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ABSTRACT

Trajectory-based applications have acquired significant attention
over the past decade with the rising size of trajectory data generated
by users. However, building trajectory-based applications is still
cumbersome due to the lack of unified frameworks to tackle the
underlying trajectory analysis challenges. Inspired by the tremen-
dous success of the BERT deep learning model in solving various
NLP tasks, our vision is to have a BERT-like system for a myriad of
trajectory analysis operations. We envision that in a few years, we
will have such system, where no one needs to worry again about
each specific trajectory analysis operation. Whether it is trajectory
imputation, similarity, clustering, or whatever, it would be one sys-
tem that researchers, developers, and practitioners can deploy to
get high accuracy for their trajectory operations.
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1 INTRODUCTION

The vast amount of user trajectories being collected nowadays
have enabled numerous applications, including transportation (e.g.,
mapping and routing [6, 16, 39, 59], traffic monitoring and fore-
casting [18, 21, 36, 48]), location-based service (e.g., recommen-
dations [3, 15, 67]), health (e.g., contact tracing [2, 37, 55]), and
urban planning [17, 28, 29], which all have a significant impact
on people lives. All such applications have to tackle a wide range
of trajectory problems, including trajectory similarity search [5,
10, 26, 31, 41, 56, 58], trajectory imputation [24, 27, 35, 51, 54, 63],
classification [38, 44, 45, 49, 65, 66], prediction [13, 19, 32, 50, 57],
and simplification [20, 23, 33, 34, 53, 61]. Such problems have been a
research focus of the spatial community for years, which has led to
numerous and completely diverse solutions for each problem (e.g.,
see [52, 64] for surveys). Despite the fact that all of these problems
deal with the same trajectory data, each of the proposed solutions
is entirely designed to solve one problem of interest. This makes
it hard to have a unified efficient and practical framework that is
capable of supporting most (if not all) trajectory problems.
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Meanwhile, the research landscape of Natural Language Pro-
cessing (NLP) was in a similar situation with decades of research
in pushing the accuracy and efficiency of various NLP tasks, e.g.,
text similarity and sentiment analysis. This has led to a myriad of
different solutions for each of these problems, even though all tasks
are for the same textual data. Most recently, in 2018, the BERT deep
learning model [11] (Bidirectional Encoder Representations from
Transformers), is proposed by Google to act as a unified solution
infrastructure for a wide variety of NLP tasks. BERT, at its core, is
equipped with the necessary NLP infrastructure to solve various
NLP tasks, which only needs to be externally tuned with minimal
overhead for each task. Examples of NLP tasks that used the BERT
model include sentiment analysis [12], question answering [8], spell
checking [60], text classification [9], text generation[7], text sum-
marization [42], among others [25, 40]. BERT has also been used
for similar problems with respect to speech processing, where the
words are spoken instead of written [22, 46]. As a testimony to the
importance and ubiquity of BERT to NLP research, the main BERT
paper [11] has been cited 40+K times within four years.

Our vision is to have a BERT-like model that will magically deal
with almost all trajectory analysis techniques. Once we have such
model, various trajectory analysis ideas will be just about how
to tune that model one way or another to support the required
analysis. Such vision will lead to a long-waited-for full-fledged
trajectory data management system that does not only store and
index trajectory data, but natively support all its data analysis needs.

Our vision is grounded by the fact that we can actually think of
trajectories as statements. A statement is composed of a set of words
drawn from a set of limited words (language), while a trajectory is
represented by a set of GPS points, which are also limited. Section 2
elaborates more on our vision’s ground. Section 3 shows how to
apply BERT directly to trajectory analysis. Customizing trajectory
data and BERT to be used together towards higher accuracy is
discussed in Section 4. Finally, Section 5 outlines the full vision.

2 TRAJECTORIES ARE STATEMENTS

The main idea behind our vision is to deal with trajectories as state-
ments because of their similarities, hence a BERT-like model can
be applied to trajectories. Such similarities include: (a) A statement
is composed of an ordered set of words drawn from a finite pool of
words per the underlying language. Similarly, a trajectory is com-
posed of an ordered set of GPS points drawn from a finite pool of
possible points per the underlying space, (b) Words in a statement
are semantically related where random words cannot make a state-
ment. Similarly, points in a trajectory are spatially and temporally
related where random points cannot make a trajectory, (c) State-
ments are constrained by rules imposed by the language grammar.
Similarly, trajectories are constrained by rules imposed by the road
network and physical constraints, and (d) The choice of words in a
statement depends on the user or topic writing style, where some
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Figure 1: Examples of Trajectory Data Analysis Problems Supported By BERT Model

users/topics may use stronger words than others. Similarly, the
choice of points metadata (e.g., speed) in a trajectory depends on
the user or driving modality (e.g., bus or motorbikes) style, where
some users/modalities may use different speed patterns than others.

Few earlier works have recognized some of such similarities
between trajectories and word sequences, and have used this either
for trajectory representation [14, 68] or for solving one specific
trajectory problem [26, 30]. Most of such works were even before
the idea of the BERT model was proposed. Our vision is to go
beyond this, and have a BERT-like model that is not specific to one
trajectory problem. Instead, it will act as a Swiss army knife that
supports a myriad of diverse trajectory operations.

