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Statistical preconditioning enables fast methods for dis-
tributed large-scale empirical risk minimization problems. 
In this approach, multiple worker nodes compute gradients 
in parallel, which are then used by the central node to up-
date the parameter by solving an auxiliary (preconditioned) 
smaller-scale optimization problem. The recently proposed 
Statistically Preconditioned Accelerated Gradient (SPAG) 
method [1] has complexity bounds superior to other such 
algorithms but requires an exact solution for computationally 
intensive auxiliary optimization problems at every iteration. 
In this paper, we propose an Inexact SPAG (InSPAG) and ex-
plicitly characterize the accuracy by which the corresponding 
auxiliary subproblem needs to be solved to guarantee the same 
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convergence rate as the exact method. We build our results 
by first developing an inexact adaptive accelerated Bregman 
proximal gradient method for general optimization problems 
under relative smoothness and strong convexity assumptions, 
which may be of independent interest. Moreover, we explore 
the properties of the auxiliary problem in the InSPAG algo-
rithm assuming Lipschitz third-order derivatives and strong 
convexity. For such problem class, we develop a linearly con-
vergent Hyperfast second-order method and estimate the total 
complexity of the InSPAG method with hyperfast auxiliary 
problem solver. Finally, we illustrate the proposed method’s 
practical efficiency by performing large-scale numerical ex-
periments on logistic regression models. To the best of our 
knowledge, these are the first empirical results on implement-
ing high-order methods on large-scale problems, as we work 
with data where the dimension is of the order of 3 million, 
and the number of samples is 700 million.

© 2022 The Author(s). Published by Elsevier Ltd on behalf 
of Association of European Operational Research Societies 

(EURO). This is an open access article under the CC 
BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The efficient parallelization of large-scale learning is one of the most challenging prob-

lems in modern machine learning. Among several approaches, distributed computation 

and preconditioning have been shown effective in accelerating optimization algorithms, 

especially with increasing amounts of data [2,1,3]. In this paper, we propose an efficient 

distributed optimization algorithm for solving the empirical risk minimization (ERM) 

problem:

min
x∈Rd

{
f(x) � F (x) + h(x)

}
, (1)

where h(x) is a convex regularizer and F (x) is the empirical loss

F (x) �
1

N

N∑

i=1

�(x; ζi). (2)

Here D � {ζi = (ξi, ηi)}N
i=1 is a set of N training data samples, and � is a convex loss 

function with respect to x. We assume that F is LF -smooth and μF -strongly convex, 

i.e.,

μF Id � ∇2F (x) � LF Id, (3)

where Id is the d-dimensional identity matrix. The condition number of F is denoted 

as κF = LF /μF , and the solution to (1) is denoted as x∗.
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Sum-type optimization problems of the form (1) are used to model various statistical 

learning problems, including least squares regression, logistic regression, and support 

vector machines. One characteristic of modern uses of models like (1) is the so-called 

large-scale regime, i.e., when N is very large. Large N poses additional challenges re-

lated to the storage and processing of data, which in turn drives the need for modern 

distributed/federated architectures [4] that take advantage of parallel processing capa-

bilities [5], e.g., Apache Spark [6], Parameter Server [7] and MapReduce [8].

In practice, when N is very large, the complete set of data points D cannot be stored 

or is not accessible at a single machine. Instead, data is distributed among m comput-

ing units/nodes/agents such that D = {D1, . . . , Dm}. Moreover, the distributed setup 

assumes there is a central node, that is able to communicate with all the worker nodes. 

Without loss of generality we assume that N = mn, i.e., machine j ∈ {1, . . . , m} locally 

stores n samples Dj = {ξ
(j)
i , η

(j)
i }n

i=1. Specifically, each agent j has a local empirical risk, 

denoted as Fj(x) � (1/n) 
∑n

i=1 �(x; ξ
(j)
i , η

(j)
i ). Thus,

F (x)=
1

m

m∑

j=1

Fj(x)=
1

nm

m∑

j=1

n∑

i=1

�(x; ξ
(j)
i , η

(j)
i ). (4)

The centralized distributed optimization architecture described above, with a central 

node and a number of workers, typically involves two resources: communication and 

computation. Communication is usually regarded as the most valuable resource [9]. Thus, 

recent efforts [2,1,3] have been focused on the efficiency of communications, where one 

seeks to minimize (4) with a minimal number of communication rounds between the 

workers and the central node.

Recent distributed optimization approaches: The distributed approximate Newton-

type method (DANE) [2] has been one of the most popular second-order methods 

for communication-efficient distributed machine learning. DANE improves the polyno-

mial dependency of the iteration complexity on the condition number κF of first-order 

methods for distributed empirical risk minimization problems, compared to the geo-

metric rates available for centralized, i.e., non-distributed, methods [10]. Particularly, 

DANE has an iteration (communication) complexity of Õ(κ2
F /n)1 for quadratic func-

tions, and Õ(κF ) for convex non-quadratic functions. However, DANE requires the 

exact solution of a carefully constructed subproblem, which can be impractical [2]. 

An inexact version of DANE, termed InexactDANE [11], and its accelerated variant, 

termed AIDE [11], achieve an iteration complexity of Õ(κF ), and Õ(
√

κF ) respectively, 

without requiring exact solutions of the auxiliary subproblem. For quadratic functions 

InexactDANE and AIDE have an iteration complexity of Õ(κ2
F /n) and Õ(

√
κF /n1/4)

respectively. Nevertheless, the advantage of preconditioning, where the condition number 

is effectively reduced as n increases, was only shown for quadratic problems. Recently, 

1 The Õ-notation means non-asymptotic inequality up to constant and poly-logarithmic factors. More 
precisely, A = Õ(B) if there exist constants C, a > 0 such that A ≤ CB lna 1

ε .
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in [3], the authors showed that the preconditioning effect holds locally for a variation of 

DANE termed DANE-HB with inexact solutions to the local subproblem. Specifically, an 

iteration complexity of Õ(d1/4√
κF /n1/4) was shown to hold in a neighborhood around 

the optimal point for non-quadratic convex functions. Additionally, for linear prediction 

models, an improved global bound of Õ(
√

κF /n1/4) was shown [3] to be achieved by 

the D2ANE Algorithm. In [12] the authors propose the DiSCO algorithm with global 

bounds Õ(
√

κF /n1/4) for quadratic functions and Õ(d1/4√
κF /n1/4) for self-concordant 

functions which are a different class than functions satisfying (3). One of the main ob-

servations in [3] is that the looseness in the bounds of DANE and AIDE came from 

the reduce (model aggregation) step done by the central node. Thus, DANE-HB and 

D2ANE build their results from a modified structure. The worker nodes compute gradi-

ents and communicate them back to the central node, which solves the preconditioned 

auxiliary subproblem. Such algorithmic structure was used in [1] recently, where the au-

thors proposed the Statistically Preconditioned Accelerated Gradient (SPAG) method. 

SPAG has an iteration complexity of Õ(
√

κF /n1/4) for quadratic functions with direct 

acceleration, instead of using the Catalyst framework [13]. SPAG was also shown to 

have an asymptotic iteration complexity of Õ(
√

κF /n1/4), with empirical evidence that 

such rate behavior holds non-asymptotically in practice. However, exact solvers for the 

auxiliary subproblem on the central node are required. Such convergence rates match 

complexity lower bounds [14,15]. In a more challenging setup (which we do not consider 

in this paper) of decentralized distributed optimization [16] propose an algorithm with 

iteration complexity Õ(κF /
√

n) and similar up to a network-dependent factor commu-

nication complexity.

Although SPAG obtains the near-optimal iteration complexity for distributed algo-

rithms applied to (1) and (4), it strongly depends on the ability to exactly solve an 

intermediate auxiliary optimization subproblem (usually in the form of a non-Euclidean 

Bregman projection), whose complexity was not explicitly taken into account in [1]. 

More importantly, as pointed out in [1], such an intermediate problem is computation-

ally hard, and the accuracy of its solution dramatically affects the performance of the 

whole method. We solve this issue in this paper.

Our solution’s key innovation is explicitly considering the auxiliary subproblem’s in-

exactness and quantifying how it affects the convergence rate of the whole algorithm. 

Moreover, for the case of functions with high-order bounded derivatives (e.g., logistic 

regression or softmax problems [17]), we provide a Hyperfast second-order method that 

efficiently computes the approximate solution of the subproblem. This approach builds 

upon the line of works on implementable tensor methods for convex problems recently 

initiated2 by Yu. Nesterov [22], where it was shown that the third-order method for 

convex problems with Lipschitz third-order derivative could have a convex subproblem 

2 We underline that the main words here are implementable and convex. Adaptive tensor methods with 
optimal complexity guarantees for non-convex problems were proposed earlier in [18–20], and previously 
known tensor methods for convex problems [21] did not necessarily have convex auxiliary problem in each 
iteration.
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and its solution can be efficiently implemented. Later, [23] proposed near-optimal ten-

sor methods with complexity bounds which match up to a logarithmic factor the lower 

bounds for highly-smooth convex optimization. [24] proposes a third-order tensor method 

with third-order derivative approximated by finite-difference of gradients, which leads to 

a Superfast second-order method with convergence rate O(1/k4) for convex functions 

with Lipschitz third-order derivative. As a next step, [25] proposes an inexact acceler-

ated high-order proximal point method which allows improving, compared to Superfast 

second-order method, the convergence rate to O(1/k5) up to logarithmic factors. In par-

allel to the previous work and inspired by [24], the authors of [26] proposed a Hyperfast 

second-order method with the same convergence rate, but based on another accelerated 

high-order method developed in [23]. In this paper, we extend both methods to the set-

ting of strongly convex minimization problems and apply them to solve the intermediate 

auxiliary optimization subproblem in each iteration of our inexact version of SPAG.

Contributions SPAG is one of the fastest distributed methods (in terms of communi-

cation steps number) for the minimization of (1) and (4) with i.i.d. samples [1]. More-

over, the Hyperfast second-order method is the best known (near-optimal) second-order 

method to minimize convex functions with Lipschitz third-order derivatives. We argue 

that the extended combination of the proposed inexact SPAG and the new Hyperfast 

second-order method provides a useful approach to construct new efficient distributed 

algorithms. Specifically, in SPAG, the central node solves a problem with a similar struc-

ture as (1), but with a smaller number n of data samples. Therefore, with a reduced 

number of samples, the complexity of calculating the Hessian is comparable (due to 

the sum-type structure of F ) with its inversion by the matrix inversion lemma [27] and 

modern practical versions of Strassen-type algorithm [28]. In this regime, at the central 

node, Hyperfast second-order methods outperform existing variance-reduced stochastic 

first-order schemes. We extend the theoretical analysis of inexact statistical precondition-

ing methods alongside high-order methods and show that they jointly provide an efficient 

second-order method that outperforms (from theoretical and practical points of view) 

well-known (stochastic) first-order schemes.

The main contributions of this paper are as follows:

• Since SPAG is based on the accelerated Bregman proximal gradient method for rela-

tively smooth and strongly-convex problems, we first propose an inexact accelerated 

Bregman proximal gradient method for general convex optimization problems. Our 

algorithm is based on an inexact model for the objective, which subsumes the set-

ting of relatively smooth and (strongly-)convex problems and the setting of inexact 

first-order oracles. Our algorithm also allows for approximate Bregman projections. 

