Network-less Trajectory Imputation

Mohamed M. Elshrif

Qatar Computing Research Institute
Doha, Qatar
melshrif@hbku.edu.qa

ABSTRACT

The ability to collect large numbers of trajectory data through
GPS-enabled devices have enabled a myriad of very important
applications that are widely used on a daily basis. This includes
urban computing, transportation, and map APIs for routing and
navigation. Unfortunately, a major hinder for all these applications
is the accuracy of collected trajectories. Due to low sampling rates,
trajectories are usually sparse in terms of the large spatial and
temporal distances between each two consecutive collected points.
This paper presents TrImpute; a novel framework for trajectory
imputation that inserts artificial GPS points between the real ones
in a way that the imputed trajectories end up to be very similar
to the case if such trajectories were collected with a much higher
sampling rate. Unlike all prior trajectory imputation techniques,
TrImpute does not assume the knowledge of the underlying road
network. This makes it more practical when the underlying road
network is not available or inaccurate. Experimental results on real
datasets and a real deployment of TrImpute show that it is highly
scalable, accurate, and can significantly boost the performance of
trajectory applications by feeding them highly accurate trajectories.

1 INTRODUCTION

Trajectory data, produced from a variety of GPS-enabled devices
(e.g., vehicles, smart phones, and wearable devices) and represented
by a sequence of spatio-temporal GPS points, have enabled a myr-
iad of highly important applications and fundamental operations.
Examples of such applications include urban computing [57], trans-
portation [29], map inference [25, 44], data-driven routing [24, 40],
and traffic prediction [11, 34, 48]. Examples of fundamental trajec-
tory operations that empower such applications include trajectory
similarity [19, 54], clustering [30, 51], and analytics [10, 50, 58].
Due to the importance of such applications and operations, several
systems are built for scalable and accurate trajectory data manage-
ment [18, 20, 32, 43].

Though all such trajectory systems, applications, and operations
have been enabled by the sheer sizes of trajectory data (in terms
of the number of trajectories or GPS points), they all significantly
suffer from the sparsity of each single trajectory. As trajectory data
comes from devices geared towards battery savings, trajectories are
usually sparse with large spatial and temporal gaps between consec-
utive points within the same trajectory. This severely degrades the
accuracy of the applications that rely on trajectory data. To address
such important accuracy gap, several recent efforts were dedicated
to increase the accuracy of collected trajectory data through a pro-
cess that had various names, e.g., trajectory interpolation [35, 56],
trajectory completion [33], trajectory data cleaning [55], trajectory
restoration [31], and trajectory imputation [14]. Without loss of

*The work of this author is partially supported by the National Science Foundation,
USA, under Grants IIS-1907855 and IIS-2203553.

Keivin Isufaj
Qatar Computing Research Institute
Doha, Qatar
keisufaj@hbku.edu.qa

Mohamed F. Mokbel”
University of Minnesota, Twin Cities
Minneapolis, MN, USA
mokbel@umn.edu

(a) Map Inference with Raw trajectories

A% S s |
i ‘\(j&,\

(b) Map Inference with TrImpute trajectories

Figure 1: Effect of TrImpute on Map Inference Application
generality, in this paper, we use the term “trajectory imputation”.
The main goal of all these approaches is to insert artificial points
between each two consecutive trajectory points, with the promise
that the artificially imposed points are as accurate as if there were
actual readings of trajectory data. The large majority of such tech-
niques assume the existence of the underlying road network. Hence,
the trajectory imputation process becomes mainly a map matching
process of sparse trajectory points [7, 12, 27, 41, 52], followed by
inserting artificial points that match the underlying road network.

Unfortunately, the assumption of having the underlying network
is not always valid. The recent explosion in using map services have
actually shown that current maps are not as accurate as it looks [3,
36, 47]. This triggered a whole multi-billion dollars industry for
constructing accurate maps [17, 23]. As a result, several recent
research efforts are dedicated to map inference (a.k.a map making),
which basically aim for constructing accurate road network either
from trajectory data [6, 15, 42, 44] or satellite images [5, 16, 45].
With such inaccuracy in maps, the process of trajectory imputation
can be seen as first constructing the map with any of the existing
map inference algorithms, then, imputing the trajectories. However,
this results in a very low accuracy, as the accuracy of map inference
itself is highly dependent on the trajectory sampling rate. Up to the
authors’ knowledge, the only trajectory imputation work that does
not assume or build a road network [33] still builds a skeleton of
the road network, and is applicable only to a junction-level road
network. This makes it inherently inaccurate and does not scale to
a city-level trajectory imputation.



In this paper, we propose TrImpute; a novel approach for
Network-less Trajectory Imputation. Unlike all other trajectory
imputation approaches, TrImpute neither relies on or builds its
own underlying road network, and hence the term “Network-less”.
Instead, TrImpute relies on the crowd wisdom by taking advan-
tage of neighboring GPS points to guide its imputation process for
each sparse trajectory. TrImpute serves as a preprocessing step for
various trajectory applications, operations, and systems, to signifi-
cantly boost their accuracy. For example, Figure 1 shows the effect
of TrImpute on map inference algorithms. In particular, Figure 1(a)
gives the result of running a map inference algorithm [44] using
raw sparse trajectory data in the area of downtown Chicago!. The
inferred map is plotted in blue, while the background map is shown
as an image for reference only to visually assess the quality of the
generated map. Meanwhile, Figure 1(b) gives the result of running
the same exact map inference algorithm [44], plotted in green, but
after imputing the raw sparse trajectories using TrImpute. It is vi-
sually clear that TrImpute did significantly boost the map inference
algorithm accuracy. The green road network generated by TrIm-
pute trajectories is way more accurate than the blue road network
generated by raw sparse trajectories.

The main idea of TrImpute is to rely on the crowd wisdom to
guide its imputation process as a substitute of the lack of knowledge
of underlying road network. For TrImpute, any arbitrary GPS point
can consult its neighboring points (regardless of their trajectories)
to recommend a set of artificial candidate points, where each of
these points could be possibly the next imputation point towards
the segment destination. Candidate points must follow a set of strict
properties (defined by TrImpute) to ensure that the imputed seg-
ment would be very similar to the case of a real high sampling rate
of these segments. With the concept of candidate points, the spatial
imputation process of TrImpute, which is done on one trajectory
segment at a time, becomes finding a set of consecutive candidate
points between the trajectory segment end points. Unlike other
trajectory imputation techniques, TrImpute does not stop at spatial
imputation, but it also goes for temporally imputing each segment.
The TrImpute temporal imputation process basically annotates the
spatially imputed points by temporal information that match the
traffic conditions of these imputed points.

Extensive experimental results based on real trajectory data, col-
lected from a real deployment of TrImpute (within the QARTA
system [2, 37]), in 4,000 Taxis in the state of Qatar show that:
(a) TrImpute is highly scalable to a city-scale trajectory imputation,
(b) TrImpute imputed trajectories are very similar to the originally
raw dense trajectories that were made sparse for experimental
evaluation, (c) TrImpute imputed points have high accuracy when
matched to a ground truth map, obtained from OpenStreetMap [39],
and (d) TrImpute was able to significantly boost the performance
of a map inference algorithm [44], when it was used as its a prepro-
cessing step between the raw data and the map inference algorithm.

The rest of the paper is organized as follows: Section 2 discusses
related work. TrImpute framework is described in Section 3. TrIm-
pute main components, namely, spatial and temporal imputation,
are described in Sections 4 and 5. Section 6 provides extensive ex-
perimental evaluation of TrImpute. Section 7 concludes the paper.

