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ABSTRACT
This demo presents Kamel; a novel trajectory imputation frame-
work that aims to impute sparse trajectories as ameans of increasing
their accuracy, and hence the accuracy of their applications. Un-
like the large majority of current trajectory imputation techniques,
Kamel does not require the knowledge or the availability of the
underlying road network, which makes it applicable to important
applications like map inference that need to infer the road network
itself. Audience will experience Kamel through various scenarios
that show the imputation accuracy as well as Kamel internals.
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1 INTRODUCTION
The availability of GPS trajectory data has empowered numerous
important applications, including map inference, routing, traffic
monitoring, and location-based services. Unfortunately, trajecto-
ries are inherently sparse with frequent spatial and temporal gaps,
which significantly lower the accuracy of all trajectory-based ap-
plications. Hence, trajectory imputation techniques have been pro-
posed to predict the trajectory whereabouts within the gaps (e.g.,
see [2, 15]). Such techniques mainly rely on matching the trajecto-
ries to the road network, where the imputation becomes finding
the shortest path between each two consecutive trajectory points.
Unfortunately, all such techniques have the implicit assumption
that the underlying road network is available and reliable, which
is not always true [7, 8, 10, 14]. In particular, the whole research
in trajectory-based map inference [1, 9, 13] relies on trajectories
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to infer the road network. To such applications, one cannot use
the road network to impute trajectories, as it is not even available,
instead, it needs to be inferred. There are only a couple of recent
approaches that do not assume road network availability [5, 6].
However, they are only applicable for small road networks, assume
the abundance of trajectory data, and can only work offline.

This demo presents Kamel; a novel trajectory imputation frame-
work that: (a) does not require the knowledge of the road network,
(b) scales to support large geographical areas, and (c) can impute
trajectories both offline (bulk mode) and online (streaming trajecto-
ries). The main idea of Kamel is to map the trajectory imputation
problem to the"finding the missing word" in Natural Language Pro-
cessing (NLP), which is usually solved using the widely used BERT
model [4]. Given a statement like "Paris is the ... of France", where
"..." is a missing word, BERT finds out that the missing word is "cap-
ital". Kamel deals with trajectories as statements, where a trajec-
tory/statement is composed of an ordered set of points/words drawn
from a finite pool of possible points/words. Also, points/words in a
trajectory/statement are spatially/semantically related and are con-
strained by rules imposed by the road network/language grammar.
Hence, at its core, Kamel is equipped with a BERT model trained
by a set of trajectories, and then used to impute sparse trajectories.

However, using BERT as is within Kamel results in very poor
accuracy [11], mainly due to three main challenges: (1) Spatial
awareness. BERT is not spatially aware, where it may poorly train
its model by including spatially unrelated datasets and/or produce
results that are not spatially feasible. (2) Training factor. The origi-
nal BERT [4] is trained on ∼3.3B word corpus composed of ∼30K
distinct words. Trajectory data is far from this; a typical trajectory
dataset would have ∼2M GPS points with ∼1.5M distinct points.
Such low factor significantly degrades the quality of BERT. (3) Mul-
tiple missing points. BERT usually aims to find one missing word in
a statement, while trajectory imputation may need to find several
missing points between two known points. Kamel overcomes these
challenges through its five main components, Partitioning, Spatial
Constraints (both address the spatial awareness challenge), Tokeniza-
tion, Detokenization (both address the training factor challenge), and
Beam Search (addresses the multiple missing points challenge).