We estimate the convergence rate and rates of inexactnesses accumulation.

• We propose an Inexact Statistically Preconditioned Accelerated Gradient (InSPAG) 

method for distributed optimization problem (1), (4), and explicitly characterize the 

accuracy by which the corresponding auxiliary subproblem needs to be solved to 
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guarantee the same convergence rate as the exact method, i.e., Õ(
√

κF /n1/4). Our 

method is not a direct extension and has a slightly simpler structure than the method 

in [1].

• We extend and generalize the Hyperfast second-order method [25,26], recently pro-

posed for smooth and convex problems, to the class of uniformly, and especially 

strongly, convex functions. We show a linear convergence rate for this problem class.

• Based on an example of sparse logistic regression, we discuss the distributed opti-

mization problem regime, for which Hyperfast second-order optimization methods 

provide a theoretical advantage over classical first-order methods for the problem 

size, dimension, and desired accuracy of the solution.

• We provide experimental results in application to large-scale machine learning prob-

lems that show the efficiency of the use of high-order methods in practice. To the 

authors’ best knowledge, this is one of the first attempts to apply near-optimal tensor 

methods for real data and applications. Specifically, we test the proposed algorithm 

on a proprietary data set with 710 million entries and a dimension of 3.2 million.

Outline In Section 2, we introduce the inexact accelerated Bregman proximal gradient 

method for general convex optimization problems. This includes defining the concept of 

the inexact model of the objective, illustrating it by examples, presenting the algorithm 

and its convergence rate theorem together with its proof. Section 3 presents the setting 

for statistically preconditioned distributed algorithms, introduces InSPAG algorithm and 

its convergence rate theorem. After that, we present the Hyperfast second-order method 

for the auxiliary subproblem of the InSPAG, estimate its complexity and combine the 

building blocks to obtain the total complexity of the whole approach. We finish this 

section by discussing the regime in which our approach is superior to applying stochastic 

variance-reduced algorithms. Section 4 presents our experimental results. For the sake 

of completeness in Section 5 we present Hyperfast second-order method for uniformly 

convex functions. We finalize with conclusions in Section 6.

2. Accelerated gradient method under inexactness and relative smoothness

In this section, we propose a general accelerated first-order algorithm that will be 

used in the next section to propose our InSPAG method for distributed optimization. 

We believe that the results of this section may be of independent interest. This section 

is, to an extent, independent of the other sections and the reader interested in the 

distributed optimization may skip this section since in what follows only the main result 

of this section (Theorem 2.6) will be used. We consider the following general optimization 

problem

min
x∈Q

f(x), (5)
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where Q is a convex subset of finite-dimensional vector space E. Our goal is to develop a 

general accelerated inexact gradient method capable to work under relative smoothness 

and strong convexity assumptions [29,30]. We consider two types of inexactness: inexact 

information on the objective function and inexact generalized projection.

Before we give more details, we introduce some general notations. Let E be an d-

dimensional real vector space and E∗ be its dual. We denote the value of a linear 

function g ∈ E∗ at x ∈ E by 〈g, x〉. Let ‖ · ‖ be some norm on E, ‖ · ‖∗ be its 

dual, defined by ‖g‖∗ = max
x

{
〈g, x〉, ‖x‖ ≤ 1

}
. Let φ be a convex function on Q, 

which is continuously differentiable on the relative interior riQ of Q. Let Dφ[y](x) =

φ(x) − φ(y) − 〈∇φ(y), x − y〉, x ∈ Q, y ∈ riQ be the corresponding Bregman diver-

gence. Based on the Bregman divergence we introduce the following two definitions of 

inexactness.

Definition 2.1 (Inexact model [31]). Let δ, L, μ, m ≥ 0. We say that (fδ(y), ψδ(x, y)) is 

a (δ, L, μ, m, φ)-model of the function f at a given point y iff, for all x ∈ Q,

μDφ[y](x) ≤ f(x) − (fδ(y) + ψδ(x, y)) ≤ LDφ[y](x) + δ, (6)

ψδ(x, y) is convex in x, satisfies ψδ(x, x) = 0 for all x ∈ Q and

ψ(x) � ψ(z) + 〈g, x − z〉 + mDφ[z](x), ∀x, z ∈ Q, ∀g ∈ ∂ψ(z), (7)

where for fixed y ∈ Q and any x ∈ Q we denote ψ(x) = ψδ(x, y).

Definition 2.2 (Inexact generalized projection [32]). For a convex optimization problem 

minx∈Q Ψ(x) and δ̃ ≥ 0, we denote by Arg minδ̃
x∈Q Ψ(x) a set of points x̃ such that

∃h ∈ ∂Ψ(x̃) : ∀x ∈ Q → 〈h, x − x̃〉 ≥ −δ̃. (8)

We denote by arg minδ̃
x∈Q Ψ(x) some element of Arg minδ̃

x∈Q Ψ(x).

Optimization algorithms with inexact model of the objective were extensively studied 

in [31] and are generalizations of first-order algorithms with inexact oracle [33,34]. We 

now give two particular examples that are covered by the inexact model framework and 

refer to [31] for further examples.

Example 2.3. Relative smoothness and relative strong convexity, [29,30]. Assume that 

φ(x) is differentiable, and in (5), the objective f is differentiable, relatively smooth [29,30]

and strongly convex [30] relative to φ, i.e., for some μ ≥ 0 and L > 0,

μDφ[y](x) ≤ f(x) − f(y) − 〈∇f(y), x − y〉 ≤ LDφ[y](x), ∀x, y ∈ Q.
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Then, clearly, Definition 2.1 holds with m = 0, δ = 0, fδ(y) = f(y), ψδ(x, y) =

〈∇f(y), x − y〉. Importantly, the function φ is not required to be strongly convex. Our 

InSPAG relies on this particular example.

Example 2.4. Composite optimization, [35,36]. Assume that in (5), f(x) = g(x) + h(x)

with convex L-smooth w.r.t. norm ‖ · ‖ term g(x) and simple convex term h(x) which is 

usually called composite. In this case we assume that φ(x) is 1-strongly-convex w.r.t ‖ ·‖, 

and define fδ(y) = g(y) +h(y) and ψδ(x, y) = 〈∇g(y), x −y〉 +h(x) −h(y). Then, clearly,

f(x) − (fδ(y) + ψδ(x, y)) = g(x) − (g(y) + 〈∇g(y), x − y〉).

By convexity of g, we have 0 ≤ g(x) − (g(y) + 〈∇g(y), x − y〉). At the same time, by 

the L-smoothness of g and 1-strong-convexity of φ(x),

g(x) − (g(y) + 〈∇g(y), x − y〉) ≤ L

2
‖x − y‖2 ≤ LDφ[y](x).

From the combination of the above two relations, it is clear that (6) holds with δ = 0

and μ = 0 and we are in the situation of Definition 2.1 with m = 0 since ψδ(x, y) is 

convex in x.

In [31], to develop an accelerated algorithm, the authors use a different assumption 

where in the r.h.s. of (6) the Bregman divergence Dφ[y](x) is substituted with 1
2‖x −y‖2, 

and assume that φ is 1-strongly-convex w.r.t. ‖ ·‖. This, unfortunately, restricts the range 

of applications of the algorithm, and we use a weaker set of assumptions in Definition 2.1. 

At the same time, [14] showed that it is not possible to develop an accelerated algorithm 

in the relative smoothness setting without additional assumptions. Thus, we introduce 

the following assumption on the Bregman divergence Dφ[y](x) and note that the range of 

applications is still wider than for the approach of [31]. We also note that this assumption 

is simpler than the one in [1] and is a version of triangle scaling gain introduced in [37]

and triangle lower bound property of [38].

Assumption 2.5. There exists a constant G ≥ 1 such that for all x, y, u, u+ ∈ ri domφ

such that x − y = τ(u+ − u) for some τ ∈ [0, 1] it holds that

Dφ[y](x) ≤ Gτ2Dφ[u](u+). (9)

This assumption can be seen as a relaxation of homogeneity of degree 2. The simplest 

example when this property holds is when Dφ[y](x) = 1
2‖y − x‖2. In this case G = 1. We 

also note that our algorithm is adaptive to constant G which means that the property 

(9) is sufficient to hold only locally.

The proposed accelerated gradient method with inexact model is listed below as Al-

gorithm 1. Unlike [1,37,38], our algorithm is simultaneously adaptive to the “Lipschitz” 
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constant L (see Definition 2.1) and constant G in Assumption 2.5, which is expressed in 

constant M that plays the role of the product LG. Also, unlike [1,37,38], our algorithm 

allows two types of inexactness covered by Definitions 2.1 and 2.2. Finally, unlike [37,38], 

our algorithm has linear convergence when μ > 0. We also note that we allow the accura-

cies δ, ̃δ in Definition 2.1 and 2.2 to depend on the iteration counter k, which is expressed 

by the sequences {δk, ̃δk}k≥0.

Algorithm 1 Accelerated gradient method with (δ, L, μ, m, φ)-model.
1: Input: x0 is the starting point, μ ≥ 0, m ≥ 0, {δk}k≥0 and L0 > 0.
2: Set y0 := x0, u0 := x0, α0 := 0, A0 := α0

3: for k ≥ 0 do
4: Find the smallest integer ik ≥ 0 such that

fδk
(xk+1) ≤ fδk

(yk+1) + ψδk
(xk+1, yk+1) +

Mk+1α2
k+1

A2
k+1

Dφ[uk](uk+1) + δk, (10)

where Mk+1 = 2ik−1Mk, αk+1 is the largest root of the equation

Ak+1(1 + Akμ + Akm) = Mk+1α
2
k+1, Ak+1 := Ak + αk+1, and (11)

yk+1 :=
αk+1uk + Akxk

Ak+1

, (12)

Φk+1(x) := αk+1ψδk
(x, yk+1) + (1 + Ak(μ + m))Dφ[uk](x) + αk+1μDφ[yk+1](x),

uk+1 := arg min
x∈Q

δ̃k Φk+1(x), for some δ̃k ≥ 0 (13)

xk+1 :=
αk+1uk+1 + Akxk

Ak+1

. (14)5: Set k := k + 1.
6: end for
7: Output: xk

The following is the convergence rate result for the proposed algorithm.

Theorem 2.6. Assume that (fδ(y), ψδ(x, y)) is a (δ, L, μ, m, φ)-model according to Defini-

tion 2.1. Also assume that Dφ[y](x) satisfies Assumption 2.5. Then, after N iterations 

of Algorithm 1, we have

f(xN ) − f(x∗) ≤ Dφ[u0](x∗)

AN
+

2
∑N−1

k=0 Ak+1δk

AN
+

∑N−1
k=0 δ̃k

AN
, (15)

Dφ[uN ](x∗) ≤ Dφ[u0](x∗)

(1 + AN μ + AN m)
+

2
∑N−1

k=0 Ak+1δk

(1 + AN μ + AN m)
+

∑N−1
k=0 δ̃k

(1 + AN μ + AN m)
. (16)

In order to prove Theorem 2.6 we need the following technical Lemma.

