschitz-continuous, i.e.

IV26(z) = V2e(y)|l < Hl|z - yl|. (32)

Then the inequality (29) is satisfied with

Hd
Mk+1LF/¢min{/<a¢,1+'u—k}, (33)
¢

where d = [|Tp1 = Yrgr | + lue — ol + [lup — wpga -
Proof. By the local quadratic representation of the Bregman divergence, we have for

any a,b € dom¢ and for some 7 € [0,1] that Dyla](b) = |la — b||2v2¢(m+(1_7)b). We
use H(a,b) to denote the corresponding Hessian V2¢(7a + (1 — 7)b). We have

(14),(12) oziﬂ

Dgzr1)(yre1) = l2p1 = UhstlBrop ey = 2 e = | Fr s i)
k1
iy 2 2
S (Hukﬂ = Wkl B (g1 ) T (@15 Y1) — H (wer, we) [[[[un+1 — wg| )

k+1
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aQ
< G (D¢[uk}<uk+1> I H @ rst) — Huges, ug)|

_A2

Dlug)(ur+1)
k+1 )

He

(2) a2 H|: — 2|
£ 1 b ] () (1 n —) ,
Aiﬂ He

where z € [xg+1, Yk+1] and 2’ € [ug41, ug]. Using the latter and (12), (14), we obtain

1z = 2"l < llz = yhaall + Nyrsr — unll + llux — 27|

<l @hs1 — Yk || + (|76 — ugl| + Jup — wpsr | 2 di.

Combining the above with the relative smoothness property (26), we obtain that (29)
holds when Mjyy1 = Lp/g (1 + IiL—i’“). Since (29) holds also when My, 1 = Lp/gke (see
Lemma 3.2 and (26)), we obtain the statement of the Lemma. O

From (16) and (31) since My41 < Lp/yky we know that the sequence ug, k > 0 con-
verges to z, linearly with condition number , /fr/4Kq. From (15) by the strong convexity,
we see that the sequence zj, kK > 0 converges to x, also linearly with the same condition
number. Hence, by (12) we conclude the same on the sequence yg, k > 0. Thus, dj, con-
verges linearly to zero with the same condition number and My, approaches Lp,q4 with
the same rate. This, in turn, means that the convergence rate in Theorem 3.1 quickly
approaches O((1 — \/W)K ) when the Hessian of ¢ is Lipschitz-continuous.

Next, we study the properties of the auxiliary problem in step 10 of Algorithm 2
and, under the additional assumption that the loss function £ has bounded fourth-order
derivatives, we show the explicit complexity of computing an approximate solution to
this auxiliary problem using Hyperfast second-order methods.

3.2. Hyperfast second-order method for the auziliary problem

In this subsection, we elaborate the properties of the auxiliary problem in step 10
of Algorithm 2 and propose a Hyperfast second-order algorithm to solve it when the
function ¢ is strongly convex and sufficiently smooth. The main result is a complexity
estimate for solving the auxiliary problem by the Hyperfast algorithm. Recall that, at
each iteration of Algorithm 2 we need to find an approximate minimizer in the sense of
Definition 2.2 of the function ®;11(x) on the Euclidean ball By(0, R). Throughout this
subsection we assume that the regularizer h(x) = 0.

We first study some properties of the function ®51(x) defined in (28) and the mini-
mization problem solved in step 10 of Algorithm 2. Using our assumption that h(z) = 0,
the fact that Axy1 = Ap + apy1, the definition of the Bregman divergence, and ig-

noring constant terms in that problem, we see that it is equivalent to the problem
2

R2 /k
o
Upq1 = argming Zp o Uiy1(x), where

Upr1(2) £ (ar1 VF (Y1) — (1 + Apppyo)Vo(ur) — argpirssVo(yrrt), z)+
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+ (1 + Apga1prsp) (). (34)

Lemma 3.4. Assume that ¢ is pg-strongly convex and Lg-smooth w.r.t. the Euclidean
norm. Also assume that for some 6 > 0 and all x € Bs(0,R), it holds that
max{||VE(x)|2/1r/s, IVO()|l2} < 0. Let us denote x3; = argmingep,o,r) Yir1(x)
and let the point Zy1 satisfy

s Ho R

. 35
2k2(2LyR +30)2(1 + Apr1ptr/g) (35)

U1 (Thr1) = Vrg1(Thy1) < Ay

R2 /k
. . R}
Then 241 = argmin, p o py Upr1(x).