This demo lets conference attendees experience Kamel in action.
conference attendees will be able to upload trajectory data to Kamel
and see how it partitions and trains its models, then use them to
impute sparse trajectories accurately. To have an interactive demo,
attendees can select different trajectories to impute, inspect im-
puted points on the map, and compare them with the ground truth
and other baseline results. To help attendees understand Kamel
internals, they will be able to change the system parameters to see
their effect on the overall accuracy. They will also be able to "debug"
Kamel components through a list of execution steps that they can
click on to see their input and output on the map.
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Figure 1: Kamel Architecture

2 KAMEL ARCHITECTURE
Figure 1 depicts the architecture of Kamel. There are two types of
inputs to Kamel: (1) training data: batches of trajectories that can
be used to update or enrich Kamel models. (2) sparse trajectories:
which needs to be imputed and can be sent either in bulk or as a
stream of incoming trajectories. The output of Kamel is the set of
imputed dense trajectories that correspond to the sparse input ones.
Kamel uses BERT as a core component which is depicted as a black
box at the bottom of Figure 1. All input goes to the Tokenization
component (Section 3) which addresses the data ratio challenge by
converting each GPS trajectory into a series of tokens. These tokens
go to the Partitioning component (Section 4) which addresses the
spatial awareness challenge via maintaining multiple BERT models
where each model serves a specific geographical area. For tokens
from training trajectories, it decides whether to create a new model
or enrich one of its existing ones, and calls BERT accordingly. For
tokens from sparse trajectories, it finds out which BERT model
needs to be called to impute each gap, and calls it to get a list of
possible tokens with their probabilities. These tokens go through
the Spatial Constraints component (Section 5) which injects spatial
awareness into BERT output by rejecting any token that is spatially
infeasible. Accepted tokens then go to the Beam Search component
(Section 6) which addresses the multiple missing points challenge
via finding a sequence of tokens that fill the gap with the highest
probability. This sequence goes to the Detokenization component
(Section 7) which accurately converts each token into a GPS point,
and finally returns the output dense trajectory.

3 TOKENIZATION
One challenge of using BERT in Kamel is the low training fac-
tor due to the large number of distinct GPS points in a trajectory
dataset compared to the number of distinct words in a word corpus
that BERT typically trained with. To address this, the Tokenization
component partitions the space into small cells, each considered
as a token that represents all points within it. Then, trajectories
are presented as sequences of cells instead of sequences of points.
Hence, BERT can be fed with a set of distinct cells instead of distinct

points. This significantly raises the training factor in a dataset and
addresses the challenge. To this end, two techniques are employed:
Hexagonal Cells. Kamel uses a flat hexagonal grid structure based
on Uber’s H3 Hexagonal Hierarchical Spatial Index [3]. Basically,
the whole world geographical area is divided into a set of non
overlapping hexagons. The rationale for using hexagons over the
traditional rectangular partitioning is: (1) A hexagonal grid provides
a regular neighborhood structure, where all neighboring cells have
identical features in terms of centroid distances and shared edges
between them, which is more suitable for the case of predicting
transitions between cells, and hence trajectory imputation, (2) Most
applications that use rectangular grids mainly do so due to its
hierarchical structure, where it is not as simple to make a hierarchy
of hexagons. However, in the imputation process, we really do not
need a hierarchy, and hence we do not have to be tied to rectangular
cells, and (3) The cost of mapping a point to its hexagonal cell has
the same order of mapping a point to a rectangular cell, so, we are
not sacrificing efficiency here while using a hexagonal grid.
Cell Size. The cell size achieves an unusual tradeoff between the
total number of tokens and the precision of imputed trajectories.
Large cell size means fewer distinct tokens, and hence a better
ability to employ BERT. Yet, given the cell size is large, the imputed
cells would not well represent actual trajectories. This may call for
having small cells. However, very small cell size highly increases
the number of distinct tokens, which may not work well with BERT.
The Tokenizaiton module employs a cell size selection strategy to
decide on the right cell size for newly incoming training datasets.