Lemma 2.7 ([31, Lemma 3.5.]). Let ψ(x) be a relatively m-strongly convex function rel-

ative to φ with m ≥ 0, i.e. (7) holds, and
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y = arg min
x∈Q

δ̃{ψ(x) + βDφ[z](x) + γDφ[u](x)},

where β ≥ 0 and γ ≥ 0. Then, for all x ∈ Q,

ψ(x) + βDφ[z](x) + γDφ[u](x) ≥ ψ(y) + βV [z](y) + γDφ[u](y) + (β + γ + m)Dφ[y](x) − δ̃.

Proof of Theorem 2.6. We start by proving the correctness of the algorithm, i.e. that if 

we fix iteration k, there exists ik ≥ 0 such that (10) holds. By Definition 2.1 with x = y, 

we have fδk
(y) ≤ f(y). Thus, from (6)

fδk
(xk+1) ≤ fδk

(yk+1) + ψδk
(xk+1, yk+1) + LDφ[yk+1](xk+1) + δk. (17)

Combining this with Assumption 2.5 and using (12), (14), we further obtain

fδk
(xk+1) ≤ fδk

(yk+1) + ψδk
(xk+1, yk+1) +

LGα2
k+1

A2
k+1

Dφ[uk](uk+1) + δk. (18)

Since Mk+1 = 2ik−1Mk, we see that as soon as Mk+1 ≥ LG, (10) holds. Thus, the 

algorithm is correctly defined. Note also that by the same reason we have

Mk+1 ≤ 2LG. (19)

Our next goal is to prove that, for all x ∈ Q, we have

Ak+1f(xk+1) − Akf(xk) + (1 + Ak+1μ + Ak+1m)Dφ[uk+1](x)

− (1 + Akμ + Akm)Dφ[uk](x) ≤ αk+1f(x) + 2δkAk+1 + δ̃k. (20)

Since by Definition 2.1 with x = y, we get f(x) − δk ≤ fδk
(x) ≤ f(x), and, using (10), 

we have

f(xk+1)
(6)

≤ fδk
(xk+1) + δk

(10)

≤ fδk
(yk+1) + ψδk

(xk+1, yk+1)

+
Mk+1α2

k+1

A2
k+1

Dφ[uk](uk+1) + 2δk.

Substituting in this expression definition (14) of the point xk+1, using that Ak+1 =

Ak + αk+1 and that, by Definition 2.1, ψδk
(·, y) is convex, we have

f(xk+1) ≤ Ak

Ak+1
(fδk

(yk+1) + ψδk
(xk, yk+1)) +

αk+1

Ak+1
(fδk

(yk+1) + ψδk
(uk+1, yk+1))

+
Mk+1α2

k+1

A2
k+1

Dφ[uk](uk+1) + 2δk.
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In view of the definition (11) of the sequence αk+1 and left inequality in (6), we obtain

f(xk+1) ≤ Ak

Ak+1
f(xk) +

αk+1

Ak+1

(
fδk

(yk+1) + ψδk
(uk+1, yk+1)

+
1 + Akμ + Akm

αk+1
Dφ[uk](uk+1)

)
+ 2δk.

(21)

By Lemma 2.7, for the optimization problem in (13) with ψ(x) = αk+1ψδk
(x, yk+1), β =

1 + Akμ + Akm, z = uk, γ = αk+1μ, and u = yk+1, it holds that

αk+1ψδk
(uk+1, yk+1) + (1 + Akμ + Akm)Dφ[uk](uk+1) + αk+1μDφ[yk+1](uk+1)

+ (1 + Ak+1μ + Ak+1m)Dφ[uk+1](x) − δ̃k

≤ αk+1ψδk
(x, yk+1) + (1 + Akμ + Akm)Dφ[uk](x) + αk+1μDφ[yk+1](x).

From the fact that Dφ[yk+1](uk+1) ≥ 0, we have

αk+1ψδk
(uk+1, yk+1) + (1 + Akμ + Akm)Dφ[uk](uk+1)

≤ αk+1ψδk
(x, yk+1) + (1 + Akμ + Akm)Dφ[uk](x)

− (1 + Ak+1μ + Ak+1m)Dφ[uk+1](x) + αk+1μDφ[yk+1](x) + δ̃k.

(22)

Combining (21) and (22), we obtain

f(xk+1) ≤ Ak

Ak+1
f(xk) +

αk+1

Ak+1

(
fδk

(yk+1) + ψδk
(x, yk+1) + μDφ[yk+1](x)

+
1 + Akμ + Akm

αk+1
Dφ[uk](x)

− 1 + Ak+1μ + Ak+1m

αk+1
Dφ[uk+1](x) +

δ̃k

αk+1

)
+ 2δk.

We finish the proof of (20) applying the left inequality in (6):

f(xk+1) ≤ Ak

Ak+1
f(xk) +

αk+1

Ak+1
f(x) +

1 + Akμ + Akm

Ak+1
Dφ[uk](x)

− 1 + Ak+1μ + Ak+1m

Ak+1
Dφ[uk+1](x) + 2δk +

δ̃k

Ak+1
.

We now telescope the inequality (20) for k from 0 to N − 1 and take x = x∗:

AN f(xN ) ≤AN f(x∗) + Dφ[u0](x∗) − (1 + AN (μ + m))Dφ[uN ](x∗)

+ 2
N−1∑

k=0

Ak+1δk +
N−1∑

k=0

δ̃k. (23)
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Since V [uk+1](x∗) ≥ 0 for all k ≥ 0, we have

AN f(xN ) − AN f(x∗) ≤ Dφ[u0](x∗) + 2
N−1∑

k=0

Ak+1δk +
N−1∑

k=0

δ̃k.

The last inequality proves (15). Inequality (16) is a straightforward from (23) since f(x) ≥
f(x∗) for all x ∈ Q. �

To finish the analysis of Algorithm 1 we estimate the growth rate of the sequence AN . 

The result is proved in the same way as Lemma 3.7 in [31] with the change Lk → Mk.

Lemma 2.8. For all N ≥ 0, we have

AN ≥ max

⎧
⎨
⎩

1

4

(
N−1∑

k=0

1√
Mk+1

)2

,
1

M1

N−1∏

k=1

(
1 +

√
μ + m

4Mk+1

)2
⎫
⎬
⎭

≥ max

{
N2

4M̃N

,
1

M1
exp

(
N

√
μ + m

4M̃N

)}
,

where M̃
−1/2
N = 1

N

∑N−1
k=0 M

−1/2
k+1 .

Note that from (19) we have that M̃
−1/2
N = 1

N

∑N−1
k=0 M

−1/2
k+1 ≥ 1√

2LG
, which leads to 

the following estimate for the convergence rate of Algorithm 1

f(xN ) − f(x∗) ≤Dφ[u0](x∗) min

{
8LG

N2
, 2LG exp

(
−N

√
μ + m

8LG

)}

+
2
∑N−1

k=0 Ak+1δk

AN
+

∑N−1
k=0 δ̃k

AN
.

3. Inexact statistically preconditioned accelerated gradient method

In this section, we return to the distributed empirical risk minimization problem (1), 

(4), where we deal with m machines or worker nodes, with sample size n at each. More-

over, without loss of generality we index the central node as node 1. Following the same 

algorithmic structure as DANE [2] and SPAG [1], we define a reference function

φ(x) =
1

n

n∑

i=1

�(x; ζi) +
σ

2
‖x‖2

2, (24)

where the samples ζi are taken from the node which is chosen to be central. It is easy 

to see from (2) and (3) that φ(x) is Lφ-smooth, and μφ-strongly convex since it has a 



P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 13

similar form as F (x). The value of the parameter σ is set to be an upper bound that 

quantifies how similar the function F1 is to F , i.e., we assume that with high probability, 

it holds that

‖∇2F (x) − ∇2F1(x)‖2 ≤ σ, ∀x ∈ domh (25)

where the norm is the operator norm for matrices (i.e., the largest singular value). The 

rationale behind this statistical similarity assumption are statistical arguments that allow 

to show [1] that (25) holds with σ proportional to 1√
n

. Further, it follows that F (x)

is LF/φ-relatively smooth and μF/φ-relatively strongly convex with respect to φ(x) [12,1], 

i.e.,

μF/φDφ[x](y) ≤ DF [x](y) ≤ LF/φDφ[x](y), (26)

with LF/φ = 1, μF/φ = μF /(μF + 2σ), and κF/φ = LF/φ/μF/φ = 1 + 2σ/μF .

Once the specific Bregman divergence has been defined based on statistical similarity 

and using the reference function (statistical preconditioner) φ(x) as in (24), distributed 

statistical preconditioning methods rely on Bregman proximal steps, where the algorithm 

needs to solve at every iteration the problem of the form (here α > 0)

arg min
x∈Rd

{α(〈∇F (z), x−z〉 + h(x))+Dφ[u](x)} . (27)

Non-accelerated methods based on steps of the form (27) have an iteration complexity 

of Õ(κF/φ) [39,30,31]. Thus, statistical preconditioning allows for the relative condition 

number κF/φ to determine the convergence rate instead of κF . The authors in [1] showed 

that for quadratic functions σ = Õ(LF /
√

n), which implies κF/φ = 1 + Õ(κF /
√

n). Sim-

ilarly, for non-quadratic functions σ = Õ(κF

√
d/n), thus κF/φ = 1 + Õ(κF

√
d/n). This, 

in turn, leads to the total number of communication rounds Õ
(
κF/φ

)
, which is quantita-

tively better than for methods that do not use such statistical preconditioning [15,40,5]. 

A similar argument follows for accelerated algorithms, where the iteration complexity 

will be Õ
(
κ

1/2
F/φ

)
[1].

Next, we study the building blocks of our approach to advance this line of works. 

First, we consider the inexact version of the SPAG algorithm [1] wherein each iteration 

subproblems of the form (27) are solved inexactly with such accuracy that the over-

all performance of the algorithm is affected only by a logarithmic factor. Notably, the 

required accuracy decreases as iterations go, meaning that the approximate solution’s 

quality may not be high in the first iterations. Next, we introduce and analyze a Hyper-

fast second-order method for third-order smooth and uniformly convex functions, which 

we will apply to solve subproblems (27) in each iteration of our inexact SPAG (InSPAG) 

algorithm when h(x) = 0. Finally, we analyze the total complexity for the combination 

of InSPAG plus the Hyperfast second-order method to solve our problem of interest. 

This combination is advantageous because we only use first-order information on the 
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individual losses from the whole dataset and obtain a small subproblem on the central 

node. Then, a fast second-order method is used to solve this subproblem on the central 

node.

3.1. InSPAG and its convergence rate theorem

This subsection introduces the InSPAG algorithm together with its convergence rate 

analysis. The main idea is to implement Algorithm 1 on the central node and use 

Theorem 2.6. Inexactness in statistically preconditioned problems has been studied for 

DANE, resulting in InexactDANE, AIDE [11], and D2ANE [3]. To propose our InSPAG 

algorithm we rely on the results of Section 2. From (26) and Examples 2.3 and 2.4

we see that fδ(y) = f(y) and ψδ(x, y) = 〈∇F (y), x − y〉 + h(x) − h(y) constitute 

a (0, LF/φ, μF/φ, 0, φ)-model of the function f defined in (1). Thus, the main idea of 

InSPAG is to implement Algorithm 1 for problem (1) using distributed computations. 

