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Abstract—Semiconductor supply chain vulnerability is a major
concern in designing trustworthy systems. Malicious implants,
popularly known as hardware Trojans, can get introduced at
different stages in the System-on-Chip (SoC) design cycle. While
there are promising test generation techniques for hardware
Trojan detection, they have two practical limitations: (i) these
approaches are designed to activate rare states while ignoring
rare transitions, and (ii) these approaches are not scalable for
large designs. In this paper, we propose a scalable test generation
framework to address the above challenges. Our threat model
assumes that an adversary may exploit rare events consisting of
rare signals (states) as well as rare branches (transitions). We
show that the rare branch coverage problem can be mapped
to the rare signal coverage problem. We propose a scalable
framework for detecting hardware Trojans using Automated
Test Pattern Generation (ATPG) based activation of rare events.
Specifically, we utilize the complementary abilities of N-detection
and maximal clique activation of rare events to generate efficient
test patterns. Experimental evaluation shows that our ATPG-
based framework is scalable and significantly outperforms the
state-of-the-art test generation based Trojan detection techniques.

Index Terms—Hardware security, Trojan Detection, ATPG

I. INTRODUCTION

Semiconductor companies rely on the global supply chain
for the development of System-on-Chip (SoC) designs. This
involves increasing utilization of third-party Intellectual Prop-
erty (IP) cores as well as outsourcing of various design
automation activities including validation, synthesis, layout,
and fabrication. An attacker has various opportunities to in-
troduce hardware Trojans (HT) by exploiting the supply chain
vulnerabilities.

Fig. 1: Hardware Trojan triggered by three rare signals (A,B,C)

A. Threat Model

Our threat model assumes that an adversary can introduce
hardware Trojans (HT) during any stages of the SoC devel-
opment cycle including the design of RTL models, synthesis
to gate-level netlist, and fabrication. An HT consists of two
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major components: trigger and payload. An adversary is likely
to construct the trigger such that it will avoid detection during
traditional validation using millions of random or constrained-
random test patterns. A stealthy trigger can be constructed
using rare events such as rare signals (states) or rare branches
(transitions). Figure 1 shows an example Trojan circuit with
a trigger and payload. When the trigger gets activated, the
payload can enable malicious activities such as information
leakage, incorrect execution, or denial-of-service. In the ex-
ample circuit, the Trojan payload flips the expected output.

B. Limitations of Existing Methods

There are a wide variety of HT detection methods. Many
recent approaches rely on generating test patterns using golden
models (e.g., TLM or RTL models) and applying them on
gate-level implementation (assumes HT introduction during
synthesis) or integrated circuits (assumes HT introduction
during fabrication). Figure 2 shows a broad overview of these
methods. The recent test generation methods can be mainly
divided into two categories: (i) statistical test generation relies
on N-detect principle [1] that tries to activate each rare signal
N times [2], and (ii) maximal clique sampling tries to activate
as many rare signals as possible using a single test [3].
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Fig. 2: Overview of test generation based Trojan detection

While the existing approaches are promising in increasing
the likelihood of activating the unknown and stealthy trigger,
they have two major limitations: scope and scalability. These
approaches have a limited scope since they focus on rare
signals (states), but an attacker may exploit both rare signals
(states) as well as rare branches (transitions). Moreover, these
approaches are not scalable for large designs since the under-
lying bit-flipping (statistical) or constraint solving (computing
expression for cliques) algorithms are exponential with respect
to the design (and input) complexity. In fact, statistical is
likely to violate the N-detect principle. As shown in Figure 3,
some rare nodes are activated too many times while the
rarest ones are not activated at all by MERO [2], while our
proposed ATPG-based approach (ND-ATPG) activates each
rare node N times. On the other hand, the time complexity
of the state-of-the-art maximal clique activation technique
(TARMAC [3]) grows significantly with the increase in the
number of rare nodes. Figure 4 shows the satisfiability graph
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Fig. 3: Rare node activation count of MERO [2] compared with
ND-ATPG for N=1000 on elliptic curve cryptography module.
It shows the number of times each signal got activated.
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generation time of TARMAC compared with our proposed
ATPG-based maximal clique activation (MC-ATPG). It can be
observed that MC-ATPG significantly outperforms TARMAC
in terms of scalability.

C. Research Contributions

In this paper, we propose an efficient test generation based
HT detection framework that addresses the above challenges.
Our threat model assumes that an adversary may exploit
rare events consisting of rare signals (states) as well as
rare branches (transitions). We utilize Automated Test Pattern
Generation (ATPG) for N-activation as well as maximal clique
activation of rare events. Our research needs to answer five
important questions: (i) how to utilize ATPG to activate rare
branches, (ii) what is the rationale for N-activation of rare
signals and branches, (iii) how to use ATPG for activating a
rare event (rare signal or rare branch) multiple times since
ATPG provides only one test for a given fault, (iv) how
to construct satisfiability graph with ATPG, and (v) how to
activate cliques of rare events with ATPG. To address the first
challenge, we map the branch coverage problem to stuck-
at coverage problem (Section IV-B). To answer the second
question, we have to realize that the output of the trigger
may be the rarest signal (or branch), but it may have been
introduced during fabrication. In other words, if the trigger
was in the RTL design, activating each rare signal (or branch)
only once would have activated the trigger, and the designer
should have removed it during the design phase. To address
the third question, we automatically generate constraints based
on the previously generated test so that it can provide a
new test in the next iteration for the same stuck-at fault
(Section VI-A). The fourth and fifth challenges are addressed
by implementing stuck-at faults combined with output port
constraints by connecting all rare events to the outputs of
the design (only for test generation purposes) (Section VI
and Section VII). Specifically, this paper makes the following
major contributions.

o We show that the rare branch coverage problem can be

mapped to the rare signal coverage problem.

o To the best of our knowledge, there are no prior test

generation efforts for N-activation of rare branches.

« We propose a scalable framework for N-activation of rare

events (i.e., rare signals and rare branches) using ATPG.
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Fig. 4: SATisfiability graph generation time of TARMAC [3]
(with lazy construction) compared with MC-ATPG for
eeageneric module in elliptic curve cryptography.

« We propose a complementary and scalable framework for
activating maximal cliques of rare events using ATPG.

« Experimental results show that our ATPG-based frame-
work is scalable and significantly outperforms the state-
of-the-art test generation based HT detection techniques.