4 PARTITIONING
The Partitioning component is responsible for injecting spatial
awareness in the training process of BERT model within Kamel. It
receives the input batches of training data and partitions them into
spatially related parts to ensure BERT learns properly and achieves
good accuracy. It continuously maintains models by partitioning
and updating them as needed when new related data arrive. Each
partition is used to train a model that serves a specific geographical
region. This component consists of the following two modules:
Partitioning Policy. This module receives batches of trajectories
for training. For each batch, it decides to take one of three possible
actions: (1) Create New Model: when trajectories cover a completely
new geographic area that Kamel has no prior model for, (2) Enrich
Existing Model, when trajectories cover an area that significantly
overlaps with one of the current areas that Kamel already has a
model for, (3) Merge Existing Models, when trajectories cover an
area that is kind of adjacent (or has a little overlap) to one of the
existing areas that Kamel has a model for.
Models Repository. This module maintains all trained models in
disk, indexed by a QuadTree for efficient access. It executes spatial
queries to retrieve trained models based on a query bounding box.

5 SPATIAL CONSTRAINTS
As BERT is not really spatially aware, it may end up in produc-
ing imputed trajectories that are not spatially feasible. Hence, the
Spatial Constraints component is responsible for injecting spatial
awareness in the output part of BERT, before passing it to the next
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Figure 2: Scenario 1: Upload Data and Impute Trajectories
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Figure 3: Scenario 2A: Parameters Tuning (Single Trajectory)

component (Beam Search). It basically receives BERT output as a
set of candidate imputed tokens, and rejects some of them that do
not satisfy a list of preset spatial constraints, as follows: (1) to avoid
cycles in the imputed trajectory, a token should not appear more
than once in the imputed path, and (2) An imputed token should
be within a threshold of the spatial proximity of both endpoints
of the imputed segment. The threshold is computed based on the
segment temporal length, taking into account that a vehicle can
only travel a limited distance for a given period.

6 BEAM SEARCH
While BERT is designed to find one missing word, which is equiva-
lent to finding one missing point in sparse trajectories, an imputed
trajectory would need to find multiple points between each two
consecutive points. The Beam Search component addresses this
challenge by computing the joint probability for a sequence of
multiple tokens together and searches for the sequence with the
highest probability. To do so, the Beam Search component receives
the output tokens from the Spatial Constraints component and it-
eratively calls BERT (i.e., appending the received output to the
input of the next call) to receive new candidate tokens, and so on
to form a sequence of tokens. It computes their joint probability
by multiplying the probability of each token, which is provided by
BERT after each call. Beam search is closely similar to breadth-first
search, but keeps only the top 𝐵 results instead of all results. 𝐵 is a
parameter as a trade-off between accuracy and computational cost.

7 DETOKENIZATION
The output of the Beam Search component is imputed trajectories,
where each trajectory is presented as a sequence of tokens (hexag-
onal cell IDs) instead of a sequence of points. The Detokenization
is responsible for converting this back to a sequence of points and
sending it directly to the users as Kamel output. The Detokenization
component employs the following three options for its process:
Cluster Centroid. Form several clusters from training points
within a cell based on their travel direction and then use the cen-
troid of the most likely cluster. The rationale for this is that when
a cell covers multiple roads or an intersection, points are highly
likely to have different directions. Choosing the target point this
way makes it close to the road that has a similar direction.

Data Centroid. If there is not enough data to form and support
different clusters, we use the centroid of all the points in the cell
as one cluster. This is because most cell space is likely to be empty
except for only a few bands or lines of points along the roads
covered by this cell. Taking the centroid of these points helps in
making the target point somewhere close to these few roads.
Cell Centroid. If there is absolutely no enough data to form clus-
ters, we fall back to picking the centroid of the cell area.

8 DEMO SCENARIOS
This section shows several demo scenarios where the conference
attendees can interact with Kamel to understand its operations
from the point of view of: (a) Regular users who just need to use
the system to impute their sparse trajectories, and (b) Researchers,
developers, and practitioners who want to understand the system
internals. Since model training is an offline process that takes signif-
icant time, we will provide pretrained models for several trajectory
datasets in advance to ensure interactivity. Then, the demo will be
mainly based on Porto Dataset [12] with 1.7M trajectories for real
taxi trips in the city of Porto, Portugal, driven for a total length
of ∼8.8M km, with ∼83M GPS points spanning an area of ∼500
𝑘𝑚2. However, conference participants can use any trajectory data
they would like, especially for the online imputation, which they
can upload in CSV format (trajectory ID, latitude, longitude, and
timestamp), or even draw as sparse trajectories on the map.