We further assume that the solution x∗ of the problem (1) belongs to some Euclidean 

ball B2(0, R), and define R2
φ = 2LφR2. Using this quantity we set the inexactness of the 

projection in each iteration to be δ̃k =
R2

φ

k (cf. (13)).

The pseudocode of the proposed InSPAG algorithm is presented as Algorithm 2. 

Unlike [1], our algorithm is inspired by a similar-triangles type of accelerated meth-

ods [41–44,31,45], which leads to a slightly simpler algorithm. Another important dif-

ference with [1] is that our algorithm is adaptive simultaneously to the constants LF/φ

Algorithm 2 InSPAG (LF/φ, μF/φ, x0, R).

1: Input: R s.t. x∗ ∈ B2(0, R), R2
φ = 2LφR2, μF/φ, M0.

2: Set y0 = u0 = x0 ∈ B2(0, R), A0 := α0 := 0.
3: for k ≥ 0 do
4: Set ik = 0
5: repeat
6: At the central node set Mk+1 = 2ik−1Mk and find αk+1 from Ak+1(1 + AkμF/φ) = Mk+1α2

k+1. 
Set Ak+1 := Ak + αk+1.

7: At the central node set yk+1 :=
αk+1uk+Akxk

Ak+1
and send to each worker.

8: At every worker node j compute 1
n

∑n
i=1 ∇�

(
yk+1; ζ(j)

i

)
and send it to the central node.

9: At the central node compute ∇F (yk+1) = 1
nm

∑m
j=1

∑n
i=1 ∇�

(
yk+1; ζ(j)

i

)
.

10: At the central node solve uk+1 = arg min
R2

φ
/k

x∈B2(0,R) Φk+1(x),

where Φk+1(x) = αk+1(〈∇F (yk+1), x − yk+1〉 + h(x))+

+ (1 + AkμF/φ)Dφ[uk](x) + αk+1μF/φDφ[yk+1](x). (28)

11: At the central node set xk+1 :=
αk+1uk+1+Akxk

Ak+1
.

12: Set ik = ik + 1.
13: until

F (xk+1) ≤ F (yk+1) + 〈∇F (yk+1), xk+1 − yk+1〉 +
Mk+1α2

k+1

A2
k+1

Dφ[uk](uk+1). (29)

14: end for
15: Output: xk
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and G (see Assumption 2.5), which may lead to further acceleration in practice since 

locally, the constant LF/φG can be smaller leading to larger step-sizes. Note that Line 10

of Algorithm 2 requires approximate minimization of the auxiliary function (28). First, 

we present the complexity analysis of Algorithm 2 in Theorem 3.1 assuming the ap-

proximate solution to (28). In Subsection 3.2, we show the complexity of obtaining said 

approximate solution efficiently when h(x) = 0 using high-order methods.

We are now in a position to state the main result on InSPAG.

Theorem 3.1. Assume that the function F in (1) is μF/φ-strongly convex and LF/φ-

smooth with respect to the function φ, where φ satisfies Assumption 2.5. Moreover, 

let xk, k ≥ 0 be the sequence generated by Algorithm 2. Then, after K iterations it 

holds that

f(xK) − f(x∗) ≤ 2LφR2(1 + ln K)

AK
. (30)

Moreover, the value AK grows as follows:

AK ≥ max

{
K2

4M̃K

,
1

M1
exp

(
K

√
μF/φ

4M̃K

)}
, (31)

where M̃
−1/2
K = 1

K

∑K−1
k=0 M

−1/2
k+1 .

Proof. Clearly, Algorithm 2 is a distributed implementation of Algorithm 1 with δk =

0, k ≥ 0. We only note that for this particular setting with fδ(y) = f(y) and ψδ(x, y) =

〈∇F (y), x − y〉 + h(x) − h(y), inequality (10) becomes

F (xk+1) + h(xk+1) ≤F (yk+1) + h(yk+1) + 〈∇F (yk+1), xk+1 − yk+1〉

+ h(xk+1) − h(yk+1) +
Mk+1α2

k+1

A2
k+1

Dφ[uk](uk+1),

which is equivalent to (29). Thus, we can apply Theorem 2.6, which gives the following 

estimate

f(xK) − f(x∗) ≤ Dφ[u0](x∗)

AK
+

∑K−1
k=0 δ̃k

AK
≤ Lφ(2R)2

2AK
+

1

AK

K−1∑

k=0

R2
φ

k

≤
R2

φ(1 + ln K)

AK
=

2LφR2(1 + ln K)

AK

The lower bound for AK follows from Lemma 2.8. �

To apply Theorem 3.1 we need to ensure that Assumption 2.5 is satisfied.
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Lemma 3.2. Under the assumption that φ is μφ-strongly convex and Lφ-smooth Assump-

tion 2.5 is satisfied with G = Lφ/μφ = κφ.

Proof. Since φ is μφ-strongly convex and Lφ-smooth, we have that

μφ

2
‖x − y‖2 ≤ Dφ[x](y) ≤ Lφ

2
‖x − y‖2, ∀x, y ∈ dom φ.

Thus, for all x, y, u, u+ such that x − y = τ(u+ − u) for some τ ∈ [0, 1], we have

Dφ[y](x) ≤ Lφ

2
‖x − y‖2 =

Lφτ2

2
‖u+ − u‖2 ≤ Lφτ2

μφ
Dφ[u](u+). �

From Lemma 3.2, we see that if φ is a quadratic function, then, G = κφ and by 

(19) we have that Mk+1 ≤ 2LF/φκφ. Then, the number of iterations K to reach accu-

racy ε, i.e., the number of communications between the central node and the worker 

nodes, is bounded as O(
√

κF/φκφ ln 1
ε ). As we see below, for quadratic functions the 

estimate for G can be improved to G = 1, which gives a better communication com-

plexity O(
√

κF/φ ln 1
ε ). In the general case, where φ is not quadratic, similarly to [1,46], 

we next show that Mk+1 → LF/φ linearly with rate Õ(
√

κF/φ). This means that the 

convergence rate of InSPAG quickly approaches the convergence rate with condition 

number
√

κF/φ.

Lemma 3.3. Under the assumptions of Theorem 3.1 and Lemma 3.2 assume additionally 

that the Hessian of φ is H-Lipschitz-continuous, i.e.

‖∇2φ(x) − ∇2φ(y)‖ ≤ H‖x − y‖. (32)

Then the inequality (29) is satisfied with

Mk+1 = LF/φ min

{
κφ, 1 +

Hdk

μφ

}
, (33)

where dk = ‖xk+1 − yk+1‖ + ‖uk − xk‖ + ‖uk − uk+1‖.

Proof. By the local quadratic representation of the Bregman divergence, we have for 

any a, b ∈ dom φ and for some τ ∈ [0, 1] that Dφ[a](b) = ‖a − b‖2
∇2φ(τa+(1−τ)b). We 

use H(a, b) to denote the corresponding Hessian ∇2φ(τa + (1 − τ)b). We have

Dφ[xk+1](yk+1) = ‖xk+1 − yk+1‖2
H(xk+1,yk+1)

(14),(12)
=

α2
k+1

A2
k+1

‖uk+1 − uk‖2
H(xk+1,yk+1)

≤ α2
k+1

A2
k+1

(
‖uk+1 − uk‖2

H(uk+1,uk) + ‖H(xk+1, yk+1) − H(uk+1, uk)‖‖uk+1 − uk‖2
)
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≤ α2
k+1

A2
k+1

(
Dφ[uk](uk+1) + ‖H(xk+1, yk+1) − H(uk+1, uk)‖Dφ[uk](uk+1)

μφ

)

(32)

≤ α2
k+1

A2
k+1

Dφ[uk](uk+1)

(
1 +

H‖z − z′‖
μφ

)
,

where z ∈ [xk+1, yk+1] and z′ ∈ [uk+1, uk]. Using the latter and (12), (14), we obtain

‖z − z′‖ ≤ ‖z − yk+1‖ + ‖yk+1 − uk‖ + ‖uk − z′‖
≤ ‖xk+1 − yk+1‖ + ‖xk − uk‖ + ‖uk − uk+1‖ � dk.

Combining the above with the relative smoothness property (26), we obtain that (29)

holds when Mk+1 = LF/φ

(
1 + Hdk

μφ

)
. Since (29) holds also when Mk+1 = LF/φκφ (see 

Lemma 3.2 and (26)), we obtain the statement of the Lemma. �

From (16) and (31) since Mk+1 ≤ LF/φκφ we know that the sequence uk, k ≥ 0 con-

verges to x∗ linearly with condition number
√

κF/φκφ. From (15) by the strong convexity, 

we see that the sequence xk, k ≥ 0 converges to x∗ also linearly with the same condition 

number. Hence, by (12) we conclude the same on the sequence yk, k ≥ 0. Thus, dk con-

verges linearly to zero with the same condition number and Mk+1 approaches LF/φ with 

the same rate. This, in turn, means that the convergence rate in Theorem 3.1 quickly 

approaches O((1 − √
κF/φ)K) when the Hessian of φ is Lipschitz-continuous.

Next, we study the properties of the auxiliary problem in step 10 of Algorithm 2

and, under the additional assumption that the loss function � has bounded fourth-order 

derivatives, we show the explicit complexity of computing an approximate solution to 

this auxiliary problem using Hyperfast second-order methods.

3.2. Hyperfast second-order method for the auxiliary problem

In this subsection, we elaborate the properties of the auxiliary problem in step 10

of Algorithm 2 and propose a Hyperfast second-order algorithm to solve it when the 

function φ is strongly convex and sufficiently smooth. The main result is a complexity 

estimate for solving the auxiliary problem by the Hyperfast algorithm. Recall that, at 

each iteration of Algorithm 2 we need to find an approximate minimizer in the sense of 

Definition 2.2 of the function Φk+1(x) on the Euclidean ball B2(0, R). Throughout this 

subsection we assume that the regularizer h(x) ≡ 0.

We first study some properties of the function Φk+1(x) defined in (28) and the mini-

mization problem solved in step 10 of Algorithm 2. Using our assumption that h(x) = 0, 

the fact that Ak+1 = Ak + αk+1, the definition of the Bregman divergence, and ig-

noring constant terms in that problem, we see that it is equivalent to the problem 

uk+1 = arg min
R2

φ/k

x∈B2(0,R) Ψk+1(x), where

Ψk+1(x) � 〈αk+1∇F (yk+1) − (1 + AkμF/φ)∇φ(uk) − αk+1μF/φ∇φ(yk+1), x〉+
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+ (1 + Ak+1μF/φ)φ(x). (34)

Lemma 3.4. Assume that φ is μφ-strongly convex and Lφ-smooth w.r.t. the Euclidean 

norm. Also assume that for some θ > 0 and all x ∈ B2(0, R), it holds that 

max{‖∇F (x)‖2/μF/φ, ‖∇φ(x)‖2} ≤ θ. Let us denote x∗
k+1 = arg minx∈B2(0,R) Ψk+1(x)

and let the point x̂k+1 satisfy

Ψk+1(x̂k+1)−Ψk+1(x∗
k+1) ≤ ∆k �

μφR4
φ

2k2(2LφR + 3θ)2(1 + Ak+1μF/φ)
. (35)

Then x̂k+1 = arg min
R2

φ/k

x∈B2(0,R) Ψk+1(x).

