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A B S T R A C T   

Watersheds act as low-pass filters, damping and attenuating climatic signals as water moves through the surface and subsurface. This is a well observed phenomenon; 
however, the ways in which watershed properties control the nature of this filtering are less well documented, especially with respect to groundwater surface water 
interactions. Here, we use a physically based groundwater surface water model to simulate idealized hillslope ensembles with varying watershed properties (hillslope 
slope, hydraulic conductivity, and precipitation magnitude) to quantitively explore the impact of watershed configuration on temporal filtering in both the surface 
and subsurface. To limit the complexities of this system an idealized titled-v domain is used. Multi-decadal simulations (95 years) are run, and then power spectral 
densities and transfer functions are used to quantify the temporal dynamics and damping of each simulation. Overall, we show that the degree of filtering and the 
degree of signal transformation is controlled by the total time spent in the subsurface and the degree of groundwater surface water exchanges. The ratio of pre-
cipitation to hydraulic conductivity controls the partitioning between infiltration and runoff. Greater infiltration results in less filtering in the subsurface and more 
filtering in streamflow. For a given precipitation conductivity ratio, deeper water table depths lead to greater streamflow filtering for periods less than 5 years. For 
time periods greater than 5 years the streamflow filtering is most strongly related to hydraulic conductivity which controls the baseflow dynamics. The majority of 
the input signal is filtered in the subsurface for short periods less than one year. For longer time scales, hydraulic conductivity is found to be the primary control of 
filtering and power shift taking place in the subsurface with larger conductivities correlated to less filtering and less of a signal transformation. Deeper water table 
depths lead to more signal transformation in saturated storage but are not correlated to filtering in unsaturated storage. This is likely due to counteracting effects of 
higher conductivity (which decreases filtering) and deeper water table depths (which increase filtering).   

1. Introduction 

Watersheds can be conceptualized as a series of filters that damp and 
attenuate climatic signals. Precipitation signals (i.e., watershed inputs) 
are often considered to be white noise (Delworth & Manabe, 1988; Katul 
et al., 2007); however, the resulting watershed outflow time series are 
more organized with greater memory, and decreased noise. Input signals 
get progressively filtered as they move through the watershed system 
resulting in decreased high frequency variability moving downstream 
along a river or working down into the subsurface (Li & Zhang, 2007; 
Matsoukas et al., 2000; Yang et al., 2018). 

While high frequency filtering is a well observed phenomenon 
(Delworth & Manabe, 1988; Katul et al., 2007; Xiuyu Liang et al., 2016) 
the watershed characteristics which control the properties of this 
filtering are less well understood and often difficult to parse out in real 
world, complex systems (Sauquet et al., 2008). Previous work has uti-
lized both numerical and observational data to demonstrate this filtering 
(Katul et al., 2007; Li & Zhang, 2007; Matsoukas et al., 2000; Pandey 
et al., 1998; Yang et al., 2018; Zhang & Yang, 2010); however, consid-
ering integrated groundwater behavior with numerical simulations has 

not yet been quantitatively explored. 
As noted above, filtering occurs progressively as signals propagate 

through watersheds resulting in a spectral shift towards low frequency 
variability. Streamflow responds almost immediately to precipitation 
and as a result precipitation generated runoff has a greater variance and 
is more representative of the climatic input than other hydrologic sig-
nals. Still, filtering and signal transformations do occur as this precipi-
tation works its way through the stream network and slow processes like 
baseflow further smooth the streamflow time series. As a result, 
streamflow still exhibits filtering of the high frequency variability and 
longer memory than precipitation (Gall et al., 2013; Guan et al., 2011; 
Pandey et al., 1998; Sauquet et al., 2008; Tessier et al., 1996). 

The subsurface is one of the most significant sources of damping in 
the system. It has been demonstrated that the white noise precipitation 
signal gets reddened as the high frequencies are damped even in shallow 
soil moisture time series (Delworth & Manabe, 1988; Katul et al., 2007; 
Vinnikov et al., 1996). As we move deeper into soil profile the soil 
moisture variability and correlation with climatic signal decreases 
indicating greater buffering as high-frequency fluctuations are damped 
(Amenu et al., 2005; Entin et al., 2000; Manfreda, 2007; Wu et al., 
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2002).  It has been shown that the decay time scales (time for a signal to 
decrease to 1/e its original signal) of soil moisture as well as the tem-
poral scaling both increase with depth in the subsurface (Wu & Dick-
inson, 2004; Yang et al., 2018). Moving deeper into the subsurface, the 
temporal scaling continues to increase with depth (Yang et al., 2018) 
and subsurface acts as a fractal filter (Li & Zhang, 2007; Yang et al., 
2018; Zhang & Schilling, 2005). 

While the general trends of increased filtering and reddening of the 
signal with depth are well established, the impact of watershed char-
acteristics on this behavior is less well understood. Many observational 
studies of streamflow have found that there is temporal scaling present 
in the streamflow spectra and that there exists a breakpoint or crossover 
point where the scaling exponent shifts (Gall et al., 2013; Guan et al., 
2011; Pandey et al., 1998; Sauquet et al., 2008; Tessier et al., 1996); 
however, the value of the scaling exponent of streamflow and the fre-
quency of the break point vary from study to study based on the tem-
poral resolution of the data and the differences in the catchments 
studied.  Some studies have found that basin size does not affect the 
spectral scaling of stream flow over a large spread of basin sizes (Pandey 
et al., 1998; Tessier et al., 1996). While another study found the size of 
the drainage area does affect the scaling parameters (Özger et al., 2013). 

