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Abstract—Test Vector Leakage Assessment (T V L A )  evaluates
the side-channel leakage of sensitive information from the hard-
ware implementation of a design. While T V L A  for symmetric
cryptography has been well studied, it is not applicable to asym-
metric cryptography algorithms. Asymmetric key algorithms
involve complex computations in multiple stages that can lead to
varying trace lengths depending on input parameters and
associated constraints. In this paper, we design an effective
T V L A  technique for asymmetric key cryptosystems that can
compare lengthy trace data with a good statistical resolution and
generate valid input (test) patterns to satisfy specific constraints.
Specifically, this paper makes the following major contributions.
The proposed test generation algorithm can produce valid test
patterns to maximize the power signature differences. Our pro-
posed partition-based differential power analysis can significantly
improve the T V L A  accuracy. Extensive evaluation using elliptic
curve cryptography algorithms demonstrates that the proposed
T V L A  framework can handle type 1 and type 2 statistical
errors and evaluate hardware implementations of asymmetric
cryptography algorithms with a statistical confidence of 99.999%.

Index Terms—Hardware Security, Side-Channel, Test Vector
Leakage Assessment, Asymmetric Key Cryptography

I. INTRODUC T I ON

Symmetric cryptography, also known as secret-key cryp-
tography, relies on a single key to perform encryption and
decryption. It is easy to implement but the key distribution
is a major concern. In contrast, asymmetric cryptography,
also known as public-key cryptography, uses a pair of keys
(public, private) for authentication or authenticated encryption.
When encrypting a message with asymmetric cryptography,
the public key is used by the sender for encryption. The private
key is used by the recipient during decryption. This eliminates
the practical limitation of key distribution in symmetric cryp-
tography. There are also hybrid systems that utilize both sym-
metric and asymmetric cryptography, such as Elliptic Curve
Integrated Encryption Scheme (ECIES). There are various
efforts to perform side-channel leakage analysis of symmetric-
key cryptosystems using Test Vector Leakage Assessment
(TVLA)  [1], [2]. Unfortunately, the existing T V L A  methods
are not applicable for evaluating asymmetric key cryptosys-
tems. It is important to evaluate the side-channel vulnerability
of asymmetric key algorithms to design trustworthy systems.

A. State-of-the-Art and Limitations
The intuition behind T V L A  of hardware implementations is

to provide a certain guarantee that the implementation does not
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Fig. 1: T V L A  steps for symmetric-key cryptosystems.

reveal secrets through power side-channel signatures during
execution. Figure 1 illustrates the major steps involved in
T V L A  of symmetric key cryptography algorithms [1], [2]. The
first step performs hamming distance based test generation
to produce differences in power signature [1], [2]. Next, the
design is simulated with the generated key pairs and a fixed
plaintext. The power signature is constructed based on the
simulation’s value change dump. Next, the difference between
two power signatures is calculated using statistical methods,
such as t-test and KL-divergence [1]–[3]. Finally, the imple-
mentation is categorized as safe or side-channel vulnerable
based on a pre-determined threshold. While this method works
well on symmetric cryptosystems, it is not applicable on
asymmetric cryptosystems due to the following fundamental
challenges associated with asymmetric-key algorithms:

1) Involves complex computations that lead to significantly
longer trace data compared with symmetric cryptography.

2) Implementations without timing mitigation can lead to
varying trace lengths, while existing T V L A  techniques
expect fixed-length traces or manual trace alignments.

3) Timing-specific information such as specific places the
power peak has occurred are not captured by applying the
standard Welch t-tests and KL-divergence based methods.

4) Evaluation of asymmetric cryptography needs to consider
side-channel leakage of multiple stages independently.

5) Input parameters and associated constraints are signifi-
cantly different from symmetric cryptography.

B. Research Contributions

In this paper, we address the first and third challenges
by evaluating the divergence between two traces with higher
resolution by partitioning the traces of each stage and evalu-
ating each partition independently. We resize the traces for
each stage over the time axis to the same length using
control flags to address the second challenge. We also utilize
the control flags to automatically identify each stage of the
implementation and perform leakage assessment separately for
each stage focusing on security guarantees of the particular
stage to address the fourth challenge. Finally, we propose
an automated test generation framework to address the fifth
challenge. To the best of our knowledge, our approach is the
first attempt in developing a TVLA framework focused on
asymmetric key cryptography algorithms. This work enables
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a designer to evaluate systems consisting of both symmetric
and assymetric components.

The remainder of this paper is organized as follows.
Section II  provides background and surveys related efforts.
Section II I  describes our proposed TVLA* methodology. In
Section IV, we demonstrate that TVLA* can reveal more
accurate leakage results compared to the state-of-art T V L A
approaches. Finally, Section V  concludes the paper.

I I . BAC K G RO U N D AND R E L AT E D WO R K

In this section, we first provide background on elliptic curve
cryptography. Next, we outline vulnerabilities in asymmetric
cryptography algorithms and review existing attacks. Finally,
we survey existing T V L A  methods and discuss their limita-
tions.

A. Elliptic Curve Cryptography
Elliptic curves are special plane curves over a field, pri-

marily using Galois fields. All operations are done modulo p,
where p is the value of the prime for the defined prime curve
[4]. Due to this, elliptic curves make a strong choice for usage
in asymmetric cryptography. Elliptic curve cryptography (ECC)
is the set of algorithms that use elliptic curves to pro-vide a
security guarantee, such as authentication through signa-tures or
encryption and decryption [5]. While the requirement for an
elliptic curve is to use a prime number, when making security
considerations this should be a large enough number to create
certain security guarantees. Therefore, standardized curves
from NIST, SEC, and other sources have been deemed secure
for standardized usage.