Proof. Since φ is μφ-strongly convex and Lφ-smooth, Ψk+1 in (34) is μΨ-strongly convex 

with μΨ = (1 + Ak+1μF/φ)μφ and LΨ-smooth with LΨ = (1 + Ak+1μF/φ)Lφ. Further, 

by the assumption of the lemma, we have, for all x ∈ B2(0, R),

‖∇Ψk+1(x)‖2 = ‖αk+1∇F (yk+1) − (1 + AkμF/φ)∇φ(uk) − αk+1μF/φ∇φ(yk+1)

+ (1 + Ak+1μF/φ)∇φ(x)‖2 ≤ 3(1 + Ak+1μF/φ)θ, (36)

where we used also that αk+1 ≤ Ak+1 and that Ak+1 = Ak + αk+1. By the strong 

convexity of Ψ, we have

‖x̂k+1 − x∗
k+1‖2 ≤

√
2

μΨ
(Ψk+1(x̂k+1) − Ψk+1(x∗

k+1)) ≤
√

2∆k/μΨ. (37)

Hence, for any x ∈ B2(0, R),

〈∇Ψk+1(x̂k+1), x − x̂k+1〉 = 〈∇Ψk+1(x̂k+1) − ∇Ψk+1(x∗
k+1), x − x̂k+1〉

+ 〈∇Ψk+1(x∗
k+1), x − x∗

k+1〉 + 〈∇Ψk+1(x∗
k+1), x∗

k+1 − x̂k+1〉
≥ −LΨ‖x∗

k+1 − x̂k+1‖2‖x − x̂k+1‖2 + 0 − ‖∇Ψk+1(x∗
k+1)‖2‖x∗

k+1 − x̂k+1‖2

(36),(37)

≥ −(2LΨR + 3(1 + Ak+1μF/φ)θ)
√

2∆k/μΨ

= −(1 + Ak+1μF/φ)(2LφR + 3θ)

√
2∆k

(1 + Ak+1μF/φ)μφ
≥ −R2

φ/k

where we used the definitions of LΨ and μΨ and the expression for ∆k. Thus, x̂k+1

satisfies Definition 2.2 with δ̃ = R2
φ/k. �

Next, we propose an efficient Hyperfast second-order method to obtain a point x̂k+1

for which (35) holds. To do this, we make an additional assumption on the function φ.
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Assumption 3.5. The function φ has bounded fourth-order derivatives, which is equiva-

lent to Lipschitz third-order derivative, i.e. there exists 0 ≤ Lφ,3 < ∞ s.t.

‖∇3φ(x) − ∇3φ(y)‖2 ≤ Lφ,3‖x − y‖2, ∀x, y ∈ B2(0, R),

where the norm of a tensor is induced by the Euclidean norm in a standard way [22].

The idea is to use a second-order implementation of a third-order method, in the 

sense of [25, Sect. 5.2] or [26, Algorithm 2], to minimize Ψk+1(x) in each iteration of 

InSPAG. Such methods are called Hyperfast second-order methods since, due to the 

additional assumption of third-order smoothness, they have faster convergence rates than 

the optimal second-order method [47]. In our case, the objective Ψk+1(x) is additionally 

strongly convex. Thus, we can achieve faster rates than the basic schemes in [25,26] that 

do not use strong convexity. We propose an extension of Hyperfast second-order methods 

for minimizing strongly convex functions and show that they have faster convergence 

rate.3 Our algorithm is described below as Algorithm 3.

Algorithm 3 Restarted hyperfast second-order method.
Require: z0 ∈ B2(0, R), constant c which defines convergence rate of the basic Hyperfast method, strong 

convexity parameter μφ.
1: Set R0 = 2R
2: for t = 0, 1, ... do

3: Set Rt = R0 · 2−k, and Nt = max{�
(
8cLφ,3R2

t /μφ

) 1

5 �, 1},
4: Set zt+1 = yNt

as the output of the basic Hyperfast Second-Order Method (either [25, Eq.3.6]
for p = 3 and β = 1/2 and with auxiliary steps described in [25, Sect. 5.2] or [26, Algorithm 2]) 
started from zt and run for Nt steps applied to Ψk+1(x).

5: Set t = t + 1.
6: end for

Ensure: zt.

As a building block, this method uses basic Hyperfast second-order method which has 

convergence rate of the form cL3‖x∗ − z0‖4
2/k5, where k is the iteration counter, c = 48

for [25, Theorem 2] and c = 35 for [26, Theorem 2].

Theorem 3.6. Under assumptions of Lemma 3.4 let additionally Assumption 3.5 to hold. 

Let also sequence zt, t ≥ 0 be generated by Algorithm 3. Then

μΨ

2
‖zt − x∗

k+1‖2
2 ≤ Ψk+1(zt) − Ψk+1(x∗

k+1) ≤ 2μΨR2 · 2−2t, t ≥ 0. (38)

Moreover, the total number of steps of the basic Hyperfast second-order method to 

reach Ψk+1(zt) − Ψk+1(x∗
k+1) ≤ ∆k is bounded by

3 Section 5 extends Hyperfast second-order methods for a more general setting of minimizing uniformly 
convex functions. Here we use a particular case that corresponds to uniform convexity of the order q = 2, 
equivalent to strong convexity.
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5

(
32cLφ,3R2

μφ

) 1
5

+ log2

(1 + Ak+1μF/φ)2k2(2LφR + 3θ)2

L2
φR2

.

Proof. Let us denote for shortness x∗ = x∗
k+1 and Ψ(x) = Ψk+1(x). For t = 0 we have 

‖x∗ −z0‖2 ≤ R0. Let us assume that ‖x∗ −zt‖2 ≤ Rt and show that ‖x∗ −zt+1‖2 ≤ Rt+1. 

By Assumption 3.5 and (34) it is clear that Ψ(x) has LΨ,3-Lipschitz third-order derivative 

with LΨ,3 = (1 +Ak+1μF/φ)Lφ,3. Recall that μΨ = (1 +Ak+1μF/φ)μφ. From [25][Theorem 

2] since Ψ is μΨ-strongly convex and has LΨ,3-Lipschitz third-order derivative, it holds 

that

μΨ

2
‖zt+1 − x∗‖2

2 ≤ Ψ(zt+1) − Ψ(x∗) ≤ cLΨ,3‖zt − x∗‖4
2

N5
t

≤ μΨ(Rt/2)2

2
=

μΨR2
t+1

2

by the choice of Nt and since LΨ,3/μΨ = Lφ,3/μφ. Thus, by induction, we have (38).

It remains to estimate the number of iterations of the basic Hyperfast method. From 

(38) we see that to reach the accuracy ∆k it is sufficient to make T = 1
2 log2

2μΨR2

∆k

restarts. Summing up the number of operations Nt, t = 0, ..., T , we obtain

T∑

t=0

Nt ≤
T∑

t=0

[(
8cLφ,3R2

t

μφ

) 1
5

+ 1

]
=

(
8cLφ,3R2

0

μφ

) 1
5

T∑

t=0

2− 2t
5 + T

≤ 5

(
32cLφ,3R2

μφ

) 1
5

+ log2

2μΨR2

∆k
.

Let us estimate the last term using (35) and that μΨ = (1 +Ak+1μF/φ)μφ, R2
φ = 2LφR2:

log2

2μΨR2

∆k
= log2

2(1 + Ak+1μF/φ)μφR2

μφ(2LφR2)2

2k2(2LφR+3θ)2(1+Ak+1μF/φ)

= log2

(1 + Ak+1μF/φ)2k2(2LφR + 3θ)2

L2
φR2

.

Combining this with the previous chain of inequalities, we obtain the second statement 

of the lemma. �

3.3. InSPAG plus hyperfast method with application to logistic regression

This subsection combines the building blocks introduced in the previous two subsec-

tions and considers a particular application to a regularized logistic regression problem, 

for which we obtain a total complexity bound in terms of the number of iterations of 

the Hyperfast second-order method. We further discuss the arithmetic iteration com-

plexity of our method and compare it to that of stochastic variance-reduced first-order 

algorithms and indicate a regime in which our algorithm is preferable.

Combining Theorems 3.1 and 3.6, we obtain the following result.
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Theorem 3.7. Assume that in problem (1), h(x) = 0, and that its solution x∗ be-

longs to the ball B2(0, R). Assume that the function F in this problem is μF/φ-

strongly convex and LF/φ-smooth with respect to the function φ, where φ satis-

fies Assumption 2.5, is μφ-strongly convex, Lφ-smooth and has Lφ,3-Lipschitz third-

order derivative. Also assume that for some θ > 0 and all x ∈ B2(0, R), it holds 

that max{‖∇F (x)‖2/μF/φ, ‖∇φ(x)‖2} ≤ θ. Let ε > 0 be the target accuracy. Finally, 

let InSPAG (Algorithm 2) be applied to problem (1), and in step 10 of this algorithm 

let Restarted Hyperfast method (Algorithm 3) be applied to solve the auxiliary problem. 

Then a sufficient number of iterations of the basic Hyperfast method to find an ε-solution 

to (1) is bounded as

O

(
K

(
Lφ,3R2

μφ

) 1
5

+ K log2

μF/φLφR2(LφR + θ)K ln K

LφRε

)
, (39)

where K is such that
2LφR2(1+ln(K+1))

AK+1
≤ ε <

2LφR2(1+ln K)
AK

.

Proof. From (30) we see that InSPAG can be stopped at iteration K when we 

have
2LφR2(1+ln(K+1))

AK+1
≤ ε <

2LφR2(1+ln K)
AK

. Then, f(xK+1) − f(x∗) ≤ ε. Also, ap-

plying Theorem 3.6 we obtain that the total number of iterations of the basic Hyperfast 

method, up to numerical constant multipliers, is bounded by

K∑

k=0

((
Lφ,3R2

μφ

) 1
5

+ log2

(1 + AkμF/φ)k(LφR + θ)

LφR

)

≤c K

((
Lφ,3R2

μφ

) 1
5

+ log2

(1 + AKμF/φ)K(LφR + θ)

LφR

)
= (39),

where in equality ≤c means a usual inequality up to a numerical constant factor. �

From (31) and Lemma 3.3 we know that when φ has also Lipschitz Hessian, it is 

sufficient to take K = O
(√

κF/φκφ ln 1
ε

)
. Lemma 3.3 also implies that for quadratic func-

tion φ it is sufficient to take K = O
(√

κF/φ ln 1
ε

)
and that for non-quadratic function φ

the result is the same up to a fast asymptotic. In the language of the individual loss � and 

the number of samples n used for preconditioning, our result is the same Õ(
√

κ�/n1/4)

as for the exact algorithm [1]. Thus, the total number of iterations of the basic Hyperfast 

method to find an ε-solution to (1) can be bounded as

Õ

(
√

κF/φ

(
Lφ,3R2

μφ

) 1
5

)
. (40)



22 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

So far, we have not explicitly used the finite-sum structure of problem (1), (2) and 

the statistical similarity (25). In order to do this, we consider the sparse empirical risk 

minimization problem with regularized logistic loss, where in (2), for i ∈ {1, . . . , N},

�(x; ζi) = log (1+ exp(−ηi〈x, ξi〉)) +λ1

∑

j∈IS

x2
j+λ2

∑

j∈ID

x2
j , (41)

where ζi = (ξi, ηi), ηi = 1 indicates a positive (clicked) example, and ηi = −1 otherwise. 