Proof. Since ¢ is p14-strongly convex and Lg-smooth, ¥y in (34) is pg-strongly convex
with gy = (1 4+ Agr1pr/¢)pb¢ and Ly-smooth with Ly = (1 + Apy1ptp/s)Le. Further,
by the assumption of the lemma, we have, for all € B3(0, R),

VU1 (o)l = a1 VE(Yry1) — (1 + Agpipsy) Vo(ur) — arg1piroVo(yrst)
+ (1 + Apgrpryp) VO(@) |2 < 3(1+ Aryapirye)f, (36)

where we used also that axi1 < Agy1 and that Agy; = Ap + agy1. By the strong
convexity of ¥, we have

IS * 2 A *
k41 — Thyall2 < \/H_\I,(\I’k+1(xk+1) = Vry1(z54q)) < V205w (37)
Hence, for any = € B(0, R),

(VU1 (Br+1), T = Ept1) = (Vi1 (Br1) — Vi1 (2541), T — Tpgr)
T (Vi1 (@r41), @ = Tpq1) + (VW1 (@r41), Trgr — Trtr)
> —Lyllwgyy — Zesllzlle = Zrgall + 0 = [V8eipr (@i l2llzh g — Ertall

(36),(37)
> —(2LoR+3(1 + Api1ir/p)0)V/ 20,/ 1w

20,
(14 Apr1pir/g) g

= —(1+ App1pr/¢) (2L R+ 39)\/ > —Ri//ﬂ

where we used the definitions of Ly and py and the expression for Ap. Thus, 511
satisfies Definition 2.2 with 6 = Ri/k a

Next, we propose an efficient Hyperfast second-order method to obtain a point Zj41
for which (35) holds. To do this, we make an additional assumption on the function ¢.
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Assumption 3.5. The function ¢ has bounded fourth-order derivatives, which is equiva-
lent to Lipschitz third-order derivative, i.e. there exists 0 < Ly 3 < 00 s.t.

IV26(z) = V2(y)llz < Lo,

|I - y||27 Vx,y € B2(07R)7
where the norm of a tensor is induced by the Euclidean norm in a standard way [22].

The idea is to use a second-order implementation of a third-order method, in the
sense of [25, Sect. 5.2] or [26, Algorithm 2], to minimize Wj41(z) in each iteration of
InSPAG. Such methods are called Hyperfast second-order methods since, due to the
additional assumption of third-order smoothness, they have faster convergence rates than
the optimal second-order method [47]. In our case, the objective Uy (x) is additionally
strongly convex. Thus, we can achieve faster rates than the basic schemes in [25,26] that
do not use strong convexity. We propose an extension of Hyperfast second-order methods
for minimizing strongly convex functions and show that they have faster convergence
rate.> Our algorithm is described below as Algorithm 3.

Algorithm 3 Restarted hyperfast second-order method.

Require: zo € B3(0, R), constant ¢ which defines convergence rate of the basic Hyperfast method, strong

convexity parameter fiq.

1: Set Rp = 2R

2: for t =0,1,... do

3: Set Ry =Ro-27% and N, = max{((Schj,ng/u(b)é], 1},

4: Set zi41 = yn, as the output of the basic Hyperfast Second-Order Method (either [25, Eq.3.6]
for p = 3 and B8 = 1/2 and with auxiliary steps described in [25, Sect. 5.2] or [26, Algorithm 2])
started from z; and run for N, steps applied to Wy 1(x).

5: Sett =t + 1.

6: end for

Ensure: z;.

As a building block, this method uses basic Hyperfast second-order method which has
convergence rate of the form cLs||z. — zo||3/k®, where k is the iteration counter, ¢ = 48
for [25, Theorem 2] and ¢ = 35 for [26, Theorem 2].

