
EURO Journal on Computational Optimization 10 (2022) 100045

Contents lists available at ScienceDirect

EURO Journal on Computational

Optimization

journal homepage: www.elsevier.com/locate/ejco

Hyperfast second-order local solvers for efficient

statistically preconditioned distributed optimization

Pavel Dvurechensky a,∗, Dmitry Kamzolov b,h,

Aleksandr Lukashevich c, Soomin Lee d, Erik Ordentlich d,

César A. Uribe e, Alexander Gasnikov b,f,g

a Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
b Moscow Institute of Physics and Technology, Dolgoprudny, Russia
c Center for Energy Science and Technology, Skolkovo Institute of Science and
Technology, Moscow, Russia
d Yahoo! Research, Sunnyvale, CA, United States of America
e Rice University, Houston, TX, United States of America
f Institute for Information Transmission Problems RAS, Moscow, Russia
g HSE University, Moscow, Russia
h Mohamed bin Zayed University of Artificial Intelligence, Masdar City, Abu
Dhabi, United Arab Emirates

a r t i c l e i n f o a b s t r a c t

Keywords:
Empirical risk minimization
Distributed optimization
Statistical preconditioning
Tensor optimization methods

Statistical preconditioning enables fast methods for dis-
tributed large-scale empirical risk minimization problems.
In this approach, multiple worker nodes compute gradients
in parallel, which are then used by the central node to up-
date the parameter by solving an auxiliary (preconditioned)
smaller-scale optimization problem. The recently proposed
Statistically Preconditioned Accelerated Gradient (SPAG)
method [1] has complexity bounds superior to other such
algorithms but requires an exact solution for computationally
intensive auxiliary optimization problems at every iteration.
In this paper, we propose an Inexact SPAG (InSPAG) and ex-
plicitly characterize the accuracy by which the corresponding
auxiliary subproblem needs to be solved to guarantee the same

* Corresponding author.

E-mail addresses: pavel.dvurechensky@wias-berlin.de (P. Dvurechensky),
kamzolov.dmitry@phystech.edu (D. Kamzolov), aleksandr.lukashevich@skoltech.ru (A. Lukashevich),
soominl@yahooinc.com (S. Lee), eord@yahooinc.com (E. Ordentlich), cauribe@rice.edu (C.A. Uribe),
gasnikov.av@mipt.ru (A. Gasnikov).

https://doi.org/10.1016/j.ejco.2022.100045
2192-4406/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Association of European
Operational Research Societies (EURO). This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

2 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

convergence rate as the exact method. We build our results
by first developing an inexact adaptive accelerated Bregman
proximal gradient method for general optimization problems
under relative smoothness and strong convexity assumptions,
which may be of independent interest. Moreover, we explore
the properties of the auxiliary problem in the InSPAG algo-
rithm assuming Lipschitz third-order derivatives and strong
convexity. For such problem class, we develop a linearly con-
vergent Hyperfast second-order method and estimate the total
complexity of the InSPAG method with hyperfast auxiliary
problem solver. Finally, we illustrate the proposed method’s
practical efficiency by performing large-scale numerical ex-
periments on logistic regression models. To the best of our
knowledge, these are the first empirical results on implement-
ing high-order methods on large-scale problems, as we work
with data where the dimension is of the order of 3 million,
and the number of samples is 700 million.

© 2022 The Author(s). Published by Elsevier Ltd on behalf
of Association of European Operational Research Societies

(EURO). This is an open access article under the CC
BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The efficient parallelization of large-scale learning is one of the most challenging prob-

lems in modern machine learning. Among several approaches, distributed computation

and preconditioning have been shown effective in accelerating optimization algorithms,

especially with increasing amounts of data [2,1,3]. In this paper, we propose an efficient

distributed optimization algorithm for solving the empirical risk minimization (ERM)

problem:

min
x∈Rd

{
f(x) � F (x) + h(x)

}
, (1)

where h(x) is a convex regularizer and F (x) is the empirical loss

F (x) �
1

N

N∑

i=1

�(x; ζi). (2)

Here D � {ζi = (ξi, ηi)}N
i=1 is a set of N training data samples, and � is a convex loss

function with respect to x. We assume that F is LF -smooth and μF -strongly convex,

i.e.,

μF Id � ∇2F (x) � LF Id, (3)

where Id is the d-dimensional identity matrix. The condition number of F is denoted

as κF = LF /μF , and the solution to (1) is denoted as x∗.

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 3

Sum-type optimization problems of the form (1) are used to model various statistical

learning problems, including least squares regression, logistic regression, and support

vector machines. One characteristic of modern uses of models like (1) is the so-called

large-scale regime, i.e., when N is very large. Large N poses additional challenges re-

lated to the storage and processing of data, which in turn drives the need for modern

distributed/federated architectures [4] that take advantage of parallel processing capa-

bilities [5], e.g., Apache Spark [6], Parameter Server [7] and MapReduce [8].

In practice, when N is very large, the complete set of data points D cannot be stored

or is not accessible at a single machine. Instead, data is distributed among m comput-

ing units/nodes/agents such that D = {D1, . . . , Dm}. Moreover, the distributed setup

assumes there is a central node, that is able to communicate with all the worker nodes.

Without loss of generality we assume that N = mn, i.e., machine j ∈ {1, . . . , m} locally

stores n samples Dj = {ξ
(j)
i , η

(j)
i }n

i=1. Specifically, each agent j has a local empirical risk,

denoted as Fj(x) � (1/n)
∑n

i=1 �(x; ξ
(j)
i , η

(j)
i). Thus,

F (x)=
1

m

m∑

j=1

Fj(x)=
1

nm

m∑

j=1

n∑

i=1

�(x; ξ
(j)
i , η

(j)
i). (4)

The centralized distributed optimization architecture described above, with a central

node and a number of workers, typically involves two resources: communication and

computation. Communication is usually regarded as the most valuable resource [9]. Thus,

recent efforts [2,1,3] have been focused on the efficiency of communications, where one

seeks to minimize (4) with a minimal number of communication rounds between the

workers and the central node.

Recent distributed optimization approaches: The distributed approximate Newton-

type method (DANE) [2] has been one of the most popular second-order methods

for communication-efficient distributed machine learning. DANE improves the polyno-

mial dependency of the iteration complexity on the condition number κF of first-order

methods for distributed empirical risk minimization problems, compared to the geo-

metric rates available for centralized, i.e., non-distributed, methods [10]. Particularly,

DANE has an iteration (communication) complexity of Õ(κ2
F /n)1 for quadratic func-

tions, and Õ(κF) for convex non-quadratic functions. However, DANE requires the

exact solution of a carefully constructed subproblem, which can be impractical [2].

An inexact version of DANE, termed InexactDANE [11], and its accelerated variant,

termed AIDE [11], achieve an iteration complexity of Õ(κF), and Õ(
√

κF) respectively,

without requiring exact solutions of the auxiliary subproblem. For quadratic functions

InexactDANE and AIDE have an iteration complexity of Õ(κ2
F /n) and Õ(

√
κF /n1/4)

respectively. Nevertheless, the advantage of preconditioning, where the condition number

is effectively reduced as n increases, was only shown for quadratic problems. Recently,

1 The Õ-notation means non-asymptotic inequality up to constant and poly-logarithmic factors. More
precisely, A = Õ(B) if there exist constants C, a > 0 such that A ≤ CB lna 1

ε .

4 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

in [3], the authors showed that the preconditioning effect holds locally for a variation of

DANE termed DANE-HB with inexact solutions to the local subproblem. Specifically, an

iteration complexity of Õ(d1/4√
κF /n1/4) was shown to hold in a neighborhood around

the optimal point for non-quadratic convex functions. Additionally, for linear prediction

models, an improved global bound of Õ(
√

κF /n1/4) was shown [3] to be achieved by

the D2ANE Algorithm. In [12] the authors propose the DiSCO algorithm with global

bounds Õ(
√

κF /n1/4) for quadratic functions and Õ(d1/4√
κF /n1/4) for self-concordant

functions which are a different class than functions satisfying (3). One of the main ob-

servations in [3] is that the looseness in the bounds of DANE and AIDE came from

the reduce (model aggregation) step done by the central node. Thus, DANE-HB and

D2ANE build their results from a modified structure. The worker nodes compute gradi-

ents and communicate them back to the central node, which solves the preconditioned

auxiliary subproblem. Such algorithmic structure was used in [1] recently, where the au-

thors proposed the Statistically Preconditioned Accelerated Gradient (SPAG) method.

SPAG has an iteration complexity of Õ(
√

κF /n1/4) for quadratic functions with direct

acceleration, instead of using the Catalyst framework [13]. SPAG was also shown to

have an asymptotic iteration complexity of Õ(
√

κF /n1/4), with empirical evidence that

such rate behavior holds non-asymptotically in practice. However, exact solvers for the

auxiliary subproblem on the central node are required. Such convergence rates match

complexity lower bounds [14,15]. In a more challenging setup (which we do not consider

in this paper) of decentralized distributed optimization [16] propose an algorithm with

iteration complexity Õ(κF /
√

n) and similar up to a network-dependent factor commu-

nication complexity.

Although SPAG obtains the near-optimal iteration complexity for distributed algo-

rithms applied to (1) and (4), it strongly depends on the ability to exactly solve an

intermediate auxiliary optimization subproblem (usually in the form of a non-Euclidean

Bregman projection), whose complexity was not explicitly taken into account in [1].

More importantly, as pointed out in [1], such an intermediate problem is computation-

ally hard, and the accuracy of its solution dramatically affects the performance of the

whole method. We solve this issue in this paper.

Our solution’s key innovation is explicitly considering the auxiliary subproblem’s in-

exactness and quantifying how it affects the convergence rate of the whole algorithm.

Moreover, for the case of functions with high-order bounded derivatives (e.g., logistic

regression or softmax problems [17]), we provide a Hyperfast second-order method that

efficiently computes the approximate solution of the subproblem. This approach builds

upon the line of works on implementable tensor methods for convex problems recently

initiated2 by Yu. Nesterov [22], where it was shown that the third-order method for

convex problems with Lipschitz third-order derivative could have a convex subproblem

2 We underline that the main words here are implementable and convex. Adaptive tensor methods with
optimal complexity guarantees for non-convex problems were proposed earlier in [18–20], and previously
known tensor methods for convex problems [21] did not necessarily have convex auxiliary problem in each
iteration.

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 5

and its solution can be efficiently implemented. Later, [23] proposed near-optimal ten-

sor methods with complexity bounds which match up to a logarithmic factor the lower

bounds for highly-smooth convex optimization. [24] proposes a third-order tensor method

with third-order derivative approximated by finite-difference of gradients, which leads to

a Superfast second-order method with convergence rate O(1/k4) for convex functions

with Lipschitz third-order derivative. As a next step, [25] proposes an inexact acceler-

ated high-order proximal point method which allows improving, compared to Superfast

second-order method, the convergence rate to O(1/k5) up to logarithmic factors. In par-

allel to the previous work and inspired by [24], the authors of [26] proposed a Hyperfast

second-order method with the same convergence rate, but based on another accelerated

high-order method developed in [23]. In this paper, we extend both methods to the set-

ting of strongly convex minimization problems and apply them to solve the intermediate

auxiliary optimization subproblem in each iteration of our inexact version of SPAG.