8.1 Scenario 1: Trajectory Imputation
Figure 2 depicts the user interface of this scenario, which lets demo
attendees experience the actual usage of Kamel: train it and then
use it to impute sparse trajectories. On the left panel, attendees can
see the list of models currently maintained by Kamel along with
a small map preview of their partitions. Attendees can also feed
Kamel with additional training trajectories (data and pre-trained
models will be provided for interactivity) and see how it adjusts
its partitions, accordingly. For example, when Kamel has a trained
model for Minneapolis city and the uploaded data contain new
additional trajectories in the same city, then attendees will see the
chosen action as Enrich Existing Model. Yet, if the uploaded data is
for Saint Paul, which is an adjacent city to Minneapolis, then the
partitioning action will be the Merge Existing Models.
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Figure 5: Scenario 3: System Internals

On the right panel of Figure 2, attendees can provide trajectories
to impute either by selecting from the list of available trajectories,
uploading new test trajectories, or creating a new one by plotting
sparse points on the map. Attendees will see the imputed trajectory
plotted on the main map in the center, and can inspect its newly
added points. They can also decide to override the default model
that matches the trajectory geographic area with another model.
This will help to see how the accuracy can be degraded if a wrong
model is picked up for imputation. The output of different baselines
will also be shown on the map in different colors as a means of
comparison with Kamel and ground truth (if available).

8.2 Scenario 2: Parameters Tuning
This scenario aims to help demo participants understand the impact
of various parameters on the accuracy of the trajectory imputation
process in Kamel, for both a single trajectory (Figure 3) and a set of
trajectories (Figure 4). On the left panel, for both cases, participants
can change Kamel parameters, hexagon size, beam size, and the
detokenizer options, and check the imputation result accordingly,
on the main map. Participants can experiment with increasing the
beam size and/or cell size until finding optimal values at which the
accuracy does not change significantly. For the case of a trajectory
dataset (Figure 4), participants can also get various accuracy metrics
computed for the whole dataset, plotted in a chart on the right panel.
This includes recall, precision, F1 score, and failure Rate, which
would help participants quantify the effect parameters tuning.

8.3 Scenario 3: Visualize Internal Execution
This scenario is mainly for system researchers who are interested
in knowing more about the system kernel works. Figure 5 depicts
the user interface of this scenario, where the left panel breaks down
the imputation procedure into a series of steps, including: "Get Tra-
jectory Tokens", "Look Up a Corresponding BERT Model", "Invoke
BERT Model", "Check Spatial Constraints", "Append Token", "Com-
pute the Sequence Joint Probability", "Detokenize the Sequence".
Demo participants can click on any step to visualize it in the main
map and see its inputs, outputs, and all its other related information.
For example, the demo audience can click on the "Get Trajectory To-
kens" step to see the input GPS points and their respective hexagons
highlighted on the map, or click on the "Invoke BERT Model" step

to see the input that is being sent to BERT, how it is formatted,
where the gap is placed between the input (the missing part that
BERT is asked to predict), and the returned tokens from BERT and
their probabilities, all highlighted on the map and described on the
info box beneath it. This is similar to looking at a query pipeline
and seeing the intermediate results between query operators.

For steps that repeat (i.e., loop) such as "Beam Search" or "Invoke
BERT Model", there is a numerical counter next to such steps where
participants can increase/decrease to execute the next/previous
iteration, or directly type in the number (i.e., 2 or 3) to indicate the
iteration they would like to visualize. This explanation or debug-
ging style allows the conference audience to greatly understand
and comprehend the ideas behind Kamel and how its components
integrate with each other to provide accurate imputation results.
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