Theorem 3.6. Under assumptions of Lemma 3.4 let additionally Assumption 3.5 to hold.
Let also sequence z¢, t > 0 be generated by Algorithm 3. Then

Bl = @il < Wiea () = Vo () < 2002272020 (39)

Moreover, the total number of steps of the basic Hyperfast second-order method to
reach Wiy (2t) — Wpy1(wg ) < Ay is bounded by

3 Section 5 extends Hyperfast second-order methods for a more general setting of minimizing uniformly
convex functions. Here we use a particular case that corresponds to uniform convexity of the order ¢ = 2,
equivalent to strong convexity.
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32cLy5R2\ © (14 Ags1per))?k2(2Lo R + 36)?
5| ———— | +log, T3 .
He LyR

Proof. Let us denote for shortness »* =z}, and ¥(z) = Wiy q(z). For t = 0 we have
|lx* —2z0||2 < Ro. Let us assume that ||a* —z;||2 < R; and show that ||2* — zi41 |2 < Ryt1.
By Assumption 3.5 and (34) it is clear that ¥(x) has Ly 3-Lipschitz third-order derivative
with Ly 3 = (1+Akq1p0r/¢) Le,3- Recall that g = (1+Akq1405/¢) t1g- From [25][Theorem
2] since W is pg-strongly convex and has Ly 3-Lipschitz third-order derivative, it holds
that

frw ‘2 o~ Luglze =23 _ po(Re/2)° _ peRiy
5 Nz =27y < W(z4a) — V(") < NG < 5 =
by the choice of N; and since Ly 3/puw = Lg 3/1t4. Thus, by induction, we have (38).
It remains to estimate the number of iterations of the basic Hyperfast method. From

2
(38) we see that to reach the accuracy Ay it is sufficient to make T = 1log, 2’2"5

restarts. Summing up the number of operations Ny, t =0, ..., T, we obtain

T T 1 1 7

8cLy3R?\ 8cLy3R2\° 2
Eth<§jl<7c 2.3 t) +1]:(—C #:3 0) > 275+
t=0

t=0 He Mo t=0

1

2cL4 3R\ ° 241y R?

§5(M> +log, 2
1o Ag

Let us estimate the last term using (35) and that py = (14 Apt105/6) e, R = 2Ls R*:

1 _1 201 + Apy1pp/p) o R
082 T, T 082 116 (2Ly R2)?
2k2(2Ly R+30)2(1+Ak+11r/g)

(1+ Asipiryo)?K2(2Lo R + 30)°
L3R’ '

= log,

Combining this with the previous chain of inequalities, we obtain the second statement
of the lemma. 0O

3.8. InSPAG plus hyperfast method with application to logistic regression

This subsection combines the building blocks introduced in the previous two subsec-
tions and considers a particular application to a regularized logistic regression problem,
for which we obtain a total complexity bound in terms of the number of iterations of
the Hyperfast second-order method. We further discuss the arithmetic iteration com-
plexity of our method and compare it to that of stochastic variance-reduced first-order
algorithms and indicate a regime in which our algorithm is preferable.

Combining Theorems 3.1 and 3.6, we obtain the following result.
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Theorem 3.7. Assume that in problem (1), h(z) = 0, and that its solution x, be-
longs to the ball B3(0,R). Assume that the function F in this problem is pip;4-
strongly conver and Lp;g-smooth with respect to the function ¢, where ¢ satis-
fies Assumption 2.5, is pg-strongly convex, Lg-smooth and has Lg 3-Lipschitz third-
order derivative. Also assume that for some 8 > 0 and all x € Bs(0,R), it holds
that max{||VF(x)|2/1p/s, |[Vo()ll2} < 0. Let € > 0 be the target accuracy. Finally,
let InSPAG (Algorithm 2) be applied to problem (1), and in step 10 of this algorithm
let Restarted Hyperfast method (Algorithm 3) be applied to solve the auziliary problem.
Then a sufficient number of iterations of the basic Hyperfast method to find an e-solution
to (1) is bounded as

L,3R2\® LyR2(LyR +0)K In K
O<K<¢’3R> + K log, HE/#Z¢ (LR + 6)KIn ) (39)
fep LyRe

2 2
where K is such that 22ef 0XmE+D)) o - 2LeR (+InK)