Contributions SPAG is one of the fastest distributed methods (in terms of communi-

cation steps number) for the minimization of (1) and (4) with i.i.d. samples [1]. More-

over, the Hyperfast second-order method is the best known (near-optimal) second-order

method to minimize convex functions with Lipschitz third-order derivatives. We argue

that the extended combination of the proposed inexact SPAG and the new Hyperfast

second-order method provides a useful approach to construct new efficient distributed

algorithms. Specifically, in SPAG, the central node solves a problem with a similar struc-

ture as (1), but with a smaller number n of data samples. Therefore, with a reduced

number of samples, the complexity of calculating the Hessian is comparable (due to

the sum-type structure of F) with its inversion by the matrix inversion lemma [27] and

modern practical versions of Strassen-type algorithm [28]. In this regime, at the central

node, Hyperfast second-order methods outperform existing variance-reduced stochastic

first-order schemes. We extend the theoretical analysis of inexact statistical precondition-

ing methods alongside high-order methods and show that they jointly provide an efficient

second-order method that outperforms (from theoretical and practical points of view)

well-known (stochastic) first-order schemes.

The main contributions of this paper are as follows:

• Since SPAG is based on the accelerated Bregman proximal gradient method for rela-

tively smooth and strongly-convex problems, we first propose an inexact accelerated

Bregman proximal gradient method for general convex optimization problems. Our

algorithm is based on an inexact model for the objective, which subsumes the set-

ting of relatively smooth and (strongly-)convex problems and the setting of inexact

first-order oracles. Our algorithm also allows for approximate Bregman projections.

We estimate the convergence rate and rates of inexactnesses accumulation.

• We propose an Inexact Statistically Preconditioned Accelerated Gradient (InSPAG)

method for distributed optimization problem (1), (4), and explicitly characterize the

accuracy by which the corresponding auxiliary subproblem needs to be solved to

6 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

guarantee the same convergence rate as the exact method, i.e., Õ(
√

κF /n1/4). Our

method is not a direct extension and has a slightly simpler structure than the method

in [1].

• We extend and generalize the Hyperfast second-order method [25,26], recently pro-

posed for smooth and convex problems, to the class of uniformly, and especially

strongly, convex functions. We show a linear convergence rate for this problem class.

• Based on an example of sparse logistic regression, we discuss the distributed opti-

mization problem regime, for which Hyperfast second-order optimization methods

provide a theoretical advantage over classical first-order methods for the problem

size, dimension, and desired accuracy of the solution.

• We provide experimental results in application to large-scale machine learning prob-

lems that show the efficiency of the use of high-order methods in practice. To the

authors’ best knowledge, this is one of the first attempts to apply near-optimal tensor

methods for real data and applications. Specifically, we test the proposed algorithm

on a proprietary data set with 710 million entries and a dimension of 3.2 million.

Outline In Section 2, we introduce the inexact accelerated Bregman proximal gradient

method for general convex optimization problems. This includes defining the concept of

the inexact model of the objective, illustrating it by examples, presenting the algorithm

and its convergence rate theorem together with its proof. Section 3 presents the setting

for statistically preconditioned distributed algorithms, introduces InSPAG algorithm and

its convergence rate theorem. After that, we present the Hyperfast second-order method

for the auxiliary subproblem of the InSPAG, estimate its complexity and combine the

building blocks to obtain the total complexity of the whole approach. We finish this

section by discussing the regime in which our approach is superior to applying stochastic

variance-reduced algorithms. Section 4 presents our experimental results. For the sake

of completeness in Section 5 we present Hyperfast second-order method for uniformly

convex functions. We finalize with conclusions in Section 6.

2. Accelerated gradient method under inexactness and relative smoothness

In this section, we propose a general accelerated first-order algorithm that will be

used in the next section to propose our InSPAG method for distributed optimization.

We believe that the results of this section may be of independent interest. This section

is, to an extent, independent of the other sections and the reader interested in the

distributed optimization may skip this section since in what follows only the main result

of this section (Theorem 2.6) will be used. We consider the following general optimization

problem

min
x∈Q

f(x), (5)

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 7

where Q is a convex subset of finite-dimensional vector space E. Our goal is to develop a

general accelerated inexact gradient method capable to work under relative smoothness

and strong convexity assumptions [29,30]. We consider two types of inexactness: inexact

information on the objective function and inexact generalized projection.

Before we give more details, we introduce some general notations. Let E be an d-

dimensional real vector space and E∗ be its dual. We denote the value of a linear

function g ∈ E∗ at x ∈ E by 〈g, x〉. Let ‖ · ‖ be some norm on E, ‖ · ‖∗ be its

dual, defined by ‖g‖∗ = max
x

{
〈g, x〉, ‖x‖ ≤ 1

}
. Let φ be a convex function on Q,

which is continuously differentiable on the relative interior riQ of Q. Let Dφ[y](x) =

φ(x) − φ(y) − 〈∇φ(y), x − y〉, x ∈ Q, y ∈ riQ be the corresponding Bregman diver-

gence. Based on the Bregman divergence we introduce the following two definitions of

inexactness.

Definition 2.1 (Inexact model [31]). Let δ, L, μ, m ≥ 0. We say that (fδ(y), ψδ(x, y)) is

a (δ, L, μ, m, φ)-model of the function f at a given point y iff, for all x ∈ Q,

μDφ[y](x) ≤ f(x) − (fδ(y) + ψδ(x, y)) ≤ LDφ[y](x) + δ, (6)

ψδ(x, y) is convex in x, satisfies ψδ(x, x) = 0 for all x ∈ Q and

ψ(x) � ψ(z) + 〈g, x − z〉 + mDφ[z](x), ∀x, z ∈ Q, ∀g ∈ ∂ψ(z), (7)

where for fixed y ∈ Q and any x ∈ Q we denote ψ(x) = ψδ(x, y).

Definition 2.2 (Inexact generalized projection [32]). For a convex optimization problem

minx∈Q Ψ(x) and δ̃ ≥ 0, we denote by Arg minδ̃
x∈Q Ψ(x) a set of points x̃ such that

∃h ∈ ∂Ψ(x̃) : ∀x ∈ Q → 〈h, x − x̃〉 ≥ −δ̃. (8)

We denote by arg minδ̃
x∈Q Ψ(x) some element of Arg minδ̃

x∈Q Ψ(x).

Optimization algorithms with inexact model of the objective were extensively studied

in [31] and are generalizations of first-order algorithms with inexact oracle [33,34]. We

now give two particular examples that are covered by the inexact model framework and

refer to [31] for further examples.

Example 2.3. Relative smoothness and relative strong convexity, [29,30]. Assume that

φ(x) is differentiable, and in (5), the objective f is differentiable, relatively smooth [29,30]

and strongly convex [30] relative to φ, i.e., for some μ ≥ 0 and L > 0,

μDφ[y](x) ≤ f(x) − f(y) − 〈∇f(y), x − y〉 ≤ LDφ[y](x), ∀x, y ∈ Q.

8 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

Then, clearly, Definition 2.1 holds with m = 0, δ = 0, fδ(y) = f(y), ψδ(x, y) =

〈∇f(y), x − y〉. Importantly, the function φ is not required to be strongly convex. Our

InSPAG relies on this particular example.

Example 2.4. Composite optimization, [35,36]. Assume that in (5), f(x) = g(x) + h(x)

with convex L-smooth w.r.t. norm ‖ · ‖ term g(x) and simple convex term h(x) which is

usually called composite. In this case we assume that φ(x) is 1-strongly-convex w.r.t ‖ ·‖,

and define fδ(y) = g(y) +h(y) and ψδ(x, y) = 〈∇g(y), x −y〉 +h(x) −h(y). Then, clearly,

f(x) − (fδ(y) + ψδ(x, y)) = g(x) − (g(y) + 〈∇g(y), x − y〉).

By convexity of g, we have 0 ≤ g(x) − (g(y) + 〈∇g(y), x − y〉). At the same time, by

the L-smoothness of g and 1-strong-convexity of φ(x),

g(x) − (g(y) + 〈∇g(y), x − y〉) ≤ L

2
‖x − y‖2 ≤ LDφ[y](x).

From the combination of the above two relations, it is clear that (6) holds with δ = 0

and μ = 0 and we are in the situation of Definition 2.1 with m = 0 since ψδ(x, y) is

convex in x.

In [31], to develop an accelerated algorithm, the authors use a different assumption

where in the r.h.s. of (6) the Bregman divergence Dφ[y](x) is substituted with 1
2‖x −y‖2,

and assume that φ is 1-strongly-convex w.r.t. ‖ ·‖. This, unfortunately, restricts the range

of applications of the algorithm, and we use a weaker set of assumptions in Definition 2.1.

At the same time, [14] showed that it is not possible to develop an accelerated algorithm

in the relative smoothness setting without additional assumptions. Thus, we introduce

the following assumption on the Bregman divergence Dφ[y](x) and note that the range of

applications is still wider than for the approach of [31]. We also note that this assumption

is simpler than the one in [1] and is a version of triangle scaling gain introduced in [37]

and triangle lower bound property of [38].

Assumption 2.5. There exists a constant G ≥ 1 such that for all x, y, u, u+ ∈ ri domφ

such that x − y = τ(u+ − u) for some τ ∈ [0, 1] it holds that

Dφ[y](x) ≤ Gτ2Dφ[u](u+). (9)

This assumption can be seen as a relaxation of homogeneity of degree 2. The simplest

example when this property holds is when Dφ[y](x) = 1
2‖y − x‖2. In this case G = 1. We

also note that our algorithm is adaptive to constant G which means that the property

(9) is sufficient to hold only locally.

The proposed accelerated gradient method with inexact model is listed below as Al-

gorithm 1. Unlike [1,37,38], our algorithm is simultaneously adaptive to the “Lipschitz”

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 9

constant L (see Definition 2.1) and constant G in Assumption 2.5, which is expressed in

constant M that plays the role of the product LG. Also, unlike [1,37,38], our algorithm

allows two types of inexactness covered by Definitions 2.1 and 2.2. Finally, unlike [37,38],

our algorithm has linear convergence when μ > 0. We also note that we allow the accura-

cies δ, ̃δ in Definition 2.1 and 2.2 to depend on the iteration counter k, which is expressed

by the sequences {δk, ̃δk}k≥0.

Algorithm 1 Accelerated gradient method with (δ, L, μ, m, φ)-model.
1: Input: x0 is the starting point, μ ≥ 0, m ≥ 0, {δk}k≥0 and L0 > 0.
2: Set y0 := x0, u0 := x0, α0 := 0, A0 := α0

3: for k ≥ 0 do
4: Find the smallest integer ik ≥ 0 such that

fδk
(xk+1) ≤ fδk

(yk+1) + ψδk
(xk+1, yk+1) +

Mk+1α2
k+1

A2
k+1

Dφ[uk](uk+1) + δk, (10)

where Mk+1 = 2ik−1Mk, αk+1 is the largest root of the equation

Ak+1(1 + Akμ + Akm) = Mk+1α
2
k+1, Ak+1 := Ak + αk+1, and (11)

yk+1 :=
αk+1uk + Akxk

Ak+1

, (12)

Φk+1(x) := αk+1ψδk
(x, yk+1) + (1 + Ak(μ + m))Dφ[uk](x) + αk+1μDφ[yk+1](x),

uk+1 := arg min
x∈Q

δ̃k Φk+1(x), for some δ̃k ≥ 0 (13)

xk+1 :=
αk+1uk+1 + Akxk

Ak+1

. (14)5: Set k := k + 1.
6: end for
7: Output: xk

The following is the convergence rate result for the proposed algorithm.

Theorem 2.6. Assume that (fδ(y), ψδ(x, y)) is a (δ, L, μ, m, φ)-model according to Defini-

tion 2.1. Also assume that Dφ[y](x) satisfies Assumption 2.5. Then, after N iterations

of Algorithm 1, we have

f(xN) − f(x∗) ≤ Dφ[u0](x∗)

AN
+

2
∑N−1

k=0 Ak+1δk

AN
+

∑N−1
k=0 δ̃k

AN
, (15)

Dφ[uN](x∗) ≤ Dφ[u0](x∗)

(1 + AN μ + AN m)
+

2
∑N−1

k=0 Ak+1δk

(1 + AN μ + AN m)
+

∑N−1
k=0 δ̃k

(1 + AN μ + AN m)
. (16)

In order to prove Theorem 2.6 we need the following technical Lemma.