I The raw dataset can be found at https://www.cs.uic.edu/bin/view/Bits/Software.

Mohamed M. Elshrif, Keivin Isufaj, and Mohamed F. Mokbel?

2 RELATED WORK

Trajectory data has always been crucial to several important ap-
plications, including urban computing [57], transportation [29],
map inference [25, 44], and routing [24, 40]. However, they all
behave very poorly when trajectory data is relatively sparse. For
example, a sparse trajectory data set will make map inference algo-
rithms [6, 15, 25, 42, 44] give inaccurate maps, trajectory clustering
techniques [4, 8, 30, 51] give inaccurate clusters, trajectory simi-
larity search [19, 54] give inaccurate results, while trajectory data
analysis in general [10, 50, 58] yield wrong results.

Hence, many efforts were dedicated to increase the accuracy of
raw sparse trajectories by inserting artificial points, turning them
into dense trajectories. The promise is that these newly inserted
points are as accurate as if the trajectories were originally dense.
Such efforts were performed under various names, e.g., trajectory
interpolation [35, 46, 49], trajectory data cleaning [55], trajectory
restoration [31], trajectory imputation [14], path inference [9, 22, 53,
56] and trajectory completion [33]. However, many of these efforts
were not directed to road network and traffic analysis. This includes
generating trajectories for inter-continental scale animal and bird
movements, where trajectories may span hundreds or thousands of
kilometers [46], interpolating cyclists or athletes trajectories using
their kinematics (velocity and acceleration) information sampled
at a high temporal resolution [35], interpolating trajectories of
geolocated objects in video frames used for driving simulators [49],
and enriching trajectory information with semantic meaning to
infer the trip purpose [14]. None of this work is applicable to our
case of road network vehicle movement.

When it comes to road network, some of the existing efforts
actually address the trajectory imputation problem when the data
is dense, rather than sparse. In this case, the objective is not to
insert new artificial points to densify sparse trajectories. Instead, it
is to remove noisy and outlier data as a means to make trajectories
only include accurate points. This has taken various forms, includ-
ing framing the problem as a time series data cleaning to detect
and remove anomaly trajectory points [55], focusing on finding
popular routes rather than constructing the routes [53], and remov-
ing points that do not clearly belong to certain clusters formed by
other points [9, 22]. None of these approaches is applicable to our
case, as our objective is trying to insert new points rather than
removing existing points. Meanwhile, existing work in densifying
raw sparse trajectories for vehicle data [31, 56] mainly start with a
map matching process [7, 12, 27, 41, 52], where all GPS points are
matched to the underlying road network. Once the road segments
are identified, they are used to find intermediate points to densify
raw trajectories. Unfortunately, none of this work is applicable to
our case, as they assume the complete knowledge of the underlying
network, which is not available in our case. .

Up to our knowledge, there is only one prior attempt that aims
to impute raw trajectories without the knowledge of the road net-
work [33]. However, it relies on the L1—medial skeleton extraction
algorithm [28], which is inherently designed to only support small
regions. Hence, the trajectory imputation process has a very limited
applicability and can only support junction-level trajectories, e.g.,
trajectories in an intersection. This cannot be applied to our case
where we need to impute trajectories in a city scale.



Network-less Trajectory Imputation

N Spatial X
1| Umputation ' {‘ ______ N
Building N ' /[ Temporal |i
Metadata l.': Candidate ), ,( Imputation Ji
Augmentation |, ! Points [\ v ______ !
- __ —/ \_Generation )i

Figure 2: TrImpute Framework

3 TRIMPUTE FRAMEWORK

Figure 2 gives the architecture of our proposed TrImpute framework.
The input to TrImpute is a set of raw GPS points, where each point
P has the format <TrajID, PointID, latitude, longitude, timestamp
>. The output would have the same format, yet, with much more
points, as more artificial imputed points are inserted between each
two raw points of the same trajectory. Within TrImpute, the input
goes through three main components, namely, preprocessing, spatial
imputation, and temporal imputation, as follows:

Preprocessing. Trlmpute preprocesses input data with two tasks:
(1) Index Construction. We bulk load input data to two index struc-
tures; a hierarchical quad-tree index based on the points loca-
tions [26], and an inverted list for trajectory IDs where each trajec-
tory ID points to a list of its temporally ordered GPS points. One
scan over all points is enough for both bulk loading operations.
Both index structures will be used by the spatial imputation process
to efficiently retrieve trajectory data. (2) Angle and Speed Inference.
TrImpute relies on the angle and speed information of input GPS
points to guide its imputation process. However, such information
is not directly available. Hence, we utilize the trajectory inverted
list to enrich each trajectory point with its angle and speed. Figure 3
gives an example of a trajectory Traj; with three points P11, P12,
and P13, each has its latitude, longitude, and timestamp information.
We then define the angle of each point P; as the angle between the
east direction and the line connecting P; to its consecutive point
Pi+1. The last point P; in each trajectory inherits the same angle of
its preceding point. Hence, the angles of the three trajectory points
are computed and stored as 30°, 3459, and 345°. We then calculate
and store the speed of each point P; as the ratio of the distance
between P; and its consecutive point P41 to the time difference
between these two points. The last trajectory point inherits the
same speed of its preceding point. Hence, the speed of the three
trajectory points are 15, 25, and 25 m/s.

Spatial Imputation. The spatial imputation component is respon-
sible on adding artificially imputed points to all trajectories with
the promise that these points are as accurate as if the trajectory
data was collected with a higher sampling rate. Since TrImpute
is a network-less imputation, it does so without the knowledge
of the underlying network. Instead, it relies on the wisdom of the
crowd composed of nearby GPS points of many other trajectories
to suggest some candidate points that will contribute to the imputed
path. Details are in Section 4.

Temporal Imputation. The temporal imputation component fol-
lows the spatial imputation to annotate the imputed points with
timestamps that would match the temporal readings if these points
were collected with a higher sampling rate. It does so by taking
timely traffic conditions into account. Details are in Section 5.

Input Trajectory Attributes Metadata
GPS point Lat Lon timestamp | angle | Speed (m/s)
Py 51.493 25.282 | 1517504575 30° 15
Traj, | Py, 51.506 25.315 | 1517504578 345° 25
Py 51.629 25.374 | 1517504581 345° 25
A
5°g“\e‘\‘ b1, ‘%00'90,‘__’

Figure 3: Example of angle and speed inference

4 TRIMPUTE SPATIAL IMPUTATION

This section describes the spatial imputation process, which is done
per each trajectory segment that goes from point P to point Q. The
objective is to insert a certain number of artificial points between
P and Q that would mimic the situation if there are more accurate
real readings between P and Q. The main idea of TrImpute spatial
imputation is to define the concept of candidate points (Section 4.1)
as the set of possible next artificial point(s) for any given point
in the space. Then, the spatial imputation process (Section 4.2)
becomes finding the shortest path from P to Q composed of a set
of consecutive candidate points. It is worth emphasizing here that
the modules of finding candidate points and spatial imputation are
performed without any knowledge of the underlying network. Both
modules rely on the wisdom of the crowd drawn from the set of
GPS points of a large set of sparse trajectories.

4.1 Candidate Points

This section defines the concept of candidate points and describes
an algorithm that gets such points for any given point.