Ar41 Ax

Proof. From (30) we see that InSPAG can be stopped at iteration K when we
2L4R*(1+In(K+1 2L4R*(14+In K

have % <e< %. Then, f(zx4+1) — f(ze) < e. Also, ap-

plying Theorem 3.6 we obtain that the total number of iterations of the basic Hyperfast

method, up to numerical constant multipliers, is bounded by

K 1
L, 3RZ2\ 5 14+ A k(L R+ 60
Z(( .3 ) +log2( kbr/g) k(L )>

— I LyR
LssR%\® 1+ A K(LyR+0

<K (LﬁR) +log, L ARMEIELRTO)) _ (3
fig LoR

where in equality <. means a usual inequality up to a numerical constant factor. 0O

From (31) and Lemma 3.3 we know that when ¢ has also Lipschitz Hessian, it is
sufficient to take K = O ( /RF/gFe In %) . Lemma 3.3 also implies that for quadratic func-

tion ¢ it is sufficient to take K = O (\/m In %) and that for non-quadratic function ¢
the result is the same up to a fast asymptotic. In the language of the individual loss £ and
the number of samples n used for preconditioning, our result is the same 5(\//4_5 / n'/ 4
as for the exact algorithm [1]. Thus, the total number of iterations of the basic Hyperfast
method to find an e-solution to (1) can be bounded as

9] <\/W<L¢’3R2) 1) . (40)

He
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So far, we have not explicitly used the finite-sum structure of problem (1), (2) and
the statistical similarity (25). In order to do this, we consider the sparse empirical risk

minimization problem with regularized logistic loss, where in (2), for ¢ € {1,..., N},
((:G) = log (14+ exp(—milm &) 40 3 e24de 3 o2, (41)
Jj€ls J€Ip
where ¢; = (&,m:), 7; = 1 indicates a positive (clicked) example, and n; = —1 otherwise.

We assume there are two types of features, namely, sparse and dense features. Let §; ; be
the j-th element of the vector &;. Then, &; ; is a sparse feature if & ; = 0 for almost all 7 €
{1,...,N}, and a dense feature if & ; # 0 for many ¢ € {1,..., N}. We denote by Ig
(and Ip) the set of sparse (and dense) features with IsUIp = {1,...,d} and IsNIp = 0.
Moreover, it follows from [48, Section 4.4] that in this case the function F is Lp-smooth
with Lp = max{\1, Ao} + + le\il mi&il|3 = O(s), where s is the average number of
nonzero elements in &;, and pp-strongly convex with pr = min{\;, A2 }. For the same rea-
sons, function ¢ defined in (24) is Ly-smooth with Ly = max{A1, Ao} +2 37" | [[m:&13+0
and pig-strongly convex with pg = min{A;, A2} + 0. It also has bounded first-, second,
and third-order derivatives [17]. More importantly, the logistic loss in (41) has bounded
fourth-order derivatives [17], which means that Assumption 3.5 holds. Indeed, let us
define matrix A = [11&1,. .., 7.&,] 7. Then, by Theorem 5.4 in [17] with 4 = 1 the func-
tion L 3" | /(x;(;) has Lipschitz third-order derivative with constant L3 = 15[|AT A||3
w.r.t. 2-norm or with constant Ly 3 = 15 w.r.t. || - || 47 4-norm. Since adding a quadratic
function does not change the Lipschitz constant for the third-order derivative, ¢ has
Lipschitz third-order derivative with constant Lg s = Ly 3.

Applying [1, Theorem 3], we obtain that in our setting the statistical similarity pa-

~ . (372
rameter in (25)is 0 =1+ 0O (maxr;;{/\;zl/\\z}éx/ljl_z R) and a sufficient number of InSPAG
iterations is O(y/mg¢/n'/*), which is similar to SPAG [1]. Further, the number of the basic

Hyperfast iterations is the same up to a factor

LosR?\ ¢ IATAIZR? \® _ [ |ATAJ3R?\?
Losl7\* _ (A AR \* _ (A AR\ *
e - min{)\l, )\2} + 0o - min{)\l, )\2}

Informally speaking, applying statistical preconditioning allows reducing the mini-

mization of a large sum F' of N functions in (2) to the minimization of a moderate
sum ¢ of n functions when making the step 10 of Algorithm 2. To conclude this sub-
section we would like to discuss the complexity of minimizing function ¥ in (34) which
is equivalent to step 10 of Algorithm 2. To that end, we consider the setting of sparse
logistic regression with loss (41). Since ¢ and ¥ have finite-sum form, a straightforward
approach is to apply accelerated variance reduced methods. This leads to arithmetic
operations complexity

O (s~ (n+vm)) 2)
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where s comes from the cost of evaluating a sparse stochastic gradient V£(x;(;) for
some random 7, and the rest is the optimal bound on the number of stochastic gradient
evaluations for such methods [49]. Note that we have K = Ly /o = Lg/1g.