R S A  is the oldest and most popular choice for asymmetric
key cryptography algorithms due to its simplicity and es-
tablishment in legacy programs [6]. In order to have better
security over RSA, points on the curve are used as the
numbers to perform operations over for E C C  [7]. A  point is
on the curve and thus valid if it satisfies the elliptic curve
equation. There are several different coordinate representations
for an elliptic curve point. For brevity, we will only consider
operating on affine coordinate points and Jacobian coordinate
points. The affine representation of a point is (X , Y ) and is
the general representation of an elliptic curve point. Jacobian
representation is (X , Y , Z ).  An affine point in Jacobian form is
(X, Y, 1). The Z  coordinate in Jacobian representation stores
all the divisions that take place throughout any mathematical
operations performed to the point. Algorithm 1 converts Jaco-
bian projective coordinates to the equivalent affine coordinates.

Algorithm 1 Coordinate Conversion
Require: P  : (X 1 , Y 1 , Z 1 ) , P  =  O
Ensure: R  : ( X  , Y )
1: λ  ← Z − 1      mod p
2: X 2  ← λ 2 X 1
3: Y 2  ← λ  Y 1

B. Vulnerabilities of Asymmetric Key Cryptography
Asymmetric key cryptography algorithms consist of multi-ple

functions. The vulnerability analysis needs to check for

vulnerabilities in each function. For example, E C C  module
consists of various sub-modules, such as scalar multiplication,
coordinate conversion, etc. Let us take the example of scalar
multiplication to illustrate the vulnerabilities. With elliptic
curves, scalar multiplication is the equivalent of repeated
additions of a point on the curve. However, the operation is
dependent on the value of a bit in the scalar. E C C  uses the
private key as the scalar to generate the public key. Therefore,
one of the scalar multiplications performed during an E C C
algorithm is dependent on the value of the private key [8], [9].
As seen in Algorithm 2, if the current bit of the private key is a
value of 1, an extra computation step must be performed. The
extra computation step allows an attacker to analyze the power
traces for increased use of power to perform this operation,
recovering the private key. A  similar notion of branching
operations with different computational requirements based on
the bit value of the private key is also present in R S A  and other
asymmetric cryptographic algorithms [10].

Algorithm 2 Scalar Multiplication - Double and Add

Require: P  : (X , Y ), P =  O, k positive integer
Ensure: kP

R 0  ← O
R 1  ← P
for bit in k do

if bit =  1 then
R 0  ← R 0  +  R 1

end if
R 1  ← 2R1

end for
return R 0

C. Related Work: Attacks on Asymmetric Key Cryptography
Cryptographic algorithms typically have some control flow

dependency as part of their operations. While this is inher-
ently secure, it does pose a security risk if the control flow
depends on some secret information, such as the private key.
An attacker can then carry out side-channel attacks on the
implementation to retrieve a complete or partial private key, ef-
fectively exposing secret information [11]–[15]. Minerva is an
example of a recent attack on the scalar multiplication imple-
mentations of open-source software libraries that used lattices
in conjunction with other leakage information to recover the
private key [16]. A  projective to affine coordinate conversion
attack on elliptic curve cryptography is proposed in [17], [18].
Modern E C C  software implementations were detected with the
vulnerability of projective coordinate leakage [19], showing
the feasibility of recovering the private key completely through
side-channel analysis. This also illustrated the need for a side-
channel leakage assessment of cryptographic implementations.

D. Collisions in Asymmetric Cryptographic Algorithms
In cryptography, collision attacks are primarily used with

breaking hashing algorithms. These collision attacks work by
making different inputs result in the same output, which can
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be used to reveal details of the internal algorithm, effectively
reverse-engineering it. For algorithms like ECDSA, secret
information can be linked to certain steps of the compu-
tation. Since E C C  implementations can be attacked using
side-channels, combining side-channel attacks with collision
attacks creates a new attack vector. This attack vector is known
as horizontal collision correlation analysis [20]. The classic
side-channel attacks are thus distinguished as vertical attacks.
Power analysis detects spots where collisions occur during the
internal computations of point addition and point doubling.
These two operations are important due to their usage in
scalar multiplication, where the private key is multiplied by a
fixed elliptic curve point. After gathering observations on the
intermediate registers, Pearson’s coefficient is used to derive
the secret key.

E. Limitations of Existing Side-Channel Leakage Assessment

The existing T V L A  methods are suitable for symmetric key
algorithms. However, the existing methods are not applicable
on asymmetric key algorithms for the following reasons.
Validity of Inputs: There are multiple parameters as inputs to
the asymmetric cryptography algorithms and not all possi-
ble inputs are valid inputs to the algorithm. For example,
[2] generates key pairs and random plaintext messages, but
authenticated encryption algorithms like EC IES  do not have
inputs for secret keys, instead, it accepts public key, which is
not a secret and a specific point on an E C C  curve. Moreover,
generating random inputs is not an option, since this may lead to
invalid states. A  set of guidelines for generating test vector
pairs for Elliptic Curve Digital Signature Algorithm (ECDSA)
with possible collision attacks is discussed in [21].
Computing in Multiple Stages: Asymmetric cryptography is a
sequential process, where we need to perform certain steps
to complete the encryption/decryption or sign/verify process.
These steps are supposed to preserve secrecy guarantee on
different input parameters, such as nonce, coordinate points,
Enc/Dec Key, etc. This requirement is also not addressed by
existing T V L A  techniques.
Long Execution Traces: Statistical techniques such as Welch t-
tests and K L  divergence are directly used to perform the
differential power analysis of power signature traces in [1]–
[3]. This works with symmetric key algorithms since these
algorithms perform block-wise operations. In fact, Hamming
distance-based input key pairs used in [2] can perform well
with block-wise operations. Divergent values for the traces are
calculated for a small number of clock cycles since the clock
cycle depth for block cipher algorithms is significantly lower
(order of 100) than asymmetric cryptography algorithms (order
of 10000). The direct application of Welch t-tests and K L
divergence techniques can hide small but important variations
in the traces of asymmetric cryptography algorithms which
defeats the purpose of T V L A .
Diversity of Algorithms: There are various types of algorithms
proposed for the implementations of asymmetric cryptography
with different objectives (security, speed, area, power, etc.).
These algorithms have different computation times. In fact,

there are algorithms that take different computation times
based on the input values [22], [23]. This will lead to incorrect
assessment by [1]–[3].