Properties of Candidate Points. Given a start and end points P
and Q, Pcg,pq is a set of artificial points (Pc) where any of them
could possibly be the next imputed point after P towards Q. Each
Pc has five attributes: latitude, longitude, angle, timestamp, and
speed. Only one of the Pr,,4 points would finally contribute to
the imputed path from P to Q. To ensure accurate imputation, we
aim to find Pc,p,4 that would satisfy the following four properties,
where all properties include parameters that achieve a trade-off
between accuracy and computational overhead.

(1) Property 1: Number of candidates N. The number of points in
Pcana should be capped by N. A higher value of N would
suggest more alternatives, which gives more flexibility to come
up with a more accurate imputation. Yet, this would come with
more computational overhead that may not be needed.

(2

~

Property 2: Crowd ratio threshold a.. According to the spirit of
the TrImpute framework, all points in Pr,,4 should follow
the crowd wisdom, which means avoid going in a direction
that no one is going for. Hence, a parameter « is defined as the
minimum possible crowd ratio for a direction to be considered. A
lower value of @ would mean exploring more directions, which
provides more alternatives to find a more accurate imputation.
Yet, this would come with more computational overhead that
may not be needed.



(3) Property 3: Angle threshold 6. Each point Pc in Py, 4 should
not change the angle of P by more than a certain threshold 8.
Recall that the angle of P is computed per its direction toward
Q. Since P¢ will be inserted between P and Q, it should not
significantly disturb that angle. For example, Pc should not
change P’s angle to an opposite direction. The higher the value
of §, the more accuracy we can get as more options will be
considered, however, more computations will be needed then.
Property 4: Distance threshold d. All points in Pc,,,4 should have
a distance d from P. The lower the d, the more accurate the
imputation, as there will be more points between P and Q. Yet,
this will also result in a more computational overhead, where
more points will be inserted between P and Q.

—
N
ol

Main Idea. To come up with the set of points Pr,,4 that satisfy
the above four properties, we aim to smartly use our budget of N
candidate points to get a set of representative points. Our main
idea is to avoid having candidate points that are close to each other.
Instead, the N points should be diverse enough to cover a spectrum
of imputation possibilities. To achieve this, (1) we divide the space
around P into N buckets, where each bucket i (from 0 to N — 1)
covers the space between the angles %i and 3%]0 (i+1). For example,
if N=4, then, the space around P is divided into four quadrants.
Then, each bucket would contribute, at most, one candidate point
to Pcgng, which means that we will have at most N candidate
points (Property 1). (2) Honoring the crowd wisdom (Property 2)
with all the raw trajectory data points may not be practical. To
resolve this, we will only consider the nearby crowd to point P,
represented by the set of points R that fall within a circular range
query centered at P with radius d. We then populate our N buckets
with the points in R where each bucket B; includes the set of points
in R with angles that fall within the bucket angle range. Based on
the number of points that land in each each bucket, we exclude any
bucket B; that has a crowd ratio (i.e., number of points in B; divided
by number of points R) below our threshold . The rational here is
that a low ratio of the crowd following the angles of these buckets
gives an indication that these points could be outliers or paths that
are not usually used by the large majority of trajectories. (3) To
honor the angle threshold constraint (Property 3), we first assign an
angle to each bucket B; as the average angle of all points within B;.
Then, we exclude any bucket B; with an angle B;.Angle outside the
range [P.Angle — §, P.Angle + §]. The rational is that such buckets
will end up in a candidate point that does not satisfy Property 3
above. (4) Finally, for each bucket B; in the set of remaining buckets,
we generate one candidate point with distance d from P (Property 4)
in the direction of B;’s angle.

Algorithm. Algorithm 1 gives the pseudo code for generating
the set of candidate points P¢,,4 to any given point P towards a
destination point Q. In addition to P and Q, the algorithm takes, as
input, the four parameters N, a, 8, and d that would ensure that all
points in Pr,,4 satisfy the four properties mentioned above. The
algorithm starts by using the two parameters N and d to build a
histogram H of N buckets where each bucket i includes the set of
points within distance d from P and have an angle within the range
%i and %(l’ +1). Then, we use the parameters « and § to exclude
the buckets that would not satisfy the second and third properties,
i.e., buckets that have crowd ratio less than « or their average

Mohamed M. Elshrif, Keivin Isufaj, and Mohamed F. Mokbel?

Algorithm 1 Candidate Points
1: procedure CANDIDATEPOINTS(P, Q, N, a, 8, d)
2 H « BuildAngleHistogram(N, d)
3 B «— QualifiedHistogramBuckets(P, H, a, J)
4 Peand < {}

5 for each bucket b in B do

6

7

8

9

Pc.lat < P.lat + d X sin(b.Angle)
Pc.lon < P.lon + d x cos(b.Angle)
Pc.angle « Angle(Pc, Q)
Pcand < Pcana Y Pc

10: end for

11: return Pe,,q4

12: end procedure

angle is not within § from P’s angle. For the remaining buckets, we
generate one candidate point per bucket within distance d from P in
the direction of the bucket angle. We set the angle of that candidate
point towards the direction of the destination point Q (line 8).

Example: Figure 4 gives three examples of finding the set of can-
didate points for point P as the first step to impute the trajectory
segment between P and Q. The examples show three different road
topologies, depicted in the top part of the figure, namely, straight
road (Figure 4(a)), T-shape intersection (Figure 4(b)), and round-
about (Figure 4(c)), where points P and Q are depicted as black
circles, and the angle of point P is 32°, 315°, and 310°, respectively.
These angels were calculated using the horizontal line (East di-
rection) as the reference direction (For details see Section 3 and
Figure 3). The bottom part of the figures depict the angle histogram
of the points that lie within the circle of radius d around point P,
which indicate the trajectory points that we will consider and take
their wisdom. For illustration, we use a different color for each his-
togram bucket that matches the color of its corresponding points
that contribute to it. Within each histogram bucket, an upward
arrow is placed in the location of the bucket angle, which is average
angle of all points within that bucket. For all examples, we set N=6
(i.e., we will only have 6 histogram buckets), a=0.2, and §=45°.

In Figure 4(a), there are 12 points within distance d from P,
where 6 of them (ratio 0.5) fall within the first histogram bucket
(plotted in green) with an average angle of 10°, one point (ratio
0.08) falls within the second bucket (plotted in red) with angle 70°,
and 5 points (ratio 0.42) fall within the sixth bucket (plotted in
yellow) with average angle 355°. This means that only the first
and sixth buckets are above the crowd ratio threshold a=0.2. Since
both buckets also satisfy the angle threshold as their angles are
within +§ (45°) from P’s angle (32°) (depicted as grey sector in the
top part of the figure and dotted rectangle in the bottom part), we
generate one candidate point for each bucket (depicted as dashed
circles) within distance d from P and on the direction of each bucket
angle. In Figure 4(b), 12 points are within distance d from P, where
5, 1, 3, and 3 of them fall within the first, second, fifth, and sixth
histogram buckets with average angles, 10°, 95°, 285°, and 330°.
Since the second histogram bucket has a crowd ratio that is lower
than our threshold a=0.2, we do not consider it any further. For
the angle threshold, the first bucket angle is outside the allowed
range as it has a difference of 55° from P’s angle (315°), which is
more than our allowed threshold of §=45°. Hence, only the fifth and



Network-less Trajectory Imputation

1

3 12=0.2
'L.__.