We propose an alternative approach by applying Hyperfast second-order methods
to minimize the function W. Since basic Hyperfast second-order methods are a special
implementation of third-order method [22,23,50,24—26], each their iteration requires to
minimize the regularized third-order Taylor polynomial:

i {(V0(). -0} + J720@y - o + 57000 -l + 2yl f. (43

It is shown in [22] that the objective in (43) is relatively smooth and strongly convex
with respect to the function a(y) = 1V2¥(z)ly — z]* + %Hy — x5 with py/, =
1-1/V2, Lyq = 141/+/2. Since K /q is a constant, the complexity of solving (43) is, up
to logarithmic factors, the same as for minimizing a(y). In turn, the complexity of solving
this problem, up to logarithmic factors, is the same as the complexity of a quadratic
programming problem and can be estimated by the complexity of matrix inversion [51].
To sum up, the arithmetic operations complexity of minimizing the function ¥ by the

Restarted Hyperfast second-order method has the form

1/5
9] ((52n+d1°g2 - (M> ) ) (44)

He

see [23,25,26] for more details on arithmetic complexity of each iteration of the ba-
sic Hyperfast method. The first term in (44), i.e., s?n, is due to the complexity of
Hessian calculation. The second term, i.e. d'°827, corresponds to the complexity of Hes-
sian inversion, e.g., by the matrix inversion lemma using Strassen’s algorithm [28]. The

2\ 1/5
term (%) comes from the estimate for the number of iterations of the basic Hy-

perfast second-order method, see Theorem 3.6. Additionally, we may expect R? = O(d),

since dim z, = d and Lg3 = O(+

LS Imi&ll3) = O(s?) since we consider sparse

logistic regression.

Without loss of generality, we can assume that the parameter m can be set such
that d'°827 = O (szn) In this case, the Hyperfast second-order method with complexity
(44) outperforms accelerated variance reduced algorithms with complexity (42) if py <
573072, Where <, and ~ mean the same as < and =, but up to dimension-dependent
factors of the order O(1). For the particular case of sparse logistic regression problems,

our focused application, we can assume that s = O(1). Therefore, we have that if d <

10-356 2 or, equivalently, if d'°%27 < n < u(;l/ % then, the Hyperfast

and py S n”
second-order method has smaller arithmetic operations complexity than variance reduced
algorithms. The last inequality is reasonable when the requirement for the accuracy is
high. Indeed, in practice, via regularization [52], it is reasonable to set pgy ~ up =~

e/R ~ ¢/d, where € > 0 is a desired accuracy. Thus, in this case we can rewrite the
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Table 1

Statistics of the datasets. N is the number of sam-
ples, d is the number of features, Feat. is the average
number of dense features, and Size is the data size in

MB.
Dataset N d Feat. Size
RCV1 20k 47k 74.05 13.7

In-house 710M 3,246k 109.86 650.8k

last inequality as e < n=104 (¢281 < n < £7961). We can conclude that Hyperfast
second-order methods are better when our goal is to solve sparse logistic regression with
loss (41) with high accuracy. This result can be strengthened by using parallelization.
In the complexity bound (42) for variance reduced algorithms, only the first term can
be improved by applying parallelization on n nodes. On the contrary, in the bound (44)
for Restarted Hyperfast method, the first term can be improved by parallelization on n
nodes, and the second can be improved by parallelization on d nodes.

To conclude, high-order methods are competitive from the theoretical point of view
for large-scale convex problems that require high accuracy of the solution, especially
when the problem is sparse. Further improvements can potentially be achieved by using
inexact tensor methods [51,53-55] to save some computational work.

4. Numerical analysis and implementation details

In this section, we present numerical experiments and implementation details of Algo-
rithm 2. Namely, on the example of regularized logistic regression, we demonstrate the
practical performance of InSPAG method with Hyperfast subsolver (InSPAG+Hyper-
fast) and compare it with the state-of-the-art methods such as DANE, DANE-HB and
SPAG with SDCA subsolver. For the logistic regression, we show that InSPAG+Hyper-
fast outperforms other methods even for huge-dimensional problems with 710M samples
and 3.2M features.