Similarly, several studies have explored the controls of temporal 
scaling in groundwater. Condon and Maxwell (2014) compared scaling 
responses of latent heat and water table depth to changes in irrigation. 
They found both that water table depth exhibited more scaling than 
latent heat and that breaks in scaling for the water table depth depended 
on proximity to the river. Areas more closely connected to the river had 
breaks in scaling whereas other areas did not have scaling breaks. Zhang 
and Li (2005) used a 1D transient model with both homogenous and 
heterogenous hydraulic conductivities to look at the temporal scaling of 
groundwater head. They found that switching between the two sub-
surface configurations has little effect on the scaling factor of ground-
water head. In Xiuyu Liang and Zhang (2013), a bounded unconfined 
aquifer was investigated by developing a theoretical formula for the 
input and output spectra of their domain. They found that the charac-
teristic time of an aquifer controls the scaling of the hydraulic head 
which is a function of both the drainage area, hydraulic conductivity, 
and specific yield. Related studies (X. Liang & Zhang, 2015; Xiuyu Liang 
et al., 2016) found that while heterogeneity and boundary conditions 
affect the hydraulic head scaling, the areal recharge has a more signif-
icant influence. Furthermore, Zhang and Yang (2010) systematically 
altered hydraulic conductivity for a watershed simulation using MOD-
FLOW 2000 to explore connections between conductivity and temporal 
scaling in the subsurface. They found that the influence of hydraulic 
conductivity on groundwater head scaling varied based on the scenario 
(constant river stage vs varied river stage and homogeneous vs hetero-
geneous subsurface). For the homogenous scenario with constant river 
stage, it was found that as K increased the groundwater head spectra 
shifted down indicating more filtering occurred across all frequencies. 

Still few studies have systematically explored the impact of 
groundwater and groundwater surface water interactions on temporal 
scaling and memory across both surface and subsurface systems. 
Conceptually, we expect groundwater configuration to influence 
streamflow scaling. We know that water table configuration and 
groundwater fluxes are dependent on topography, recharge rate, and 
hydraulic conductivity (Freeze & Witherspoon, 1967; Gleeson & 
Manning, 2008; Gleeson et al., 2011; Haitjema & Mitchell-Bruker, 2005; 
Reed M Maxwell et al., 2016; Tóth, 1963). High recharge rates, low 
hydraulic conductivities, and shallow topography generally cause 
shallower water tables. Whereas low recharge rates, high hydraulic 
conductivities and steep topography generally cause deep water table 
depths. Furthermore, its established that shallow water tables lead to 
more local flow paths and deeper water tables lead to more regional flow 
paths (Freeze & Witherspoon, 1967; Gleeson & Manning, 2008; Hait-
jema & Mitchell-Bruker, 2005; Tóth, 1963), and we would expect to see 
greater damping for longer flow paths than shorter flow paths (Li & 

Zhang, 2007; Yang et al., 2018). 
Due to the complexity, heterogeneity, and interconnectedness of 

watersheds, the controlling characteristics of the temporal scaling in a 
watershed can be difficult to isolate. This study builds upon this previous 
research, by using a simple idealized tilted-v watershed domain and a 
fully integrated hydrology model to quantify changes in temporal 
scaling as a function of both surface and subsurface watershed charac-
teristics. There are many interesting hydraulic components which could 
be analyzed, in this research we elect to explore the scaling behaviors in 
streamflow, soil moisture, unsaturated and saturated groundwater 
storage and compare the dynamics of these system components as well 
as the varying impacts of watershed characteristics on their signal 
transformation and filtering properties. 

2. Methods 

An ensemble of idealized simulations was designed to investigate the 
relationship between watershed properties, signal filtering and memory. 
The simulations were run using an idealized tilted-v domain (Section 
2.1) and an integrated physical hydrology model ParFlow (Section 2.2). 
Adjustable parameters of the watershed such as hydraulic conductivity, 
precipitation, and topographic slopes (Section 2.3) were altered to 
develop an ensemble of simulations (Section 2.4). Hydrologic responses 
from the simulations such as streamflow, storages, water table depth 
were calculated for each of the runs (Section 2.5) and the temporal 
dynamics of the simulations were then quantitatively evaluated using a 
range of spectral methods, including power spectral density (Section 
2.6) and transfer functions (Section 2.7). Finally, memory metrics were 
computed to compare the input precipitation time series with the 
resulting streamflow and storage time series (Section 2.8). 

2.1. Baseline Configuration 

In order to investigate the hydrologic controls of filtering, we chose 
this simple watershed design so we could systematically manipulate the 
characteristics with a small number of parameters, and because the 
tilted-v domain is a commonly used benchmark problem in hydrology 
(Carlier et al., 2018; S. Kollet et al., 2017; Reed M. Maxwell et al., 2014; 
Rahman et al., 2019). The tilted-v (shown in Fig. 1) has two hillslopes of 
equal length and width (2000m) with a river channel (40m) running 
between the two hillslopes and is of uniform thickness (100m). The 
domain was discretized into cells with lengths and widths of 40m (dx =
dy = 40m) and thicknesses of 2.5m (dz = 2.5m). The slope of the two 
hillslopes (HS) varied while the slope along the axis of the river, River 

Fig. 1. A conceptual schematic of the idealized tilted-v domain of two hill-
slopes and river channel. 
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Slope (RS), was constant at 0.01. The subsurface was kept homogenous 
for this study, with the same subsurface properties used for both the 
channel and hillslope as has been implemented in previous tilted-v 
studies (S. Kollet et al., 2017; Rahman et al., 2019). Additionally, for 
all simulations, the porosity is 0.4 and the Van Genuchten parameters 
are alpha equal to 6 and n equal to 2. These additional parameters for the 
subsurface parameters can alter the domain’s response; however, they 
were unchanged in this study. 

2.2. Hydrologic Model and Boundary Conditions 

All the simulations were run using the integrated physical hydrologic 
model ParFlow, which solves three-dimensional variably saturated 
groundwater flow and surface water flow. The subsurface is simulated 
with Richards Equation and overland flow is simulated using the two- 
dimensional kinematic wave equation. The details of ParFlow are pro-
vided in Ashby and Falgout (1996), Jones and Woodward (2001), S. J. 
Kollet and Maxwell (2006), and Reed M. Maxwell (2013). We chose to 
use an integrated hydrologic model because we want to explore the role 
of subsurface buffering on streamflow dynamics. Therefore, it is 
important to select a hydrologic model which simulates lateral 
groundwater flow and captures the dynamics of groundwater-surface 
water interactions. With ParFlow, there is a terrain following grid op-
tion which was implemented in this study with the assumption that our 
100m domain is sufficiently deep for this configuration to not affect the 
results. 