Density
P.angle=32°
165 . 1
05[22 | lyﬁga:oz 0.50:42
0 SR i | lgp __________

1 L
0° 60°120° 180°240° 300° 360°

(a) Straight road

0 = L
0° 60°120° 180° 240° 300° 360°

(b) T-Shape intersection

0° 60° 120°180° 240° 300° 360°

(c) Roundabout

Figure 4: Candidate Points Example.

sixth buckets are qualified to produce candidate points, where we
generate one for each. In Figure 4(c), 10 points are within distance
d from P, where 3, 4, and 3 of them fall within the third, fifth, and
sixth histogram buckets with average angles, 175°, 275°, and 350°.
All buckets satisfy the crowd ratio threshold a=0.2. However, only
the fifth and sixth buckets satisfy the angle threshold as their angles
are within +45° from P’s angle . Hence, we generate two candidates
as one for each of these two buckets.

4.2 Spatial Imputation Process

The spatial imputation process is basically trying to fill in the dis-
tance between P and Q with a set of consecutive candidate points
such that the total distance from P to Q (and through all added
candidate points) is the shortest possible path.

Main Idea. Since all candidate points are within distance d from
their previous points, then the shortest possible path from P to
Q would include the least possible number of candidate points.
Hence, our main idea is to start exploring possible paths with ¢
candidate points before we explore any path with c¢+1 candidate
points. A shortest path is concluded if one of the latest candidate
points is within distance d from the destination point Q. If there are
multiple paths with the same number of candidate points, we pick
the shortest one of them. To avoid exploiting an excessive number
of paths, if a candidate point is within distance € from a previously
visited point, we do not consider it any further.

Algorithm. Algorithm 2 gives the pseudo code for the spatial im-
putation process, where the input is the source and destination
points P and Q, and the output is a path, composed of a set of can-
didate points, from P to Q. We start by initializing the set of visited
points, which will be used to store the visited points of all candidate
paths, by the source and destination points, the current candidate
paths (CandPaths) by only one path of length one composed of the
source point, and the set of final paths by empty. For each iteration
i, we consider those paths with length i candidate points. In each
iteration, we call the CandidatePoints procedure (Algorithm 1) once
per path, using the last point in every path in our current list of can-
didate paths (CandPaths). Note that CandPaths[i] will pass the first
two parameters P and Q to CandidatePoints( ) procedure and Algo-
rithm 1 will add its own system parameters N, «, §, and d to come

Algorithm 2 Spatial Imputation
1: procedure TRIMPUTESPATIAL(P, Q)
2 Visited < [P, Q); CandPaths < [[P]]; FinalPath < { }
3 while FinalPath is empty do
4 NewCandPaths «— { }
5: for i = 1 to |CandPaths| do
6: Pcana < CandidatePoints(LastPoint(CandPaths[i]))
7
8
9

Pcands Prinal < FilterCandPoints(Pc 4,4, Visited)
if Pg;,q4 is empty then
: for each Pc in Prgp,gq do
10: Add (CandPaths[i] + Pc) to NewCandPaths

11 end for

12: else

13: for each Pr in Pg;,, do

14: Add (CandPaths[i] + Pf) to FinalPath
15: end for

16: end if

17: end for

18: CandPaths «— NewCandPaths

19: end while

20: return the shortest distance path in FinalPath

21: end procedure

up with the set of accurate candidate points Pr,, 4. Then, we call a
procedure, called FilterCandPoints to: (a) remove from P, 4 those
points that are within distance e from any previously visited point
and (b) populate a new list Pg;,,,; by the set of points in P, 4 that
are within distance d from the destination Q. If Pg;,,; is still empty,
then we know that we still need at least one more candidate point
to be closer to Q. Hence, we generate new |CandPaths| candidate
paths, as one for each candidate points Pc in Pc,, 4 by augmenting
the current path of i points with Pc, making a new path with i+1
points. Meanwhile, if Pg;,,; is not empty, we know that we have a
possible imputed path. Hence, we form the set FinalPath, composed
of |Prinail paths, each formed by augmenting the current path with
each point Pf in Pg;,,;. The algorithm concludes by returning the
shortest path among the ones in FinalPath.



Mohamed M. Elshrif, Keivin Isufaj, and Mohamed F. Mokbel*

(a) Straight road

(b) T-Shape intersection

(c) Roundabout

Figure 5: The Spatial Imputation Process.

Example: Figure 5 builds on the example of Section 4.1 to show
the full imputed path from P to Q for the straight road, T-shape
intersection, and roundabout, given in Figure 4. For the straight
road case (Figure 5(a)), the first iteration would be executed on point
P and will be exactly as the case of Figure 4(a), where two candidate
points P11 and P;3 are returned (depicted in yellow). Now, we have
two possible paths to consider in the second iteration, namely, [P,
Pi1] and [P, P12]. Applying the candidate point procedure for each
of these paths returns two candidate points for the first path and
one candidate point for the second path (depicted in green). This
leaves us with three possible paths so far, [P, P11, P21], [P, P11, Pa2],
and [P, P12, Po4]. Going on the same way, the third iteration gives
four candidate points (depicted in red) and the fourth iteration
gives five candidate points (depicted in blue), which leaves us with
five possible paths. There is no need for a sixth iteration as we
already have two candidate points P4; and P4y within distance
d from Q. This gives us two possible imputed path, and we pick
the shortest of them as: [P, P11, P21, P31, Pa2, Q]. For the T-shape
intersection (Figure 5(b)), three iterations were enough to come up
with an imputed path [P, P11, P21, P32, Q]. We note that some of the
imputed points (P2 and P33) were off-road, which is still OK as the

algorithm runs with no knowledge of the underlying road network.

Yet, the algorithm was able to end up with an imputed path with
only points that lie on the road. For the roundabout (Figure 5(c)),
two iterations were enough to come up with an imputed path [P,
Py1, Py1, Q]. Both the T-shape and roundabout cases show how
TrImpute has nicely followed the crowd wisdom to come up with
an imputed path that follows the complex road topology, even
though it has no idea about the underlying road network.

5 TRIMPUTE TEMPORAL IMPUTATION

As discussed in Section 3, the spatial imputation process between
points P and Q would need to be followed by a temporal imputation
process, where the objective is to annotate the imputed points by
timestamp and speed information. Given that the timestamp and
speed are known for both end points P and Q, one straightforward
way is to evenly split the time difference between Q and P over
the set of imputed points. However, this may not be accurate as

parts of the imputed segments may have higher traffic than others.

Hence, there is a need for a more accurate temporal imputation.

Main Idea. Our main idea is to start by calculating the timestamp
and speed for each imputed point P;, based on the timestamp and

Algorithm 3 Temporal Imputation

1: procedure TRIMPUTTEMPORAL(Path, Q)
2 for i = 1 to |Path| do

) . Distance(Path[i],Q)
& Path[l]'speEd - Q.time—Pathli].time
5: end for
6: PathError « Q.time - Path[|Path|].time

PathError
7 Ots < Tpaihet
8: for i = 1 to |Path| do
9 Path[i].time < Pathl[i].time + i X O

. d

10: Path[t].speed - Pathli].time—Pathli—1].time
11: end for
12: return Path

13: end procedure

speed of the previous point P;_; and distance d. While this would
respect the traffic at each part of the imputed segment, it would
likely result in an obvious timestamp margin error J;s, where the
timestamp of the last imputed point may not match the timestamp of
Q. Hence, we take this margin error and evenly distribute it over all
segments, and adjust the speed accordingly. So, in a nutshell, rather
than evenly splitting the timestamp between P and Q, we evenly
split the error margin among the segments, which still respect the
difference in traffic along the segment. For example, if we have
four imputed points, which means five segments from P and Q, we
would decrease the time taken of each segment by one fifth of the
timestamp margin error ;5.