We work with binary classification problems with regularized logistic regression cost
function (41) on a public dataset from LibSVM1,* namely RCV1 [56], and a proprietary
large-scale in-house dataset that was generated from the click logs of a large-scale com-
mercial system for mobile app install ads. The main statistics of the datasets are shown
in Table 1.

We obtained an MPI-based distributed implementation of SPAG from the authors
of [1] and modified it to run on an Apache Spark [57] cluster. As shown in Algorithm 2,
InSPAG switches between two phases: a parallel gradient computation phase and a
central-node optimization phase in which we run the Hyperfast second-order method
in Algorithm 3. In our implementation, the driver carries the central-node optimization
phase while executors compute the gradient. The code for the implementations was de-

4 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets /binary.html.
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veloped in PyTorch [58]. Algorithm 3, in each iteration of the basic Hyperfast method,
requires a line-search where to calculate a test point the full step (43) is made. The num-
ber of such line-search steps is theoretically bounded above by O(log(¢~!)). However,
we observe that the line-search ends in approximately 5 trials in practice. Therefore,
we bound the number of iterations executed in the line-search procedure. Additionally,
our experiments show that the number of steps required in the line-search procedure de-
creases as more iterations of Algorithm 2 is executed. In the execution of the third-order
step (43) it is sufficient to approximate the product of the third derivative with two
vectors. To do this, we use off-the-shelf automatic differentiation codes and observe that
the resulting computational complexity is equivalent approximately to 4 — 6 gradient
computations.

As explained in [25, Sect. 5.2], or [59, Algorithm 2], the problem (43) is solved by
Bregman proximal gradient method under relative smoothness and strong convexity
assumption [30]. Each step of this algorithm applied to (43) requires to solve the prob-
lem

min {(e.0) + 5(VP(a)s. )+ sl (49

where the vector ¢ involves VW¥(z) and V3W(z)[s]?, L is some regularization pa-
rameter. We solve problem (45) using ADAM [60] since then the gradient ¢ +
V2W(z)s + L||s||3s of the objective uses the Hessian only through Hessian-vector prod-
ucts which can be calculated using automatic differentiation. We observed that in
practice this takes approximately 2 — 3 times the time required for gradient com-
putation. Thus, on the lowest level, our method is a first-order method with a
Hessian-vector product and a third-order derivative product with two vectors com-
puted by automatic differentiation techniques. The full Hessians or full third-order
derivatives are not computed but are used for the method to exploit the additional
curvature of the objective and improve the practical convergence speed. Moreover,
the central node uses GPU to accelerate the various Hessian-related matrix-vector
operations in the algorithm. We believe our implementation® to be the first prac-
tical implementation of an algorithm from the family of Hyperfast or even a wider
family of higher-order optimizers that can operate on data at the above dimensional-
ity.

We compare Algorithm 2 with the inner solver being Algorithm 3 and Algorithm 2
with the inner solver being Stochastic Dual Coordinate Ascent (SDCA) [61] used
in [1]. For the RCV1 dataset, we also compare the performance of Algorithm 2 versus
DANE [62] with both SDCA and Hyperfast as the central-node solver. We used n = 10*
samples for preconditioning, A = 107°, ¢ = 2 x 107°, constant Lp;s = 0.01, and a prac-
tical approximate 1072 for Ri. We set the precision of the auxiliary subproblem to 10~%.

5 https://github.com/OPTAMI/OPTAMI/.
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Fig. 1. Comparison of the communication rounds number for the dataset RCV1.
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Fig. 2. Wall clock time performance of the InNSPAG method for the dataset RCV1. “numba” indicates im-
plementation using Numba: A High Performance Python Compiler.