3 BERT FOR TRAJECTORY ANALYSIS

This section discusses the first step towards our vision, which is
using BERT for various trajectory analyses, namely, imputation,
prediction, classification, simplification, and similarity.

Trajectory Imputation. As trajectory data is usually sparse with
some significant spatial gaps between consecutive points, trajec-
tory imputation is the process of densifying such sparse trajectories
by inferring additional points that would fill the gaps [24, 27, 35,
51, 54, 63]. This is an important and crucial preprocessing step for
a myriad of trajectory applications that need dense trajectories.
Trajectory imputation can be seen as analogous to the "finding the
missing word" problem in NLP, which is usually solved using a
BERT model. Given a statement like, "My husky dog was — loudly
at the moon", where "—" represents a missing word (due to speech
recognition, translation, or typo), BERT finds out that the missing
word is "barking". To do so, a BERT model is first trained by hun-
dreds of thousands of true statements that will make it understand
the context and accurately find out the missing word. Hence, one
way to solve the trajectory imputation problem is to train a BERT
model by a large number of trajectories, and then use it to find out a
missing point between two consecutive points. Figure 1(a) gives an
example of an English statement with some missing words, laid out
on a trajectory (I to I7) with missing points. Both the statement
and trajectory are depicted in gray. Then, the words/points in black
are the imputed ones when applying BERT.

Trajectory Prediction. Trajectory prediction is the task of pre-
dicting the next few points of the current trajectory. Due to its
importance in trajectory and traffic analysis, over the last decade,
significant efforts have been dedicated to both short-term (next few
minutes) [13] and long-term (next 20-30 minutes) [19, 57] trajectory
predictions. Trajectory prediction can be seen as analogous to the

"next sentence prediction” problem in NLP, which is usually solved
using a BERT model. Given a sentence, a BERT model can be used
to find the most likely sentence that naturally follows the given
one. To do so, BERT is trained and fine-tuned using pairs of <input,
target> sentences that will make it understand a target statement
given an input one. Hence, one way to solve the trajectory pre-
diction problem is to train a BERT model with pairs of sequence
trajectories that can be obtained by splitting real trajectories into
two parts, input and target. Then, we can use it to predict the next
trajectory (next few points) for a given one. Figure 1(b) gives an
example of input sentence and trajectory (shown in gray), where
BERT predicted their next few words and points (depicted in black).

Trajectory Classification. Trajectory classification is the process
of associating a trajectory with one class from a predefined set of
classes, e.g., associating a trajectory with its modality that could be
either biking, walking, or driving [38, 44, 45, 49, 65, 66], which is
very crucial to traffic analysis. Trajectory classification can be seen
as analogous to the "text classification” problem in NLP, which is
usually solved using a BERT model. Given a social media post (e.g.,
tweet) and a set of categories (e.g., sports, politics, and technology),
a BERT model can classify the tweet into one of the given categories.
To do so, BERT is first trained on a large number of unlabeled sen-
tences to learn about words in general. Then, it is fine-tuned using
a relatively smaller labeled sentences as <tweet, category>. Hence,
one way to solve the trajectory classification problem is to train
a BERT model using unlabeled trajectories and fine-tune it using
labeled trajectories of the form <trajectory, modality>, then use the
trained model to find the modality for any given new trajectory.

Trajectory Simplification. Trajectory simplification, sometimes
seen as the opposite of trajectory imputation, is the task of reducing
the number of trajectory GPS points while preserving their essential
information [20, 23, 33, 34, 53, 61]. It is used to significantly reduce
the cost of query processing and data transmissions of complex
trajectories. Trajectory simplification can be seen as analogous to
the "text summarization" problem in NLP, which is usually solved
using a BERT model. Given a document of words, BERT can be
used to summarize the document by a short description to be used
for newsletters, video descriptions, or brief highlights. To do so,
similar to the case of text classification, BERT would be trained
on documents, then, on a pair of documents and their simplified
summaries. Hence, one way to solve the trajectory simplification
problem is to train and fine-tune a BERT model using pairs of <raw
trajectory, simplified trajectory>, and then use it for new trajectories.
Figure 1(c) gives an example of a trajectory/statement composed of
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nine points/words (shown in gray), where BERT is applied to come
up with a simplified/summarized trajectory/statement composed
of four points/words (depicted in black).

Trajectory Similarity. Trajectory similarity is the process of com-
puting a similarity score between two trajectories based on their
sampled GPS points [10, 26, 31, 56]. This is a cornerstone in various
trajectory analysis modules, including clustering, outlier detection,
and map matching. Trajectory similarity can be seen as analogous
to the "text similarity” problem in NLP, which is solved using BERT
model. Given two statements, BERT represents them as two vec-
tors of the same size, regardless of the number of words in each
statement. The vectors then go through a simple mathematical
operation (e.g., cosine similarity or Euclidean distance), to measure
the vectors (and hence the statements) similarity. To do so, BERT
is first trained on large datasets of statements so it can represent
similar statements by similar vectors. Hence, one way to solve the
trajectory similarity problem is to train BERT on a large trajectory
dataset to represent similar trajectories by similar vectors.