Lemma 2.7 ([31, Lemma 3.5.]). Let ψ(x) be a relatively m-strongly convex function rel-

ative to φ with m ≥ 0, i.e. (7) holds, and

10 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

y = arg min
x∈Q

δ̃{ψ(x) + βDφ[z](x) + γDφ[u](x)},

where β ≥ 0 and γ ≥ 0. Then, for all x ∈ Q,

ψ(x) + βDφ[z](x) + γDφ[u](x) ≥ ψ(y) + βV [z](y) + γDφ[u](y) + (β + γ + m)Dφ[y](x) − δ̃.

Proof of Theorem 2.6. We start by proving the correctness of the algorithm, i.e. that if

we fix iteration k, there exists ik ≥ 0 such that (10) holds. By Definition 2.1 with x = y,

we have fδk
(y) ≤ f(y). Thus, from (6)

fδk
(xk+1) ≤ fδk

(yk+1) + ψδk
(xk+1, yk+1) + LDφ[yk+1](xk+1) + δk. (17)

Combining this with Assumption 2.5 and using (12), (14), we further obtain

fδk
(xk+1) ≤ fδk

(yk+1) + ψδk
(xk+1, yk+1) +

LGα2
k+1

A2
k+1

Dφ[uk](uk+1) + δk. (18)

Since Mk+1 = 2ik−1Mk, we see that as soon as Mk+1 ≥ LG, (10) holds. Thus, the

algorithm is correctly defined. Note also that by the same reason we have

Mk+1 ≤ 2LG. (19)

Our next goal is to prove that, for all x ∈ Q, we have

Ak+1f(xk+1) − Akf(xk) + (1 + Ak+1μ + Ak+1m)Dφ[uk+1](x)

− (1 + Akμ + Akm)Dφ[uk](x) ≤ αk+1f(x) + 2δkAk+1 + δ̃k. (20)

Since by Definition 2.1 with x = y, we get f(x) − δk ≤ fδk
(x) ≤ f(x), and, using (10),

we have

f(xk+1)
(6)

≤ fδk
(xk+1) + δk

(10)

≤ fδk
(yk+1) + ψδk

(xk+1, yk+1)

+
Mk+1α2

k+1

A2
k+1

Dφ[uk](uk+1) + 2δk.

Substituting in this expression definition (14) of the point xk+1, using that Ak+1 =

Ak + αk+1 and that, by Definition 2.1, ψδk
(·, y) is convex, we have

f(xk+1) ≤ Ak

Ak+1
(fδk

(yk+1) + ψδk
(xk, yk+1)) +

αk+1

Ak+1
(fδk

(yk+1) + ψδk
(uk+1, yk+1))

+
Mk+1α2

k+1

A2
k+1

Dφ[uk](uk+1) + 2δk.

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 11

In view of the definition (11) of the sequence αk+1 and left inequality in (6), we obtain

f(xk+1) ≤ Ak

Ak+1
f(xk) +

αk+1

Ak+1

(
fδk

(yk+1) + ψδk
(uk+1, yk+1)

+
1 + Akμ + Akm

αk+1
Dφ[uk](uk+1)

)
+ 2δk.

(21)

By Lemma 2.7, for the optimization problem in (13) with ψ(x) = αk+1ψδk
(x, yk+1), β =

1 + Akμ + Akm, z = uk, γ = αk+1μ, and u = yk+1, it holds that

αk+1ψδk
(uk+1, yk+1) + (1 + Akμ + Akm)Dφ[uk](uk+1) + αk+1μDφ[yk+1](uk+1)

+ (1 + Ak+1μ + Ak+1m)Dφ[uk+1](x) − δ̃k

≤ αk+1ψδk
(x, yk+1) + (1 + Akμ + Akm)Dφ[uk](x) + αk+1μDφ[yk+1](x).

From the fact that Dφ[yk+1](uk+1) ≥ 0, we have

αk+1ψδk
(uk+1, yk+1) + (1 + Akμ + Akm)Dφ[uk](uk+1)

≤ αk+1ψδk
(x, yk+1) + (1 + Akμ + Akm)Dφ[uk](x)

− (1 + Ak+1μ + Ak+1m)Dφ[uk+1](x) + αk+1μDφ[yk+1](x) + δ̃k.

(22)

Combining (21) and (22), we obtain

f(xk+1) ≤ Ak

Ak+1
f(xk) +

αk+1

Ak+1

(
fδk

(yk+1) + ψδk
(x, yk+1) + μDφ[yk+1](x)

+
1 + Akμ + Akm

αk+1
Dφ[uk](x)

− 1 + Ak+1μ + Ak+1m

αk+1
Dφ[uk+1](x) +

δ̃k

αk+1

)
+ 2δk.

We finish the proof of (20) applying the left inequality in (6):

f(xk+1) ≤ Ak

Ak+1
f(xk) +

αk+1

Ak+1
f(x) +

1 + Akμ + Akm

Ak+1
Dφ[uk](x)

− 1 + Ak+1μ + Ak+1m

Ak+1
Dφ[uk+1](x) + 2δk +

δ̃k

Ak+1
.

We now telescope the inequality (20) for k from 0 to N − 1 and take x = x∗:

AN f(xN) ≤AN f(x∗) + Dφ[u0](x∗) − (1 + AN (μ + m))Dφ[uN](x∗)

+ 2
N−1∑

k=0

Ak+1δk +
N−1∑

k=0

δ̃k. (23)

12 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

Since V [uk+1](x∗) ≥ 0 for all k ≥ 0, we have

AN f(xN) − AN f(x∗) ≤ Dφ[u0](x∗) + 2
N−1∑

k=0

Ak+1δk +
N−1∑

k=0

δ̃k.

The last inequality proves (15). Inequality (16) is a straightforward from (23) since f(x) ≥
f(x∗) for all x ∈ Q. �

To finish the analysis of Algorithm 1 we estimate the growth rate of the sequence AN .

The result is proved in the same way as Lemma 3.7 in [31] with the change Lk → Mk.

Lemma 2.8. For all N ≥ 0, we have

AN ≥ max

⎧
⎨
⎩

1

4

(
N−1∑

k=0

1√
Mk+1

)2

,
1

M1

N−1∏

k=1

(
1 +

√
μ + m

4Mk+1

)2
⎫
⎬
⎭

≥ max

{
N2

4M̃N

,
1

M1
exp

(
N

√
μ + m

4M̃N

)}
,

where M̃
−1/2
N = 1

N

∑N−1
k=0 M

−1/2
k+1 .

Note that from (19) we have that M̃
−1/2
N = 1

N

∑N−1
k=0 M

−1/2
k+1 ≥ 1√

2LG
, which leads to

the following estimate for the convergence rate of Algorithm 1

f(xN) − f(x∗) ≤Dφ[u0](x∗) min

{
8LG

N2
, 2LG exp

(
−N

√
μ + m

8LG

)}

+
2
∑N−1

k=0 Ak+1δk

AN
+

∑N−1
k=0 δ̃k

AN
.

3. Inexact statistically preconditioned accelerated gradient method

In this section, we return to the distributed empirical risk minimization problem (1),

(4), where we deal with m machines or worker nodes, with sample size n at each. More-

over, without loss of generality we index the central node as node 1. Following the same

algorithmic structure as DANE [2] and SPAG [1], we define a reference function

φ(x) =
1

n

n∑

i=1

�(x; ζi) +
σ

2
‖x‖2

2, (24)

where the samples ζi are taken from the node which is chosen to be central. It is easy

to see from (2) and (3) that φ(x) is Lφ-smooth, and μφ-strongly convex since it has a

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 13

similar form as F (x). The value of the parameter σ is set to be an upper bound that

quantifies how similar the function F1 is to F , i.e., we assume that with high probability,

it holds that

‖∇2F (x) − ∇2F1(x)‖2 ≤ σ, ∀x ∈ domh (25)

where the norm is the operator norm for matrices (i.e., the largest singular value). The

rationale behind this statistical similarity assumption are statistical arguments that allow

to show [1] that (25) holds with σ proportional to 1√
n

. Further, it follows that F (x)

is LF/φ-relatively smooth and μF/φ-relatively strongly convex with respect to φ(x) [12,1],

i.e.,

μF/φDφ[x](y) ≤ DF [x](y) ≤ LF/φDφ[x](y), (26)

with LF/φ = 1, μF/φ = μF /(μF + 2σ), and κF/φ = LF/φ/μF/φ = 1 + 2σ/μF .

Once the specific Bregman divergence has been defined based on statistical similarity

and using the reference function (statistical preconditioner) φ(x) as in (24), distributed

statistical preconditioning methods rely on Bregman proximal steps, where the algorithm

needs to solve at every iteration the problem of the form (here α > 0)

arg min
x∈Rd

{α(〈∇F (z), x−z〉 + h(x))+Dφ[u](x)} . (27)

Non-accelerated methods based on steps of the form (27) have an iteration complexity

of Õ(κF/φ) [39,30,31]. Thus, statistical preconditioning allows for the relative condition

number κF/φ to determine the convergence rate instead of κF . The authors in [1] showed

that for quadratic functions σ = Õ(LF /
√

n), which implies κF/φ = 1 + Õ(κF /
√

n). Sim-

ilarly, for non-quadratic functions σ = Õ(κF

√
d/n), thus κF/φ = 1 + Õ(κF

√
d/n). This,

in turn, leads to the total number of communication rounds Õ
(
κF/φ

)
, which is quantita-

tively better than for methods that do not use such statistical preconditioning [15,40,5].

A similar argument follows for accelerated algorithms, where the iteration complexity

will be Õ
(
κ

1/2
F/φ

)
[1].

Next, we study the building blocks of our approach to advance this line of works.

First, we consider the inexact version of the SPAG algorithm [1] wherein each iteration

subproblems of the form (27) are solved inexactly with such accuracy that the over-

all performance of the algorithm is affected only by a logarithmic factor. Notably, the

required accuracy decreases as iterations go, meaning that the approximate solution’s

quality may not be high in the first iterations. Next, we introduce and analyze a Hyper-

fast second-order method for third-order smooth and uniformly convex functions, which

we will apply to solve subproblems (27) in each iteration of our inexact SPAG (InSPAG)

algorithm when h(x) = 0. Finally, we analyze the total complexity for the combination

of InSPAG plus the Hyperfast second-order method to solve our problem of interest.

This combination is advantageous because we only use first-order information on the

14 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

individual losses from the whole dataset and obtain a small subproblem on the central

node. Then, a fast second-order method is used to solve this subproblem on the central

node.

3.1. InSPAG and its convergence rate theorem

This subsection introduces the InSPAG algorithm together with its convergence rate

analysis. The main idea is to implement Algorithm 1 on the central node and use

Theorem 2.6. Inexactness in statistically preconditioned problems has been studied for

DANE, resulting in InexactDANE, AIDE [11], and D2ANE [3]. To propose our InSPAG

algorithm we rely on the results of Section 2. From (26) and Examples 2.3 and 2.4

we see that fδ(y) = f(y) and ψδ(x, y) = 〈∇F (y), x − y〉 + h(x) − h(y) constitute

a (0, LF/φ, μF/φ, 0, φ)-model of the function f defined in (1). Thus, the main idea of

InSPAG is to implement Algorithm 1 for problem (1) using distributed computations.