I I I . T V L A  F O R A S Y M M E T R I C  C RY P T O G R A P H Y ( T V L A * )

Figure 2 provides an overview of our proposed T V L A *
framework for side-channel leakage evaluation of asymmetric
key algorithms that consists of five major tasks. The first task
analyzes the design specification to identify the sequence of
steps involved in the algorithm as well as different inputs and
associated constraints. The second task generates input (test)
vectors focusing on the secrecy guarantee of the algorithm
followed by instrumentation of the testbench for simulation.
The third task simulates the design to obtain the power
traces. The fourth task performs the leakage assessment on
generated power profiles using both simple and differential
power analysis. The last task computes the divergence factor to
identify if the implementation has a side-channel vulnerability.
The remainder of this section describes these steps in detail.

A. Design Specification

A  major architectural difference between asymmetric and
symmetric cryptography algorithms is the sequence of inde-
pendent stages involved in them. Since the functionality of
each stage is different, each stage is expected to have different
power signatures during execution. Figure 3 shows the seven
stages to encrypt a message with the public key using ECIES:
(i) elliptic curve multiplication, (ii) coordinate conversion step
from projective to affine, (iii) elliptic curve multiplication,
(iv) projective to affine coordinate conversion step, (v) key
derivation (KDF) step with ANSI-X9.63, (vi) encryption stage
with AES,  and (vii) generation of message authentication code
with HMAC-SHA1. The EC IES  decryption algorithm also
follows several stages in order to successfully decrypt the
message. We can analyze the secrecy guarantee of each stage
based on the feasible vertical and horizontal collisions that
can be manipulated with inputs to the algorithm. Next, we
need to analyze the input constraints such as supported curves
by the algorithm, which we need to consider during the test
generation step.

STA RT E C  MULTIPLY CORD.CONV.

KDF CORD.CONV. E C  MULTIPLY

AES SHA DONE

Fig. 3: Different stages during EC IES  encryption.

B. Test Generation

The objective of test generation is to produce multiple
pairs of input vectors such that it maximizes the difference in
the power signature of the same implementation. Depending
on the asymmetric cryptography algorithms, the inputs are
different. For example, Table I  illustrates types of inputs
for different E C C  algorithms. Since we have diverse input
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Fig. 2: Overview of T V L A *  for leakage assessment of asymmetric key cryptography hardware implementations.

TA B L E  I: Inputs for different E C C  algorithms
Algorithm Nonce Private Key 

np
P(x, y, z) Msg Tag

ECIES encrypt           ✓                                                ✓                ✓
ECIES decrypt ✓ ✓

ECDSA sign             ✓ ✓                                           ✓
ECDSA verify ✓ ✓

parameters for different algorithms, we need to consider each
and every input parameter during the test generation.

The nonce is a major secrecy feature that we need to
evaluate based on the attacks discussed in Section II-C. A
potential place the leakage can happen with nonce is the scalar
multiplication stage. E C  MULTIPLY stage is a bit serialized
algorithm over the nonce. Therefore, we focus on generating
patterns with multiple blocks of ‘0’s and ‘1’s in the nonce.
For this purpose, we use Algorithm 3. First, it generates a
nonce with serialized block patterns of ‘0’ and ‘1’s and fills
the rest of the requirements with random nonce values. The
same algorithm can be used to generate private key pairs.

Algorithm 3 Generation of Nonce Pairs
Require: NonceSize d, NumPairs N
Ensure: NoncePairs {{n1 , n2 }..{n1  , n2 } }

1: tests =  [{z eroB in(d), oneB in(d)}]
2: for x  � [2i for i  =  log d; i >  0; i- -] do
3: n2 ← �
4: while len(n2) <  d do
5: n2 ← n2 +  z er oB in(x)  +  oneB in(x)
6:          end while
7: tests.append({oneBin(d), n2[0 : d]})
8: end for
9: for y � ( N  −  len(tests)) do

10: tests.append({oneBin(d), randBin(d)})
11: end for
12: Return tests

When providing inputs for the public key, point coordinates
P (x, y, z) should be provided. In this case, the points should
be valid points on the curve otherwise the algorithm ends up
in an undefined state. For this, we generate public keys by
solving the polynomial related to the curves identified in
Section III-A. Next, we generate multiple random plaintext
messages. Finally, we combine each of these parameters into
the test vector following the steps outlined in Algorithm 4.
First, we iterate through all the generated keys by solving
the polynomial. For each key, we generate a random plaintext
message. Next, we generate a test vector pair such that the first
and second nonce values (generated by Algorithm 3) append to
the first and second tests of the test pair. If we have X

public keys, Algorithm 3 will produce a total of X  × N  pairs
of test vectors. In order to obtain more accurate results, we
need to synthesize the design. Finally, we create a testbench to
simulate the implementation with generated input test vectors.