For our simulations, the surface boundary conditions of the tilted-v 
domain included is a free surface overland flow boundary condition. 
In the subsurface, no flow boundary conditions were implemented 
across the domain with the surface being the only outlet in the system. 
ParFlow fully integrates the groundwater surface water systems with a 
free surface overland flow boundary condition. This approach dynami-
cally swaps to solving the overland flow equations when and wherever 
the pressure is greater than zero at the land surface. This boundary 
condition allowing groundwater-surface water interactions to evolve 
dynamically over the course of a simulation (i.e. for streams to form and 
disappear depending on saturation levels). Tilted-V domains similar to 
the one being used here have been thoroughly validated in previous 
model benchmarking and intercomparison studies (S. Kollet et al., 2017; 
Reed M. Maxwell et al., 2014), and are included in ParFlow’s standard 
test suite. 

2.3. Adjustable Parameters 

The conditions outlined in Section 2.1 and Section 2.2 remained 
constant throughout this study and across all the simulations in the 
ensemble that was created. Three model parameters were adjusted as 
follows to better understand their influence of the power shift on the 
input precipitation signal;  

1 Three hillslope (HS) values were used; 0.02, 0.05, and 0.08. These 
values are consistent with other hillslope or tilted-v studies (Bearup 
et al., 2016; Reed M. Maxwell, 2010; Mikkelson et al., 2013).  

2 Hydraulic conductivity (K) values range from 0.5 to 15 m/day. This 
range was selected to span common literature values for K.  

3 Five precipitation scalers (Pscale) were tested: 0.1, 0.25, 0.5, 0.75 
and 1. Pscale values are applied by simply multiplying the entire 
precipitation time series by this value. 

Our approach treats the precipitation signal as an approximately 
“white noise” input signal (the slope of the log-log periodogram for this 
signal is 0.12), and our goal is to study its evolution through the 
watershed. It should be noted that other processes like evapotranspira-
tion and snowpack would also modify the input moisture signal to a 
watershed. For the purposes of this study, we don’t consider this input 
signal variability though. We focus on the ways in which topography 

and geology transform a white noise input. 
Our full ensemble includes 59 simulations and is outlined in Table 1. 

We test every Pscale and HS combination; however, we run transient 
simulations only for the K values that resulted in reasonable ground-
water configurations in our initial spin up runs (i.e. water table depths 
with minimal ponding occurring outside the river, and where there was 
still sufficient water for a river to form). 

2.4. Ensemble Spin-up Protocol and Transient Simulations 

For each simulation, the following ‘spin-up’ protocol was followed to 
initialize the groundwater configuration. First, we run 100-year simu-
lations with a daily time step and a constant precipitation forcing equal 
to the long-term average of precipitation to reach steady state ground-
water configurations. Next, using the water table configurations from 
the steady state simulations as the initial condition, an additional 30- 
year transient spin up simulation was run with the first two years of 
the full precipitation time series being repeated 15 times, also with a 
daily timestep. 

After the transient spin ups were complete 95-year transient simu-
lations were run utilizing a historically based precipitation time series 
applied uniformly over the domain. Here too all simulations are 
completed with a daily timestep. The original precipitation time series is 
a 95-year daily record from rain gauge data from Fredonia, NY from the 
climate Data Online database through the NOAA National Centers for 
Environmental Information. This dataset was selected because it had a 
continuous record of rainfall measurements for a sufficiently long re-
cord. As previously discussed, the precipitation time series was altered 
by multiplicative factors of 0.1, 0.25, 0.5. 0.75. and 1. It is important to 
note that evapotranspiration was not modeled in this study as we used 
this precipitation time series to represent a white noise input signal. 

2.5. Model output calculations: Streamflow, Storage, and Soil moisture 

From the ParFlow model outputs, several time series and metrics 
were directly calculated from the ParFlow simulation gridded outputs of 
pressure and saturation. The methods for each of these calculations are 
outlined individually. 

Streamflow: For each daily timestep of the transient simulations, the 
streamflow leaving the domain was calculated. Streamflow is the sum of 
any overland flow exiting the domain at any cell along the bottom edge 
(y = 0) with the overland flow formulation Eq. 1: 

Q =

⎛

⎜⎜⎝P5/3 ∗ Sy̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2 (Sx2 + Sy2)

√

⎞

⎟⎟⎠

/
n ∗ dx, (1)  

where Q is the daily streamflow (m3/d), P is the ponded pressure head of 

Table 1 
Complete ensemble of simulations.  

Slope of Hillslope 
(HS) 

Precipitation Factor 
(Pscale) 

Hydraulic Conductivity (m/ 
d) 

0.02 0.1 1, 1.5, 2, 5, 10 
0.02 0.25 1, 1.5, 2, 5, 10 
0.02 0.5 1.5, 2, 5, 10 
0.02 0.75 2, 5, 10 
0.02 1 5, 10 
0.05 0.1 0.5, 1, 1.5, 2, 5 
0.05 0.25 0.5, 1, 1.5, 2, 5 
0.05 0.5 1, 1.5, 2, 5, 10 
0.05 0.75 1, 1.5, 2, 5, 10 
0.05 1 1.5, 2, 5, 10, 15 
0.08 0.25 0.5, 1, 2, 5 
0.08 0.5 0.5, 1, 1.5, 2, 5 
0.08 0.75 1, 1.5, 2, 5, 10 
0.08 1 1, 2, 5  
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the cell (m), Sx and Sy are the slopes in the x- and y- direction, n is 
manning’s coefficient, and dx is the cell width in (m). 

Storage: The total storage (m3) of the domain was calculated at each 
timestep as the sum of subsurface storage, both saturated and unsatu-
rated, as well as surface storage. Surface storage found by multiplying 
the cell area (dx * dy) by the pressure value for each cell with ponded 
water. For the subsurface storage the saturation was multiplied by the 
porosity (0.4) and then by the cell volume (dx * dy * dz) to find the 
volume of incompressible storage in each cell. Subsurface storage is 
divided into several components for analysis:  

- Soil Moisture Storage: The storage in the top 2.5m of the domain (i. 
e., just the top layer). Note that this can include both saturated and 
unsaturated grid cells.  