4 CUSTOMIZING BERT FOR TRAJECTORIES

This section advocates for going beyond the idea of applying BERT
as is for trajectory analysis (Section 3) to actually customizing it for
a better accuracy. This mainly addresses the following challenges
that came out from a direct deployment of BERT to trajectories:

Ratio of training datasets to possible words. BERT is used for
languages, where the number of possible words is of limited size,
with an abundance of available data. BERT was actually trained
on ~3.3B word corpus (2.5B of them are from Wikipedia and 800M
from Books Corpus [69]) composed of ~30K distinct words [11].
Meanwhile, trajectory data have a significantly larger number of
distinct words/points with a smaller number of corpus words/points.
For example, a trajectory dataset from Oregon State, obtained from
UCR STAR [47] has ~1.3M distinct GPS points (about three orders
of magnitude more than English) with ~1.75M total points (about
three orders of magnitude less than English). With these numbers,
each English word appears ~100K times in the BERT training set,
while each GPS point appears only once in the trajectory training
set, which gives five orders of magnitude more advantage to words
than GPS points. To overcome this challenge, we can exploit two
directions: (a) partition the space into a set of fine-grained hexagons,
using Uber’s H3 Hexagonal Hierarchical Spatial Index [4]. Then, all
points within the same hexagon will be assigned to the same GPS
value, which is the hexagon centroid. This brings the number of
possible words/points down to 18K (each will appear ~100 times in
the corpus), while accuracy is still preserved due to the fine-grained
nature of the hexagons. (b) use our available real trajectory data to
generate additional trajectories [43, 62] and enrich our corpus.

Noisy data. Trajectory data is more subject to noise than language
data. While a noise in a language would take place as typos or
grammatical errors, noise in trajectories is inherent with inaccu-
rate, erroneous, or even missing GPS points. For example, in the
trajectory imputation example of Figure 1(a), it is common to insert
multiple points between every two consecutive points, making the
number of imputed points even more than the number of real ones.
This is different from finding the missing word, where the number
of missed words is much less than the number of available words.
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Therefore, we need to customize BERT to support such noise. One
way to do so for trajectory imputation in Figure 1(a) is to call BERT
iteratively. The first call predicts point O3, which lies between Iy
and Is. Then, we call BERT twice to get a point O; between O3 and
I4 and point O4 between O3 and Is. We repeat to get Oz and Os.

Long and unrelated consecutive statements. Statements are
usually composed of few words, while paragraphs and documents
are composed of a sequence of related statements. Meanwhile, tra-
jectories may include hundreds of points, and subsequent trajec-
tories may not be very related, e.g., a series of taxi trips. This may
make it hard to use BERT for some trajectory operations, including
prediction (Figure 1(b)), that rely on the relation between subse-
quent statements. One way to overcome this is to split long trajec-
tories into a set of shorter subtrajectories. In that case, a trajectory
would actually act as a paragraph rather than a statement.

Spatial and temporal constraints. Trajectories have their own
spatial and temporal constraints that may guide some of the analysis
operations. For example, in the trajectory simplification example of
Figure 1(c), we would need to ensure that the first and last points
appear in the simplified trajectory to maintain the trajectory spatial
and temporal properties. Such properties would not be needed in
case of using BERT in text summarization. To address this issue,
we would need to manually set aside the first and last points, then,
run BERT on the remaining points.

5 THE VISION: A BERT-LIKE SYSTEM FOR
TRAJECTORIES

To evaluate the potential of our vision, we ran an initial experiment
of using BERT model for trajectory imputation of the GISCUP’17
dataset [1], which include 5M GPS points in San Francisco, grouped
into 18K hexagons with 66 meters edge length for each. We train
BERT model on 80% of the points and keep the remaining 20% for
testing, in which we down-sample the trajectories by dropping
three-quarters of the points of each trajectory and then run BERT
to fill the gaps by imputing the missing points. Since we know
the ground truth trajectories, we measure the error by computing
the shortest Euclidean distance between the imputed points and
the actual trajectories, which is similar to what other studies have
used [27]. The mean and median distances were 37.9 and 38.9 me-
ters, which represent a promising accuracy. The results obtained
from our initial set of experiments show that the ideas we have in
Sections 3 and 4 are paving the way for our vision.

Our vision is that the spatial community would be working to-
gether towards a full-fledged BERT-like system for a myriad of
trajectory analysis operations. This does not have to be building
a new system from scratch. Instead, we need to change the core
of the BERT itself to make it deal with spatial data in general and
trajectories in particular as first-class citizens. BERT would need to
understand that spatial data is special, and support its characteris-
tics. We envision that in a few years, we will have such system, where
no one needs to worry again about each specific trajectory analysis
operation. Whether it is trajectory imputation, similarly, clustering,
or whatever, it would be one system that researchers, developers, and
practitioners can deploy to get high accuracy for their operations. The
system would always be extensible in a way that can accommodate
new operations contributed by the community at large.
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