The remainder of this paper is organized as follows. Sec-
tion II surveys the related approaches to highlight the novelty
of our work. Section IIl provides an overview of the pro-
posed methodology. Section IV presents the steps involved
in rareness analysis. Section V outlines the fault modeling
for rare events followed by our proposed ATPG-based HT
detection framework using N-detection of rare events (Sec-
tion VI) as well as maximal clique activation (Section VII).
Section VIII describes the framework to generate HT-injected
benchmarks and utilizing them to evaluate the quality of the
generated test patterns. Section IX presents the experimental
results. Finally, Section XI concludes the paper.

II. BACKGROUND AND RELATED WORK

Random and constrained random tests are widely used
during traditional functional validation methodology. Due to
the exponential input space complexity of the designs, even
billions or trillions of test vectors are not enough to validate
all possible functional scenarios in today’s industrial designs.
Directed tests are promising to cover the remaining scenarios
as well as the corner cases that are not activated by random
and constrained-random tests. Manual development of directed
tests is time-consuming, error-prone, and can be infeasible
for complex designs. There are effective approaches for auto-
mated generation of directed tests [4]—[8] that can be utilized
for activating targeted scenarios. While these approaches are
useful for validation of functional scenarios, they are not
suitable for detecting security vulnerabilities such as hardware
Trojans. This is due to the fact that stealthy Trojans consists
of extremely rare trigger conditions.

There are a wide variety of approaches for the detection of
hardware Trojans (HT) that can be divided into three broad
categories: test generation (simulation-based validation) [2],
[3], [9], side-channel analysis [10]-[15], and machine learning
(ML) [16]. ML-based approaches can be further subdivided
based on whether they require golden model (supervised
learning) or not (unsupervised learning). In this paper, we
focus on test generation based HT detection. This assumes
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Fig. 5: Overview of our proposed ATPG-based activation of rare events for hardware Trojan detection. It consists of four
major steps: rareness analysis, fault modeling, test generation, and coverage analysis. We propose two test generation methods:
N-activation of rare events using ATPG (ND-ATPG) and ATPG-based activation of maximal cliques (MC-ATPG).

that the activation of HT will lead to a functional mismatch. In
other words, if the generated test can activate the HT trigger
during simulation (execution), we will be able to detect the
HT by comparing the output with the expected output. There
are two complementary avenues for test generation based HT
detection: statistical test generation [2] and maximal clique
sampling [3].

Statistical test generation approaches rely on N-detect prin-
ciple [1] that tries to activate each rare node N times. Assum-
ing an adversary is likely to construct a trigger consisting of
rare nodes, the goal of the statistical approaches is to maximize
the likelihood of activating the unknown trigger. Unfortunately,
the statistical approach is not scalable for large designs due
to the exponential nature of its bit-flipping based algorithm
(MERO [2]) as demonstrated in Figure 11. Most importantly, it
typically violates N-detect policy since it cannot activate all the
rare nodes in a reasonable time. For example, Figure 3 shows
that MERO can never activate some of the rare nodes even for
simple designs. While Pan et al. [9] improved the limitations
of the bit-flipping algorithm using reinforcement learning
(TGRL), it still faces the scalability problem. There are various
research efforts that utilizes MERO [2] as the initial test pattern
generator for side-channel based test generation [11]-[14]. The
N-detect concept has been used for isolation of suspected
signal for equivalence checking [17]. Physically aware test
selection using N-detect principle is utilized to improve the
defect coverage in manufacturing testing [18], [19]. None
of these approaches are used for activating triggers with
rare signals as well as rare branches in complex pre-silicon
designs.

Maximal clique sampling (TARMAC [3]) attacks the prob-
lem from the opposite direction. Unlike statistical approaches
that try to activate each node N times, TARMAC tries to
activate as many rare nodes as possible using a single test
by covering the maximal cliques in a graph consisting of
rare nodes. Specifically, it constructs the logical expressions of
each rare node and checks the satisfiability of multiple expres-
sions corresponding to a clique in the graph. This approach is
not scalable since the complexity of the expression generation

as well as satisfiability solving grow exponentially with the
design size. For example, Figure 4 shows the exponential
nature of graph generation time with TARMAC.

There are promising efforts in utilizing ATPG for HT
detection [20] that has explored a hybrid solution consisting
of ATPG and model checking for HT detection in full-scan
as well as partial-scan designs. To the best of our knowledge,
our proposed effort is the first attempt at utilizing ATPG for
activation of rare events (signals and branches) for efficient
and scalable detection of hardware Trojans.

III. ATPG-BASED ACTIVATION OF RARE EVENTS

Figure 5 provides a high-level overview of our proposed
methodology. First, it performs rareness analysis by simulating
with millions of random tests. Specifically, it marks the signals
and branches that are activated less than a specific threshold.
Next, it maps the rare branch coverage problem to rare
signal coverage problem to generate rare events. These rare
events are converted to stuck-at faults to enable ATPG-based
test generation. Specifically, we propose two complementary
ATPG-based test generation approaches: (i) ATPG-based N-
activation of rare events (ND-ATPG), and (ii) ATPG-based
maximal clique activation (MC-ATPG) to generate test vectors.
Finally, it evaluates the quality of the generated tests by
computing the coverage of the detected Trojans using Trojan-
embedded benchmarks.

Algorithm 1 Activation of Rare Events with ATPG

Input design D, rarenessThreshold r, N
Output testVectors T’

{Rs, Ry} + rarenessAnalysis(D,r)

{D’, Rp2s} < mapBranch2Signal(D, Ry)
S+ faultModeling(Rs, Rp2s)

Tests < testGeneration(D’, S¢, N)
coverage Analysis(D, Tests)

Return T'ests

AN




Algorithm 1 highlights the four major steps in our frame-
work: rareness analysis, fault modeling, test generation for
activation of rare events, and coverage analysis. The remainder
of this section describes these steps in detail.