Algorithm. Algorithm 3 gives the pseudo code of our temporal
imputation procedure. The input to the algorithm is the spatially
imputed Path between P and Q, where the first point (Path[0]) is P,
and the last point of the path is Q. The algorithm goes through two
main iterations over all points in the given path. The first iteration
goes from the second till the last point of the given path, where
for each point, we compute: (a) timestamp, as the timestamp of
the previous point plus the distance between the two points (d)
divided by the speed at the previous point, and (b) the speed, which
is based on the distance and time difference from the destination
point Q. Then, we calculate the error margin PathError as the time
difference between the real value we have in Q and the last point
estimated value from the first iteration. We then calculate the ;¢



Network-less Trajectory Imputation

as the delta error that would evenly split over all the path segments.
The second iteration deploys this error margin over the imputed
points, where the first imputed point will be adjusted by adding the
dts to it. Next, the second imputed point will be adjusted by adding
twice of d;s to it, which takes into account the errors in the first
segment in addition to the error of the second segment. Generally
speaking, the ith imputed point will be adjusted by adding i X &
to it. Speed information will be adjusted accordingly.

Example. Following up on the T-Shape intersection example of
Figure 5(b), where the spatially imputed path is: [P, P11, P21, P32, Q].
Assume that distance d=50 meters, and P.time=01:23:09, P.speed=25
m/s, Q.time=01:23:17, and Q.speed=25m/s. The first iteration will
start by calculating Py5.time as 01:23:09+50/25 = 01:23:11, which will
make Pi1.speed=16.67m/s. Then, we estimate Poj.time as 01:23:11 +
50/16.67 as 01:23:14, which will make Py;.speed=21m/s. Next, we
estimate P3p.time as 01:23:14+50/21 = 01:23:16, which will make
Psy.speed=10m/s. Finally, we estimate the Q.time as 01:23:16+50/10
= 01:23:21. Now, we compute the path error exploiting the original
time of Q, as PathError=01:23:17-01:23:21=-4 seconds, which means
that each segment needs to be adjusted by §;s=-4/4=-1 sec. Hence,
we add ;s to the first imputed points, twice of ;5 to the second
imputed points, and triple of §; ¢ to the third imputed point. This will
end up in having P;1.time = 01:23:10, Pyy.time = 01:23:12, P3y.time
=01:23:13, and Q.time = 01:23:17.

6 EXPERIMENTAL EVALUATION

This section extensively evaluates our TrImpute framework based
on real data obtained from a real deployment of the QARTA sys-
tem [2, 37], which runs in all taxis (~4K) in the State of Qatar. Since
our data is already dense, we impose our own sparsification over
the data, where we sample the data of each trajectory according
to some sparsification length. Unless mentioned otherwise, we use
200K trajectories (~23 millions of GPS points) with total length of
trajectories ~766,000 Km that spanning an area of 64Km? from city
of Doha, Qatar. We set sparsification length (spatial gap between
two consecutive trajectory points) to 1Km. The TrImpute parame-
ters are: number of candidate points N=12, crowd ratio threshold
=0.01, angle threshold §=120°, and distance threshold d=40 me-
ters. In addition, we used e=10 meters, as a tolerance distance to
reduce the number of redundant candidate paths.

Baseline Algorithms: As mentioned in Section 2, all trajectory im-
putation techniques assume the knowledge of the underlying road
network. Hence, none of them is applicable to our case, where we
do not have the road network. The only exception is the knowledge-
based trajectory completion framework [33] that can work without
underlying road network. However, as confirmed by their own
(and our) experiments, it is applicable only to very small networks,
which can represent a small junction scale. Hence, it cannot be
applied to a large city-scale setting, like Doha, Qatar, which we
use to evaluate TrImpute. Hence, we are not considering [33] any
further in the paper. We are then left with only one option that we
can use to compare against, which is the simple linear interpola-
tion method, where all imputed points lie on the straight line that
connects the two end points P and Q.

Evaluation Metrics: To provide an objective evaluation of TrIm-
pute, we use the following four evaluation metrics: (1) Completion

Rate, which is the ratio of trajectory segments that TrImpute was
able to successfully impute to all segments. It is important to note
that the basic linear interpolation always has 100% completion rate,
as it is just simply a straight line between the two end points. For
TrImpute, whenever it fails to impute a certain segment, we report
it as failure, and we just use liner interpolation for that segment, and
proceed to the next one. (2) Fréchet Accuracy, which is the Fréchet
distance [21] between each imputed segment and its ground truth
obtained from raw trajectories. We then use a threshold distance
(default 50m) where any Fréchet distance below that threshold is
considered an accurate imputation. This is similar to the accuracy
defined in [33], though the threshold distance had a default value
of 125m. By using a smaller threshold in TrImpute, we are striving
for a much higher accuracy. (3) OSM Accuracy, which indicates
how the imputed trajectories match a ground truth road network,
obtained from OpenStreetMap (OSM) [39]. We use the same thresh-
old distance (default 50m) as Fréchet accuracy to indicate that an
imputed point has successfully matched an actual road segment.
(4) Application Accuracy, which shows how the imputed trajectories
affect the performance of an application that rely on the accuracy
of its input trajectories.

Experimental Design: We start our experiments by a sensitivity
analysis (Section 6.1) to decide on the best values for TrImpute pa-
rameters, N, a, §, and d. We then evaluate TrImpute against linear
interpolation with respect to Fréchet accuracy (Section 6.2) and
OSM accuracy (Section 6.3). Finally, we evaluate the impact of TrIm-
pute vs linear interpolation, when they both used as a preprocessing
step for the map inference algorithm [44] (Section 6.4).

6.1 TrImpute Sensitivity Analysis

Figure 6 studies the impact of varying TrImpute main four parame-
ters, N, a, 8, and d on Fréchet accuracy and trajectory completion
rate, as follows:

Number of candidates points (N): Figure 6(a) depicts the impact
of varying the number of candidate points from 2 to 12. Both ac-
curacy and completion rate are getting better, and reaching up to
90% accuracy, with the increase of the number of candidate points.
The main reason is that more candidate points give TrImpute more
options to pick from, and hence increases the chance to find an
accurate path. With this, we use 12 as out default number of candi-
date points. The reason we are not going for more than 12 is mainly
due to the computational overhead that significantly increases with
the increase of the number of candidates.

Crowd ratio threshold («): Figure 6(b) depicts the impact of vary-
ing the crowd ratio threshold («) from 0 to 0.2. Though the best
accuracy is achieved with higher «, the completion ratio becomes
the lowest. The main reason is that higher & would exclude several
options that could help in imputing trajectory segments. Meanwhile,
a crowd ratio of 0.01 would still give a very reasonable accuracy
with 85%and 90+% of completion rate. So, we use this value as our
default. It is important to note that though the value of o looks
very small, it is still effective in excluding outlier paths, which
significantly enhances the computational overhead.