We assume there are two types of features, namely, sparse and dense features. Let ξi,j be 

the j-th element of the vector ξi. Then, ξi,j is a sparse feature if ξi,j = 0 for almost all i ∈
{1, . . . , N}, and a dense feature if ξi,j �= 0 for many i ∈ {1, . . . , N}. We denote by IS

(and ID) the set of sparse (and dense) features with IS ∪ID = {1, . . . , d} and IS ∩ID = ∅. 

Moreover, it follows from [48, Section 4.4] that in this case the function F is LF -smooth 

with LF = max{λ1, λ2} + 1
N

∑N
i=1 ‖ηiξi‖2

2 = O(s), where s is the average number of 

nonzero elements in ξi, and μF -strongly convex with μF = min{λ1, λ2}. For the same rea-

sons, function φ defined in (24) is Lφ-smooth with Lφ = max{λ1, λ2} + 1
n

∑n
i=1 ‖ηiξi‖2

2+σ

and μφ-strongly convex with μφ = min{λ1, λ2} + σ. It also has bounded first-, second, 

and third-order derivatives [17]. More importantly, the logistic loss in (41) has bounded 

fourth-order derivatives [17], which means that Assumption 3.5 holds. Indeed, let us 

define matrix A = [η1ξ1, . . . , ηnξn]
. Then, by Theorem 5.4 in [17] with μ = 1 the func-

tion 1
n

∑n
i=1 �(x; ζi) has Lipschitz third-order derivative with constant L�,3 = 15‖A
A‖2

2

w.r.t. 2-norm or with constant L�,3 = 15 w.r.t. ‖ · ‖A�A-norm. Since adding a quadratic 

function does not change the Lipschitz constant for the third-order derivative, φ has 

Lipschitz third-order derivative with constant Lφ,3 = L�,3.

Applying [1, Theorem 3], we obtain that in our setting the statistical similarity pa-

rameter in (25) is σ = 1 + Õ
(

maxi=1,...,n ‖ηiξi‖3/2
2 R

min{λ1,λ2}√
n

)
and a sufficient number of InSPAG 

iterations is Õ(
√

κ�/n1/4), which is similar to SPAG [1]. Further, the number of the basic 

Hyperfast iterations is the same up to a factor

(
Lφ,3R2

μφ

) 1
5

≤c

( ‖A
A‖2
2R2

min{λ1, λ2} + σ

) 1
5

≤
( ‖A
A‖2

2R2

min{λ1, λ2}

) 1
5

.

Informally speaking, applying statistical preconditioning allows reducing the mini-

mization of a large sum F of N functions in (2) to the minimization of a moderate 

sum φ of n functions when making the step 10 of Algorithm 2. To conclude this sub-

section we would like to discuss the complexity of minimizing function Ψ in (34) which 

is equivalent to step 10 of Algorithm 2. To that end, we consider the setting of sparse 

logistic regression with loss (41). Since φ and Ψ have finite-sum form, a straightforward 

approach is to apply accelerated variance reduced methods. This leads to arithmetic 

operations complexity

Õ
(
s ·

(
n +

√
nκ

))
, (42)
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where s comes from the cost of evaluating a sparse stochastic gradient ∇�(x; ζi) for 

some random i, and the rest is the optimal bound on the number of stochastic gradient 

evaluations for such methods [49]. Note that we have κ = LΨ/μΨ = Lφ/μφ.

We propose an alternative approach by applying Hyperfast second-order methods 

to minimize the function Ψ. Since basic Hyperfast second-order methods are a special 

implementation of third-order method [22,23,50,24–26], each their iteration requires to 

minimize the regularized third-order Taylor polynomial:

min
y∈Rd

{
〈∇Ψ(x), y−x〉 +

1

2
∇2Ψ(x)[y − x]2 +

1

6
∇3Ψ(x) [y−x]

3
+

LΨ,3

8
‖y−x‖4

2

}
. (43)

It is shown in [22] that the objective in (43) is relatively smooth and strongly convex 

with respect to the function a(y) = 1
2∇2Ψ(x)[y − x]2 +

LΨ,3

8 ‖y − x‖4
2 with μΨ/a =

1 −1/
√

2, LΨ/a = 1 +1/
√

2. Since κΨ/a is a constant, the complexity of solving (43) is, up 

to logarithmic factors, the same as for minimizing a(y). In turn, the complexity of solving 

this problem, up to logarithmic factors, is the same as the complexity of a quadratic 

programming problem and can be estimated by the complexity of matrix inversion [51]. 

To sum up, the arithmetic operations complexity of minimizing the function Ψ by the 

Restarted Hyperfast second-order method has the form

Õ

(
(
s2n + dlog2 7

)
·
(

Lφ,3R2

μφ

)1/5
)

, (44)

see [23,25,26] for more details on arithmetic complexity of each iteration of the ba-

sic Hyperfast method. The first term in (44), i.e., s2n, is due to the complexity of 

Hessian calculation. The second term, i.e. dlog2 7, corresponds to the complexity of Hes-

sian inversion, e.g., by the matrix inversion lemma using Strassen’s algorithm [28]. The 

term
(

Lφ,3R2

μφ

)1/5

comes from the estimate for the number of iterations of the basic Hy-

perfast second-order method, see Theorem 3.6. Additionally, we may expect R2 = O(d), 

since dim x∗ = d and Lφ,3 = O
(

1
n

∑n
i=1 ‖ηiξi‖4

2

)
= O(s2) since we consider sparse 

logistic regression.

Without loss of generality, we can assume that the parameter n can be set such 

that dlog2 7 = O
(
s2n

)
. In this case, the Hyperfast second-order method with complexity 

(44) outperforms accelerated variance reduced algorithms with complexity (42) if μφ �
s−3n−2. Where �, and � mean the same as ≤ and =, but up to dimension-dependent 

factors of the order O(1). For the particular case of sparse logistic regression problems, 

our focused application, we can assume that s = Õ(1). Therefore, we have that if d �
n0.356 and μφ � n−2, or, equivalently, if dlog2 7 � n � μ

−1/2
φ , then, the Hyperfast 

second-order method has smaller arithmetic operations complexity than variance reduced 

algorithms. The last inequality is reasonable when the requirement for the accuracy is 

high. Indeed, in practice, via regularization [52], it is reasonable to set μφ � μF �
ε/R � ε/d, where ε > 0 is a desired accuracy. Thus, in this case we can rewrite the 
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Table 1
Statistics of the datasets. N is the number of sam-
ples, d is the number of features, Feat. is the average 
number of dense features, and Size is the data size in 
MB.

Dataset N d Feat. Size

RCV1 20k 47k 74.05 13.7
In-house 710M 3,246k 109.86 650.8k

last inequality as ε � n−1.644 (d2.81 � n � ε−0.61). We can conclude that Hyperfast 

second-order methods are better when our goal is to solve sparse logistic regression with 

loss (41) with high accuracy. This result can be strengthened by using parallelization. 

In the complexity bound (42) for variance reduced algorithms, only the first term can 

be improved by applying parallelization on n nodes. On the contrary, in the bound (44)

for Restarted Hyperfast method, the first term can be improved by parallelization on n

nodes, and the second can be improved by parallelization on d nodes.

To conclude, high-order methods are competitive from the theoretical point of view 

for large-scale convex problems that require high accuracy of the solution, especially 

when the problem is sparse. Further improvements can potentially be achieved by using 

inexact tensor methods [51,53–55] to save some computational work.

4. Numerical analysis and implementation details

In this section, we present numerical experiments and implementation details of Algo-

rithm 2. Namely, on the example of regularized logistic regression, we demonstrate the 

practical performance of InSPAG method with Hyperfast subsolver (InSPAG+Hyper-

fast) and compare it with the state-of-the-art methods such as DANE, DANE-HB and 

SPAG with SDCA subsolver. For the logistic regression, we show that InSPAG+Hyper-

fast outperforms other methods even for huge-dimensional problems with 710M samples 

and 3.2M features.

We work with binary classification problems with regularized logistic regression cost 

function (41) on a public dataset from LibSVM1,4 namely RCV1 [56], and a proprietary 

large-scale in-house dataset that was generated from the click logs of a large-scale com-

mercial system for mobile app install ads. The main statistics of the datasets are shown 

in Table 1.

We obtained an MPI-based distributed implementation of SPAG from the authors 

of [1] and modified it to run on an Apache Spark [57] cluster. As shown in Algorithm 2, 

InSPAG switches between two phases: a parallel gradient computation phase and a 

central-node optimization phase in which we run the Hyperfast second-order method 

in Algorithm 3. In our implementation, the driver carries the central-node optimization 

phase while executors compute the gradient. The code for the implementations was de-

4 https://www .csie .ntu .edu .tw /~cjlin /libsvmtools /datasets /binary.html.
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veloped in PyTorch [58]. Algorithm 3, in each iteration of the basic Hyperfast method, 

requires a line-search where to calculate a test point the full step (43) is made. The num-

ber of such line-search steps is theoretically bounded above by O(log(ε−1)). However, 

we observe that the line-search ends in approximately 5 trials in practice. Therefore, 

we bound the number of iterations executed in the line-search procedure. Additionally, 

our experiments show that the number of steps required in the line-search procedure de-

creases as more iterations of Algorithm 2 is executed. In the execution of the third-order 

step (43) it is sufficient to approximate the product of the third derivative with two 

vectors. To do this, we use off-the-shelf automatic differentiation codes and observe that 

the resulting computational complexity is equivalent approximately to 4 − 6 gradient 

computations.

As explained in [25, Sect. 5.2], or [59, Algorithm 2], the problem (43) is solved by 

Bregman proximal gradient method under relative smoothness and strong convexity 

assumption [30]. Each step of this algorithm applied to (43) requires to solve the prob-

lem

min
s∈Rd

{
〈c, s〉 +

1

2
〈∇2Ψ(x)s, s〉 +

L

4
‖s‖4

2

}
, (45)

where the vector c involves ∇Ψ(x) and ∇3Ψ(x)[s]2, L is some regularization pa-

rameter. We solve problem (45) using ADAM [60] since then the gradient c +

∇2Ψ(x)s + L‖s‖2
2s of the objective uses the Hessian only through Hessian-vector prod-

ucts which can be calculated using automatic differentiation. We observed that in 

practice this takes approximately 2 − 3 times the time required for gradient com-

putation. Thus, on the lowest level, our method is a first-order method with a 

Hessian-vector product and a third-order derivative product with two vectors com-

puted by automatic differentiation techniques. The full Hessians or full third-order 

derivatives are not computed but are used for the method to exploit the additional 

curvature of the objective and improve the practical convergence speed. Moreover, 

the central node uses GPU to accelerate the various Hessian-related matrix-vector 

operations in the algorithm. We believe our implementation5 to be the first prac-

tical implementation of an algorithm from the family of Hyperfast or even a wider 

family of higher-order optimizers that can operate on data at the above dimensional-

ity.