IV. RARENESS ANALYSIS

As discussed in Section I-A, attackers are likely to use
extremely rare (hard-to-detect) behaviors to trigger the attack.
If an attacker constructs a trigger using non-rare (easy-to-
activate) behaviors, the trigger is likely to be activated during
traditional functional validation, and therefore, the Trojan will
be easily detected. With rareness analysis, we try to highlight
the corner cases that are not validated by functional validation.
We take the design (RTL or the gate-level models) and
simulate for an adequate number of random simulations. All
the hierarchical designs are flattened before the simulation to
ensure that each signal has a unique identity. For synchronous
designs, the number of clock cycles to simulate the design
is determined by the design pipeline depth. For example, in
case of AES benchmark, the pipeline depth is 21 clock cycles.
Therefore, it is important to do each simulation at least 21
cycles for the rareness analysis to get a set of useful rare
events in case of AES benchmark. The remainder of this
section describes three important tasks in rareness analysis:
rareness analysis of signals, elimination of false rare signals,
and rareness analysis of branches.

A. Rareness Analysis for Signals

During simulation, we monitor every signal for its values.
For multi-bit variables in RTL designs, we monitor each bit
individually. Next, we calculate the rareness value for each
variable for the occurrence of ‘1’ and ‘0’. We use a rareness
threshold to filter the rarest signals from all the signals.
Consider the simplified code snippet shown in Listing 1 as an
illustrative example. Assume ‘0.2’ as the rareness threshold.
Here assignment to the register ‘a’ is under a rare branch.
The probability of ‘key’ having the value of 255 as shown in
line 8 is 0.004 which makes it a rare event. Assignment to the
wire ‘N13° happens based on the output of the rare branch
which makes ‘N13’ having the value ‘O’ even rarer. During
the simulation, we monitor the value of ‘N13’ to calculate its
rareness for different values. For example, we can calculate
the rareness of {N13,0} by dividing the number of instances
‘N13’ appeared as ‘0’ by the total number of appearances of
‘N13’. According to the example, in Listing 1, occurrence of
N13 appearing as ‘0’ is below the rareness threshold which
makes the signal {N13,0} a rare event.

1) Elimination of False Positive Rare Signals: The goal
of this step is to remove signals that may appear as rare
during simulation but they are not rare (e.g., they have fixed
values). Consider AES benchmark that contains a multi-bit
signal named as rcon which is assigned to a fix constant
hex value. During simulation, similar signals do not change
their pre-assigned constant values unless they are updated later
by a different assignment. Since they are non-rare signals,
an attacker is unlikely to use them to construct a trigger.
Therefore, eliminating such signals will lead to improved

Listing 1: Ilustrative example for rare events

1 module simpleAes (clk, rst, key);
2 input clk, rst;
3 input [7:0] key;
4 output reg [7:0] state_out;
5 reg [1:0] a, b, c, d;
6 wire NI13;
7 always @ (posedge clk) begin
8 if (key=8’d255)
9 a <=a+ 1’bl;
10 end
11 assign NI13 = (a[1])? 1°b0 : 1°bl;
12 endmodule

Listing 2: Branch tagging example
1 module simpleAes (clk, rst, key);
2
3 reg t0;
4 always @ (posedge clk) begin
5 if (rst)
6 t0 <=1"b0;
7 if (key=8’d255)
8 a<=a+ 1’bl;
9 t0 <=1"b1;
10 end

11 .
12 endmodule

rareness analysis. Note that we cannot simply remove signals
with rareness value of 0 since rareness of 0 can also be caused
by insufficient number of simulation iterations. In order to
eliminate such false positive signals, we perform static data-
flow analysis. First, we construct the Data Flow Graph (DFG)
of the design. Next, we eliminate all static signals. Finally, we
recursively go through the DFG to identify and remove signals
from the set of potential rare nodes where the predecessor
signal is a constant.

B. Rareness Analysis for Branches

This case is applicable for designs with branches (e.g.,
RTL models). During each random simulation, we monitor
the status of each branch whether it was taken or not. The
branches that were activated less than the rareness threshold
during the random simulation are considered as rare branches.
In the example of Listing 1, the probability of branch in line 8
activating under random simulation is low and hence it will
be considered as a rare branch (rare event).

V. FAULT MODELING FOR RARE EVENTS

Both rare signals and rare branches (discussed in Sec-
tion IV) are rare events. In this section, we discuss how these
rare events are mapped to stuck-at fault before activating them
using ATPG to generate the test patterns. We first map the
rare branch coverage problem to rare signal coverage problem
(Section V-A). Next, we describe fault modeling of rare events
(Section V-B).

A. Automated Mapping of Rare Branches to Rare Signals

Once rare branches are identified in Section IV-B, we use a
unique tag (identifier signal) for each rare branch. Algorithm 2
presents the methodology of implementing the tag signal — if
the branch is taken, the tag value is set to ‘1’, otherwise the
tag value is set to ‘0’. A rare branch with tagging is shown



Listing 3: Instrumented design before synthesis for the illus-
trative example provided in Listing 1

13 module simpleAes (clk, rst, key, tO, NI13, a_1);
14 input clk, rst;

15 input [7:0] key;

16 output reg [7:0] state_out;

17

18 output t0O, NI13, a_1;

19 assign a_1 = a[l];

20 reg t0;

21 reg [1:0] a, b, c, d;

22 wire NI13;

23 always @ (posedge clk) begin

24 if (rst)

25 t0 <=1"b0;

26 if (key=8’d255)

27 a <=a+ 1’bl;

28 t0 <=1"b1;

29 end

30 assign NI3 = (a[1])? 1°b0O : 1°bl;

31 endmodule

in Listing 2. Here ‘¢0’ is the tag signal and it is assigned to
value ‘1’ under the rare branch in line 9.

Algorithm 2 mapBranch2Signal

Input design D, branch Ry
Output tag Ry, design D’

1: Rpos < 0

2: for Each b; € Ry, do

3: D’ + D.append(t;) > add signal ¢; to the design
4: Rpos.append(t;)

5: for lines in D do

6: if reset block in line then > Locate reset block
7: D’ .append(t; < 1'b0) > Initialize ¢; to O
8: end if

9: if b; in line then > locate the branch b;
10: D’ .append(t; + 1'b1) > Set ¢; to 1
11: end if

12: end for

13: end for

—
S

: Return D', Ry,

B. Stuck-at Fault Modeling for Rare Events

The goal of this section is to generate stuck-at faults
for the rare events consisting of rare signals (derived from
Section IV-A) as well as rare branches (associated rare tags
derived from Section V-A). For all the rare events, correspond-
ing nets are connected to the design output so that the net
names are preserved after the synthesis. Instrumented design
for the illustrative example is provided in Listing 3. The design
is synthesized to a gate-level netlist to prepare it for ATPG-
based test generation. We also need to generate stuck-at faults
for each of the rare events. Table I shows two example rare
nodes (N13 from Listing 1 and ¢0 from Listing 2) converted
to stuck-at-fault model.