Other parameters: L3 = 0.005, the learning rate of ADAM is set to 1, and the number of
iterations of ADAM is 2. Figs. 1 and 2 show results for the RCV1 dataset. The point &
is set as the point where the minimal cost was achieved overall the iterations and runs of
the algorithm and serves as a proxy point used instead of the minimizer, which is in gen-
eral unknown. We see that Algorithm 2 outperforms DANE regardless of the subsolver
used. Moreover, INSPAG-SDCA has better performance during initial iterations. How-
ever, InNSPAG-Hyperfast outperforms all other methods by accuracy. Also, we find that
Hyperfast iterations are faster than SDCA near the minimum point. For example, the
first five iterations take about 20 seconds each, and the last five take about 1.5 seconds
each. Hence, suggesting that some combination of methods would be used in practice.
However, the Hyperfast approach finds better solutions overall.
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Fig. 3. Comparison of the communication rounds number for the in house dataset. a) Ls = 10, ADAM
learning rate 0.01, n = 10000; b) Lz = 100, ADAM learning rate 0.1, n = 10000; ¢) L3 = 10, ADAM
learning rate 0.1, n = 10000; d) L3 = 15, ADAM learning rate 0.01, n = 1000.
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Fig. 4. Comparison of the communication rounds number for the in house dataset for different methods.

Table 2
Parameter selection for experiments on in-house
data.
Run L3 ADAM n "
a) 10 0.01 1x10* 2x107°
b) 100 0.1 1x10* 2x107°
c) 10 0.1 1x10*  2x107°
d) 15 0.01 1x10° 2x107°

Figs. 3, 4 show the results of the comparison on the in-house dataset (split over 200
nodes, i.e., m = 200) with A = 1x 1077, 0 = 2x 107°. Other parameters are described in
Table 2. We see that InSPAG-Hyperfast outperforms InNSPAG-SDCA for this large-scale
dataset.
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Fig. 5. The time complexity per iteration for the Hyperfast method in Algorithm 3 and the SDCA Method
from [61] at communication rounds 0, 6, and 46. The z-axis is the iteration number, and the y-axis is the
time required by the corresponding algorithm to complete its inner iteration.

Fig. 5 shows the times required by the Hyperfast method in Algorithm 3 and the
SDCA Method from [61] to complete their inner iterations at communication rounds 0, 6,
and 46. The z-axis is the iteration number, and the y-axis is the time required by the
corresponding algorithm to complete an inner iteration. We can observe that in the
communication round 0, the cost time required by both methods is approximately the
same on average. However, for communication rounds 6 and 46, the Hyperfast method
outperforms SDCA, requiring less time to complete an iteration.

Fig. 6 on the left shows the loss function F'(xy) evaluated at the point x; generated
by iteration k as a function of the wall clock time recorded by the InNSPAG method in
Algorithm 2. Markers identify when an iteration has been completed. In this case we
used the Hyperfast method in Algorithm 3 as the inner solver. Moreover, we show the
dependency on the number n of points used for preconditioning. We observe that for
different values of n, the final loss is about the same. However, as n increases, the wall
clock time required increases as well. On the other hand, the right figure shows the loss
function F(xy) evaluated at the point x; generated by iteration k as a function of the
number of communication rounds. As expected, when the number of data points used
for preconditioning increases, the number of required communication rounds decreases.
However, this implies that the central node needs to solve a bigger problem at every
iteration and it takes longer to solve it.

Fig. 7 shows the wall clock time required by the central node to solve the auxiliary
problem for every communication round. The z-axis shows the number of communi-
cation rounds, and the y-axis shows the clock time in seconds. Additionally, we show
the results for different values of the preconditioning parameter n. As n increases, the
time required for the solution of the auxiliary problem increases as well. However, the
time complexity of the auxiliary subproblem decreases as the number of communication
rounds increases.
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Fig. 6. A comparison of the wall clock times and communication rounds for the InSPAG method in Algo-
rithm 2 for different number of data points used for preconditioning. On the left, the z-axis indicates time
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is the loss function at the current iteration.
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Fig. 7. Time complexity for the solution of the auxiliary subproblem for different number of preconditioning
data points. The z-axis shows the number of communication rounds, and the y-axis shows the clock time
in seconds.