We compare Algorithm 2 with the inner solver being Algorithm 3 and Algorithm 2

with the inner solver being Stochastic Dual Coordinate Ascent (SDCA) [61] used 

in [1]. For the RCV1 dataset, we also compare the performance of Algorithm 2 versus 

DANE [62] with both SDCA and Hyperfast as the central-node solver. We used n = 104

samples for preconditioning, λ = 10−5, σ = 2 × 10−5, constant LF/φ = 0.01, and a prac-

tical approximate 10−2 for R2
φ. We set the precision of the auxiliary subproblem to 10−4. 

5 https://github .com /OPTAMI /OPTAMI/.
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Fig. 1. Comparison of the communication rounds number for the dataset RCV1.

Fig. 2. Wall clock time performance of the InSPAG method for the dataset RCV1. “numba” indicates im-
plementation using Numba: A High Performance Python Compiler.

Other parameters: L3 = 0.005, the learning rate of ADAM is set to 1, and the number of 

iterations of ADAM is 2. Figs. 1 and 2 show results for the RCV1 dataset. The point x̂

is set as the point where the minimal cost was achieved overall the iterations and runs of 

the algorithm and serves as a proxy point used instead of the minimizer, which is in gen-

eral unknown. We see that Algorithm 2 outperforms DANE regardless of the subsolver 

used. Moreover, InSPAG-SDCA has better performance during initial iterations. How-

ever, InSPAG-Hyperfast outperforms all other methods by accuracy. Also, we find that 

Hyperfast iterations are faster than SDCA near the minimum point. For example, the 

first five iterations take about 20 seconds each, and the last five take about 1.5 seconds 

each. Hence, suggesting that some combination of methods would be used in practice. 

However, the Hyperfast approach finds better solutions overall.
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Fig. 3. Comparison of the communication rounds number for the in house dataset. a) L3 = 10, ADAM 
learning rate 0.01, n = 10000; b) L3 = 100, ADAM learning rate 0.1, n = 10000; c) L3 = 10, ADAM 
learning rate 0.1, n = 10000; d) L3 = 15, ADAM learning rate 0.01, n = 1000.

Fig. 4. Comparison of the communication rounds number for the in house dataset for different methods.

Table 2
Parameter selection for experiments on in-house 
data.

Run L3 ADAM n μ

a) 10 0.01 1 × 104 2 × 10−5

b) 100 0.1 1 × 104 2 × 10−5

c) 10 0.1 1 × 104 2 × 10−5

d) 15 0.01 1 × 103 2 × 10−5

Figs. 3, 4 show the results of the comparison on the in-house dataset (split over 200 

nodes, i.e., m = 200) with λ = 1 ×10−7, σ = 2 ×10−5. Other parameters are described in 

Table 2. We see that InSPAG-Hyperfast outperforms InSPAG-SDCA for this large-scale 

dataset.
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Fig. 5. The time complexity per iteration for the Hyperfast method in Algorithm 3 and the SDCA Method 
from [61] at communication rounds 0, 6, and 46. The x-axis is the iteration number, and the y-axis is the
time required by the corresponding algorithm to complete its inner iteration.

Fig. 5 shows the times required by the Hyperfast method in Algorithm 3 and the 

SDCA Method from [61] to complete their inner iterations at communication rounds 0, 6, 

and 46. The x-axis is the iteration number, and the y-axis is the time required by the 

corresponding algorithm to complete an inner iteration. We can observe that in the 

communication round 0, the cost time required by both methods is approximately the 

same on average. However, for communication rounds 6 and 46, the Hyperfast method 

outperforms SDCA, requiring less time to complete an iteration.

Fig. 6 on the left shows the loss function F (xk) evaluated at the point xk generated 

by iteration k as a function of the wall clock time recorded by the InSPAG method in 

Algorithm 2. Markers identify when an iteration has been completed. In this case we 

used the Hyperfast method in Algorithm 3 as the inner solver. Moreover, we show the 

dependency on the number n of points used for preconditioning. We observe that for 

different values of n, the final loss is about the same. However, as n increases, the wall 

clock time required increases as well. On the other hand, the right figure shows the loss 

function F (xk) evaluated at the point xk generated by iteration k as a function of the 

number of communication rounds. As expected, when the number of data points used 

for preconditioning increases, the number of required communication rounds decreases. 

However, this implies that the central node needs to solve a bigger problem at every 

iteration and it takes longer to solve it.

Fig. 7 shows the wall clock time required by the central node to solve the auxiliary 

problem for every communication round. The x-axis shows the number of communi-

cation rounds, and the y-axis shows the clock time in seconds. Additionally, we show 

the results for different values of the preconditioning parameter n. As n increases, the 

time required for the solution of the auxiliary problem increases as well. However, the 

time complexity of the auxiliary subproblem decreases as the number of communication 

rounds increases.
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Fig. 6. A comparison of the wall clock times and communication rounds for the InSPAG method in Algo-
rithm 2 for different number of data points used for preconditioning. On the left, the x-axis indicates time 
in seconds, and on the right the x-axis indicates number of communication rounds. In both cases the y-axis 
is the loss function at the current iteration.

Fig. 7. Time complexity for the solution of the auxiliary subproblem for different number of preconditioning 
data points. The x-axis shows the number of communication rounds, and the y-axis shows the clock time 
in seconds.

5. Hyperfast second-order method for uniformly convex functions

For the sake of completeness, in this section we consider general problem x∗ =

arg minx∈Q f(x), where Q is closed convex bounded set, f has L3-Lipschitz third-order 

derivative. We also assume that the objective f(x) is uniformly convex of degree 4 ≥ q ≥ 2

on the convex bounded set Q, i.e., there exists σq > 0 s.t.

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
σq

q
‖y − x‖q

2, ∀x, y ∈ Q. (46)

As a corollary,
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f(y) ≥ f(x∗) +
σq

q
‖y − x∗‖q

2, ∀y ∈ Q. (47)

Theorem 5.1 ([25][Theorem 2]). Let sequence xk, k ≥ 0 be generated by Hyperfast Second-

Order Method [25][Eq.3.6] for p = 3 and β = 1/2 and with auxiliary steps described 

in [25][Sect. 5.2]. Then

f(xk) − f∗ ≤ 3 · 43L3R4
0

1 − β

[
1 +

2(k − 1)

4

]−5

≤ 3 · 44L3R4
0

16k5
=

ĉL3R4
0

k5
,

where R0 is such that ‖x0 − x∗‖2 ≤ R0, ĉ = 48.

We show how the restart technique can be used to accelerate Hyperfast second-order 

method under additional assumption of uniform convexity.

Algorithm 4 Restarted hyperfast second-order method.

Require: q, σq, z0, ∆0 s.t. f(z0) − f∗ ≤ ∆0.
1: for k = 0, 1, ... do

2: Set ∆k = ∆0 · 2−k and Nk = max

⎧
⎨
⎩

⎡
⎢⎢⎢

(
2ĉL3q

4
q

σ
4
q

q

∆
4−q

q

k

) 1

5

⎤
⎥⎥⎥

, 1

⎫
⎬
⎭.

3: Set zk+1 = yNk
as the output of the basic Hyperfast method started from zk and run for Nk steps.

4: Set k = k + 1.
5: end for

Ensure: zk.

Theorem 5.2. Let sequence zk, k ≥ 0 be generated by Algorithm 4. Then

σq

q
‖zk − x∗‖q

2 ≤ f(zk) − f∗ ≤ ∆0 · 2−k,

and the total number of steps of the basic Hyperfast method is bounded by (c is the 

constant in Theorem 1.)

(
2ĉq

4
q

) 1
5 L

1
5
3

σ
4

5q
q

(∆0)
4−q
5q ·

k∑

i=0

2−i 4−q
5q + k.

Proof. Let us prove the first statement of the Theorem by induction. For k = 0 it holds. 

If it holds for some k ≥ 0, by choice of Nk, we have that

ĉL3

N5
k

(
q∆k

σq

) 4
q

≤ ∆k

2
.

By (47),

‖zk − x∗‖4
2 ≤

(
q(f(zk) − f∗)

σq

) 4
q

≤
(

q∆k

σq

) 4
q
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since, by our assumption, q ≤ 4. Combining the above two inequalities and Theorem 5.1, 

we obtain

f(zk+1) − f∗ ≤ ĉL3‖zk − x∗‖4
2

N5
k

≤ ∆k

2
= ∆k+1.

It remains to bound the total number of steps of the basic Hyperfast method. Denote c̃ =(
2ĉq

4
q

) 1
5

.

k∑

i=0

Ni ≤ c̃
L

1
5
3

σ
4

5q
q

k∑

i=0

(∆0 · 2−i)
4−q
5q + k ≤ c̃

L
1
5
3

σ
4

5q
q

(∆0)
4−q
5q ·

k∑

i=0

2−i 4−q
5q + k. �

Let us make a remark on the complexity of the restarted scheme in different settings. 

It is easy to see from Theorem 5.2 that, to achieve an accuracy ε, i.e., to find a point x̂

s.t. f(x̂) − f∗ ≤ ε, the number of tensor steps in Algorithm 4 is

O

(
L

1
5
3

σ
4

5q
q

(∆0)
4−q
5q + log2

∆0

ε

)
, q < 4, and O

(((
L3

σ4

) 1
5

+ 1

)
log2

∆0

ε

)
, q = 4.

6. Conclusions

We study the distributed optimization problem of minimizing empirical risk with 

smooth and (strongly) convex losses and i.i.d. data stored at nodes. Building upon the 

recent result on statistical preconditioning, we propose an algorithm that iteratively 

minimizes the objective function taking advantage of the statistical similarity of the cost 

functions across the nodes. Such statistical preconditioning requires solving an auxiliary 

optimization problem at a designated central node. Contrary to existing approaches, we 

analyze the case where this auxiliary problem is solved inexactly. Moreover, we provide 

the conditions on the accuracy of the solution that guarantees convergence at the same 

rate as the algorithm with access to exact minimizers of the auxiliary problem. Addi-

tionally, we extend recently proposed Hyperfast second-order methods to the class of 

uniformly convex functions with bounded fourth-order derivatives. We show that the 

auxiliary problem in the statistically preconditioned distributed algorithm can be solved 

efficiently at a linear rate via this Hyperfast second-order method. We analyze the com-

plexity of the proposed combination of the inexact statistically preconditioned algorithm 

with the Hyperfast second-order sub-solver and show that it converges linearly with the 

improved condition number. Finally, we show the first empirical results on implementing 

high-order methods on large-scale problems, where the dimension is of the order of 3

million, and the number of samples is 700 million. As a future research direction we indi-

cate the application of the proposed algorithm to the regularized Wasserstein barycenter 

problem, which can be expressed as the minimization of large sum of higher-order smooth 

softmax functions [44].
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[11] S.J. Reddi, J. Konečnỳ, P. Richtárik, B. Póczós, A. Smola, Aide: fast and communication efficient 

distributed optimization, arXiv preprint, arXiv :1608 .06879.
[12] Y. Zhang, X. Lin, Disco: distributed optimization for self-concordant empirical loss, in: Proceedings 

of the 32nd International Conference on Machine Learning, in: Proceedings of Machine Learning 
Research, PMLR, Lille, France, vol. 37, 2015, pp. 362–370.