VI. ND-ATPG: TEST GENERATION USING ATPG-BASED
N-ACTIVATION OF RARE EVENTS

Once all the rare events are converted to the stuck-at fault
model, we need to obtain N test vectors for each stuck-at

TABLE I: Example rare events with relevant stuck-at-fault
expression for generation of test vectors using ATPG

Rare Node

Net | Value Stuck-at-fault

t0 1 add_faults -stuck O tO
N13 0 add_faults -stuck 1 N13

fault to satisfy N-detect principle [1] such that each rare event
is activated at least N times (each test activates them once).
However, ATPG tool produces one test vector for one fault.
In this section, we explore how we can obtain N test vectors
for each fault using ATPG.

Constraint
Generation
N-1

ATPG Pilot Vectors

Fig. 6: Overview of N-activation of rare events using ATPG

A. N-Activation of Rare Events with ATPG

Test generation for N-activation is carried out in two steps.
The first step generates the initial test vectors (one test for
each fault) which are referred as pilot vectors. The second step
generates the remaining N-1 vectors (for each fault) based on
the pilot vectors with constraints as shown in Figure 6.

Algorithm 3 testGeneration with ND-ATPG

Input design D, faultList Sf, N
Output testVectors T’

1T« ()

2: for Each f € Sf do

3: T[f] <~ ATPG(D(gy, f) > Generate pilot vectors
4: end for

5: for Each f € Sf do

6: ty < T[f]

7: Cf — 0

8: fori=0—N—-1 do

9: ¢; + getConstraints(ty, D.p;,Cy)

10: ty < ATPG(D, ¢, f)

11: Cy.append(c;)

12: T[f1[z] « ty > Second generation test vectors
13: end for

14: end for

15: Return T’

Algorithm 3 outlines the major steps involved in generation
of test vectors. For each stuck-at-fault, we invoke ATPG to
generate the pilot vector corresponding to the specific fault
(lines 2-4). In order to generate the remaining N-1 vectors per
fault, we generate constraints from the previous test to generate
the next test (lines 8-13). Algorithm 4 outlines the major steps
for generating the constraints. With constraint generation, we
limit the input pattern for certain input ports of the design by
referring to the previously generated test. N —1 constraints are
generated such that every constraint will generate a new test
vector to activate the same stuck-at-fault. Therefore, we can
achieve N-activation of the same rare event with different test



vectors. For the illustrative example (Listing 1), assume that
the sample pilot vector for the stuck-at-fault ‘{—stuck 0 t0}”
is ‘11111111°. This vector is corresponding to the input port
‘key[7 : 0]’. In order to generate the remaining (second-
generation) test vectors, one possible constraint is to flip the
key[7] (MSB) and provide it as a constraint to the ATPG
tool. The sample constraint for the above example would
be “add_pi_constraints 0 key[7]’. Algorithm 4 will always
provide a new constraint until N-1 tests are generated (in
addition to the pilot vector).

Algorithm 4 getConstraints

Input testVector ¢,, inputPorts p;, constraintList Cy
Output constraint ¢,

1: for t in t, do

2 ce — {pt =t} > Generate a new ¢, for f
3 if ¢, € Cy then

4: ¢z + getConstraints(ts, pi, Cy)

5: else

6 Return c,

7 end if

8:

end for

VII. MC-ATPG: ATPG-BASED MAXIMAL CLIQUE
ACTIVATION

The previous section discussed N-activation methodology
where we try to activate each rare event N times hoping that
N test vectors will trigger different Trojans that consist of a
specific combination of rare events chosen by the attacker.
In this section, we propose a complementary approach where
we try to activate all the trigger combinations at once. This
method will produce more effective and compact test vectors
with the cost of time and effort. Figure 7 provides an overview
of the proposed test generation framework using ATPG-based
maximal clique activation.

Rare Events

aximal Clique
Partitioning

Clique
Activation

SAT graph

. Test Vectors
Generation

SAT graph

Fig. 7: Overview of maximal clique activation of rare events

Algorithm 5 outlines the the major steps in Figure 7: stat-
isfiability graph generation, maximal clique partitioning, and
test generation using ATPG-based maximal clique activation.
The remainder of this section describes these steps in detail.

A. Satisfiability Graph Generation

The construction of the satisfiability graph utilizes the
output from the rareness analysis (section IV) as well as the
instrumented design from the fault modeling (Section V-B).
Each rare event (node) is a vertex of the satisfiability graph.

Algorithm 5 testGeneration with MC-ATPG

Input instrumentedDesign D, faultList S f
Output testVectors T’

. G+ getSATis fiabilityGraph(D, S f)
. cliques < maxCliquePartition(g)
. sort(cliques)
for cin cliques do
T < T U activateClique(D, ¢)
: end for
: Return T'

An edge between those two rare nodes in the satisfiability
graph implies that the respective logical expressions can be
satisfied. For example, Figure 8 shows the satisfiability graph
constructed from the circuit in Figure 1. In the extreme case
(all the rare nodes are satisfiable), we will have a complete
graph with n x ”7_1 edges, where n is the number of nodes
in the graph. For example, Figure 8 has an edge between A
and B since the logic expressions associated with them can be
satisfied by feeding the input pattern ‘110100’ to the circuit in
Figure 1. There is no edge between B and D because the input
e has conflicting requirements (D expects it to be ‘1’ while B
expects it to be ‘0’) which cannot be satisfied simultaneously.

A:{(a\b), 1}
D : {(eAf), 1}./I>.B A{(-e), 1}
C: {((cvd)\e), 0}

Fig. 8: Satisfiability graph with four nodes of the circuit in
Fig. 1 (with logic expressions and rare values in parentheses)

Due to the internal structure of the circuit, the nature of
the graph can vary. For example, in case of ISCAS2670
benchmark, the satisfiability graph is dense (Figure 9a) since
the rare signals closely related and well connected. On the
other hand, the rare events are scattered across the AES 128
benchmark that leads to a sparse graph as shown in Figure 9b.
If the rare signals are located together as a single cluster, the
output is a dense graph. Usually in large designs, we can find
dense clusters scattered in the graph. For improved accuracy
it is important to construct the satisfiability graph by querying
all possible two trigger combinations (n X ”7’1 of queries).