- Saturated Storage: The storage in cells with a saturation value of 1. 
The location of these cells may change over the course of the simu-
lation as the subsurface drains and fills thus there is not constant 
spatial definition here.  

- Unsaturated Storage: The storage in cells with saturation values less 
than 1. 

Water Table Depth (WTD): For each simulation, the WTD was calcu-
lated for each timestep as the average distance from the surface to the 
water table for the entire domain. These values were then averaged 
across the time series of the whole simulation so that there is a single 
WTD value for each simulation. 

2.6. Power Spectral Density 

Power Spectral Densities (PSDs) and power spectra are established 
methods to explore the temporal scaling behavior of physical and 
chemical watershed signals. Previous researchers have applied spectral 
methods to analyze the temporal scaling behavior of streamflow (Gall 
et al., 2013; Guan et al., 2011; Pandey et al., 1998; Sauquet et al., 2008; 
Tessier et al., 1996), soil moisture (Amenu et al., 2005; D’Odorico & 
Rodrıǵuez-Iturbe, 2000; Wu et al., 2002), water table depth (Condon & 
Maxwell, 2014), hydraulic head and groundwater well levels (Li & 
Zhang, 2007; Schilling & Zhang, 2012; Zhang & Li, 2005; Zhang & 
Schilling, 2004; Zhang & Yang, 2010), latent heat (Condon & Maxwell, 
2014; Little & Bloomfield, 2010), chemical responses (C. J. Duffy & 
Gelhar, 1985; Christopher J. Duffy & Gelhar, 1986), chloride concen-
trations (Kirchner et al., 2000), and nitrogen concentrations (Zhang & 
Schilling, 2005). 

Essentially this approach consists of a Fourier transform to shift time 
series to the frequency domain (as illustrated in Fig. 2). The power 
spectral density (PSD) represents the power of the signal present at each 

frequency and it squares the magnitude of a discrete Fourier transform. 
Higher values in the power spectrum indicate that a given frequency is 
contributing more to the variance in the signal. 

There are numerous methods to estimate the PSD of a time series. 
Here, the PSD of the input (precipitation) and output (streamflow, un-
saturated storage, and saturated storage) time series were generated 
utilizing the Scipy signal.periodogram function in Python and applied 
the “Hann” window. In order for the PSD to not be a function of the size 
of the storage values, the PSDs were normalized by the maximum PSD 
value so that each periodogram had a range of 0 to 1; however, we did 
not normalize the areas under the curves. 

2.7. Transfer functions 

Transfer functions (TF) are a method to quantify the differences 
between two power spectral densities. Here we use this method to 
explore shifts in the temporal dynamics between the input precipitation 
signal and the simulated streamflow. Transfer functions have been 
applied in hydrologic context to analytical solutions of aquifer models of 
varying complexity (Gelhar, 1974; Russian et al., 2013) and have also 
been used for parameter estimation (Pedretti et al., 2016). Traditionally, 
transfer functions are derived from stationary linear systems. This is of 
course not true for hydrologic systems. However, our goal is not to 
derive transfer functions that can fully describe the system. Rather, we 
are simply using the transfer function as a method to investigate the 
controls of signal filtering. Our method of calculating transfer functions 
from the input PSD and output PSD is consistent with Pedretti et al. 
(2016) and Schuite et al. (2019).The transfer function is calculated as 
the ratio of the PSD of the output signal to the input signal (Pedretti 
et al., 2016; Schuite et al., 2019) as in Eq. 2: 

TF = PSDoutput

PSDinput
, (2)  

where the output is the streamflow PSD, and the input is the precipita-
tion PSD for the same frequency range. Here the Transfer Function is 
first calculated across all frequencies in the PSDs and is then smoothed 
using a simple moving average following the approach of (Schuite et al., 
2019). Here we also average the TF across specific period windows of 
interest (3-14d, 14d-3m, 3m-1y, 1-5y, 5-10y, 10-30y) to provide sum-
mary metrics of high and low frequency damping. 

2.8. Soil Moisture and Total Storage Memory 

In addition to spectral methods which can provide information about 
individual timescales of variability, memory metrics can provide an 

Fig. 2. Conceptual workflow of how the periodograms, transfer function, and transfer function averages were calculated from the streamflow and precipitation 
signals. The red lines on the transfer function show the range of the window averaged for finding the boxed value in the bar plot. 
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intuitive way to quantify overall signal persistence. The memory of a 
hydrologic variable is generally a measure of how that variable is likely 
to evolve in time and the timescale at which an anomaly is likely to 
persist. There are many ways to calculate memory; for example, calcu-
lating the time needed for an anomaly to dissipate using an autocorre-
lation calculation, finding the mean persistence time or length of time 
the value spends over a certain threshold, or calculating remaining 
precipitation fractions (FP). 

For this study, the surface storage, total storage, and soil moisture 
storage memory were evaluated by calculating the fraction of precipi-
tation anomalies (FP) that remain after a given time lag as presented by 
McColl et al. (2017). More specifically, the remaining precipitation 
fraction is defined as the ratio of positive changes for a given storage 
time series (e.g., soil moisture) divided by the total amount of precipi-
tation. In this study, FP was calculated for the time series of both soil 
moisture storage and total storage. For a given time series (f), the 
calculation for FP is found using Eq. 3 for a storage moisture time series 
(θ) with T timesteps (days): 

FP(f ) =
∑ fT

i=1 Δθi+∫ T
0 P(t)dt

, (3)  

where Δθi + is the positive change in the soil moisture (Δθi + = 0when 
there is no change or a negative change in storage), dt is the frequency of 
the time series (1 once per day), and the denominator is the total pre-
cipitation across the domain for the entire time series. The sampling 
frequency (or time lag), i, was altered by changing the number of days 
between the positive changes in soil moisture. Note that FP is dependent 
on the frequency that the time series is sampled, which corresponds to 

the time lag that is being evaluated (i.e., the value of i). Here we 
calculate FP over a range of memory sampling frequencies (or time lags) 
to explore how much of the signal is left at various time scales. FP was 
calculated at the sampling frequencies of 1, 2, 3, 5, 7, 10, 14, 30, 60, and 
90 day(s). For a memory sampling frequency of 1 day the Δθi + is 
calculated between each day whereas for a memory sampling frequency 
of 7 days the Δθi + value would only be calculated each 7 days. 