We further assume that the solution x∗ of the problem (1) belongs to some Euclidean

ball B2(0, R), and define R2
φ = 2LφR2. Using this quantity we set the inexactness of the

projection in each iteration to be δ̃k =
R2

φ

k (cf. (13)).

The pseudocode of the proposed InSPAG algorithm is presented as Algorithm 2.

Unlike [1], our algorithm is inspired by a similar-triangles type of accelerated meth-

ods [41–44,31,45], which leads to a slightly simpler algorithm. Another important dif-

ference with [1] is that our algorithm is adaptive simultaneously to the constants LF/φ

Algorithm 2 InSPAG (LF/φ, μF/φ, x0, R).

1: Input: R s.t. x∗ ∈ B2(0, R), R2
φ = 2LφR2, μF/φ, M0.

2: Set y0 = u0 = x0 ∈ B2(0, R), A0 := α0 := 0.
3: for k ≥ 0 do
4: Set ik = 0
5: repeat
6: At the central node set Mk+1 = 2ik−1Mk and find αk+1 from Ak+1(1 + AkμF/φ) = Mk+1α2

k+1.
Set Ak+1 := Ak + αk+1.

7: At the central node set yk+1 :=
αk+1uk+Akxk

Ak+1
and send to each worker.

8: At every worker node j compute 1
n

∑n
i=1 ∇�

(
yk+1; ζ(j)

i

)
and send it to the central node.

9: At the central node compute ∇F (yk+1) = 1
nm

∑m
j=1

∑n
i=1 ∇�

(
yk+1; ζ(j)

i

)
.

10: At the central node solve uk+1 = arg min
R2

φ
/k

x∈B2(0,R) Φk+1(x),

where Φk+1(x) = αk+1(〈∇F (yk+1), x − yk+1〉 + h(x))+

+ (1 + AkμF/φ)Dφ[uk](x) + αk+1μF/φDφ[yk+1](x). (28)

11: At the central node set xk+1 :=
αk+1uk+1+Akxk

Ak+1
.

12: Set ik = ik + 1.
13: until

F (xk+1) ≤ F (yk+1) + 〈∇F (yk+1), xk+1 − yk+1〉 +
Mk+1α2

k+1

A2
k+1

Dφ[uk](uk+1). (29)

14: end for
15: Output: xk

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 15

and G (see Assumption 2.5), which may lead to further acceleration in practice since

locally, the constant LF/φG can be smaller leading to larger step-sizes. Note that Line 10

of Algorithm 2 requires approximate minimization of the auxiliary function (28). First,

we present the complexity analysis of Algorithm 2 in Theorem 3.1 assuming the ap-

proximate solution to (28). In Subsection 3.2, we show the complexity of obtaining said

approximate solution efficiently when h(x) = 0 using high-order methods.

We are now in a position to state the main result on InSPAG.

Theorem 3.1. Assume that the function F in (1) is μF/φ-strongly convex and LF/φ-

smooth with respect to the function φ, where φ satisfies Assumption 2.5. Moreover,

let xk, k ≥ 0 be the sequence generated by Algorithm 2. Then, after K iterations it

holds that

f(xK) − f(x∗) ≤ 2LφR2(1 + ln K)

AK
. (30)

Moreover, the value AK grows as follows:

AK ≥ max

{
K2

4M̃K

,
1

M1
exp

(
K

√
μF/φ

4M̃K

)}
, (31)

where M̃
−1/2
K = 1

K

∑K−1
k=0 M

−1/2
k+1 .

Proof. Clearly, Algorithm 2 is a distributed implementation of Algorithm 1 with δk =

0, k ≥ 0. We only note that for this particular setting with fδ(y) = f(y) and ψδ(x, y) =

〈∇F (y), x − y〉 + h(x) − h(y), inequality (10) becomes

F (xk+1) + h(xk+1) ≤F (yk+1) + h(yk+1) + 〈∇F (yk+1), xk+1 − yk+1〉

+ h(xk+1) − h(yk+1) +
Mk+1α2

k+1

A2
k+1

Dφ[uk](uk+1),

which is equivalent to (29). Thus, we can apply Theorem 2.6, which gives the following

estimate

f(xK) − f(x∗) ≤ Dφ[u0](x∗)

AK
+

∑K−1
k=0 δ̃k

AK
≤ Lφ(2R)2

2AK
+

1

AK

K−1∑

k=0

R2
φ

k

≤
R2

φ(1 + ln K)

AK
=

2LφR2(1 + ln K)

AK

The lower bound for AK follows from Lemma 2.8. �

To apply Theorem 3.1 we need to ensure that Assumption 2.5 is satisfied.

16 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

Lemma 3.2. Under the assumption that φ is μφ-strongly convex and Lφ-smooth Assump-

tion 2.5 is satisfied with G = Lφ/μφ = κφ.

Proof. Since φ is μφ-strongly convex and Lφ-smooth, we have that

μφ

2
‖x − y‖2 ≤ Dφ[x](y) ≤ Lφ

2
‖x − y‖2, ∀x, y ∈ dom φ.

Thus, for all x, y, u, u+ such that x − y = τ(u+ − u) for some τ ∈ [0, 1], we have

Dφ[y](x) ≤ Lφ

2
‖x − y‖2 =

Lφτ2

2
‖u+ − u‖2 ≤ Lφτ2

μφ
Dφ[u](u+). �

From Lemma 3.2, we see that if φ is a quadratic function, then, G = κφ and by

(19) we have that Mk+1 ≤ 2LF/φκφ. Then, the number of iterations K to reach accu-

racy ε, i.e., the number of communications between the central node and the worker

nodes, is bounded as O(
√

κF/φκφ ln 1
ε). As we see below, for quadratic functions the

estimate for G can be improved to G = 1, which gives a better communication com-

plexity O(
√

κF/φ ln 1
ε). In the general case, where φ is not quadratic, similarly to [1,46],

we next show that Mk+1 → LF/φ linearly with rate Õ(
√

κF/φ). This means that the

convergence rate of InSPAG quickly approaches the convergence rate with condition

number
√

κF/φ.

Lemma 3.3. Under the assumptions of Theorem 3.1 and Lemma 3.2 assume additionally

that the Hessian of φ is H-Lipschitz-continuous, i.e.

‖∇2φ(x) − ∇2φ(y)‖ ≤ H‖x − y‖. (32)

Then the inequality (29) is satisfied with

Mk+1 = LF/φ min

{
κφ, 1 +

Hdk

μφ

}
, (33)

where dk = ‖xk+1 − yk+1‖ + ‖uk − xk‖ + ‖uk − uk+1‖.

Proof. By the local quadratic representation of the Bregman divergence, we have for

any a, b ∈ dom φ and for some τ ∈ [0, 1] that Dφ[a](b) = ‖a − b‖2
∇2φ(τa+(1−τ)b). We

use H(a, b) to denote the corresponding Hessian ∇2φ(τa + (1 − τ)b). We have

Dφ[xk+1](yk+1) = ‖xk+1 − yk+1‖2
H(xk+1,yk+1)

(14),(12)
=

α2
k+1

A2
k+1

‖uk+1 − uk‖2
H(xk+1,yk+1)

≤ α2
k+1

A2
k+1

(
‖uk+1 − uk‖2

H(uk+1,uk) + ‖H(xk+1, yk+1) − H(uk+1, uk)‖‖uk+1 − uk‖2
)

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 17

≤ α2
k+1

A2
k+1

(
Dφ[uk](uk+1) + ‖H(xk+1, yk+1) − H(uk+1, uk)‖Dφ[uk](uk+1)

μφ

)

(32)

≤ α2
k+1

A2
k+1

Dφ[uk](uk+1)

(
1 +

H‖z − z′‖
μφ

)
,

where z ∈ [xk+1, yk+1] and z′ ∈ [uk+1, uk]. Using the latter and (12), (14), we obtain

‖z − z′‖ ≤ ‖z − yk+1‖ + ‖yk+1 − uk‖ + ‖uk − z′‖
≤ ‖xk+1 − yk+1‖ + ‖xk − uk‖ + ‖uk − uk+1‖ � dk.

Combining the above with the relative smoothness property (26), we obtain that (29)

holds when Mk+1 = LF/φ

(
1 + Hdk

μφ

)
. Since (29) holds also when Mk+1 = LF/φκφ (see

Lemma 3.2 and (26)), we obtain the statement of the Lemma. �

From (16) and (31) since Mk+1 ≤ LF/φκφ we know that the sequence uk, k ≥ 0 con-

verges to x∗ linearly with condition number
√

κF/φκφ. From (15) by the strong convexity,

we see that the sequence xk, k ≥ 0 converges to x∗ also linearly with the same condition

number. Hence, by (12) we conclude the same on the sequence yk, k ≥ 0. Thus, dk con-

verges linearly to zero with the same condition number and Mk+1 approaches LF/φ with

the same rate. This, in turn, means that the convergence rate in Theorem 3.1 quickly

approaches O((1 − √
κF/φ)K) when the Hessian of φ is Lipschitz-continuous.

Next, we study the properties of the auxiliary problem in step 10 of Algorithm 2

and, under the additional assumption that the loss function � has bounded fourth-order

derivatives, we show the explicit complexity of computing an approximate solution to

this auxiliary problem using Hyperfast second-order methods.

3.2. Hyperfast second-order method for the auxiliary problem

In this subsection, we elaborate the properties of the auxiliary problem in step 10

of Algorithm 2 and propose a Hyperfast second-order algorithm to solve it when the

function φ is strongly convex and sufficiently smooth. The main result is a complexity

estimate for solving the auxiliary problem by the Hyperfast algorithm. Recall that, at

each iteration of Algorithm 2 we need to find an approximate minimizer in the sense of

Definition 2.2 of the function Φk+1(x) on the Euclidean ball B2(0, R). Throughout this

subsection we assume that the regularizer h(x) ≡ 0.

We first study some properties of the function Φk+1(x) defined in (28) and the mini-

mization problem solved in step 10 of Algorithm 2. Using our assumption that h(x) = 0,

the fact that Ak+1 = Ak + αk+1, the definition of the Bregman divergence, and ig-

noring constant terms in that problem, we see that it is equivalent to the problem

uk+1 = arg min
R2

φ/k

x∈B2(0,R) Ψk+1(x), where

Ψk+1(x) � 〈αk+1∇F (yk+1) − (1 + AkμF/φ)∇φ(uk) − αk+1μF/φ∇φ(yk+1), x〉+

18 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

+ (1 + Ak+1μF/φ)φ(x). (34)

Lemma 3.4. Assume that φ is μφ-strongly convex and Lφ-smooth w.r.t. the Euclidean

norm. Also assume that for some θ > 0 and all x ∈ B2(0, R), it holds that

max{‖∇F (x)‖2/μF/φ, ‖∇φ(x)‖2} ≤ θ. Let us denote x∗
k+1 = arg minx∈B2(0,R) Ψk+1(x)

and let the point x̂k+1 satisfy

Ψk+1(x̂k+1)−Ψk+1(x∗
k+1) ≤ ∆k �

μφR4
φ

2k2(2LφR + 3θ)2(1 + Ak+1μF/φ)
. (35)

Then x̂k+1 = arg min
R2

φ/k

x∈B2(0,R) Ψk+1(x).