Algorithm 4 Generation of Test Vector Pairs
Require: PubKeys {p  , .., p } ,  NoncePairs {{n1 , n2 }..{n1 , n2 }}
Ensure: TestVectorPairs {{t1 , t2 }, .., {t1 , t2 } }

1: vectors =  [ ]
2: for x  � {p1 , .., px } do
3: p K  ← x
4: msg ← randBin(len(msg))
5: for {y1 , y2 } � {{n1 , n2 }, .., {n1 , n2 }} do
6:                  t1 ← {pK, msg, y1 }
7: t2 ← {pK, msg, y2 }
8: vectors.append({t1, t2})
9:          end for

10: end for
11: Return vectors

C. Simulation for Generation of Power Signatures
We simulate the testbench obtained in the previous step to

generate the Value Change Dump (VCD). In this section, we
discuss the process of generating the power signature from
the obtained VCD data that corresponds to one test vector.
Generally, side-channel footprints related to the power of
hardware designs are correlated with the following factors:

• Switching Activity of the internal signals of the device.
Here transition of a signal from 0 → 1 and 1 → 0 are
considered to consume more power and emanate more
electromagnetic radiation compared to 0 → 0 and 1 → 1.

• Hamming Weight power model correlates the number of
signals that are either in value 0 or 1 in an instance to the
overall power consumption of the device at that point.

In order to identify the independent stages outlined in
Section III-A, we monitor the control flag signals of the imple-
mentation. In this way, we can perform the leakage assessment
in each stage of the implementation separately. Figure 4 shows
the power signature obtained during EC IES  encryption divided
into seven different stages with different colors. It is clear that
ECC-related calculations, such as MULTIPLY (with Double-
and-Add) and coordinate conversion (CORD.CONV), occupy
the vast majority of the computation. The next two sections
perform the leakage assessment on the generated power sig-
natures for each stage of the implementation separately. Our
utilization of control flags leads to automatic power signature
alignment for the leakage assessment.
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D. Leakage Assessment using Simple Power Analysis (SPA)
Simple Power Analysis (SPA) analyzes execution traces

without any pre-processing. SPA can reveal information about
the device’s internal states, algorithm structure, and input-
dependent power variations. Since algorithms are known,
attackers can infer the idea about internal operations and
secret data by analyzing a single trace or pair of traces.
Implementations that appear to be safe against SPA should
be further evaluated with differential power analysis.
Example: Let us consider the scalar multiplication, Double-
and-Add, illustrated in Algorithm 2. If we analyze the steps in-
volved in the algorithm, it can be observed that the operations
performed over the bit value of the scalar (k) is different for bit
=  0 and bit =  1. Without having any prior knowledge about the
nonce, by looking at the power traces we should be able to see
multiple different power levels consumed by the device during
the operations. Figure 5 illustrates the two power signatures
constructed for an implementation using Algorithm 2. For two
key values of k = 0xF0F0F and k = 0xFFFF, it shows a
significant difference in the power peaks, which makes the
implementation fail the SPA test.

(a) k = 0xFFFF

(b) k = 0xF0F0F
Fig. 5: SPA for Double-and-add Verilog implementation.

E. Leakage Assessment using Differential Power Analysis
Differential Power Analysis (DPA) utilizes statistical-based

techniques to identify data-dependent correlations. As the
name suggests, DPA requires more than one trace to perform
the comparison, and hence we generated test vector pairs in
Section III-B. As discussed in Section II-E, for the same stage
of the algorithm, two power signature traces can be of different
lengths due to the variation of execution time with the inputs. In
order to address the problem of variable finish time of
algorithms, we resize the traces into the same length with
interpolated transformation. To preserve timing information
for statistical analysis, we partition both traces into C  equal
sizes and perform differential analysis on each part separately.
This preserves the timing information in the traces across the
partitions and generalizes the evaluation technique to all the
algorithms. Next, we apply the statistical Welch t-test method
on each partition to evaluate two partitions of the power traces
to assess their differences.

Let us consider a pair of traces T (v i , Sk )  and T (vi , Sk ),
collected over stage S k

 for the input test vector pair V i  =

{v1, v2}. Let nv j  
, µv j  

, and sv
i  be the size, mean, and variance

of the x t h  partition of trace T (v i , S ), then Welch t-test t for
T (vi , S k ) x  and T (vi , Sk ) x  trace partitions can be computed
by Equation 1 (with a corresponding p value in Equation 2).

t =
µv1  

−
 
µ

 2         (1) p =  2      
∞  

f (t, d)dt (2)
s s |t|

n v i      
+  n v i where d =  degree of freedom

For the t-test, we make the null hypothesis as T (vi , Sk )
and T (vi , Sk )  traces are drawn from the same population, and
hence, they are not distinguishable with a significance level of
α′ . If the condition p <  α′ satisfies the two trace partitions, we
can reject the null hypothesis. After C  independent tests for the
significance level of α′ in each partition, the final probability
to reject the null hypothesis becomes the product of individual
probabilities (1 −  α′ )C . Note that we need to maintain a confi-
dence level of α =  0.05 for entire trace width of T (vi , Sk )  and
T (vi , Sk )  [24]. Therefore, confidence α′ for each partition can
be calculated with Bonferroni correction [25] as in Equation 3.

(1 −  α ′ ) C  =  (1 −  α )

α ′  =  1 −  (1 −  α )
 1  

(3)

α ′  =  
α

This results in a partition-wise significance level of α′ =
0.05 . We can execute family-wise rejection if any partition of
traces has p <  0.05     and classify the considered stage of the
implementation as “Failed”.

The use of statistical methods comes with the risk of the
miss-classification of results. Two miss-classifications and how
the proposed T V L A *  technique handles them are as follows:

Type 1 error (False positives): To reduce Type 1 error, we
need to have a lower significance level (α) and improved
statistical resolution. We perform “Partitioned DPA” analysis
to increase the statistical resolution to include timing-related
data, and then perform Bonferroni correction to reduce the
significance level.