In order to reduce the overall time in handling exponential
number of queries, we read the design with the ATPG tool and
perform specific pre-processing steps. Later all the queries go
through this model file and redundant pre-processing steps are
eliminated during the queries. During each step, the model file
is updated such that the calculations that were done for the
earlier queries can be used for later queries.

Listing 4: Sample satisfyaliblity query

1 read_image simpleAES.model

2 add_atpg_constraints a 1 —module simpleAES t0
3 add_faults —stuck 1 NI3

4 set_atpg —full_seq_time {120 360}

5 run_atpg

We model all satisfiability queries as a combination
of “atpg_constraints” and “stuck-at_faults”. Algorithm 6
presents the steps involved in constructing the satisfiability



graph. First, we go through all the rare events selecting one
at a time. Then, we prepare the ATPG script by implementing
the selected rare event as an output constraint. Next, we
implement all the remaining rare events as stuck-at faults and
feed them to the ATPG tool. Since we have the instrumented
design with all the rare events connected to the output, we
have the observability of all the rare events. Therefore, we
observe the rare events in the output to identify the activated
faults. Listing 4 shows an example query for constructing the
satisfiability graph of the example design provided in Listing 1.
We implement a timeout interval to prevent graph creation
from getting stuck in one query. Depending on the processing
capability of the system that hosts the ATPG tool, the timeout
would be different.

Our proposed method only takes n queries to construct the
graph when we have n nodes, while TARMAC [3] makes n x
"7’1 independent queries to construct the satisfiability graph.
Although the ATPG tool calculates the connectivity between
all the nodes, the extra overhead of each query can be reduced
significantly with our proposed method. Figure 4 presents the
comparison of the graph generation time for TARMAC [3]
including lazy construction with our proposed MC-ATPG. It
can be observed that the proposed method drastically reduces
the graph construction time.

Algorithm 6 getSATisfiabilityGraph()

Input InstrumentedDesign D, rareEvents R,
Output graph g

1: for Each r; € R, do

2 tel < 0

3 tcl.add(r; as a po_contraint)

4 tcl.add(V(R. — ;) as stuck-at_faults)
5: for po € OutputVector(AT PG(D,tcl)) do
6 if po € R, and po == 1 then

7 e + edge(r;, po)

8 g.add(e)

9 end if

10: end for

11: end for

12: Return g

B. Maximal Clique Partitioning

Finding and listing all the cliques is an NP-complete prob-
lem. While there are promising algorithms, such as the Bron
Kerbosch algorithm, the time complexity is in the order of
O(3%). Therefore a more quick approximation method is
preferable to reduce the time taken for clique partitioning.
We use the algorithm proposed by Eppste et al. with the
worst-case time in the order of O(dn3%) [23], where d is
the smallest number such that every sub-graph of the original
graph contains a vertex of at most degree of d. An example
maximal clique that we can identify from the satisfiability
graph in Figure 8 is the sub-graph consisting of three nodes A,
B and C. Once all the maximal cliques are identified, we sort
them by the clique size and pass to the next step to generate
test vectors to activate each of them.

C. Maximal Clique Activation using ATPG

All the maximal cliques that were identified in Sec-
tion VII-B are queried from the ATPG tool. Algorithm 7
presents the steps involved in the final clique activation step.
Here we list all the vertices in the clique as stuck-at-faults
and po_constraints and make the ATPG query. The ATPG tool
will provide a test vector for each maximal clique produced by
Section VII-B. For example, the ATPG will generate the test
vector ‘110100” (or ‘111000°) to activate the maximal clique
(ABC) in Figure 8.

Algorithm 7 activateClique()

Input InstrumentedDesign D, clique ¢
Output testVectors T’

1: for Each v € c do

2 tel « 0

3: tcl.add(v as a po_contraint)
4 tcl.add(v as a stuck-at_fault)
5 T+ TUATPG(D,td)

6: end for

7: Return T’

VIII. COVERAGE ANALYSIS

The generated test vectors should be evaluated for their ef-
fectiveness in detecting hardware Trojans. Algorithm 8 shows
the three major steps in our coverage analysis. First, we
construct the Trojan-infected benchmarks in two ways. (1) We
used the automated Trojan insertion framework developed by
Cruz et al. [24] that embeds a wide variety of Trojan config-
urations based on user constraints such as the type of Trojan,
Trojan activation probability, number of triggers, and choice
of payload. The tool also ensures that the inserted Trojan is
valid. (2) We have also used Trojan inserted AES benchmarks
from Trust-Hub [25]. Note that our Trojan insertion framework
is independent of our test generation framework to ensure
fair evaluation of our test generation techniques. Next, we
simulate both golden and Trojan inserted benchmarks using the
generated test patterns. Any mismatch in the outputs indicates
a successful Trojan detection. Finally, the effectiveness of the
generated tests are calculated as a percentage of the number
of detected Trojans (activated triggers) over the total number
of Trojans (valid triggers) in the benchmark suite.

IX. EXPERIMENTS

The section demonstrates the effectiveness of our test gen-
eration framework. First, we describe the experimental setup.
Next, we present the experimental results.

A. Experimental Setup

We have developed scripts to automate the entire process.
Yosys [26] synthesis tool is used to flatten the hierarchical
designs before rareness analysis. For rareness and coverage
analysis simulations, we have used Synopsys VCS simulator.
For compiling the RTL designs to the gate-level netlist, Syn-
opsys DC Compiler is used. We have used Synopsys Tetramax
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Fig. 9: Satisfiability graph constructed for ISCAS2670 [21] and AES 128 Core [22] using the proposed method. In order to
keep the number of vertices the same for fair comparison, we have selected the rarest 130 nodes from both designs. It can be
observed that ISCAS benchmarks produce almost complete graphs while real-world IPs, such as AES, produce spares graphs.
The lazy construction technique used by TARMAC [3] works well with ISCAS benchmarks. However, in case of real-world
designs, TARMAC’s performance is negatively impacted during maximal clique activation as demonstrated in Section IX-E.