Proof. Since φ is μφ-strongly convex and Lφ-smooth, Ψk+1 in (34) is μΨ-strongly convex

with μΨ = (1 + Ak+1μF/φ)μφ and LΨ-smooth with LΨ = (1 + Ak+1μF/φ)Lφ. Further,

by the assumption of the lemma, we have, for all x ∈ B2(0, R),

‖∇Ψk+1(x)‖2 = ‖αk+1∇F (yk+1) − (1 + AkμF/φ)∇φ(uk) − αk+1μF/φ∇φ(yk+1)

+ (1 + Ak+1μF/φ)∇φ(x)‖2 ≤ 3(1 + Ak+1μF/φ)θ, (36)

where we used also that αk+1 ≤ Ak+1 and that Ak+1 = Ak + αk+1. By the strong

convexity of Ψ, we have

‖x̂k+1 − x∗
k+1‖2 ≤

√
2

μΨ
(Ψk+1(x̂k+1) − Ψk+1(x∗

k+1)) ≤
√

2∆k/μΨ. (37)

Hence, for any x ∈ B2(0, R),

〈∇Ψk+1(x̂k+1), x − x̂k+1〉 = 〈∇Ψk+1(x̂k+1) − ∇Ψk+1(x∗
k+1), x − x̂k+1〉

+ 〈∇Ψk+1(x∗
k+1), x − x∗

k+1〉 + 〈∇Ψk+1(x∗
k+1), x∗

k+1 − x̂k+1〉
≥ −LΨ‖x∗

k+1 − x̂k+1‖2‖x − x̂k+1‖2 + 0 − ‖∇Ψk+1(x∗
k+1)‖2‖x∗

k+1 − x̂k+1‖2

(36),(37)

≥ −(2LΨR + 3(1 + Ak+1μF/φ)θ)
√

2∆k/μΨ

= −(1 + Ak+1μF/φ)(2LφR + 3θ)

√
2∆k

(1 + Ak+1μF/φ)μφ
≥ −R2

φ/k

where we used the definitions of LΨ and μΨ and the expression for ∆k. Thus, x̂k+1

satisfies Definition 2.2 with δ̃ = R2
φ/k. �

Next, we propose an efficient Hyperfast second-order method to obtain a point x̂k+1

for which (35) holds. To do this, we make an additional assumption on the function φ.

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 19

Assumption 3.5. The function φ has bounded fourth-order derivatives, which is equiva-

lent to Lipschitz third-order derivative, i.e. there exists 0 ≤ Lφ,3 < ∞ s.t.

‖∇3φ(x) − ∇3φ(y)‖2 ≤ Lφ,3‖x − y‖2, ∀x, y ∈ B2(0, R),

where the norm of a tensor is induced by the Euclidean norm in a standard way [22].

The idea is to use a second-order implementation of a third-order method, in the

sense of [25, Sect. 5.2] or [26, Algorithm 2], to minimize Ψk+1(x) in each iteration of

InSPAG. Such methods are called Hyperfast second-order methods since, due to the

additional assumption of third-order smoothness, they have faster convergence rates than

the optimal second-order method [47]. In our case, the objective Ψk+1(x) is additionally

strongly convex. Thus, we can achieve faster rates than the basic schemes in [25,26] that

do not use strong convexity. We propose an extension of Hyperfast second-order methods

for minimizing strongly convex functions and show that they have faster convergence

rate.3 Our algorithm is described below as Algorithm 3.

Algorithm 3 Restarted hyperfast second-order method.
Require: z0 ∈ B2(0, R), constant c which defines convergence rate of the basic Hyperfast method, strong

convexity parameter μφ.
1: Set R0 = 2R
2: for t = 0, 1, ... do

3: Set Rt = R0 · 2−k, and Nt = max{�
(
8cLφ,3R2

t /μφ

) 1

5 �, 1},
4: Set zt+1 = yNt

as the output of the basic Hyperfast Second-Order Method (either [25, Eq.3.6]
for p = 3 and β = 1/2 and with auxiliary steps described in [25, Sect. 5.2] or [26, Algorithm 2])
started from zt and run for Nt steps applied to Ψk+1(x).

5: Set t = t + 1.
6: end for

Ensure: zt.

As a building block, this method uses basic Hyperfast second-order method which has

convergence rate of the form cL3‖x∗ − z0‖4
2/k5, where k is the iteration counter, c = 48

for [25, Theorem 2] and c = 35 for [26, Theorem 2].

Theorem 3.6. Under assumptions of Lemma 3.4 let additionally Assumption 3.5 to hold.

Let also sequence zt, t ≥ 0 be generated by Algorithm 3. Then

μΨ

2
‖zt − x∗

k+1‖2
2 ≤ Ψk+1(zt) − Ψk+1(x∗

k+1) ≤ 2μΨR2 · 2−2t, t ≥ 0. (38)

Moreover, the total number of steps of the basic Hyperfast second-order method to

reach Ψk+1(zt) − Ψk+1(x∗
k+1) ≤ ∆k is bounded by

3 Section 5 extends Hyperfast second-order methods for a more general setting of minimizing uniformly
convex functions. Here we use a particular case that corresponds to uniform convexity of the order q = 2,
equivalent to strong convexity.

20 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

5

(
32cLφ,3R2

μφ

) 1
5

+ log2

(1 + Ak+1μF/φ)2k2(2LφR + 3θ)2

L2
φR2

.

Proof. Let us denote for shortness x∗ = x∗
k+1 and Ψ(x) = Ψk+1(x). For t = 0 we have

‖x∗ −z0‖2 ≤ R0. Let us assume that ‖x∗ −zt‖2 ≤ Rt and show that ‖x∗ −zt+1‖2 ≤ Rt+1.

By Assumption 3.5 and (34) it is clear that Ψ(x) has LΨ,3-Lipschitz third-order derivative

with LΨ,3 = (1 +Ak+1μF/φ)Lφ,3. Recall that μΨ = (1 +Ak+1μF/φ)μφ. From [25][Theorem

2] since Ψ is μΨ-strongly convex and has LΨ,3-Lipschitz third-order derivative, it holds

that

μΨ

2
‖zt+1 − x∗‖2

2 ≤ Ψ(zt+1) − Ψ(x∗) ≤ cLΨ,3‖zt − x∗‖4
2

N5
t

≤ μΨ(Rt/2)2

2
=

μΨR2
t+1

2

by the choice of Nt and since LΨ,3/μΨ = Lφ,3/μφ. Thus, by induction, we have (38).

It remains to estimate the number of iterations of the basic Hyperfast method. From

(38) we see that to reach the accuracy ∆k it is sufficient to make T = 1
2 log2

2μΨR2

∆k

restarts. Summing up the number of operations Nt, t = 0, ..., T , we obtain

T∑

t=0

Nt ≤
T∑

t=0

[(
8cLφ,3R2

t

μφ

) 1
5

+ 1

]
=

(
8cLφ,3R2

0

μφ

) 1
5

T∑

t=0

2− 2t
5 + T

≤ 5

(
32cLφ,3R2

μφ

) 1
5

+ log2

2μΨR2

∆k
.

Let us estimate the last term using (35) and that μΨ = (1 +Ak+1μF/φ)μφ, R2
φ = 2LφR2:

log2

2μΨR2

∆k
= log2

2(1 + Ak+1μF/φ)μφR2

μφ(2LφR2)2

2k2(2LφR+3θ)2(1+Ak+1μF/φ)

= log2

(1 + Ak+1μF/φ)2k2(2LφR + 3θ)2

L2
φR2

.

Combining this with the previous chain of inequalities, we obtain the second statement

of the lemma. �

3.3. InSPAG plus hyperfast method with application to logistic regression

This subsection combines the building blocks introduced in the previous two subsec-

tions and considers a particular application to a regularized logistic regression problem,

for which we obtain a total complexity bound in terms of the number of iterations of

the Hyperfast second-order method. We further discuss the arithmetic iteration com-

plexity of our method and compare it to that of stochastic variance-reduced first-order

algorithms and indicate a regime in which our algorithm is preferable.

Combining Theorems 3.1 and 3.6, we obtain the following result.

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 21

Theorem 3.7. Assume that in problem (1), h(x) = 0, and that its solution x∗ be-

longs to the ball B2(0, R). Assume that the function F in this problem is μF/φ-

strongly convex and LF/φ-smooth with respect to the function φ, where φ satis-

fies Assumption 2.5, is μφ-strongly convex, Lφ-smooth and has Lφ,3-Lipschitz third-

order derivative. Also assume that for some θ > 0 and all x ∈ B2(0, R), it holds

that max{‖∇F (x)‖2/μF/φ, ‖∇φ(x)‖2} ≤ θ. Let ε > 0 be the target accuracy. Finally,

let InSPAG (Algorithm 2) be applied to problem (1), and in step 10 of this algorithm

let Restarted Hyperfast method (Algorithm 3) be applied to solve the auxiliary problem.

Then a sufficient number of iterations of the basic Hyperfast method to find an ε-solution

to (1) is bounded as

O

(
K

(
Lφ,3R2

μφ

) 1
5

+ K log2

μF/φLφR2(LφR + θ)K ln K

LφRε

)
, (39)

where K is such that
2LφR2(1+ln(K+1))

AK+1
≤ ε <

2LφR2(1+ln K)
AK

.

Proof. From (30) we see that InSPAG can be stopped at iteration K when we

have
2LφR2(1+ln(K+1))

AK+1
≤ ε <

2LφR2(1+ln K)
AK

. Then, f(xK+1) − f(x∗) ≤ ε. Also, ap-

plying Theorem 3.6 we obtain that the total number of iterations of the basic Hyperfast

method, up to numerical constant multipliers, is bounded by

K∑

k=0

((
Lφ,3R2

μφ

) 1
5

+ log2

(1 + AkμF/φ)k(LφR + θ)

LφR

)

≤c K

((
Lφ,3R2

μφ

) 1
5

+ log2

(1 + AKμF/φ)K(LφR + θ)

LφR

)
= (39),

where in equality ≤c means a usual inequality up to a numerical constant factor. �

From (31) and Lemma 3.3 we know that when φ has also Lipschitz Hessian, it is

sufficient to take K = O
(√

κF/φκφ ln 1
ε

)
. Lemma 3.3 also implies that for quadratic func-

tion φ it is sufficient to take K = O
(√

κF/φ ln 1
ε

)
and that for non-quadratic function φ

the result is the same up to a fast asymptotic. In the language of the individual loss � and

the number of samples n used for preconditioning, our result is the same Õ(
√

κ�/n1/4)

as for the exact algorithm [1]. Thus, the total number of iterations of the basic Hyperfast

method to find an ε-solution to (1) can be bounded as

Õ

(
√

κF/φ

(
Lφ,3R2

μφ

) 1
5

)
. (40)

22 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

So far, we have not explicitly used the finite-sum structure of problem (1), (2) and

the statistical similarity (25). In order to do this, we consider the sparse empirical risk

minimization problem with regularized logistic loss, where in (2), for i ∈ {1, . . . , N},

�(x; ζi) = log (1+ exp(−ηi〈x, ξi〉)) +λ1

∑

j∈IS

x2
j+λ2

∑

j∈ID

x2
j , (41)

where ζi = (ξi, ηi), ηi = 1 indicates a positive (clicked) example, and ηi = −1 otherwise.

We assume there are two types of features, namely, sparse and dense features. Let ξi,j be

the j-th element of the vector ξi. Then, ξi,j is a sparse feature if ξi,j = 0 for almost all i ∈
{1, . . . , N}, and a dense feature if ξi,j �= 0 for many i ∈ {1, . . . , N}. We denote by IS

(and ID) the set of sparse (and dense) features with IS ∪ID = {1, . . . , d} and IS ∩ID = ∅.