Type 2 error (False negatives): To reduce Type 2 error, we
need to capture more sample data and conduct multiple
experiments. Compared to T V L A  for symmetric cryptography,
the chances of type 2 errors are much less in asymmetric
cryptography due to two reasons. 1) Large trace sample size:
As illustrated in Figure 4, stages related to asymmetric key
operations are in the order of 10000 (Montgomery multiplica-
tion takes 34563 cycles for 192-bit key) while symmetric key
operations are in the order of 100 (tinyAES takes 21 cycles
for 256-bit key). 2) Large number of experiments: Multiple
input combinations in Algorithm 4 increase the number of
experiments. We combine the nonce pair with different public
keys and random messages to increase the number of different
scenarios in the experiments. This reduces the Type 2 error.
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F. Optimal Partitioning of Traces
The objective of partitioning is to have a good statistical

resolution over the long trace data collected from different
stages. If we have too few partitions, it will lead to more
Type 1 errors while too many partitions will cause more Type
2 errors. Since these longer trace data is over bit serialized
algorithms, we dynamically adjust the partition size based on
the inputs to the algorithm. This preserves the statistical power
of the experiment and provides a more accurate DPA analysis.

Algorithm 5 Trace Partitioning
Require: TestPair {t1 , t2 }
Ensure: Partitions {c1 , c2 , ..., cn }

1: t X O R  =  t � t

3: 
C  = {  }  ,

t
prev =  1 , U =  N o n c e L e n g t h

4: if bit =  1 then
5: if prev =  0 then
6:                         C.append(ptr)
7: end if
8: prev =  1
9: ptr =  ptr +  U

10: C.append(ptr)
11:          else
12: prev =  0
13: ptr =  ptr +  U
14:          end if
15: end for
16: Return C

Algorithm 5 presents the steps involved in the dynamic par-
titioning process. First, we perform an XOR operation on the
input values. We partition XOR result such that all consecutive
zeros become one partition while each ones separately parti-
tioned into different partitions. For this purpose, we calculate
the unit length to process a single bit by taking the ratio of
the trace length to the nonce length. Then each partition point
is generated with Algorithm 5. Figure 7 illustrates an example
scenario for calculating partitions dynamically. After the
dynamic partitioning, the DPA technique is applied to each
partition separately and proceeds with the steps discussed in
Section III-E.

Input I  : 1     1     1     0     0     1     1     0      0     1     1     0     0     0     0     0

Input I I  : 1     1     1     1     1     1     1     1      1     1     1     1     1     1     1     1

XOR : 0     0     0     1     1     0     0     1      1     0     0     1     1     1     1     1

DPA {

Time c0 c1 c2 c3 c4     c5     c6 c7     c8 c9 c10 c11 c12

Fig. 7: An example scenario for dynamic partitioning of traces
based on the bitwise difference of the input nonce.

Complexity Analysis: Let the size of two input distributions
used for the differential analysis be M (after scaling to the
same length). If we do not partition (traditional TVLA),  the
time complexity of applying the Welch t-test is O(M ) since

there are O(M ) elements in the two distributions. Partitioning
the traces with input XOR operation can be performed in a
constant time (O(1)). Let n (1 ≤  n ≤  key size) be the
number of partitions and m be the number of elements in
each partition such that n × n mi =  M. Therefore, the time
complexity of applying Welch t-test on all the partitions is also
bounded by O(M ) since the total number of elements in the
two distributions did not change. The last step of the algorithm
(family-wise rejection) can be performed in a constant time
of O(1). Therefore, the partitioned DPA (TVLA*) does not
increase the complexity compared to traditional T V L A .

G. Classification using Divergence Test
The leakage analysis discussed in the previous section

analyzes a pair of traces for only one stage in the algorithm.
In this section, we first discuss how to classify each stage as
side-channel vulnerable or safe. Next, we make a decision on
the entire implementation. In Section III-B, we generated test
vector pairs, which results in X  ×  N  trace pairs. We perform
the Welch t-test followed by Bonferroni correction for each
stage of implementation and classify each stage as “Pass” or
“Fail”. If a particular stage of the implementation “Fail” during
DPA, the implementation is classified as “Fail”. We classify
the implementation as “Pass” if and only if all the stages of
the implementation pass the divergence test.

H. Fixing the TVLA* Failing Implementations
If a design fails the divergence test, the design should be

fixed against the side channel leakage. This step will
involve different techniques in different instances to prevent
information leakage. For different stages, there can be different
implementation improvements. For example, a popular mitiga-
tion is to use the Montgomery ladder for scalar multiplication
over double and add since it severely reduces the information
leakage through timing. Other mitigations involve randomizing
some value being used in the computation to blind it.