We selected this approach based on the findings of (McColl et al., 
2017) who compared the FP method to various other memory metrics 
and demonstrated that many of the historically used methods, such as 
autocorrelations with fixed time lag, overestimate soil moisture mem-
ory. Additionally, we could readily apply the remaining precipitation 
fraction method to other time series other than soil moisture such as 
total storage. 

3. Results 

3.1. General trends 

Three representative cases are selected in Fig. 3 to illustrate a range 
of response behaviors in the surface and subsurface for a given precip-
itation input. For every simulation in Fig. 3, there are increases in 
structure and reddening of the signal from the initial noisy precipitation 
input moving through the domain from streamflow to soil moisture, 
unsaturated storage, and finally saturated storage. This illustrates the 
increased filtering that occurs with depth as signals move through the 
subsurface and more energy is removed. In all three of the saturated 
storage signals shown in Fig. 3, hourly and daily variability is almost 
entirely absent. 

Fig. 3. a) Precipitation input time series for the three selected simulations with Pscale equal to 0.25. The output time series include b-d) streamflow, e-g) soil 
moisture, h-j) unsaturated storage, and k-m) saturated storage for three simulations with varying K and HS values and the same Pscale value of 0.25 (left column: K =
0.5, HS = 0.08, middle column: K = 10, HS = 0.02, right column: K = 1.5 HS = 0.02). 
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The difference between the cases (i.e., columns) shown in Fig. 3 
highlight the impact of watershed characteristics on the filtering pro-
cess. The left (b, e, h, k) simulation has the lowest K value in Fig. 3, 
which causes the most energy to be removed in the subsurface and by 
the time the signal has reached the saturated storage the high frequency 
components of the input signal have been removed and results in the 
smoothest unsaturated and saturated storage signal. Additionally, with 
this lower K value we would expect this system to be the most stable and 
which can be observed as there is an observed attenuation in the peak 
value between 60 and 80 years. 

The center (c, f, i, l) and right (c, g, j, m) simulations are flatter and 
drier than the first column and both have HS values of 0.02 (relative to 
the first case with HS=0.08). The right and left simulations of stream-
flow signals are similar; however, have very different subsurface signals. 
The only difference between the center and right cases are their K 
values. The center simulation has a high K value resulting in a very 
responsive streamflow signal whereas the right simulation has a more 
stable streamflow baseline with larger daily peaks from larger overland 
flow events. When comparing the saturated storages, both the center 
and right simulations have higher K values and therefore have more 
variability in the storage signals less energy is lost as it moves through 
the subsurface. The raw time series of these select simulations illustrates 
qualitatively the impact that watershed properties can have on the de-
gree of filtering and how it varies with depth. 

To evaluate ensemble characteristics more quantitatively, the 
memory of soil moisture, surface storage, unsaturated storage, and 
saturated storage were all calculated using the fraction of precipitation 
(FP) (McColl et al., 2017) at various sampling frequencies. As the sam-
pling frequency decreases (i.e., the time scales increase) the memory 
intuitively decreases (consistent with the idea that signals are dampened 
out over time). The ranges of FP for each sampling frequency across the 
entire ensemble of simulations are plotted in Fig. 4. The surface storage 
is the smallest storage body with the fastest response times; its FP values 
are significantly smaller than the other parts of the system and decay to 
zero much more quickly. 

The subsurface storages (unsaturated, saturated, and soil moisture) 
all have larger values for daily sampling frequencies and maintain 
memory much longer than the surface system. Memory is calculated 
based on the precipitation signal, the unsaturated zone responds most 
quickly to this signal and has the greatest memory due to the long-term 
correlation with the precipitation signal. The soil moisture is the top 
2.5m of the domain and can contain both saturated and unsaturated cells 
and therefore is in-between the saturated and unsaturated storage 
memories. The saturated storage memory drops off more quickly and is 
lower than the unsaturated and soil moisture memories. This is consis-
tent with Fig. 3 where we demonstrate significant dampening in the 
saturated storage component of the system. Also, due to the larger role of 
lateral redistribution that happens with the saturate storage (flow in the 
unsaturated zone is primarily vertical) we expect for the direct 

correlation to precipitation to be weaker in this component of the 
system. 

3.2. Connection between watershed properties and degree of filtering 

Next, we explore how watershed properties affect the temporal 
filtering properties using transfer functions. As described in the methods 
section, we are presenting the average transfer functions over a pre-
selected set of time periods for streamflow, unsaturated storage, and 
saturated storage. It is important to note that in these results, transfer 
functions are used as a method to understand the signal transformation 
of the input signal that takes place. Transfer function values greater than 
one indicate a shift in power or signal transformation whereas transfer 
function less than one indicate filtering has occurred. As is consistent 
with the analysis of Schuite et al. (2019), we showed that the cumulative 
power spectrum for streamflow is expected to asymptote at a value of 
one but other variables, in our case saturated and unsaturated storage, 
approach values greater than one. Base on previous studies such as Yang 
et al. (2018), filtering and memory increase as we move deeper into the 
subsurface. As such, relative to streamflow we expect a larger proportion 
of groundwater signal to be in the longer periods. 

Fig. 5 shows the average transfer function (i.e., portion of the signal 
that is maintained) for the entire time series. The values are colored by 
the ratio of the Pscale over K. This ratio was chosen because it reflects 
the degree of partitioning between runoff and infiltration. Recall the 
larger transfer functions indicate that less filtering has occurred, and 
smaller transfer function values indicate more filtering or signal trans-
formation has occurred. For streamflow (Fig. 5a) steeper hillslopes lead 
to deeper WTD, which in turn correlates to a larger unsaturated zone 
buffer, and greater filtering. Fig. 5a shows three distinct curves 
depending on the slope of the watershed that illustrate this relationship. 
For a given water table depth steeper slopes result in less filtering. 
Additionally, larger Pscale over K ratios lead to more runoff (and smaller 
values leading to more infiltration). Thus, as the Pscale over K ratio 
increases (darker colors in Fig. 5a) there is less filtering due to more of 
the precipitation generating runoff rather than infiltrating. 