Moreover, it follows from [48, Section 4.4] that in this case the function F is LF -smooth

with LF = max{λ1, λ2} + 1
N

∑N
i=1 ‖ηiξi‖2

2 = O(s), where s is the average number of

nonzero elements in ξi, and μF -strongly convex with μF = min{λ1, λ2}. For the same rea-

sons, function φ defined in (24) is Lφ-smooth with Lφ = max{λ1, λ2} + 1
n

∑n
i=1 ‖ηiξi‖2

2+σ

and μφ-strongly convex with μφ = min{λ1, λ2} + σ. It also has bounded first-, second,

and third-order derivatives [17]. More importantly, the logistic loss in (41) has bounded

fourth-order derivatives [17], which means that Assumption 3.5 holds. Indeed, let us

define matrix A = [η1ξ1, . . . , ηnξn]
. Then, by Theorem 5.4 in [17] with μ = 1 the func-

tion 1
n

∑n
i=1 �(x; ζi) has Lipschitz third-order derivative with constant L�,3 = 15‖A
A‖2

2

w.r.t. 2-norm or with constant L�,3 = 15 w.r.t. ‖ · ‖A�A-norm. Since adding a quadratic

function does not change the Lipschitz constant for the third-order derivative, φ has

Lipschitz third-order derivative with constant Lφ,3 = L�,3.

Applying [1, Theorem 3], we obtain that in our setting the statistical similarity pa-

rameter in (25) is σ = 1 + Õ
(

maxi=1,...,n ‖ηiξi‖3/2
2 R

min{λ1,λ2}√
n

)
and a sufficient number of InSPAG

iterations is Õ(
√

κ�/n1/4), which is similar to SPAG [1]. Further, the number of the basic

Hyperfast iterations is the same up to a factor

(
Lφ,3R2

μφ

) 1
5

≤c

(‖A
A‖2
2R2

min{λ1, λ2} + σ

) 1
5

≤
(‖A
A‖2

2R2

min{λ1, λ2}

) 1
5

.

Informally speaking, applying statistical preconditioning allows reducing the mini-

mization of a large sum F of N functions in (2) to the minimization of a moderate

sum φ of n functions when making the step 10 of Algorithm 2. To conclude this sub-

section we would like to discuss the complexity of minimizing function Ψ in (34) which

is equivalent to step 10 of Algorithm 2. To that end, we consider the setting of sparse

logistic regression with loss (41). Since φ and Ψ have finite-sum form, a straightforward

approach is to apply accelerated variance reduced methods. This leads to arithmetic

operations complexity

Õ
(
s ·

(
n +

√
nκ

))
, (42)

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 23

where s comes from the cost of evaluating a sparse stochastic gradient ∇�(x; ζi) for

some random i, and the rest is the optimal bound on the number of stochastic gradient

evaluations for such methods [49]. Note that we have κ = LΨ/μΨ = Lφ/μφ.

We propose an alternative approach by applying Hyperfast second-order methods

to minimize the function Ψ. Since basic Hyperfast second-order methods are a special

implementation of third-order method [22,23,50,24–26], each their iteration requires to

minimize the regularized third-order Taylor polynomial:

min
y∈Rd

{
〈∇Ψ(x), y−x〉 +

1

2
∇2Ψ(x)[y − x]2 +

1

6
∇3Ψ(x) [y−x]

3
+

LΨ,3

8
‖y−x‖4

2

}
. (43)

It is shown in [22] that the objective in (43) is relatively smooth and strongly convex

with respect to the function a(y) = 1
2∇2Ψ(x)[y − x]2 +

LΨ,3

8 ‖y − x‖4
2 with μΨ/a =

1 −1/
√

2, LΨ/a = 1 +1/
√

2. Since κΨ/a is a constant, the complexity of solving (43) is, up

to logarithmic factors, the same as for minimizing a(y). In turn, the complexity of solving

this problem, up to logarithmic factors, is the same as the complexity of a quadratic

programming problem and can be estimated by the complexity of matrix inversion [51].

To sum up, the arithmetic operations complexity of minimizing the function Ψ by the

Restarted Hyperfast second-order method has the form

Õ

(
(
s2n + dlog2 7

)
·
(

Lφ,3R2

μφ

)1/5
)

, (44)

see [23,25,26] for more details on arithmetic complexity of each iteration of the ba-

sic Hyperfast method. The first term in (44), i.e., s2n, is due to the complexity of

Hessian calculation. The second term, i.e. dlog2 7, corresponds to the complexity of Hes-

sian inversion, e.g., by the matrix inversion lemma using Strassen’s algorithm [28]. The

term
(

Lφ,3R2

μφ

)1/5

comes from the estimate for the number of iterations of the basic Hy-

perfast second-order method, see Theorem 3.6. Additionally, we may expect R2 = O(d),

since dim x∗ = d and Lφ,3 = O
(

1
n

∑n
i=1 ‖ηiξi‖4

2

)
= O(s2) since we consider sparse

logistic regression.

Without loss of generality, we can assume that the parameter n can be set such

that dlog2 7 = O
(
s2n

)
. In this case, the Hyperfast second-order method with complexity

(44) outperforms accelerated variance reduced algorithms with complexity (42) if μφ �
s−3n−2. Where �, and � mean the same as ≤ and =, but up to dimension-dependent

factors of the order O(1). For the particular case of sparse logistic regression problems,

our focused application, we can assume that s = Õ(1). Therefore, we have that if d �
n0.356 and μφ � n−2, or, equivalently, if dlog2 7 � n � μ

−1/2
φ , then, the Hyperfast

second-order method has smaller arithmetic operations complexity than variance reduced

algorithms. The last inequality is reasonable when the requirement for the accuracy is

high. Indeed, in practice, via regularization [52], it is reasonable to set μφ � μF �
ε/R � ε/d, where ε > 0 is a desired accuracy. Thus, in this case we can rewrite the

24 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

Table 1
Statistics of the datasets. N is the number of sam-
ples, d is the number of features, Feat. is the average
number of dense features, and Size is the data size in
MB.

Dataset N d Feat. Size

RCV1 20k 47k 74.05 13.7
In-house 710M 3,246k 109.86 650.8k

last inequality as ε � n−1.644 (d2.81 � n � ε−0.61). We can conclude that Hyperfast

second-order methods are better when our goal is to solve sparse logistic regression with

loss (41) with high accuracy. This result can be strengthened by using parallelization.

In the complexity bound (42) for variance reduced algorithms, only the first term can

be improved by applying parallelization on n nodes. On the contrary, in the bound (44)

for Restarted Hyperfast method, the first term can be improved by parallelization on n

nodes, and the second can be improved by parallelization on d nodes.

To conclude, high-order methods are competitive from the theoretical point of view

for large-scale convex problems that require high accuracy of the solution, especially

when the problem is sparse. Further improvements can potentially be achieved by using

inexact tensor methods [51,53–55] to save some computational work.

4. Numerical analysis and implementation details

In this section, we present numerical experiments and implementation details of Algo-

rithm 2. Namely, on the example of regularized logistic regression, we demonstrate the

practical performance of InSPAG method with Hyperfast subsolver (InSPAG+Hyper-

fast) and compare it with the state-of-the-art methods such as DANE, DANE-HB and

SPAG with SDCA subsolver. For the logistic regression, we show that InSPAG+Hyper-

fast outperforms other methods even for huge-dimensional problems with 710M samples

and 3.2M features.

We work with binary classification problems with regularized logistic regression cost

function (41) on a public dataset from LibSVM1,4 namely RCV1 [56], and a proprietary

large-scale in-house dataset that was generated from the click logs of a large-scale com-

mercial system for mobile app install ads. The main statistics of the datasets are shown

in Table 1.

We obtained an MPI-based distributed implementation of SPAG from the authors

of [1] and modified it to run on an Apache Spark [57] cluster. As shown in Algorithm 2,

InSPAG switches between two phases: a parallel gradient computation phase and a

central-node optimization phase in which we run the Hyperfast second-order method

in Algorithm 3. In our implementation, the driver carries the central-node optimization

phase while executors compute the gradient. The code for the implementations was de-

4 https://www .csie .ntu .edu .tw /~cjlin /libsvmtools /datasets /binary.html.

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 25

veloped in PyTorch [58]. Algorithm 3, in each iteration of the basic Hyperfast method,

requires a line-search where to calculate a test point the full step (43) is made. The num-

ber of such line-search steps is theoretically bounded above by O(log(ε−1)). However,

we observe that the line-search ends in approximately 5 trials in practice. Therefore,

we bound the number of iterations executed in the line-search procedure. Additionally,

our experiments show that the number of steps required in the line-search procedure de-

creases as more iterations of Algorithm 2 is executed. In the execution of the third-order

step (43) it is sufficient to approximate the product of the third derivative with two

vectors. To do this, we use off-the-shelf automatic differentiation codes and observe that

the resulting computational complexity is equivalent approximately to 4 − 6 gradient

computations.

As explained in [25, Sect. 5.2], or [59, Algorithm 2], the problem (43) is solved by

Bregman proximal gradient method under relative smoothness and strong convexity

assumption [30]. Each step of this algorithm applied to (43) requires to solve the prob-

lem

min
s∈Rd

{
〈c, s〉 +

1

2
〈∇2Ψ(x)s, s〉 +

L

4
‖s‖4

2

}
, (45)

where the vector c involves ∇Ψ(x) and ∇3Ψ(x)[s]2, L is some regularization pa-

rameter. We solve problem (45) using ADAM [60] since then the gradient c +

∇2Ψ(x)s + L‖s‖2
2s of the objective uses the Hessian only through Hessian-vector prod-

ucts which can be calculated using automatic differentiation. We observed that in

practice this takes approximately 2 − 3 times the time required for gradient com-

putation. Thus, on the lowest level, our method is a first-order method with a

Hessian-vector product and a third-order derivative product with two vectors com-

puted by automatic differentiation techniques. The full Hessians or full third-order

derivatives are not computed but are used for the method to exploit the additional

curvature of the objective and improve the practical convergence speed. Moreover,

the central node uses GPU to accelerate the various Hessian-related matrix-vector

operations in the algorithm. We believe our implementation5 to be the first prac-

tical implementation of an algorithm from the family of Hyperfast or even a wider

family of higher-order optimizers that can operate on data at the above dimensional-

ity.

We compare Algorithm 2 with the inner solver being Algorithm 3 and Algorithm 2

with the inner solver being Stochastic Dual Coordinate Ascent (SDCA) [61] used

in [1]. For the RCV1 dataset, we also compare the performance of Algorithm 2 versus

DANE [62] with both SDCA and Hyperfast as the central-node solver. We used n = 104

samples for preconditioning, λ = 10−5, σ = 2 × 10−5, constant LF/φ = 0.01, and a prac-

tical approximate 10−2 for R2
φ. We set the precision of the auxiliary subproblem to 10−4.

5 https://github .com /OPTAMI /OPTAMI/.

26 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

Fig. 1. Comparison of the communication rounds number for the dataset RCV1.

Fig. 2. Wall clock time performance of the InSPAG method for the dataset RCV1. “numba” indicates im-
plementation using Numba: A High Performance Python Compiler.

Other parameters: L3 = 0.005, the learning rate of ADAM is set to 1, and the number of

iterations of ADAM is 2. Figs. 1 and 2 show results for the RCV1 dataset. The point x̂

is set as the point where the minimal cost was achieved overall the iterations and runs of

the algorithm and serves as a proxy point used instead of the minimizer, which is in gen-

eral unknown. We see that Algorithm 2 outperforms DANE regardless of the subsolver

used. Moreover, InSPAG-SDCA has better performance during initial iterations. How-

ever, InSPAG-Hyperfast outperforms all other methods by accuracy. Also, we find that

Hyperfast iterations are faster than SDCA near the minimum point. For example, the

first five iterations take about 20 seconds each, and the last five take about 1.5 seconds

each. Hence, suggesting that some combination of methods would be used in practice.

However, the Hyperfast approach finds better solutions overall.