The authors of [20] proposed several mitigation techniques
against horizontal collisions. These mitigations specifically
target the modular multiplication of two field values, which
are integers. Since these field values can be represented in
word form, multiplication takes the form of a matrix. A
representation of the matrix is given below, where a and b are
the two field values being multiplied together and the entry
number corresponds to its word location.

a1b1 . . . a1bn

� .
. . .         . �

anb1 . . .     an bn

Operands Blinding: Blind each operand with a random value.
After multiplication, the resulting blinded value is equivalent
to the result of the non-blinded value. This mitigation reduces
the efficiency of the horizontal collision correlation analysis
attack, however, it does not remove all sources of the leakage.
Blinding is memory efficient since it will not take additional
memory, however, an additional operation is added for each
value that needs blinding.
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Shuffling Rows and Columns: Shuffling leads to different per-
mutations of row and column configurations. However, shuf-
fling the rows and columns does not have any impact on the
computed values of the matrix entries. It does add to the
computational time that the attacker needs to perform the
attack by the cost of searching for a permutation. This search is
O(n). Additional memory may be required while swapping
values.
Shuffling and Blinding: This mitigation combines ideas from
the two previous mitigations together. It achieves this by
first blinding one value, shuffling the rows with permutations,
blinding the second value, and then shuffling the columns
with permutations. This technique does prevent the attack
but allows for a zero-value attack to be possible that was
previously not.
Global Shuffling: This is a variation of Shuffling and Blinding
where the permutations of the rows and columns are done at
the same time, instead of sequentially. Therefore, the attacker
needs to now search through a permutation of size n2 instead of
two permutations of size n, which is computationally more
expensive. Shuffling both the rows and columns at the same
time will take more memory than if done sequentially. While
the authors note that this does prevent the attack, more research
is needed to demonstrate the efficiency of the implementation
in using this mitigation.

I V. E X P E R I M E N T S

In this section, we first describe the experimental setup.
Next, we present results for side-channel leakage assessment.

A. Experimental Setup
We have implemented ECDSA and ECIES  in Verilog with

the algorithms outlined in [22] and [23] including three dif-
ferent E C  MULTIPLY algorithms of Double-and-Add, Bina-
ryNAF, and Montgomery. Where appropriate, these algorithms
used open-sourced Verilog implementations for SHA and
AES.  SEC ’s SHA1 implementation in Verilog was used for
hashing operations. tinyAES was used in EC IES  for A E S
encryption and decryption. For the key derivation function in
ECIES,  the standard ANSI X9.63 was used. For the creation
and authentication of tags, HMAC-SHA1 was used, with the
SHA1 functionality being provided by SEC ’s SHA1 mod-
ule. After testing the implementation with NIST prime field
curves, we instrumented the design with the steps discussed in
Section III-B. We used Synopsys Design Compiler with
SAED90nm CMOS technology for the synthesis of the design.
We used Synopsys VCS for the simulations of the designs
and to obtain the signal dumps. For test generation, power
signature construction, and leakage assessment, we created
appropriate scripts with Python. For partitioned DPA, we
dynamically partitioned the traces based on the input nonce
with the algorithm proposed in Section III-F.

B. Leakage Assessment of Asymmetric Key Algorithms
We evaluate EC IES  and ECDSA implementations using

existing and proposed (TVLA*) methods. To generate private

keys or nonce (as appropriate), we used Algorithm 3. All other
steps in T V L A *  remain the same for the rest of the evaluation.
Since direct evaluation with [1]–[3] is not possible due to
input test generation difference, we compare the results with
the standard Welch t-test. Table II  presents the final evaluation
performed on different modes of E C C  implementations with
the standard Welch t-test and the proposed T V L A *  method-
ology. Each column shows the percentage of experiments
“failed” the DPA analysis out of 1000 experiments. The green
color cells represent true positive and true negative results
while the brown color cells represent false positive and false
negative results. It can be observed that the Binary NAF
algorithm has been subjected to type 1 error due to not having
timing-related information on the standard Welch t-test. The
tiny A E S  implementation was also detected as side-channel
vulnerable with TVLA*,  which is consistent with [2].

C. Effect of Partitioned t-test
We created this experiment to demonstrate the effectiveness

of partitioned DPA (preserved the timing information of the
traces) over standard divergence measuring techniques. We
have taken a test case that fails the SPA. For this, we
used the E C  MULTIPLY algorithm Double-and-Add with two
nonce values of “0xFF00” and “0x00FF”. As illustrated in
Figure 8, power traces are inverted over the time axis and
hence divergence test should fail.

(a) k = 0xFF00

(b) k = 0x00FF

Fig. 8: SPA for Double-and-add two nonce (k) values.

As illustrated in Table III, standard Welch t-test and K L
divergence do not take timing information into account and
hence provided false positive results. Our proposed partition-
based differential power analysis distinguishes the two traces
since the analysis is done on multiple different partitions (16
partitions in this specific example).

TA B L E  III: Divergence test on traces of 0xFF00 and 0x00FF
Method Welch t-test K L  divergence T V L A *
Result         False Positive         False Positive         True Negative

D. Dynamic Partitioning of Trace Data
We have created a separate experiment to demonstrate

the effectiveness of dynamic partitioning. For this purpose,
we generated 1000 trace data pairs with the scalar mul-
tiplication implementation with the Montgomery algorithm
(with shuffling and blinding mitigation). Then we introduced
modifications to the Montgomery implementation to have a
subtle imbalance in the switching activity over the nonce
multiplication and generated a separate data set that consists of
1000 trace data pairs. These two data sets serve as the
known labeled data set for the evaluation of the results of the
experiment.

In the next step, we conducted experiments with both data
sets with different partition sizes ranging from 1 to nonce size
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TA B L E  II: Evaluation on E C C  Verilog implementations with Welch t-test and partitioned Welch t-test in T V L A *

Implementation

ECIES encryption
ECIES decryption

ECDSA sign
ECDSA verify

Welch t-test in T V L A
E C  MU LT I P LY CORD.

D. Add B. NAF Mont CONV
4.6% 0% 0% 0% 0%
6.2% 0% 0% 0% 0%
5.9% 0% 0% 0% 0%
4.2% 0% 0% 0% 0%

Partitioned Welch t-test in T V L A *
tiny                      E C  MU LT I P LY                    CORD.                             tiny
A E S           D. Add       B. NAF       Mont.        CONV                            A E S

0.012%         18.9%          19.2%            0%              0%              0%          0.012%
0.008%         17.6%          21.1%            0%              0%              0%          0.008%

20.9%          18.3%            0%              0%              0%
16.7%          16.9%            0%              0%              0%

1000
Type1 Error Type2 Error Dynamic Partions

75

100 50

10 25

1 0

Fig. 9: Dynamic partitioning
i
of trace data for the nonce size

of 192 on Montgomery scalar multiplication algorithm.