5. Hyperfast second-order method for uniformly convex functions
For the sake of completeness, in this section we consider general problem z, =
argmingeq f(z), where @ is closed convex bounded set, f has Ls-Lipschitz third-order

derivative. We also assume that the objective f(x) is uniformly convex of degree 4 > ¢ > 2
on the convex bounded set @, i.e., there exists o, > 0 s.t.

fly) > (@) + (Vf(),y— ) + %ny —a)§, Va,yeQ. (46)

As a corollary,
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Fly) > fle.) + %ny—x*uz,\w €Q. (47)

Theorem 5.1 (/25][Theorem 2]). Let sequence x*, k > 0 be generated by Hyperfast Second-
Order Method [25][Eq.8.6] for p = 3 and 5 = 1/2 and with auziliary steps described
in [25][Sect. 5.2]. Then

flar) — 7 <

3-4LsRE [ 2(k—1) -0 _3-4'LyRY  LyRy
1-8 4 = 16kS K

where Ry is such that ||xg — z*||2 < Ro, é = 48.

We show how the restart technique can be used to accelerate Hyperfast second-order
method under additional assumption of uniform convexity.

Algorithm 4 Restarted hyperfast second-order method.

Require: ¢, 04, 20, Ag s.t. f(2°) — f* < Ao.
1: for Kk =0,1,... do

.
2: Set Ar=A¢-2"F and Nj = max ’7<26L§‘1Ak" ) ,1 5.
o4
a
3: Set zr+1 = yn, as the output of the basic Hyperfast method started from zj and run for N steps.
4: Set k =k + 1.
5: end for
Ensure: zj.

Theorem 5.2. Let sequence 2, k > 0 be generated by Algorithm J. Then
o “ _
;qHZk — @13 < fla) = fF < Do 27,

and the total number of steps of the basic Hyperfast method is bounded by (c is the
constant in Theorem 1.)

5q

. 4 % L3% 4—q k _i4=g
(Qqu) < (Ao) 54 ~22 50 + k.
i=0

Proof. Let us prove the first statement of the Theorem by induction. For k£ = 0 it holds.
If it holds for some k > 0, by choice of Ny, we have that

4
oLy (4Bt _ A
N,‘:’ oq - 27

Q
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since, by our assumption, ¢ < 4. Combining the above two inequalities and Theorem 5.1,
we obtain

CLs|l2k — za]l3 _ Ak _ N

flzer) — fF < N7 <35

It remains to bound the total number of steps of the basic Hyperfast method. Denote ¢ =

i\ 3
(26{]5) .
k

b L% b i\ 4=4a L3 4—¢q i4—4q
D INi<eTE ) (Mg 27T 4k < e (Ag) T -y 27V 4k O
=0

=0 04" =0 oq"

-

Let us make a remark on the complexity of the restarted scheme in different settings.
It is easy to see from Theorem 5.2 that, to achieve an accuracy ¢, i.e., to find a point Z
s.t. f(2) — f* < e, the number of tensor steps in Algorithm 4 is

1 1
L3 —q A Ls\>3 A
O( i(AO)%q—i-logQ?O>7q<47and O(((U—B) +1> logz?[)), = 4.
ol 4

5
q

6. Conclusions

We study the distributed optimization problem of minimizing empirical risk with
smooth and (strongly) convex losses and i.i.d. data stored at nodes. Building upon the
recent result on statistical preconditioning, we propose an algorithm that iteratively
minimizes the objective function taking advantage of the statistical similarity of the cost
functions across the nodes. Such statistical preconditioning requires solving an auxiliary
optimization problem at a designated central node. Contrary to existing approaches, we
analyze the case where this auxiliary problem is solved inexactly. Moreover, we provide
the conditions on the accuracy of the solution that guarantees convergence at the same
rate as the algorithm with access to exact minimizers of the auxiliary problem. Addi-
tionally, we extend recently proposed Hyperfast second-order methods to the class of
uniformly convex functions with bounded fourth-order derivatives. We show that the
auxiliary problem in the statistically preconditioned distributed algorithm can be solved
efficiently at a linear rate via this Hyperfast second-order method. We analyze the com-
plexity of the proposed combination of the inexact statistically preconditioned algorithm
with the Hyperfast second-order sub-solver and show that it converges linearly with the
improved condition number. Finally, we show the first empirical results on implementing
high-order methods on large-scale problems, where the dimension is of the order of 3
million, and the number of samples is 700 million. As a future research direction we indi-
cate the application of the proposed algorithm to the regularized Wasserstein barycenter
problem, which can be expressed as the minimization of large sum of higher-order smooth
softmax functions [44].
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