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 27

Fig. 3. Comparison of the communication rounds number for the in house dataset. a) L3 = 10, ADAM
learning rate 0.01, n = 10000; b) L3 = 100, ADAM learning rate 0.1, n = 10000; c) L3 = 10, ADAM
learning rate 0.1, n = 10000; d) L3 = 15, ADAM learning rate 0.01, n = 1000.

Fig. 4. Comparison of the communication rounds number for the in house dataset for different methods.

Table 2
Parameter selection for experiments on in-house
data.

Run L3 ADAM n μ

a) 10 0.01 1 × 104 2 × 10−5

b) 100 0.1 1 × 104 2 × 10−5

c) 10 0.1 1 × 104 2 × 10−5

d) 15 0.01 1 × 103 2 × 10−5

Figs. 3, 4 show the results of the comparison on the in-house dataset (split over 200

nodes, i.e., m = 200) with λ = 1 ×10−7, σ = 2 ×10−5. Other parameters are described in

Table 2. We see that InSPAG-Hyperfast outperforms InSPAG-SDCA for this large-scale

dataset.

28 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

Fig. 5. The time complexity per iteration for the Hyperfast method in Algorithm 3 and the SDCA Method
from [61] at communication rounds 0, 6, and 46. The x-axis is the iteration number, and the y-axis is the
time required by the corresponding algorithm to complete its inner iteration.

Fig. 5 shows the times required by the Hyperfast method in Algorithm 3 and the

SDCA Method from [61] to complete their inner iterations at communication rounds 0, 6,

and 46. The x-axis is the iteration number, and the y-axis is the time required by the

corresponding algorithm to complete an inner iteration. We can observe that in the

communication round 0, the cost time required by both methods is approximately the

same on average. However, for communication rounds 6 and 46, the Hyperfast method

outperforms SDCA, requiring less time to complete an iteration.

Fig. 6 on the left shows the loss function F (xk) evaluated at the point xk generated

by iteration k as a function of the wall clock time recorded by the InSPAG method in

Algorithm 2. Markers identify when an iteration has been completed. In this case we

used the Hyperfast method in Algorithm 3 as the inner solver. Moreover, we show the

dependency on the number n of points used for preconditioning. We observe that for

different values of n, the final loss is about the same. However, as n increases, the wall

clock time required increases as well. On the other hand, the right figure shows the loss

function F (xk) evaluated at the point xk generated by iteration k as a function of the

number of communication rounds. As expected, when the number of data points used

for preconditioning increases, the number of required communication rounds decreases.

However, this implies that the central node needs to solve a bigger problem at every

iteration and it takes longer to solve it.

Fig. 7 shows the wall clock time required by the central node to solve the auxiliary

problem for every communication round. The x-axis shows the number of communi-

cation rounds, and the y-axis shows the clock time in seconds. Additionally, we show

the results for different values of the preconditioning parameter n. As n increases, the

time required for the solution of the auxiliary problem increases as well. However, the

time complexity of the auxiliary subproblem decreases as the number of communication

rounds increases.

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 29

Fig. 6. A comparison of the wall clock times and communication rounds for the InSPAG method in Algo-
rithm 2 for different number of data points used for preconditioning. On the left, the x-axis indicates time
in seconds, and on the right the x-axis indicates number of communication rounds. In both cases the y-axis
is the loss function at the current iteration.

Fig. 7. Time complexity for the solution of the auxiliary subproblem for different number of preconditioning
data points. The x-axis shows the number of communication rounds, and the y-axis shows the clock time
in seconds.

5. Hyperfast second-order method for uniformly convex functions

For the sake of completeness, in this section we consider general problem x∗ =

arg minx∈Q f(x), where Q is closed convex bounded set, f has L3-Lipschitz third-order

derivative. We also assume that the objective f(x) is uniformly convex of degree 4 ≥ q ≥ 2

on the convex bounded set Q, i.e., there exists σq > 0 s.t.

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
σq

q
‖y − x‖q

2, ∀x, y ∈ Q. (46)

As a corollary,

30 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

f(y) ≥ f(x∗) +
σq

q
‖y − x∗‖q

2, ∀y ∈ Q. (47)

Theorem 5.1 ([25][Theorem 2]). Let sequence xk, k ≥ 0 be generated by Hyperfast Second-

Order Method [25][Eq.3.6] for p = 3 and β = 1/2 and with auxiliary steps described

in [25][Sect. 5.2]. Then

f(xk) − f∗ ≤ 3 · 43L3R4
0

1 − β

[
1 +

2(k − 1)

4

]−5

≤ 3 · 44L3R4
0

16k5
=

ĉL3R4
0

k5
,

where R0 is such that ‖x0 − x∗‖2 ≤ R0, ĉ = 48.

We show how the restart technique can be used to accelerate Hyperfast second-order

method under additional assumption of uniform convexity.

Algorithm 4 Restarted hyperfast second-order method.

Require: q, σq, z0, ∆0 s.t. f(z0) − f∗ ≤ ∆0.
1: for k = 0, 1, ... do

2: Set ∆k = ∆0 · 2−k and Nk = max

⎧
⎨
⎩

⎡
⎢⎢⎢

(
2ĉL3q

4
q

σ
4
q

q

∆
4−q

q

k

) 1

5

⎤
⎥⎥⎥

, 1

⎫
⎬
⎭.

3: Set zk+1 = yNk
as the output of the basic Hyperfast method started from zk and run for Nk steps.

4: Set k = k + 1.
5: end for

Ensure: zk.

Theorem 5.2. Let sequence zk, k ≥ 0 be generated by Algorithm 4. Then

σq

q
‖zk − x∗‖q

2 ≤ f(zk) − f∗ ≤ ∆0 · 2−k,

and the total number of steps of the basic Hyperfast method is bounded by (c is the

constant in Theorem 1.)

(
2ĉq

4
q

) 1
5 L

1
5
3

σ
4

5q
q

(∆0)
4−q
5q ·

k∑

i=0

2−i 4−q
5q + k.

Proof. Let us prove the first statement of the Theorem by induction. For k = 0 it holds.

If it holds for some k ≥ 0, by choice of Nk, we have that

ĉL3

N5
k

(
q∆k

σq

) 4
q

≤ ∆k

2
.

By (47),

‖zk − x∗‖4
2 ≤

(
q(f(zk) − f∗)

σq

) 4
q

≤
(

q∆k

σq

) 4
q

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 31

since, by our assumption, q ≤ 4. Combining the above two inequalities and Theorem 5.1,

we obtain

f(zk+1) − f∗ ≤ ĉL3‖zk − x∗‖4
2

N5
k

≤ ∆k

2
= ∆k+1.

It remains to bound the total number of steps of the basic Hyperfast method. Denote c̃ =(
2ĉq

4
q

) 1
5

.

k∑

i=0

Ni ≤ c̃
L

1
5
3

σ
4

5q
q

k∑

i=0

(∆0 · 2−i)
4−q
5q + k ≤ c̃

L
1
5
3

σ
4

5q
q

(∆0)
4−q
5q ·

k∑

i=0

2−i 4−q
5q + k. �

Let us make a remark on the complexity of the restarted scheme in different settings.

It is easy to see from Theorem 5.2 that, to achieve an accuracy ε, i.e., to find a point x̂

s.t. f(x̂) − f∗ ≤ ε, the number of tensor steps in Algorithm 4 is

O

(
L

1
5
3

σ
4

5q
q

(∆0)
4−q
5q + log2

∆0

ε

)
, q < 4, and O

(((
L3

σ4

) 1
5

+ 1

)
log2

∆0

ε

)
, q = 4.

6. Conclusions

We study the distributed optimization problem of minimizing empirical risk with

smooth and (strongly) convex losses and i.i.d. data stored at nodes. Building upon the

recent result on statistical preconditioning, we propose an algorithm that iteratively

minimizes the objective function taking advantage of the statistical similarity of the cost

functions across the nodes. Such statistical preconditioning requires solving an auxiliary

optimization problem at a designated central node. Contrary to existing approaches, we

analyze the case where this auxiliary problem is solved inexactly. Moreover, we provide

the conditions on the accuracy of the solution that guarantees convergence at the same

rate as the algorithm with access to exact minimizers of the auxiliary problem. Addi-

tionally, we extend recently proposed Hyperfast second-order methods to the class of

uniformly convex functions with bounded fourth-order derivatives. We show that the

auxiliary problem in the statistically preconditioned distributed algorithm can be solved

efficiently at a linear rate via this Hyperfast second-order method. We analyze the com-

plexity of the proposed combination of the inexact statistically preconditioned algorithm

with the Hyperfast second-order sub-solver and show that it converges linearly with the

improved condition number. Finally, we show the first empirical results on implementing

high-order methods on large-scale problems, where the dimension is of the order of 3

million, and the number of samples is 700 million. As a future research direction we indi-

cate the application of the proposed algorithm to the regularized Wasserstein barycenter

problem, which can be expressed as the minimization of large sum of higher-order smooth

softmax functions [44].

32 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

Funding

The work by D. Kamzolov was supported by a grant for research centers in the

field of artificial intelligence, provided by the Analytical Center for the Government of

the Russian Federation in accordance with the subsidy agreement (agreement identi-

fier 000000D730321P5Q0002) and the agreement with the Moscow Institute of Physics

and Technology dated November 1, 2021 No. 70-2021-00138. The work by C. Uribe was

supported by the Yahoo! Faculty Engagement Program and by the National Science

Foundation under Grants No. 2211815 and No. 2213568. The work by P. Dvurechensky

was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-

tion) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center

MATH+ (EXC-2046/1, project ID: 390685689).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors are grateful to Hadrien Hendrikx for sharing the code of the SPAG

algorithm http://proceedings .mlr .press /v119 /hendrikx20a .html.

References

[1] H. Hendrikx, L. Xiao, S. Bubeck, F. Bach, L. Massoulie, Statistically preconditioned accelerated
gradient method for distributed optimization, in: Proceedings of the 37th International Confer-
ence on Machine Learning, in: Proceedings of Machine Learning Research, PMLR, vol. 119, 2020,
pp. 4203–4227.

[2] O. Shamir, N. Srebro, T. Zhang, Communication-efficient distributed optimization using an ap-
proximate Newton-type method, in: Proceedings of the 31st International Conference on Machine
Learning, in: Proceedings of Machine Learning Research, PMLR, Beijing, China, vol. 32, 2014,
pp. 1000–1008.

[3] X.-T. Yuan, P. Li, On convergence of distributed approximate Newton methods: globalization,
sharper bounds and beyond, J. Mach. Learn. Res. 21 (206) (2020) 1–51.

[4] S. Wang, F. Roosta, P. Xu, M.W. Mahoney, Giant: globally improved approximate Newton
method for distributed optimization, in: Advances in Neural Information Processing Systems, 2018,
pp. 2332–2342.

[5] H. Hendrikx, F. Bach, L. Massoulié, An optimal algorithm for decentralized finite-sum optimization,
SIAM J. Control Optim. 31 (4) (2021) 2753–2783, https://doi .org /10 .1137 /20M134842X.

[6] T. Yang, Trading computation for communication: distributed stochastic dual coordinate ascent,
in: Advances in Neural Information Processing Systems, 2013, pp. 629–637.

[7] M. Li, D.G. Andersen, J.W. Park, A.J. Smola, A. Ahmed, V. Josifovski, J. Long, E.J. Shekita, B.-Y.
Su, Scaling distributed machine learning with the parameter server, in: 11th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 14), 2014, pp. 583–598.

[8] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, Commun. ACM
51 (1) (2008) 107–113.

[9] G. Lan, S. Lee, Y. Zhou, Communication-efficient algorithms for decentralized and stochastic opti-
mization, Math. Program. (2018) 1–48.