(in this case 192). Next, we deployed dynamic partitioning
on both data sets to observe the number of partitions that
resulted in the comparisons. Figure 9 presents the relationship
between Type1 error and Type2 error with the number of
partitions in the trace data. The yellow curve represents the
number of partitions generated by the dynamic partitioning
algorithm proposed in Section III-F which sums up to the total
number of test cases (1000). This illustrated that the proposed
dynamic partitioning technique selects the best partition for
the statistical comparison.

TA B L E  IV: Minimum p-values observed with Montgomery
multiplication algorithm with different mitigation techniques
with the experiment conducted for four iterations each con-
taining 1000 test pairs. Brown-colored cells indicate rejected
implementations from the divergence test

Without Shuffling Global
Mitigation                                                      and Blinding       Shuffling

1 0.0042 0.0258 0.1842 0.4947 0.6854
2 0.0059             0.0009 0.2874 0.7398 0.7458
3 0.0048             0.0085 0.1879 0.5009 0.5748
4 0.0106             0.0147 0.2935 0.8456 0.6875

E. TVLA* on Different E C  MULTIPLY Algorithms
As discussed in Section II-C, E C  MULTIPLY is the victim

for most of the side-channel attacks. Therefore, we evaluated
the three algorithms that we have implemented in Verilog.
BinaryNAF and Double-and-Add should fail the experiment
since these algorithms contain imbalanced finite-state machine
(FSM) operations that depend on inputs. For the Montgomery
algorithm, we have implemented multiple variations with and
without mitigation techniques discussed in Section III-H and
applied TVLA*.  Table I V  presents the results of the experi-
ment with minimum observed p-value in each experiment with

different mitigation techniques. Brown-colored cells indicate
rejected implementations from the divergence test while green-
colored cells represent implementations that are classified as
safe against side channel leakage by T V L A *  framework.

Figure 10 presents the minimum p-value (y axis in log
scale) observed among each partition against the generated test
vectors with three algorithms of Montgomery (with blinding
and shuffling), Binary NAF, and Double-and-Add. Here α′

represented the minimum p-value to accept the null hypoth-
esis, which is calculated with dynamic partitioning (α′     =
0.05 , where C  is the number of partitions). As expected, it can
be observed that for Binary NAF and Double-and-Add,
T V L A *  has rejected the null hypothesis with the confidence of
99.999% (with p <  α).

Montgomery Binary NAF Double-and-Add Alpha' (α')
1

0.1

0.01

0.001

0.0001

0.00001
0 250 500 750 1000

Test Pair Number
Fig. 10: Minimum p-value observed for partitioned Welch t-
test DPA analysis for 1000 pairs of input vectors over different
scalar multiplication algorithms.

TA B L E  V: Divergence test on different E C  Multiply Algo-
rithms for curve P-192, 192 bit key size

E C  MU LT I P LY T V L A *

Algorithm # C lk SPA min(p) Divergence

Double-and-Add 20606 Fail 0.00010 Fail
Binary NAF             3837 Pass 0.00006 Fail
Montgomery 34563 Pass 0.61739 Pass

Table V  illustrates the divergence test results for the three
implementations. T V L A *  methodology classifies Double-and-
ADD and Binary NAF implementations as side-channel vul-
nerable, while the Montgomery implementation is classified
as side-channel resistant.

F. Physical Leakage Locations in ECDSA and ECIES
T V L A *  framework analyzes the power usage of a cryp-

tographic implementation at the pre-silicon stage. It divides
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implementation into stages by analyzing the control flags.
Therefore, the evaluation (detection) results provide us the
information about all the stages. A  designer is mostly inter-
ested in the stages (components) that failed T V L A  analysis,
which would be a potential leakage location in the fabricated
chip. Figure 11a illustrates the leakage locations in the ECDSA
implementation. In this evaluation, ec multiply module failed
for 98 partitioned-DPA tests. None of the other ECDSA sub-
modules failed during the evaluation consisting of 3000 tests.

Figure 13 illustrates the minimum p-values observed on
firmware level implementation of scalar multiplication algo-
rithms of Montgomery (with shuffling and blinding), Binary
NAF and Double-and-Add. Here α′ represents the minimum
p-value to accept the null hypothesis, which is calculated
with dynamic partitioning (α′      =      0.05 , where C  is the
number of partitions). As expected, it can be observed that
for firmware implementations of Binary NAF and Double-
and-Add, T V L A *  has rejected the null hypothesis with the
confidence of 99.999% (with p <  α).

clk
rst

start
Pk/P(x,y,z)

msg
r,s

curves
(0)

solve point
(0)

ec multiply
(98)

field add
(0)

field inverse
(0)

field mult
(0)

Montgomery Binary NAF Double-and-Add Alpha' (α')
SHA 1

sign / 0.1

verify

(a) Module-level leakage locations in the ECDSA implementation 0.01

clk
rst

start
Pk/P(x,y,z)

msg/ϵ(msg)
r,s

curves
(0)

solve point
(0)

ec multiply
(124)

kdf
(0)

AES

SHA 0.001

TRNG

ϵ(msg) 0.0001

/ msg 0 250 500 750 1000

(b) Module-level leakage locations in the ECIES  implementation

Fig. 11: Leakage locations (highlighted in �) and the cor-
responding number of failed tests (in brackets) based on
partitioned-DPA analysis on ECDSA and ECIES  Verilog im-
plementations during T V L A *  evaluation.