Conversely, for unsaturated storage (Fig. 5b) these relationships are 
flipped. Here there is a slight positive relationship between WTD and 
transfer function values (indicating less filtering with deeper water table 
depths). This relationship is much weaker than what was observed for 
streamflow though. Also, we see a positive relationship between the 
Pscale ratio and filtering (i.e., less filtering when the Pscale over K ratio 
is smaller). This makes sense as precipitation partitioning will shift to-
ward infiltration as the Pscale over K ratio decreases leading to greater 
infiltration and a noisier signal in the subsurface. 

Finally, for saturated storage (Fig. 5c) the degree of filtering is much 
greater than unsaturated or streamflow components (roughly an order of 
magnitude higher as can be seen from the x-axis ranges). This is 
consistent with Fig. 3 that illustrated the significant filtering of the 
storage signal. Interestingly, we do not see a relation to WTD for satu-
rated storage. Once again, the Pscale over K ratio color gradient shows 
that as the ratio increases, the filtering increases which is once again due 
to increasing infiltration as the ratio decreases. 

To further investigate the controls of the filtering at different tem-
poral scales, the transfer functions for each metric are binned and 
averaged over periods of interest. Fig. 6 shows the degree of filtering at 
six different period windows for the streamflow signals of the entire 
ensemble. For streamflow less than ~5 years (Fig. 6a-d), there is a direct 
relation between WTD and the amount of filtering that we see; deeper 
water tables lead to more filtering (smaller transfer function values) and 
shallower water tables lead to less filtering. Furthermore, at these pe-
riods less than 5 years, as the Pscale to K ratio increases there is also a 
decrease in the amount of filtering. This indicates that configurations 
with higher precipitation and lower K values have less filtering occur-
ring and is consistent with increased runoff partitioning for infiltration 
excess overland flow when precipitation exceeds the infiltration rate 

Fig. 4. The range of FP values for soil moisture, unsaturated storage, saturated 
storage, and surface storage for sampling frequencies between 1 and 90 days. 
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Fig. 5. The average WTD (m) is plotted versus the average transfer function for every simulation for a) streamflow b) unsaturated storage c) saturated storage. The 
shape indicates slope, and the color indicates the Pscale to K ratio. 

Fig. 6. The average streamflow transfer function values versus the average WTD across six period windows a) 3-14d, b) 14d-3m, c) 3m-1y, d) 1-5y, e) 5-10y, f) 10- 
30y. The color indicates the Pscale: K ratio and the shape indicates the hillslope. 
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controlled by K. For longer periods (greater than 5 years), the rela-
tionship between water table depth and degree of signal transformation 
is less clear. Note, that the TF values especially for the periods over 10 
years for are often greater than one, indicating the power shift rather 
than true filtering taking place. At these longer timescales, there is 
stronger connection to precipitation here with higher precipitation 
correlating to less filtering (i.e., a noisier streamflow signal). 

The same period windows are used in Fig. 7 for the unsaturated 
storage transfer function averages; however, the points are shaded by 
their K values (as opposed to the Pscale/K ratio) because stronger re-
lationships were found for K in this part of the system. For the shorter 
periods, less than 3 months (Fig. 7a, b), there is significant filtering, and 
a very small portion of the original signal remains (less than 1%). Nearly 
all the power at these periods is removed from the signal as it is filtered 
through the subsurface. Generally, for all period windows, filtering de-
creases (i.e., transfer function values increase) as K increases. This 
makes sense because higher K values allow for greater infiltration and 
for the signal to transfer more quickly through the subsurface. 

Looking at the periods greater than 3 months, there is still a positive 
inverse relationship between K and the degree of filtering or signal 
transformation taking place. As with the previous plots, steeper slopes 
lead to deeper water tables. There is not a clear relationship between 
water table depth and filtering for periods less than one year. However, 
for a given water table, higher K values result in less filtering. For the 
longest periods (Fig. 7d, e, f) we can again see distinct trends emerging 
between water table depth and degree of signal transformation for a 
given slope value. The deeper the water table leads to greater TF values. 
This seems counterintuitive as we would expect to see greater filtering 
with depth; however, WTD is also a function of K and indeed we see a 

positive correlation in the coloring with higher K values for the deeper 
WTD of a given slope. Here we are likely seeing the nonlinear impacts of 
increasing K in the unsaturated zone, which is controlling the signal 
transformation and filtering. 

Finally, Fig. 8 shows the degree of filtering or the power shift taking 
place over the six period windows for the saturated storage component 
of the domain. Similar to the unsaturated storage in Fig. 7, the shorter 
periods experience significant filtering and nearly all the power at these 
periods is removed from the signal (less than 1% remains). However, 
since the signal must move through more of the subsurface before 
reaching the saturated storage, and given the dampening impacts of 
lateral flow, even more filtering and damping occurs. For this reason, the 
saturated transfer function values are smaller than the unsaturated 
storage value at all time scales and the periods of significant damping 
includes all periods less than 1 year (Fig. 8 a-c, note that for unsaturated 
storage this was only up to 3 months). 