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 33

[10] Y. Nesterov, et al., Lectures on Convex Optimization, vol. 137, Springer, 2018.
[11] S.J. Reddi, J. Konečnỳ, P. Richtárik, B. Póczós, A. Smola, Aide: fast and communication efficient

distributed optimization, arXiv preprint, arXiv :1608 .06879.
[12] Y. Zhang, X. Lin, Disco: distributed optimization for self-concordant empirical loss, in: Proceedings

of the 32nd International Conference on Machine Learning, in: Proceedings of Machine Learning
Research, PMLR, Lille, France, vol. 37, 2015, pp. 362–370.

[13] H. Lin, J. Mairal, Z. Harchaoui, A universal catalyst for first-order optimization, in: Proceedings of
the 28th International Conference on Neural Information Processing Systems, vol. 2, NIPS’15, MIT
Press, Cambridge, MA, USA, 2015, pp. 3384–3392.

[14] R.-A. Dragomir, A. Taylor, A. d’Aspremont, J. Bolte, Optimal complexity and certification of Breg-
man first-order methods, Math. Program. 194 (1) (2022) 41–83, https://doi .org /10 .1007 /s10107 -
021 -01618 -1.

[15] Y. Arjevani, O. Shamir, Communication complexity of distributed convex learning and optimization,
in: Advances in Neural Information Processing Systems, vol. 28, Curran Associates, Inc., 2015,
pp. 1756–1764.

[16] Y. Sun, G. Scutari, A. Daneshmand, Distributed optimization based on gradient tracking revisited:
enhancing convergence rate via surrogation, SIAM J. Control Optim. 32 (2) (2022) 354–385, https://
doi .org /10 .1137 /19M1259973.

[17] B. Bullins, Highly smooth minimization of non-smooth problems, in: Proceedings of Thirty Third
Conference on Learning Theory, in: Proceedings of Machine Learning Research, PMLR, vol. 125,
2020, pp. 988–1030.

[18] E.G. Birgin, J.L. Gardenghi, J.M. Martínez, S.A. Santos, P.L. Toint, Worst-case evaluation complex-
ity for unconstrained nonlinear optimization using high-order regularized models, Math. Program.
163 (1) (2017) 359–368, https://doi .org /10 .1007 /s10107 -016 -1065 -8.

[19] Y. Carmon, J.C. Duchi, O. Hinder, A. Sidford, Lower bounds for finding stationary points I, Math.
Program. 184 (1) (2020) 71–120.

[20] C. Cartis, N.I. Gould, P.L. Toint, Universal regularization methods: varying the power, the smooth-
ness and the accuracy, SIAM J. Control Optim. 29 (1) (2019) 595–615.

[21] M. Baes, Estimate Sequence Methods: Extensions and Approximations, Institute for Operations
Research, ETH, Zürich, Switzerland, 2009.

[22] Y. Nesterov, Implementable tensor methods in unconstrained convex optimization, Math. Program.
(2019) 1–27.

[23] A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, C.A. Uribe, B. Jiang,
H. Wang, S. Zhang, S. Bubeck, Q. Jiang, Y.T. Lee, Y. Li, A. Sidford, Near optimal methods for
minimizing convex functions with Lipschitz p-th derivatives, in: Proceedings of the Thirty-Second
Conference on Learning Theory, in: Proceedings of Machine Learning Research, PMLR, Phoenix,
USA, vol. 99, 2019, pp. 1392–1393.

[24] Y. Nesterov, Superfast second-order methods for unconstrained convex optimization, J. Optim.
Theory Appl. 1 (2021) 1–30, https://doi .org /10 .1007 /s10957 -021 -01930 -y.

[25] Y. Nesterov, Inexact high-order proximal-point methods with auxiliary search procedure, SIAM J.
Control Optim. 31 (4) (2021) 2807–2828, https://doi .org /10 .1137 /20M134705X.

[26] D. Kamzolov, A. Gasnikov, Near-optimal hyperfast second-order method for convex optimization
and its sliding, arXiv preprint, arXiv :2002 .09050.

[27] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, 2009.
[28] J. Huang, T.M. Smith, G.M. Henry, R.A. van de Geijn, Strassen’s algorithm reloaded, in: SC’16:

Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2016, pp. 690–701.

[29] H.H. Bauschke, J. Bolte, M. Teboulle, A descent lemma beyond Lipschitz gradient continuity: first-
order methods revisited and applications, Math. Oper. Res. 42 (2) (2016) 330–348.

[30] H. Lu, R.M. Freund, Y. Nesterov, Relatively smooth convex optimization by first-order methods,
and applications, SIAM J. Control Optim. 28 (1) (2018) 333–354.

[31] F. Stonyakin, A. Tyurin, A. Gasnikov, P. Dvurechensky, A. Agafonov, D. Dvinskikh, M. Alkousa,
D. Pasechnyuk, S. Artamonov, V. Piskunova, Inexact model: a framework for optimization and
variational inequalities, Optim. Methods Softw. 36 (6) (2021) 1155–1201.

[32] A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization (Lecture Notes), Personal
web-page of A. Nemirovski, https://www2 .isye .gatech .edu /~nemirovs /LMCOLN2021WithSol .pdf,
2020.

[33] O. Devolder, F. Glineur, Y. Nesterov, First-order methods of smooth convex optimization with
inexact oracle, Math. Program. 146 (1) (2014) 37–75, https://doi .org /10 .1007 /s10107 -013 -0677 -5.

34 P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045

[34] P. Dvurechensky, A. Gasnikov, Stochastic intermediate gradient method for convex problems with
stochastic inexact oracle, J. Optim. Theory Appl. 171 (1) (2016) 121–145.

[35] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems,
SIAM J. Imaging Sci. 2 (1) (2009) 183–202, https://doi .org /10 .1137 /080716542.

[36] Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program. 140 (1) (2013)
125–161, first appeared in 2007 as CORE discussion paper 2007/76.

[37] F. Hanzely, P. Richtárik, L. Xiao, Accelerated Bregman proximal gradient methods for relatively
smooth convex optimization, Comput. Optim. Appl. 79 (2) (2021) 405–440, https://doi .org /10 .
1007 /s10589 -021 -00273 -8.

[38] M.I. Florea, Exact gradient methods with memory, Optim. Methods Softw. (2022) 1–28, https://
doi .org /10 .1080 /10556788 .2022 .2091559.

[39] H.H. Bauschke, J. Bolte, M. Teboulle, A descent lemma beyond Lipschitz gradient continuity: first-
order methods revisited and applications, Math. Oper. Res. 42 (2) (2017) 330–348.

[40] K. Scaman, F. Bach, S. Bubeck, Y.T. Lee, L. Massoulié, Optimal algorithms for smooth and
strongly convex distributed optimization in networks, in: Proceedings of the 34th International
Conference on Machine Learning, in: Proceedings of Machine Learning Research, PMLR, vol. 70,
2017, pp. 3027–3036.

[41] A.V. Gasnikov, Y.E. Nesterov, Universal method for stochastic composite optimization problems,
Comput. Math. Math. Phys. 58 (1) (2018) 48–64.

[42] Y. Nesterov, Lectures on Convex Optimization, 2nd edition, Springer Optimization and Its Appli-
cations, vol. 137, Springer International Publishing, 2018.

[43] P. Dvurechensky, A. Gasnikov, A. Kroshnin, Computational optimal transport: complexity by ac-
celerated gradient descent is better than by Sinkhorn’s algorithm, in: Proceedings of the 35th
International Conference on Machine Learning, in: Proceedings of Machine Learning Research,
vol. 80, 2018, pp. 1367–1376.

[44] P. Dvurechensky, D. Dvinskikh, A. Gasnikov, C.A. Uribe, A. Nedić, Decentralize and randomize:
faster algorithm for Wasserstein barycenters, in: Advances in Neural Information Processing Sys-
tems, vol. 31, NIPS’18, Curran Associates, Inc., 2018, pp. 10783–10793.

[45] P. Dvurechensky, S. Shtern, M. Staudigl, First-order methods for convex optimization, EURO J.
Comput. Optim. 9 (2021) 100015, https://doi .org /10 .1016 /j .ejco .2021 .100015.

[46] Q. Lin, L. Xiao, An adaptive accelerated proximal gradient method and its homotopy continuation
for sparse optimization, in: Proceedings of the 31st International Conference on Machine Learning,
in: Proceedings of Machine Learning Research, PMLR, Bejing, China, vol. 32, 2014, pp. 73–81.

[47] R.D. Monteiro, B.F. Svaiter, An accelerated hybrid proximal extragradient method for convex op-
timization and its implications to second-order methods, SIAM J. Control Optim. 23 (2) (2013)
1092–1125.

[48] Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program. 103 (1) (2005)
127–152.

[49] G. Lan, First-Order and Stochastic Optimization Methods for Machine Learning, Springer, 2020.
[50] N. Doikov, Y. Nesterov, Contracting proximal methods for smooth convex optimization, SIAM J.

Control Optim. 30 (4) (2020) 3146–3169, https://doi .org /10 .1137 /19M130769X.
[51] Y. Nesterov, Inexact basic tensor methods for some classes of convex optimization problems, Optim.

Methods Softw. (2020) 1–29.
[52] A. Gasnikov, Universal gradient descent, arXiv preprint, arXiv :1711 .00394.
[53] N. Doikov, Y. Nesterov, Inexact tensor methods with dynamic accuracies, in: Proceedings of the

37th International Conference on Machine Learning, in: Proceedings of Machine Learning Research,
PMLR, vol. 119, 2020, pp. 2577–2586.

[54] A. Agafonov, D. Kamzolov, P. Dvurechensky, A. Gasnikov, Inexact tensor methods and their ap-
plication to stochastic convex optimization, arXiv :2012 .15636.

[55] D. Kamzolov, A. Gasnikov, P. Dvurechensky, Optimal combination of tensor optimization methods,
in: Optimization and Applications, Springer International Publishing, Cham, 2020, pp. 166–183.

[56] D.D. Lewis, Y. Yang, T.G. Rose, F. Li, Rcv1: a new benchmark collection for text categorization
research, J. Mach. Learn. Res. 5 (Apr 2004) 361–397.

[57] Apache, Spark 2.4.5, https://spark .apache .org/, 2020.
[58] Pytorch, 1.5.0, https://pytorch .org/, 2020.
[59] D. Kamzolov, Near-optimal hyperfast second-order method for convex optimization, in: Mathemat-

ical Optimization Theory and Operations Research, Springer International Publishing, Cham, 2020,
pp. 167–178.

[60] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint, arXiv :1412 .6980.

P. Dvurechensky et al. / EURO Journal on Computational Optimization 10 (2022) 100045 35

[61] S. Shalev-Shwartz, Sdca without duality, regularization, and individual convexity, in: Proceedings
of the 33rd International Conference on Machine Learning, in: Proceedings of Machine Learning
Research, PMLR, New York, New York, USA, vol. 48, 2016, pp. 747–754.

[62] O. Shamir, N. Srebro, T. Zhang, Communication-efficient distributed optimization using an approxi-
mate Newton-type method, in: International Conference on Machine Learning, 2014, pp. 1000–1008.

	Hyperfast second-order local solvers for efficient statistically preconditioned distributed optimization
	1 Introduction
	2 Accelerated gradient method under inexactness and relative smoothness
	3 Inexact statistically preconditioned accelerated gradient method
	3.1 InSPAG and its convergence rate theorem
	3.2 Hyperfast second-order method for the auxiliary problem
	3.3 InSPAG plus hyperfast method with application to logistic regression

	4 Numerical analysis and implementation details
	5 Hyperfast second-order method for uniformly convex functions
	6 Conclusions
	Funding
	Declaration of competing interest
	Acknowledgement
	References