Figure 11b illustrates the leakage locations in the EC IES
implementation. As we can see from the figure, ec multiply
module failed for 124 partitioned-DPA tests. None of the
other EC IES  modules failed during the evaluation consisting
of 3000 tests. It can be observed from Figure 11 that the scalar
multiplication module (ec multiply) is the most leaky location
in both EC IES  and ECDSA implementations.

G. Testing TVLA* on Bare Metal E C C  Implementation

In this experiment, we highlight the possibility of using
the proposed T V L A *  technique on firmware-level implemen-
tations of public key cryptography modules on embedded
systems. For this process, we have used the OpenRiscV32 [26]
processor implemented in Verilog as the host processor for the
embedded system. Next, we implemented E C C  cryptography
modules in C  and compiled them with the RISC-V toolchain.
Figure 12 illustrates the module level block diagram of the
hardware setup. Then we evaluated different scalar multipli-
cation algorithms against their side-channel leakage.

Nonce       ROM
(Firmware)

P(x,y,z) IO CPU

Messege RAM

Fig. 12: Firmware-level evaluation of E C C  implementation.

Test Pair Number
Fig. 13: Minimum p-value for partitioned Welch t-test DPA
analysis on firmware-level E C C  implementation for 1000 pairs
of input vectors over various scalar multiplication algorithms.

H. Applicability and Limitations

In this paper, we focused on the Elliptic Curve Cryptogra-
phy (ECC) family of algorithms due to their improved security,
and performance. Further, the implementation of ECC-based
hardware algorithms can be considered more complex com-
pared to the other asymmetric key cryptography algorithms.
However, the applicability of T V L A *  is not limited to asym-
metric cryptosystems based on the E C C  family. In order to
demonstrate the applicability of T V L A *  on other asymmetric
cryptography algorithms, we first discuss three popular R S A
implementations based on three different algorithms: Chinese
Remainder Theorem (CRT), Montgomery Multiplication, and
Square-and-Multiply method. Then we evaluate three designs
of R S A  that implement the above algorithms with TVLA*.
Finally, we discuss the applicability of T V L A *  on hybrid
cryptosystems.

RSA with CRT: C RT  optimization is applied during the
decryption process to speed up the modular exponentiation. In-
stead of performing a single modular exponentiation operation
using the private exponent, the C RT  method breaks it down
into multiple smaller modular exponentiation using the prime
factors of the modulus. This smaller modular exponentiation
can be computed separately and combined using the C RT
formulas. However, the C RT  method can introduce vulnera-
bilities to power side-channel attacks. For example, the power
consumption during the modular exponentiation steps might
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vary depending on the value of the corresponding prime factor.
An attacker can exploit these variations to extract information
about the secret key.

RSA with Sqaure-and-Multiply: In the Square-and-Multiply
algorithm, the exponent is typically represented in binary form,
and the algorithm performs repeated squaring and multiplica-
tions based on the bits of the exponent. These operations can
result in different power consumption patterns depending on
the value of each bit.

RSA with Montgomery Multiplication: In the case of Mont-
gomery multiplication, the power consumption patterns can
vary depending on the intermediate values and operations
performed during the algorithm. For example, the number of
shifts and additions involved in Montgomery multiplication
can introduce variations in power consumption. An attacker
can analyze these power consumption patterns to potentially
deduce information about the secret key or other sensitive data.

Montgomery_Mult Chinese Remainder Theorem

Square-and-Multiply Alpha' (α')
1

0.1

0.01

0.001

0.0001

0.00001
0 250 500 750 1000

Fig. 14: Minimum p-value
e
for

a
partitioned Welch t-test DPA

analysis on R S A  implementation for 1000 pairs of input
vectors over various R S A  implementation algorithms.

TVLA* on RSA: We have used three different Verilog im-
plementations of R S A  with three different algorithms (Chi-
nese Remainder Theorem, Square-and-Multiply, and Mont-
gomery Multiplication with shuffling and blinding mitigation).
Figure 14 illustrates the minimum p-values observed after
performing T V L A *  methodology. As expected, power side-
channel vulnerability of mitigated R S A  implementation based
on the Montgomery Multiplication algorithm is classified by
T V L A *  as safe against side-channel leakage while imple-
mentations based on the Chinese Remainder Theorem and
Square-and-Multiply are classified as susceptible to power
side-channel leakage.

TVLA* on Hybrid Cryptosystems: T V L A *  enables the eval-
uation of hybrid cryptosystems which combines both asym-
metric and symmetric components in the implementations.
Since the components are evaluated separately, asymmetric
components of the system can be evaluated with TVLA*,
while symmetric components can be evaluated with existing

symmetric T V L A  [1], [2] techniques. The composition of
results is trivial since we consider it a system failure if any of
the components fail.

V. CO N C L U S I O N

In this paper, we proposed a test vector leakage assess-
ment (TVLA)  technique for asymmetric key algorithms. We
analyzed the applicability of existing T V L A  techniques on
asymmetric algorithms and identified the fundamental limi-
tations. We proposed a systematic test generation technique
to generate valid test cases that can maximize the switching
difference in side-channel vulnerable implementations. We
developed a differential power analysis technique for asym-
metric key cryptography algorithms. Specifically, we presented
a partition-based t-test evaluation technique to evaluate with
higher statistical accuracy while preserving timing information
over the traces. Experimental evaluation on diverse elliptic
curve cryptography algorithms demonstrated that our proposed
technique has better accuracy than statistical techniques used
in T V L A  for symmetric key cryptography algorithms.
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