Focusing on the relationships for periods greater than 1 year, once 
again the filtering is inversely correlated to the K values. Simulations 
with the high K values exhibit the least filtering across all periods in the 
saturated storage. Once again, the slopes are still positively correlated to 
the WTD and for a given WTD, the K value determines the degree of 
filtering. Interestingly though, for a given slope and K value (e.g., the red 
squares or the purple dots in Fig. 8e, f) we now see an inverse rela-
tionship between WTD and TF indicating more filtering or more of a 
transformation with deeper water table depths. This is consistent with 
the idea of increased filtering and more of a power shift in the subsurface 
with depth. As noted above we hypothesize that the nonlinear rela-
tionship between saturation and hydraulic conductivity in the unsatu-
rated zone increases the relative importance of K leading to decreased 

Fig. 7. The average unsaturated storage transfer function values versus the average WTD across six period windows a) 3-14d, b) 14d-3m, c) 3m-1y, d) 1-5y, e) 5-10y, 
f) 10-30y. The color indicates the K (m/d) values, and the shape indicates the hillslope. 
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filtering with increased depths. 
Figs. 6-8, show the controls of the filtering and signal trans-

formations for the entire ensemble. To further illustrate how the 
watershed parameters affect the signal transformation behavior, repre-
sentative cross sections of the ensemble were selected where only a 
single variable is altered. In Fig. 9, only the K values change over an 
order of magnitude as the Pscale and HS values are held constant. For 
the streamflow (Fig. 9a), higher K values lead to more filtering, with the 
strongest relationship occurring for periods less than 5 years. For the 
longest period (10-30y), this relation flips and higher K values lead to 
less filtering for periods 10-30 years. Conversely for both unsaturated 
storage (Fig. 9b) and saturated storage (Fig. 9c), the relation is consis-
tent across nearly all periods with higher K values leading to higher TF 
values. These findings are consistent with what was discussed in Figs. 7 
and 8, and the basic physical controls of these system components. At 

the land surface higher K values lead to more infiltration, less overland 
flow and a larger baseflow component (i.e., greater filtering). Whereas 
in the subsurface the K value controls the flux rates. 

Fig. 10 shows a different cross section where the K and HS values are 
held constant and the Pscale values change. As shown here, both 
streamflow and saturated storage have inverse relations between the 
amount of precipitation and filtering. As the precipitation increases, 
there is less filtering (larger transfer function) across all the scales and 
for all Pscale values. Interestingly, for unsaturated storage (Fig. 10b) this 
is true for Pscale values < 0.5, after which the trend reverses and there is 
actually more filtering for larger Pscale values. For HS, there was a 
larger variety of trends across the cross sections of the full ensemble and 
a single representative trend was not possible. 

Fig. 8. The average saturated storage transfer function values versus the average WTD across six period windows a) 3-14d, b) 14d-3m, c) 3m-1y, d) 1-5y, e) 5-10y, f) 
10-30y. The color indicates the K values, and the shape indicates the hillslope. 

Fig. 9. The average transfer function values for representative K ensembles across six period windows on a log scale for a) streamflow, b) unsaturated storage, c) 
saturated storage. The color indicates the K value with darker blues indicating higher K values. 
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4. Discussion 

Previous research has demonstrated that filtering and damping of the 
precipitation signal increases moving deeper into the subsurface (Li & 
Zhang, 2007; Yang et al., 2018). Here we explore the way that watershed 
characteristics control the degree of signal transformation moving from 
streamflow to unsaturated and saturated storage through a series of 
controlled numerical experiments. It should be noted that the storages 
which we investigated are not independent variables and the dynamics 
of saturated storage depends on infiltration, recharge, and baseflow. Our 
goal in this study is not to fully attribute all sources of variability, but 
rather to understand the interactions between subsurface storage dy-
namics and streamflow. 

In order to achieve well controlled numerical experiments, numerous 
simplifications were made in our models. First, we used a real-world 
precipitation and with this input signal all of the precipitation adjust-
ments are scalers. We did not explore changing precipitation variability 
and instead focus on the ways in which topography and geology trans-
form a white noise input. However, changes in the temporal distribution 
of rainfall events and not just their magnitude would alter the driving 

frequencies of the domain and could influence our results. We also 
assumed a homogenous and idealized domain to limit the topographic 
and hydrogeologic complexity. More complex watersheds configura-
tions would impart additional temporal structure through the close in-
teractions between groundwater configuration, geology and 
topography. 

We also excluded evapotranspiration from our simulations, this 
could also be spatially variably depending on land cover type. However, 
we recognize that evapotranspiration is an important hydrologic control 
especially for real-world studies. Furthermore, these simulations were 
run at a daily scale so that we could run sufficiently long simulations to 
analyze the long-term trends; however, running at this temporal reso-
lution limits our ability to analyze short-term phenomena like pressure 
propagation. Finally, the baseline configuration and boundary condi-
tions, and resolutions also are considerations that would alter the re-
sults. As stated in the Methods (Section 2.2), no-flow boundary 
conditions were set in the subsurface. Using these boundary conditions, 
our water tables might be shallower than if another boundary condition 
was used and then alter the streamflow responses of the simulations. 
Furthermore, in this study, some of the lowest WTD simulations resulted 

Fig. 10. The average transfer function values for representative precipitation ensembles across six period windows on a log scale for a) streamflow, b) unsaturated 
storage, c) saturated storage. The color indicates the K value with darker oranges indicating higher Pscale values. 

Table 2 
A conceptual table to indicate how each variable controls the observed filtering or signal transformation behavior of the watershed. Blue up arrows indicate that as the 
variable increases the degree of filtering/transformation will increase. Red down arrows indicate that as the variable increases the degree of filtering/transformation 
will decrease. Key variable controls are highlighted by the bold arrows.  
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in considerable excess ponding outside of the river channels. One area 
where excess ponding could affect our results is in the Fp of saturated 
memory. The ensemble member with the highest Saturated Storage Fp at 
the daily scale had considerable ponding, without this member or runs 
with similar ponding we’d expect the range of Saturated Storage Fp to be 
reduced. 

Even in this relatively simple system the range of controls is complex 
and varies by the temporal scale. Looking at individual parameters (K, 
Pscale, or HS) can sometimes explain the filtering behaviors and signal 
transformations of the system, but a combination of these parameters 
better encapsulates the physical processes at work such as WTD or 
Pscale/K. Table 2 provides a conceptual summary of the short-term and 
long-term signal transformation and filtering controls based on the re-
sults in Figs. 6-8. 

For streamflow, the filtering controls vary depending on the period 
length. For short periods (3d-5y), we show that as the WTD increases, 
the degree of filtering increases. This is consistent with a deeper and 
more filtered baseflow component with deeper water table depths. The 
other key control for these periods is the Pscale/K ratio, which de-
termines the amount of infiltration versus overland flow we would 
expect to see. With higher Pscale/K values, there is more overland flow 
and less infiltration, leading to less filtering (Fig. 6). 