Angle threshold (§): Figure 6(c) depicts the impact of varying the
angle threshold (5) from 60° to 180°. Similar to the effect of the
number of candidates, both accuracy and completion rate increases



91%
85% 80% 0
2

170%¢¢

> 90¢
3 90%
= 89%
=

O 88%
<

- 87%

80%
160% 5
75%

w

2

& )
mpletion Rate

Q
< 86%
[

140%0 @
o

o
T0%: = 85%
™S

Frechet Accuracy

40% £
o

30%Y

84%
000 005 010 015 0.0
Crowd Ratio Threshold (a)

2 a 6 8 10 12
Number of Candidates (N)

(a) Number of Candidates Points (b) Crowd Ratio Threshold

-
150% 9
[

Frechet Accuracy

Mohamed M. Elshrif, Keivin Isufaj, and Mohamed F. Mokbel®

87% 86%

>86%
= 85%
3 84%

A

- 83%

o 82%

9 81%
80%

100

602 20 40 60 8
Distance Threshold (d)

902 1202  150°
Angle Threshold (&)

(c) Angle Threshold (d) Distance Threshold

Figure 6: TrImpute Sensitivity Analysis

100% 100%
[ Trimpute

E=3 Linear Interpolation

80% 80%

60% 60%

40% 40%

Frechet Accuracy
Frechet Accuracy

20% NN 20%

0% 0%

500

1000 1500 2000

750
Sparsification length (in meters)

500

(a) All segments

750 1000
Sparsification length (in meters)

(b) Straight segments

3 Trimpute 100%

E=3] Linear Interpolation 3 Trimpute

80% E=3 Linear Interpolation

60%

40%

Frechet Accuracy

2

=1
B

1500 2000 0%

Sparsification length (in meters)

(c) Curved segments

Figure 7: Trlmpute vs Linear Interpolation for various Road Types and Sparsification Values.

with &, as more paths are considered. However, though not shown
in the figure, this comes with a huge computational overhead as a
value of 180° means exploiting all possible directions, which could
be redundant. Hence, we settle on a default value of §=120°, which
still gives very high accuracy and completion rate that are very
close to the case of 180°.

Distance threshold (d): Figure 6(d) depicts the impact of varying
the distance threshold (d) from 20m to 100m. A small value of d
would reduce both accuracy and completion rate as this would
increase the chance of not being able to find good points within
distance d from the current point, and hence we will not be able
to continue our imputation process, and we would lean to linear
interpolation then. Meanwhile, a large value of d would definitely
reduce the accuracy as no enough points will be inserted between
the source and destination points. Hence, and based on this exper-
iment, we settle on a default value of d=40m, which achieves the
peak accuracy point and very close to the highest completion rate.

6.2 Trajectory Similarity

Figure 7(a) depicts the impact of varying the sparsification length
from 500m to 2,000m on the Fréchet accuracy of both TrImpute
and linear interpolation. As expected, the accuracy is reduced with
the sparsification length, as it becomes much harder to impute the
trajectories. Yet, there are two important things to note here: (a) In
all sparsification values, TrImpute is significantly more accurate
than linear interpolation, and (b) The performance gap between
TrImpute and linear interpolation is significantly increasing with
the increase in sparsification. This shows that TrImpute can sustain
high sparsification values, while linear interpolation dramatically
fail to 30% accuracy with 1,500 m sparsification.

Figures 7(b) and 7(c) provide a closer look (and justification) on
the performance gap between TrImpute and linear interpolation,
where the Fréchet accuracy is computed based on categorizing road
segments into straight and curved ones, respectively, across dif-
ferent sparsification lengths. We use the original raw trajectory
data to identify curved segments, where the angle of a set of five
consecutive points has a difference more than a certain threshold.
If the angle of these consecutive points is more or less the same,
we consider that segment as straight. Otherwise, the segment is
consider to be curved. Figure 7(b) compares the Fréchet accuracy
for both TrImpute and linear interpolation when only considering
straight segments. Though, TrImpute is still consistently better than
linear interpolation for all sparsification values, but linear interpo-
lation is not doing bad. In fact, linear interpolation still works well,
especially for low sparsification values, with 90+% accuracy for
500m sparsification. This is expected as linear interpolation would
be an acceptable solution for straight roads. The low performance
of 30% accuracy of linear interpolation for 2,000m sparsification is
due to lane changes in the road, where linear interpolation cannot
capture this, while TrImpute would still be able to get it. This ex-
hibits the robustness of TrImpute against high sparsification lengths.
Figure 7(c) runs the same experiment exclusively on curved road
segments. It is clear that linear interpolation dramatically fails with
only 2% accuracy even for the lowest sparsification length of 500m.
Meanwhile, TrImpute still keeps high accuracy, which intuitively
gets lower with high sparsification. Overall, the experiments in
Figure 7 show the power (and robustness) of TrImpute where it
can accommodate high sparsification values and curved segments,
while linear interpolation performance is not even acceptable in
such settings.



Network-less Trajectory Imputation

100.0% 100.0%
2 %
g 80.0% g 80.0%
c < ..
] @ s,
2 60.0% © 60.0%
g g .-
2 40.0% = 2 40.0% B . .
= L -<- Raw Trajectories =
4‘-‘; 20.0% —w— Trimpute % 20.0% —* T.rlmpule ‘

. . --m+ Linear Interpolation
= --m- Linear Interpolation =
0.0% 0.0%
10 20 30 40 50 75 750 1000 1500 2000

Sparsification Length (meters)

Tolerance (in meters)

(a) Tolerance (b) Sparsification

Figure 8: OSM Accuracy

6.3 OSM Accuracy

Figure 8 evaluates OpenStreetMap (OSM) accuracy for both TrIm-
pute and linear interpolation. The objective is to see how the im-
puted points get matched to the ground truth map, represented by
OpenStreetMap [39]. In this case, the matching criteria is done by
looking for the nearest segment from each GPS point. The more
matching the better as it shows that the imputed points are true
points. We assume that a point is well matched to the map if it
is within a tolerance distance of 50m, which is way more strict
than the 125m that was considered in [33]. Figure 8(a) gives the
impact of varying the tolerance value from 10m to 75m. For ref-
erence, we also plot the OSM accuracy of our raw trajectory data,
where apparently, even our raw data does not match 100% for any
tolerance. This is expected due to the inherent noise with any such
collected real data. Apparently, with more tolerance, both TrImpute
and linear interpolation would do better. However, we can see that
TrImpute consistently outperforms linear interpolation, and the
gap is actually widening with higher tolerance values. With our
default tolerance value of 50m, around 85% of the TrImpute imputed
point match well with OSM, which is very close to the accuracy
of our raw trajectory data. This shows that TrImpute was able to
find out imputed points that are very likely close to what the raw
data already had. This also shows that if our real data was free
of noise (i.e., 100% accuracy), TrImpute would also have reached
close to 100% accuracy as it follows the raw data given to it. Mean-
while, only 50% of the linear interpolation points would match even
with a 50m, tolerance, which is considered as a very low accuracy.
Figure 8(b) gives the impact of varying the sparsification distance
from 750m to 2,000m. More sparsification would definitely lower
the accuracy. However, we can see that the accuracy decrease in
TrImpute is reasonable, compared to the linear interpolation trend.
In particular, even with 1,500m sparsification, TrImpute is still able
to get 80% accuracy, which is double the 40% accuracy of linear
interpolation.