TABLE II: Effectiveness of Trojan and trigger coverage compared with other techniques. (Rareness threshold: 0.2, Number of
rare signals in a Trigger varies between 1 to 6, Sample set size: 1000, N: 1000)

. . Trojan Coverage (%)
Design | # of Gates | # of Rare Signals |—urepey > T TARMAC [3] | TGRL [g9] ND-ATPG | MC-ATPG
2670 1269 799 376 878 922 916 100
5315 7307 13 93 80,1 952 047 100
6288 7416 79 572 76.7 100 100 100
7552 3313 577 3.1 71 901 100 100
13207 7573 792 82 713 923 931 100
15850 3448 897 17 6.5 875 902 100
535032 | 12204 1027 52 804 898 89.7 100
Average | 3962 6363 793 728 93.7 942 100.0

Algorithm 8 Coverage Analysis

Input Design D, Tests
Output coverage M %

1: {Drg, Nrr} < insertTrojans(D) + other sources
2: for each t; € Tests do
3: X + simulate(D,t;)

4 Y «+ simulate(Drg,t;)

5 if X #Y then

6: activated + + > activated was initialized to 0
7 end if

8: end for

9: Return (activated/Nrg) x 100

write -f verilog -heirarchy -
output "design_dft.v"

write_test_protocol -out
design.stil

design_dft.v read netlist design_dft.v

read netlist library.v

Simulation TetraMax

Library

design.stil run drc design.stil

Test Vectors

Fig. 10: Overview of our framework for synthesis with Syn-
opsys Design Compiler (DC) and test pattern generation with
Synopsys TetraMax.

as the ATPG tool. Figure 10 illustrates the steps involved
in synthesizing and test generation with DC Compiler and
TetraMax. For maximal clique partitioning in near-optimal
time, iGraph [27] graph library is used. For validating the
sampled Trojan triggers, EBMC [28] model checker was used.
All the experiments including the execution of state-of-the-art
test generation methods were carried out in a server environ-
ment with Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz
processor and 64GiB Memory. To provide an advantage to
the state-of-the-art methods, we utilize designs without a scan
chain. We also discuss in Section IX-F the potential for drastic
improvement in test generation time and Trojan coverage for
designs with scan chains.

Since most of the state-of-the-art test generation platforms
have shown their effectiveness on ISCAS [21] benchmarks, we
have used ISCAS benchmarks to show the effectiveness of the
proposed approach. We have also used Advanced Encryption
Standard (AES), Elliptic Curve Digital Signature Algorithm
(ECDSA) cryptographic designs, and several processor cores
developed for RISC-V instruction set architecture to show the
scalability of our approach. We have collected the Trojan-
inserted benchmarks following the procedure outlined in Sec-
tion VIII. We compare the following five approaches.

o ND-ATPG: Our proposed approach for ATPG-based N-
activation of rare events (Section VI).



¢ MC-ATPG: Our proposed approach for ATPG-based
maximal clique activation (Section VII).

« MERO [2]: State-of-the-art statistical test generation
based Trojan detection (Section II).

« TARMAC [3]: State-of-the-art maximal clique sampling
based Trojan detection (Section II).

o« TGRL [9]: State-of-the-art statistical test generation us-
ing reinforcement learning (Section II).

The original versions of MERO [2], TARMAC [3] and
TGRL [9] did not support RTL models since they were
designed specifically focusing on ISCAS netlist format. For the
scalability evaluation, we have modified their netlist parsers
to process Verilog designs. The implementation of TGRL [9]
is based on reinforcement learning that computes SCOAP
parameters using SAT solvers. We could not modify the
implementation (designed for ISCAS netlist format) to support
Verilog RTL models. As a result, we are not able to compare
scalability with TGRL. Since TGRL is based on MERO, which
has fundamental scalability limitations (as discussed next), we
believe TGRL will also inherit the same scalability concerns.

TABLE III: Elimination of false positive rare signals.

Design Signals in Flattened Net-List Reduction
Total Nets Rare False Rare | True Rare
RV-UE 497843 | 24545 5064 19481 20.6%
RISCY 352968 | 13496 3609 9887 26.7%
ECC 107925 492 107 385 21.7%
AES 90956 371 70 301 18.8%
RSA 1807 74 4 70 5.4%

B. Elimination of False Positive Rare Signals

We observed that most of the RISC-V processor designs and
cryptographic designs contain a considerable amount of fixed
value signals. The rare signals were calculated after 10,000
random simulation iterations for the respective pipeline depth
of the design and filtered with the rareness threshold of 0.01.
Table III shows the reduction of false rare signals based on
static analysis. The first column indicates the design under
consideration. The second and third columns show the number
of total and rare signals, respectively. The fourth column shows
the number of false rare signals. The next column shows
the number of true rare signals after removing the false rare
signals. The last column shows the percentage reduction due
to the removal of the false rare signals. The table illustrates
that structural analysis removes a considerable percentage (up
to 26%) of false positive rare signals. This can significantly
reduce the test generation time since it has to deal with less
number of signals. Moreover, the reduction of false rare signals
reduces the chances of constructing invalid Trojan triggers
during the evaluation of Trojan coverage.

C. Comparison with State-of-the-art Methods

Table II shows the results for combinational and sequential
ISCAS benchmarks. For all the methods, the rareness thresh-
old was selected as 0.2. For fair evaluation, during coverage
analysis, we have considered the same set of sampled and
validated triggers on all the methods. Clearly, MC-ATPG and
ND-ATPG significantly outperform MERO and TARMAC,
and provide comparable/better results than TGRL. Note that

the existing approaches (including TGRL which is built on top
MERO) are not scalable as demonstrated in the next section.

D. ND-ATPG versus MERO

In order to demonstrate the scalability of ND-ATPG, we
have created two experiments. In the first experiment, we used
the cryptographic AES core. We unrolled the AES design for
various numbers of cycles such that it increases the number of
signals in the design. Figure 11a illustrates the time taken to
generate test vectors with ND-ATPG compared with MERO
while Figure 11b illustrates the Trojan coverage of ND-ATPG
compared with MERO on cycle unrolled AES benchmarks.
In the second experiment, we used RISC-V processor cores
implemented in Verilog with the design complexity (number
of signals in the flattened netlist) ranging from about 3K
to 500K signals as shown in Figure 12a. Figure 12b and
Figure 12c present the comparison between ND-ATPG versus
MERO for test generation time and observed Trojan coverage,
respectively. The results of both experiments reveal that the
proposed method is scalable on large designs.