For longer-term streamflow filtering (greater than 5 years), WTD and 
Pscale/K ratio are no longer the key controls of filtering. Rather, here we 
see a positive relationship between filtering and K. Indicating that it is 
instead how readily the precipitation signal can propagate through the 
surface that controls the degree of filtering. Higher K values allow for 
less energy to be lost in the subsurface and less filtering of the precipi-
tation signal. Furthermore, we see less filtering with the higher Pscale 
values as the increased precipitation leads to larger gradients in the 
subsurface which maintain more of the signal. The changes in rela-
tionship seen with longer time scales are likely due to the increased 
importance of baseflow dynamics in determining low frequency 
streamflow variability. 

The increased filtering behavior at shorter timescales is consistent 
with the findings of Li and Zhang (2007). They looked at how the scaling 
of different hydrological signals (rainfall, streamflow, groundwater, 
baseflow) compared and then also analyzed how they changed at 
different timescales. They similarly found that the scaling increased as 
the subsurface buffer increased and that this trend could be attributed to 
the dampening of the signal. Additionally, they found that the scaling 
decreases at longer timescales. While they considered significantly 
smaller time scales (less than 1 year) and did not directly analyze the 
unsaturated zone, the general findings are consistent with our results. 

For both saturated and unsaturated storage nearly all of the signal is 
removed for the shortest periods (3d-3m). This agrees with previous 
findings of (Yang et al., 2018), that the greatest signal filtering occurs in 
the unsaturated zone. At the longer scales, K and Slope appear to be the 
primary controls. This is consistent with the drivers of infiltration. K 
determines the amount of energy lost as water passes through the sub-
surface. Furthermore, the impact of K can be amplified in the unsatu-
rated zone where K varies nonlinearly as a function of saturation. HS has 
an inverse relation with the degree of filtering as steeper slopes lead to 
higher gradients. The primary role of K and HS in the unsaturated zone 
indicates that filtering here is a function of how quickly the signal moves 
through the subsurface. Increased K and steeper gradients both allow the 
signal to move more quickly and experience less filtering. 

Perhaps counterintuitively though it should be noted that higher K’s 
are also correlated with deeper water table depths, and therefore a 
deeper (thicker) unsaturated zone. We also find decreased filtering with 
increased water table depth in this part of the system. This would seem 
to contradict the logic of more filtering happening with more time spent 
in the subsurface as you move deeper. We hypothesize that this rela-
tionship occurs because the nonlinear relationship between K and 
saturation has a stronger impact on the filtering than WTD. Close in-
spection of Fig. 7 shows that for a constant K and slope values there is 

actually more filtering with deeper water tables. 
Similar to unsaturated storage, saturated storage also exhibits nearly 

complete filtering for short time periods which was expected as it is well 
established that there is increased filtering with depth. An important 
difference for saturated storage is that the periods of nearly complete 
filtering extend further to 3d-1y. Once again in the subsurface K is a key 
control and as K increases less energy is lost and the signal can more 
readily move through the subsurface and less filtering occurs. For 
saturated storage, neither WTD, Pscale/K, nor HS have a strong influ-
ence on the signal filtering, but Pscale does have some influence. Unlike 
the unsaturated storage, the deeper WTD of the same K shows more 
filtering for saturated storage as was shown in Fig. 8. As for Pscale, as it 
increases the system is transmitting more water and the larger fluxes 
lead to larger gradients which in turn leads to high velocities and more 
noise can make it through the system. Like the unsaturated storage, it 
seems the WTD is not as important as the time spent in the subsurface. 

5. Conclusions 

In this study, the temporal dynamics of streamflow, soil moisture and 
groundwater storage are simulated with an integrated hydrologic model 
and through the use of spectral methods, the degree of filtering and 
signal transformation and how the transformation evolves in time is 
examined and trends at the short- and long-term timescales. Consistent 
with previous work we see persistent damping and attenuation as pre-
cipitation moves through the watershed – with the largest filtering 
occurring in the deepest parts of the subsurface, especially at the higher 
frequencies. Our work extends beyond previous studies to evaluate the 
connection between watershed characteristics and temporal filtering 
across times scales and at different parts of the system. Overall, we show 
that filtering and power shift between frequencies is controlled by the 
amount of time spent in the subsurface and the degree of groundwater 
surface water exchanges. 

For the streamflow signal, the short-term and long-term controls vary 
by time period and represent the two different streamflow generation 
mechanisms, runoff and baseflow. For short periods, the primary con-
trols of filtering are those most closely linked to runoff generation (i.e., 
Pscale/K ratio and WTD which can influence infiltration excess and 
saturation excess overland flow). At longer periods, the signal trans-
formation is more strongly correlated to variables that control baseflow. 
We found that the higher K and higher Pscale values causes less filtering: 
higher K values lead to faster signal transmission in the subsurface and 
larger Pscale values increase the amplitude of the total signal in the 
subsurface. 

In the subsurface, we found that both the saturated and unsaturated 
zones have significant filtering at the shorter timescales, and nearly all 
the high frequency variability is removed. Additionally, across all time 
scales K was the primary control of the subsurface filtering; however, 
there were some differences between the saturated and unsaturated 
zone and their filtering responses to Pscale and WTD. Specifically, there 
is more filtering in the saturated zone and for a wider range of time-
scales. Furthermore, the two storages show different signal trans-
formation responses to WTD with unsaturated storage showing less 
filtering for deeper WTD and saturated storages showing more filtering 
for increases in WTD. 

This work highlights the complexity of temporal filtering and signal 
transformations across hydrologic systems. We demonstrate differences 
in the physical controls across time scales and consider different com-
ponents of the system. Additional studies looking at a wider range of 
watershed variables and their influence on filtering is needed for a better 
understanding on how hydrologic variables control signal filtering. This 
study attempts to minimize the complexities of the hydrologic system 
with an idealized watershed. In order to learn about the controls in real 
world watersheds, these analyses should be applied to more complex 
and differing watersheds. Finally, this research did not implement par-
ticle tracking software. Coupling similar research to particle tracking 
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could provide additional information about how these watershed vari-
ables alter the filtering ability of the subsurface. 
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