6.4 Map Inference Application

This section shows the impact of TrImpute over the map inference
applications, as an example of trajectory-based applications. Map
inference algorithms are concerned with inferring the underlying
road network map from a set of GPS trajectories. Empowered by the
availability of trajectory data, the inaccuracy of publicly available
road networks (e.g., OSM) [38], and the immense need of having
accurate underlying maps, map inference has been a rich area of

100.0% //4—4 100.0%
----- ==
80.0% 80.0% g bt
L

o 60.0% e v 60.0%
§ T e
' 40.0% ' 40.0% pe— e .
T —e= Raw+Kharita
20.0% —— Trimpute+Kharita 20.0%! —— Trimpute-+Kharita
--#-  Linear+Kharita --m- linear+Kharita
0.0%36 20 30 40 50 00%10 20 30 40 50

Tolerance (in meters) Tolerance (in meters)

(a) Reference: Raw Trajectories (b) Reference: OSM

Figure 9: Map Inference Application.

study over the last few years, e.g., see [13] and [1] for a detailed
survey and tutorial for current state-of-the-art map inference al-
gorithms. All such algorithms are highly sensitive to their input
trajectory data. If any of the algorithms is fed with sparse trajec-
tories, it will result in an inaccurate map. Our objective here is to
show the impact of applying TrImpute as a preprocessing step to
map inference algorithms. TrImpute would be able to densify sparse
trajectories in a way that will make map inference algorithms way
more accurate than working directly with sparse trajectories.

Figure 9 gives the impact of TrImpute on one of the state-of-the-
art map inference algorithms, Kharita [44]. We run Kharita three
times with three different inputs: (a) Raw+Kharita, raw trajectory
data, (b) Linear+Kharita, sparse data imputed using linear interpo-
lation, and (c) TrImpute+Kharita, sparse data imputed by TrImpute.
To quantify the output map quality of each of these runs, we use
the Fq-score measure over all road network segments with respect
to some reference road network. We use a match distance threshold
(tolerance), where segments that are far from their original ones
within this threshold will be considered correct.

Figure 9(a) shows the impact of varying the tolerance from 10m
to 50m on the F;-score of the map generated by TrImpute+Kharita
and Linear+Khalita, when the reference map is the one generated
by Raw+Khaita. The result is actually impressive showing that with
a tolerance distance of 50m, the result of running TrImpute+Kharita
is 99% accurate compared to the result of Raw+Kharita. This means
that TrImpute is able to empower map inference algorithms even if
the input data is sparse. TrImpute will make such algorithms work
with similar quality as if they have raw dense data. Even with a very
strict low tolerance of 10m, TrImpute results in 80% of raw data.
Meanwhile, Linear+Kharita, is not helping, where the accuracy falls
below 50% for 10m tolerance, and its best is 75% for 50m threshold.
This shows that map inference algorithms would not really function
if their input is sparse, and at their best are linearly interpolated.
Figure 9(b) gives the same experiment of Figure 9(a), yet, when
considering that the OpenStreetMap (OSM) [39] is the reference
map. With a tolerance of 50m, running Kharita over raw data gives
90% accuracy, while running Kharita over TrImpute data gives 80+%
accuracy. In all cases, TrImpute+Kharita gives close accuracy to
Raw+Kharita, while Linear+Kharita consistently gives unacceptable
performance. This again confirms that TrImpute has the power
to remove a major hurdle to all map inference algorithms. These
algorithm can only work with dense trajectories. With TrImpute,
these algorithms can now work with sparse trajectories, which is
much easier to obtain than dense ones.



7 CONCLUSION

This paper presented TrImpute; a novel framework for trajectory
imputation that has the ability to impute sparse trajectory data,
without the knowledge of the underlying road network, and hence
it is considered a network-less trajectory imputation framework. In
lieu of the lack of knowledge of road network, TrImpute relies on
the nearby crowd wisdom to guide its imputation process. Basically,
for each point in the space, nearby points suggest a list of candi-
date points where any of them could possibly be the next imputed
point. Then, TrImpute formalizes its spatial imputation process for
each trajectory segment as to find the shortest set of consecutive
candidate points between the end points of the trajectory segment.
TrImpute follows up by doing temporal imputation, where the spa-
tially imputed points are annotated by timestamp information that
respect the traffic conditions of the trajectory segment end points.
Extensive experimental results based on real data and deployment
show that TrImpute is highly scalable, accurate, and significantly
boost the performance of trajectory applications.

REFERENCES

[1] S. Abbar, M. Alizadeh, F. Bastani, S. Chawla, S. He, H. Balakrishnan, and S. Madden.
The Science of Algorithmic Map Inference (Tutorial) https://sites.google.com/
view/algorithmic- map-making/home. In KDD, London, UK, 2018.

[2] S. Abbar, R. Stanojevic, M. Musleh, M. M. Elshrif, and M. F. Mokbel. A Demon-
stration of QARTA: An ML-based System for Accurate Map Services. PVLDB,
14(12), 2021.

[3] S. Abbar, R. Stanojevic, S. Mustafa, and M. Mokbel. Traffic Routing in the Ever-
Changing City of Doha. CACM, 64(4), 2021.

[4] P. Agarwal, K. Fox, K. Munagala, A. Nath, J. Pan, and E. Taylor. Subtrajectory
clustering: Models and algorithms. In PODS, 2018.

[5] F.Bastani, S. He, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, S. Madden,
and D. J. DeWitt. RoadTracer: Automatic Extraction of Road Networks From
Aerial Images. In CVPR, 2018.

[6] J. Biagioni and J. Eriksson. Inferring Road Maps from Global Positioning System
Traces: Survey and Comparative Evaluation. Transportation Research Record:
Journal of the Transportation Research Board, 2291(1), 2012.

[7] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On Map-Matching Vehicle
Tracking Data. In VLDB, 2005.

[8] C.Brunsdon. Path Estimation from GPS Tracks. In Proceedings of the 9th Interna-
tional Conference on GeoComputation, 2007.

[9] L. Cao and J. Krumm. From GPS Traces to a Routable Road Map. In SIGSPATIAL,
2009.

[10] X. Cao, G. Cong, and C. S. Jensen. Mining Significant Semantic Locations From
GPS Data. PVLDB, 3(1), 2010.

[11] P.S. Castro, D. Zhang, and S. Li. Urban Traffic Modelling and Prediction Using
Large Scale Taxi GPS Traces. In PerCom, 2012.

[12] E.W. Chambers, B. T. Fasy, Y. Wang, and C. Wenk. Map-Matching Using Shortest

Paths. TSAS, 6(1), 2020.

P. Chao, W. Hua, R. Mao, ]J. Xu, and X. Zhou. A Survey and Quantitative Study

on Map Inference Algorithms From GPS Trajectories. TKDE, 34(1), 2022.

[14] C. Chen, S. Jiao, S. Zhang, W. Liu, L. Feng, and Y. Wang. TripImputor: Real-
Time Imputing Taxi Trip Purpose Leveraging Multi-Sourced Urban Data. IEEE
Transactions on Intelligent Transportation Systems, TTIT, 19(10), 2018.

[15] C. Chen, C. Lu, Q. Huang, Q. Yang, D. Gunopulos, and L. J. Guibas. City-Scale
Map Creation and Updating using GPS Collections. In KDD, 2016.

[16] G. Cheng, Y. Wang, S. Xu, H. Wang, S. Xiang, and C. Pan. Automatic Road
Detection and Centerline Extraction via Cascaded End-to-End Convolutional
Neural Network. IEEE Trans on Geoscience and Remote Sensing, 55(6), 2017.

[17] The Billion Dollar War over Maps.  https://money.cnn.com/2017/06/07/
technology/business/maps-wars-self-driving-cars/index.html.

[18] P.Cudré-Mauroux, E. Wu, and S. Madden. TrajStore: An Adaptive Storage System
for Very Large Trajectory Data Sets. In ICDE, 2010.