We did not compare ND-ATPG with TARMAC since TAR-
MAC failed to run even on the smallest AES design (AES
unrolled for 1 cycle). This is due to the fact TARMAC
algorithm struggles at the logical expression generation stage
as well as the SAT-solving stage due to the large number of
signals in the design. MERO on the other hand has a feedback
loop, where it does a bit flip and monitors for the rare signal
activation. When the number of rare signals are high, this
monitoring process gets tedious and eventually MERO fails. It
can be seen in Figure 11 and Figure 12 that MERO fails when
the number of signals in the design reaches more than 100K
during both experiments. Our proposed method performs well
on complex designs while maintaining high Trojan coverage.

In order to compare the efficiency of MERO and ND-ATPG
on the AES benchmark, we analyzed the Trojan coverage
with two methods once each method produces a test vector.
Figure 13 demonstrates that due to the forced activation of
each rare signal by ND-ATPG, coverage increases within a
small time duration. However, the Trojan coverage given by
MERO remains inferior.

E. MC-ATPG versus TARMAC

Table IV shows the coverage results for the benchmarks
of AES, ECDSA, and two RISC-V processor cores. For
coverage calculations, we used varying trigger sizes from
1-10. When the design complexity is high, TARMAC gets
stuck at the logical expression generation stage and fails the
instrumentation stage. As expected, TARMAC failed to create
satisfiability queries for complex designs of AES, ECDSA,
RISCY, and RISCV-UE. Therefore, to make a fair comparison
we have included sub-modules corresponding to each bench-
mark. We flattened the designs selecting sub-modules as a
top module and obtained results for Sbox, SboxX, eeageneric,
MontgomerryLadder, Execute, Decode, Issue, and LSU of the
corresponding benchmarks. For all the experiments under this
section, we selected the rarest 130 signals from the selected
design. Due to the lazy construction of the satisfiability graph
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in TARMAC, there are an exponential number of false cliques
in the satisfiability graph. To address the exponential problem,
TARMAC employs random sampling of cliques. As a result, it
misses the legitimate maximal cliques, which can significantly
affect the Trojan coverage. However, MC-ATPG constructs the
complete satisfiability graph with ATPG queries explained in
Section VII-A, and therefore, MC-ATPG does not generate
any false cliques. Since our approach can be computed in
parallel, the test generation time can be drastically reduced by
performing parallel computation of ATPG queries. Moreover,
the Trojan coverage can be improved by increasing the ATPG
query time limit.

F. Comparison of Rare Branch Activation with ND-ATPG

In order to demonstrate the effectiveness of the proposed ap-
proach on rare branches, a separate experiment was designed.



TABLE IV: Scalability of MC-ATPG compared with TARMAC for IP level Trojan detection considering rarest 130 signals
with varying trigger sizes from 1-10 on several cryptographic IPs and CPU cores. Here it can be observed that with lazy
construction TARMAC takes a longer time to finish due to invalid clique activation queries from the SAT solver.

] No. of TARMAC ] MQ-ATPG
Design Module Signals Time (Mins) Cov % Time (Mins) Cov %
Graph Clique Clique Graph Clique Clique
Generation | Partitioning | Activation Generation | Partitioning | Activation

Shox 2056 172.76 22.83 491.45 82.1 39.53 0.05 22.37 100

AES SboxX 2056 193.01 16.98 647.01 79.2 4243 0.05 29.43 100
AES (Top) 90956 Instrumentation Failed 3768.09 0.09 446.88 91.2

eeageneric 1936 183.55 | 17.96 ] 531.29 | 85.4 30.22 0.05 17.73 99.7

ECDSA montgomeryLadder 20356 Instrumentation Failed 1897.38 0.09 884.62 87.8
ECDSA (Top) 107925 Instrumentation Failed 2984.89 0.11 2002.11 82.3

Execute 3723 3634 | 5.63 | 443 ] 88.5 16.71 0.01 14.32 100

RISCY Decode 13833 205.32 | 24.64 | 638.86 | 67.9 115.32 0.23 78.65 74.54
Core (Top) 352968 Instrumentation Failed 4786.98 0.56 2967.89 59.09

Issue 5642 132.98 | 16.1 | 3973 | 8973 43.73 0.01 43.76 95.89

RISCV-UE | CSR 10977 196.5 | 16.8 | 48453 | 7343 79.03 0.06 74.08 79.04
Core (Top) 497843 Instrumentation Failed 4912.89 0.76 4143 54.78

Table V shows the results generated from Trojan inserted AES
benchmarks from Trust-Hub [25]. These AES benchmarks are
specifically designed for side-channel analysis and triggers are
embedded in rare branches. We have generated results on both
scan-chain and non-scan versions of the same benchmark and
compared them with MERO. ND-ATPG outperforms MERO
due to the fact that ND-ATPG forcefully activates the rare
branches while MERO relies on bit flipping of the initial
random vectors. Also, when we consider ND-ATPG, scan-
chain versions can reach 100% branch coverage quickly. This
also validates the fact that statistical test generation (e.g.,
MERO) designed for activating rare signals are not suitable
for activating rare branches.

TABLE V: Rare branch activation effectiveness of MERO
compared with ND-ATPG on scan and non-scan designs

ND-ATPG
Design MERO [2] Non-scan With Scan

Branch | Time | Branch | Time | Branch | Time

Cov% o) Cov% ) Cov% S)

AES_T300 0% 54000 75% 50401 100% 8.2

AES_T400 0% 54000 40% 46400 100% 7.1

AES_T500 0% 54000 28% 16980 100% 8.2

AES_T600 8% 54000 41% 59801 100% 11

AES_T700 0% 54000 27% 27200 100% 8.3

AES_T3800 0% 54000 44% 38405 100% 1.9

AES_T900 33% 54000 100% 15435 100% 3.2

AES_T1000 0% 54000 34% 46601 100% 6.7

AES_T1100 0% 54000 20% 47109 100% 5.2

AES_T1200 0% 54000 33% 59026 100% 1.8

G. N-Activation of ND-ATPG versus MERO

N-activation of ND-ATPG and N-Detection of MERO are
similar in concept but there is a considerable difference in the
performance. In order to demonstrate this, we have selected
an ECDSA module and observed the activation of rare events.
Figure 3 shows the results of the experiment. MERO was
unable to activate most of the rare signals even once, while
less rare signals got activated more than N times (leading to
inferior Trojan coverage). However, ND-ATPG (N-activation)
has forced to activate almost all the rare events almost N times
evenly which leads to superior Trojan coverage.