[13] H. Lin, J. Mairal, Z. Harchaoui, A universal catalyst for first-order optimization, in: Proceedings of 
the 28th International Conference on Neural Information Processing Systems, vol. 2, NIPS’15, MIT 
Press, Cambridge, MA, USA, 2015, pp. 3384–3392.

[14] R.-A. Dragomir, A. Taylor, A. d’Aspremont, J. Bolte, Optimal complexity and certification of Breg-
man first-order methods, Math. Program. 194 (1) (2022) 41–83, https://doi .org /10 .1007 /s10107 -
021 -01618 -1.

[15] Y. Arjevani, O. Shamir, Communication complexity of distributed convex learning and optimization, 
in: Advances in Neural Information Processing Systems, vol. 28, Curran Associates, Inc., 2015, 
pp. 1756–1764.

[16] Y. Sun, G. Scutari, A. Daneshmand, Distributed optimization based on gradient tracking revisited: 
enhancing convergence rate via surrogation, SIAM J. Control Optim. 32 (2) (2022) 354–385, https://
doi .org /10 .1137 /19M1259973.

[17] B. Bullins, Highly smooth minimization of non-smooth problems, in: Proceedings of Thirty Third 
Conference on Learning Theory, in: Proceedings of Machine Learning Research, PMLR, vol. 125, 
2020, pp. 988–1030.

[18] E.G. Birgin, J.L. Gardenghi, J.M. Martínez, S.A. Santos, P.L. Toint, Worst-case evaluation complex-
ity for unconstrained nonlinear optimization using high-order regularized models, Math. Program. 
163 (1) (2017) 359–368, https://doi .org /10 .1007 /s10107 -016 -1065 -8.

[19] Y. Carmon, J.C. Duchi, O. Hinder, A. Sidford, Lower bounds for finding stationary points I, Math. 
Program. 184 (1) (2020) 71–120.

[20] C. Cartis, N.I. Gould, P.L. Toint, Universal regularization methods: varying the power, the smooth-
ness and the accuracy, SIAM J. Control Optim. 29 (1) (2019) 595–615.

[21] M. Baes, Estimate Sequence Methods: Extensions and Approximations, Institute for Operations 
Research, ETH, Zürich, Switzerland, 2009.

[22] Y. Nesterov, Implementable tensor methods in unconstrained convex optimization, Math. Program. 
(2019) 1–27.

[23] A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, C.A. Uribe, B. Jiang, 
H. Wang, S. Zhang, S. Bubeck, Q. Jiang, Y.T. Lee, Y. Li, A. Sidford, Near optimal methods for 
minimizing convex functions with Lipschitz p-th derivatives, in: Proceedings of the Thirty-Second 
Conference on Learning Theory, in: Proceedings of Machine Learning Research, PMLR, Phoenix, 
USA, vol. 99, 2019, pp. 1392–1393.

[24] Y. Nesterov, Superfast second-order methods for unconstrained convex optimization, J. Optim. 
Theory Appl. 1 (2021) 1–30, https://doi .org /10 .1007 /s10957 -021 -01930 -y.

[25] Y. Nesterov, Inexact high-order proximal-point methods with auxiliary search procedure, SIAM J. 
Control Optim. 31 (4) (2021) 2807–2828, https://doi .org /10 .1137 /20M134705X.

[26] D. Kamzolov, A. Gasnikov, Near-optimal hyperfast second-order method for convex optimization 
and its sliding, arXiv preprint, arXiv :2002 .09050.

[27] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, 2009.
[28] J. Huang, T.M. Smith, G.M. Henry, R.A. van de Geijn, Strassen’s algorithm reloaded, in: SC’16: 

Proceedings of the International Conference for High Performance Computing, Networking, Storage 
and Analysis, IEEE, 2016, pp. 690–701.

[29] H.H. Bauschke, J. Bolte, M. Teboulle, A descent lemma beyond Lipschitz gradient continuity: first-
order methods revisited and applications, Math. Oper. Res. 42 (2) (2016) 330–348.

[30] H. Lu, R.M. Freund, Y. Nesterov, Relatively smooth convex optimization by first-order methods, 
and applications, SIAM J. Control Optim. 28 (1) (2018) 333–354.

[31] F. Stonyakin, A. Tyurin, A. Gasnikov, P. Dvurechensky, A. Agafonov, D. Dvinskikh, M. Alkousa, 
D. Pasechnyuk, S. Artamonov, V. Piskunova, Inexact model: a framework for optimization and 
variational inequalities, Optim. Methods Softw. 36 (6) (2021) 1155–1201.

[32] A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization (Lecture Notes), Personal 
web-page of A. Nemirovski, https://www2 .isye .gatech .edu /~nemirovs /LMCOLN2021WithSol .pdf, 
2020.

[33] O. Devolder, F. Glineur, Y. Nesterov, First-order methods of smooth convex optimization with 
inexact oracle, Math. Program. 146 (1) (2014) 37–75, https://doi .org /10 .1007 /s10107 -013 -0677 -5.



34 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

[34] P. Dvurechensky, A. Gasnikov, Stochastic intermediate gradient method for convex problems with 
stochastic inexact oracle, J. Optim. Theory Appl. 171 (1) (2016) 121–145.

[35] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, 
SIAM J. Imaging Sci. 2 (1) (2009) 183–202, https://doi .org /10 .1137 /080716542.

[36] Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program. 140 (1) (2013) 
125–161, first appeared in 2007 as CORE discussion paper 2007/76.

[37] F. Hanzely, P. Richtárik, L. Xiao, Accelerated Bregman proximal gradient methods for relatively 
smooth convex optimization, Comput. Optim. Appl. 79 (2) (2021) 405–440, https://doi .org /10 .
1007 /s10589 -021 -00273 -8.

[38] M.I. Florea, Exact gradient methods with memory, Optim. Methods Softw. (2022) 1–28, https://
doi .org /10 .1080 /10556788 .2022 .2091559.

[39] H.H. Bauschke, J. Bolte, M. Teboulle, A descent lemma beyond Lipschitz gradient continuity: first-
order methods revisited and applications, Math. Oper. Res. 42 (2) (2017) 330–348.

[40] K. Scaman, F. Bach, S. Bubeck, Y.T. Lee, L. Massoulié, Optimal algorithms for smooth and 
strongly convex distributed optimization in networks, in: Proceedings of the 34th International 
Conference on Machine Learning, in: Proceedings of Machine Learning Research, PMLR, vol. 70, 
2017, pp. 3027–3036.

[41] A.V. Gasnikov, Y.E. Nesterov, Universal method for stochastic composite optimization problems, 
Comput. Math. Math. Phys. 58 (1) (2018) 48–64.

[42] Y. Nesterov, Lectures on Convex Optimization, 2nd edition, Springer Optimization and Its Appli-
cations, vol. 137, Springer International Publishing, 2018.

[43] P. Dvurechensky, A. Gasnikov, A. Kroshnin, Computational optimal transport: complexity by ac-
celerated gradient descent is better than by Sinkhorn’s algorithm, in: Proceedings of the 35th 
International Conference on Machine Learning, in: Proceedings of Machine Learning Research, 
vol. 80, 2018, pp. 1367–1376.

[44] P. Dvurechensky, D. Dvinskikh, A. Gasnikov, C.A. Uribe, A. Nedić, Decentralize and randomize: 
faster algorithm for Wasserstein barycenters, in: Advances in Neural Information Processing Sys-
tems, vol. 31, NIPS’18, Curran Associates, Inc., 2018, pp. 10783–10793.

[45] P. Dvurechensky, S. Shtern, M. Staudigl, First-order methods for convex optimization, EURO J. 
Comput. Optim. 9 (2021) 100015, https://doi .org /10 .1016 /j .ejco .2021 .100015.

[46] Q. Lin, L. Xiao, An adaptive accelerated proximal gradient method and its homotopy continuation 
for sparse optimization, in: Proceedings of the 31st International Conference on Machine Learning, 
in: Proceedings of Machine Learning Research, PMLR, Bejing, China, vol. 32, 2014, pp. 73–81.

[47] R.D. Monteiro, B.F. Svaiter, An accelerated hybrid proximal extragradient method for convex op-
timization and its implications to second-order methods, SIAM J. Control Optim. 23 (2) (2013) 
1092–1125.

[48] Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program. 103 (1) (2005) 
127–152.

[49] G. Lan, First-Order and Stochastic Optimization Methods for Machine Learning, Springer, 2020.
[50] N. Doikov, Y. Nesterov, Contracting proximal methods for smooth convex optimization, SIAM J. 

Control Optim. 30 (4) (2020) 3146–3169, https://doi .org /10 .1137 /19M130769X.
[51] Y. Nesterov, Inexact basic tensor methods for some classes of convex optimization problems, Optim. 

Methods Softw. (2020) 1–29.
[52] A. Gasnikov, Universal gradient descent, arXiv preprint, arXiv :1711 .00394.
[53] N. Doikov, Y. Nesterov, Inexact tensor methods with dynamic accuracies, in: Proceedings of the 

37th International Conference on Machine Learning, in: Proceedings of Machine Learning Research, 
PMLR, vol. 119, 2020, pp. 2577–2586.

[54] A. Agafonov, D. Kamzolov, P. Dvurechensky, A. Gasnikov, Inexact tensor methods and their ap-
plication to stochastic convex optimization, arXiv :2012 .15636.

[55] D. Kamzolov, A. Gasnikov, P. Dvurechensky, Optimal combination of tensor optimization methods, 
in: Optimization and Applications, Springer International Publishing, Cham, 2020, pp. 166–183.

[56] D.D. Lewis, Y. Yang, T.G. Rose, F. Li, Rcv1: a new benchmark collection for text categorization 
research, J. Mach. Learn. Res. 5 (Apr 2004) 361–397.

[57] Apache, Spark 2.4.5, https://spark .apache .org/, 2020.
[58] Pytorch, 1.5.0, https://pytorch .org/, 2020.
[59] D. Kamzolov, Near-optimal hyperfast second-order method for convex optimization, in: Mathemat-

ical Optimization Theory and Operations Research, Springer International Publishing, Cham, 2020, 
pp. 167–178.

[60] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint, arXiv :1412 .6980.



P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 35

[61] S. Shalev-Shwartz, Sdca without duality, regularization, and individual convexity, in: Proceedings 
of the 33rd International Conference on Machine Learning, in: Proceedings of Machine Learning 
Research, PMLR, New York, New York, USA, vol. 48, 2016, pp. 747–754.

[62] O. Shamir, N. Srebro, T. Zhang, Communication-efficient distributed optimization using an approxi-
mate Newton-type method, in: International Conference on Machine Learning, 2014, pp. 1000–1008.


	Hyperfast second-order local solvers for efficient statistically preconditioned distributed optimization
	1 Introduction
	2 Accelerated gradient method under inexactness and relative smoothness
	3 Inexact statistically preconditioned accelerated gradient method
	3.1 InSPAG and its convergence rate theorem
	3.2 Hyperfast second-order method for the auxiliary problem
	3.3 InSPAG plus hyperfast method with application to logistic regression

	4 Numerical analysis and implementation details
	5 Hyperfast second-order method for uniformly convex functions
	6 Conclusions
	Funding
	Declaration of competing interest
	Acknowledgement
	References