[19] R.S.de Sousa, A. Boukerche, and A. A. F. Loureiro. Vehicle Trajectory Similarity:
Models, Methods, and Applications. ACM Computing Surveys, 53(5), 2020.

[20] X.Ding, L. Chen, Y. Gao, C. S. Jensen, and H. Bao. UlTraMan: A Unified Platform
for Big Trajectory Data Management and Analytics. PVLDB, 11(7), 2018.

[21] T. Eiter and H. Mannila. Computing discrete fréchet distance. Technical report,
Technische Universitat Wien, 1994.

[22] T. Goren-Bar and J. Greenfeld. A Method for Constructing 3D Traveling Routes
from GPS Navigation Data. In SIGSPATIAL GeoStreaming Workshop, 2012.

[13

[23

[24]

[25]

(31]

(37]
(38]

[39
[40]

[41

=
&

[43

[44

[45]

[46]

[47

[48

[49

[50

(51

[52]
(53]

[54

o
2

(56

[57

[58

Mohamed M. Elshrif, Keivin Isufaj, and Mohamed F. Mokbel®

Grand View Research. Abolute Reports. Global High Accuracy Map Market
Size, Status and Forecast 2021-2027, 2020. https://www.grandviewresearch.com/
industry-analysis/digital-map-market.

C. Guo, B. Yang, J. Hu, and C. Jensen. Learning to Route with Sparse Trajectory
Sets. In ICDE, 2018.

S.He, F. Bastani, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, and S. Madden.
RoadRunner: Improving the Precision of Road Network Inference From GPS
Trajectories. In SIGSPATIAL, 2018.

G. R. Hjaltason, H. Samet, and Y. J. Sussmann. Speeding up Bulk-Loading of
Quadtrees. In ACM GIS, 1997.

G. Hu, J. Shao, F. Liu, Y. Wang, and H. T. Shen. IF-Matching: Towards Accurate
Map-Matching with Information Fusion. In ICDE, 2017.

H. Huang, S. Wu, D. Cohen-Or, M. Gong, H. Zhang, G. Li, and B. Chen. L1-Medial
Skeleton of Point Cloud. ACM Transactions on Graphics, 32(4), 2013.

C.S. Jensen. Value Creation from Massive Data in Transportation? The Case of
Vehicle Routing. IEEE Data Engineering Bulletin, 42(3), 2019.

J. Lee, J. Han, and K. Whang. Trajectory clustering: a partition-and-group frame-
work. In SIGMOD, 2007.

B.Li, Z. Cai, M. Kang, S. Su, S. Zhang, L. Jiang, and Y. Ge. A Trajectory Restoration
Algorithm for Low-sampling-rate Floating Car Data and Complex Urban Road
Networks. IJGIS, 35(4), 2021.

R.Li, H. He,R. Wang, S. Ruan, Y. Sui, J. Bao, and Y. Zheng. TrajMesa: A Distributed
NoSQL Storage Engine for Big Trajectory Data. In ICDE, 2020.

Y. Li, Y. Li, D. Gunopulos, and L. J. Guibas. Knowledge-based Trajectory Comple-
tion from Sparse GPS Camples. In SIGSPATIAL, 2016.

Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion Convolutional Recurrent Neural
Network: Data-Driven Traffic Forecasting. In International Conference on Learning
Representations, ICLR, 2018.

J. A. Long. Kinematic Interpolation of Movement Data. IJGIS, 30(5), 2016.
Mapillary. Unveiling the Mapping in Logistics Report: The Impact of Broken Maps
on Last-Mile Deliveries. https://blog.mapillary.com/update/2020/02/14/mapping-
in-logistics.html.

M. Musleh, S. Abbar, R. Stanojevic, and M. F. Mokbel. QARTA: An ML-based
System for Accurate Map Services. PVLDB, 14(11), 2021.

M. Musleh and M. F. Mokbel. RASED: A Scalable Dashboard for Monitoring Road
Network Updates in OSM. In MDM, 2022.

OpenStreetMap (OSM). https://www.openstreetmap.org/.

S. A. Pedersen, B. Yang, and C. S. Jensen. Fast Stochastic Routing under Time-
varying Uncertainty. VLDB ., 29(4), 2020.

E. Rappos, S. Robert, and P. Cudré-Mauroux. A Force-directed Approach for
Offline GPS Trajectory Map Matching. In SIGSPATIAL, 2018.

S.Ruan, C. Long, J. Bao, C. Li, Z. Yu, R. Li, Y. Liang, T. He, and Y. Zheng. Learning
to Generate Maps from Trajectories. In AAAIL 2020.

Z. Shang, G. Li, and Z. Bao. DITA: Distributed In-Memory Trajectory Analytics.
In SIGMOD, 2018.

R. Stanojevic, S. Abbar, S. Thirumurug, S. Chawla, F. Filali, and A. Aleimat. Robust
Road Map Inference through Network Alignment of Trajectories. In SDM, 2018.
T. Sun, Z. Dj, P. Che, C. Liu, and Y. Wang. Leveraging Crowdsourced GPS Data
for Road Extraction From Aerial Imagery. In CVPR, 2019.

G. Technitis, W. Othman, K. Safi, and R. Weibel. From A to B, randomly: A
Point-to-point Random Trajectory Generator for Animal Movement. IGIS, 29(6),
2015.

Traffic Technology Today. Poor maps costing delivery companies US $6bn an-
nually. https://www.traffictechnologytoday.com/news/mapping/poor-maps-
costing-delivery-companies-us6bn-annually.html.

L. Tran, M. Mun, M. Lim, J. Yamato, N. Huh, and C. Shahabi. DeepTRANS: A Deep
Learning System for Public Bus Travel Time Estimation using Traffic Forecasting.
PVLDB, 13(12), 2020.

R. Vishen, M. C. Silaghi, and J. Denzinger. GPS Data Interpolation: Bezier Vs.
Biarcs for Tracing Vehicle Trajectory. In ICCSA, 2015.

S. Wang, Z. Bao, J. S. Culpepper, and G. Cong. A Survey on Trajectory Data
Management, Analytics, and Learning. ACM Computing Surveys, 54(2), 2021.

S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, and X. Qin. Fast Large-Scale Trajectory
Clustering. PVLDB, 13(1), 2019.

H. Wei, Y. Wang, G. Forman, and Y. Zhu. Map Matching: Comparison of Ap-
proaches using Sparse and Noisy Data. In SIGSPATIAL, 2013.

L.-Y. Wei, Y. Zheng, and W.-C. Peng. Constructing Popular Routes from Uncertain
Trajectories. In KDD, 2012.

D. Xie, F. Li, and J. M. Phillips. Distributed Trajectory Similarity Search. PVLDB,
10(11), 2017.

A. Zhang, S. Song, J. Wang, and P. S. Yu. Time Series Data Cleaning: From
Anomaly Detection to Anomaly Repairing. PVLDB, 10(10), 2017.

K. Zheng, Y. Zheng, X. Xie, and X. Zhou. Reducing Uncertainty of Low-Sampling-
Rate Trajectories. In ICDE, 2012.

Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing: Concepts,
Methodologies, and Applications. ACM Trans. on Intel. Sys. and Tech., 5(3), 2014.
Y. Zheng, L. Zhang, X. Xie, and W. Ma. Mining Interesting Locations and Travel
Sequences from GPS Trajectories. In WWW, 2009.