X. APPLICABILITY AND LIMITATIONS

In this section, we discuss the applicability and limita-
tions of the proposed test generation algorithms. Specifically,

we discuss four aspects: (1) practical considerations during
rareness threshold selection, (2) detection of diverse Trojan
types, (3) the requirement of controllability for the effective-
ness of the proposed techniques, and (4) applicability beyond
hardware Trojan detection.

A. Rareness Threshold Selection

Our test generation approach consists of two parts: (i)
rareness analysis to produce a set of rare (target) signals and
(ii) test generation to maximize the likelihood of detecting
a Trojan constructed using the target signals. The rareness
threshold should be chosen such that the selected rare signals
cannot be activated by traditional simulation using millions of
random tests. These are the signals that an attacker is likely to
use to construct a trigger that can stay hidden during traditional
validation. There are several practical considerations since
there can be thousands of rare signals in a typical million-gate
design that cannot be activated during traditional validation.
If we set the rareness threshold too low, the number of rare
signals in the set will be less, and the test generation algorithm
will finish faster. However, the attacker may use other rare
signals (outside the set). If we set the rareness threshold too
high, the test generation will take more time but we can cover
more scenarios where an attacker can mount a Trojan.

There can be scenarios when the rareness threshold may
be partially or completely irrelevant. For example, a designer
may bypass rareness analysis and provide a list of suspicious
signals as input for test generation. Similarly, a designer may
choose a low rareness threshold to select very rare signals and
manually add other signals based on specific objectives (e.g.,
XOR-LFSR related signals as discussed next).

B. Detection of XOR-LFSR Trojans

We evaluated the applicability of our approach on diverse
benchmarks in ISCAS and Trust-Hub. Each of these Tro-
jans relies on the assumption that an attacker is likely to
construct a trigger using rare events. In other words, the
first step of our framework performs rareness analysis to
construct a set of target (rare) events, which is used as an
input by our proposed test generation algorithms (ND-ATPG
and MC-ATPG) to maximize the likelihood of detecting a



Trojan constructed using the target events. The test generation
algorithms proposed in this paper are also applicable when the
above assumption is not true. For example, consider a XOR-
LFSR [29] Trojan that is constructed from Linear Feedback
Shift Registers (LFSR). To detect XOR-LFSR Trojans, we
need to select the signals from the LFSR as target signals
(instead of rare signals or in addition to rare signals). Note
that the test generation algorithms do not require any changes.
LFSR can be implemented in two ways - using an initial
seed value based function or an internal fixed value based
function (not likely to be used by an attacker due to the
predictability of the LFSR output). In case of initial seed
value-based functions, our approach is effective since it is
utilizing statistical guarantees of activating each register bit /V
times, and therefore, it increases the likelihood of activating
the Trojan trigger irrespective of which bits are selected
by the adversary to construct the XOR gate. If the inputs
cannot control the LFSR, our proposed approach performs
comparable to random tests since there is no controllability
over the LFSR register.

C. Controllability Considerations

Test generation based techniques rely on the controllability
of the internal signals to generate effective test cases. In the
case of ND-ATPG, the reachability of N activation for every
signal is determined by the controllability of signals in the
design. If a design does not have good controllability, there
will be more signals that do not have N possible tests (even if
we try all possible input combinations). Figure 14 shows how
many times a signal got activated by ND-ATPG and MERO
for 1000 rare signals in ECC_Cordinate_conversion module in
ECDSA benchmark with N as 100. As our experimental results
demonstrate, we are able to activate a vast majority of the
signals N times. In fact, the remaining ones got activated very
close to N times. For example, the tallest brown bar indicates
that about 780 signals got activated 100 times by ND-ATPG.
In contrast, only a small percentage of signals get activated N
times by state-of-the-art (MERO [2]). For example, the tallest
blue bar indicates that about 340 signals (out of 1000) were
not activated at all by MERO. Note that the summation of the
heights of all the bars in the same color should be 1000 (total
number of rare signals).
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Fig. 14: Number of signals that are activated N=100 times for
MERO versus ND-ATPG. Due to the directed nature of tests,
ND-ATPG is able to activate signals close to N times.

D. Applicability beyond Trojan Detection

Although our primary focus in this paper is hardware Trojan
detection, the algorithms proposed in this paper can be utilized
for security validation, functional validation, manufacturing
testing, as well as reliability validation. Specifically, the
ATPG-based scalable test generation algorithms are effective
in activating a specific node N times (ND-ATPG) or activating
M nodes at the same time (MC-ATPG). Therefore, ND-ATPG
can be utilized to improve functional coverage by activating
corner cases and hard-to-activate functional behaviors [30].
Similarly, ND-ATPG can improve trust coverage by activating
hard-to-detect security vulnerabilities [31]. Likewise, MC-
ATPG can be adopted in manufacturing testing to generate
efficient test vectors to activate multiple stuck-at-faults [32].

XI. CONCLUSION

Hardware Trojan detection is a major challenge due to the
difficulty in activating rare triggers. While there are many
promising test generation approaches for Trojan detection, they
are not scalable for large designs. Moreover, their applicability
is limited to detecting specific types of Trojans. In this paper,
we proposed an ATPG-based scalable framework for activation
of rare events consisting of both rare signals and rare branches.
This paper made two important contributions. We show that
both rare signals and rare branches can be mapped to stuck-at
faults. As a result, ATPG can be used to generate test patterns
to activate rare events. We have developed an automated
constraint generation method to perform N-activation of rare
events as well as maximal clique coverage of rare events
using ATPG. Our experimental results demonstrated that our
proposed approach significantly outperforms the state-of-the-
art test generation methods. It highlights the fact that existing
statistical approaches are not effective in satisfying the N-
detect principle and therefore provide inferior Trojan coverage
compared to our approach. It also reveals that the existing
test generation techniques for activating rare signals are not
suitable for activating rare branches, highlighting the need for
our proposed approach.
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