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ABSTRACT

Watersheds act as low-pass filters, damping and attenuating climatic signals as water moves through the surface and subsurface. This is a well observed phenomenon;
however, the ways in which watershed properties control the nature of this filtering are less well documented, especially with respect to groundwater surface water
interactions. Here, we use a physically based groundwater surface water model to simulate idealized hillslope ensembles with varying watershed properties (hillslope
slope, hydraulic conductivity, and precipitation magnitude) to quantitively explore the impact of watershed configuration on temporal filtering in both the surface
and subsurface. To limit the complexities of this system an idealized titled-v domain is used. Multi-decadal simulations (95 years) are run, and then power spectral
densities and transfer functions are used to quantify the temporal dynamics and damping of each simulation. Overall, we show that the degree of filtering and the
degree of signal transformation is controlled by the total time spent in the subsurface and the degree of groundwater surface water exchanges. The ratio of pre-
cipitation to hydraulic conductivity controls the partitioning between infiltration and runoff. Greater infiltration results in less filtering in the subsurface and more
filtering in streamflow. For a given precipitation conductivity ratio, deeper water table depths lead to greater streamflow filtering for periods less than 5 years. For
time periods greater than 5 years the streamflow filtering is most strongly related to hydraulic conductivity which controls the baseflow dynamics. The majority of
the input signal is filtered in the subsurface for short periods less than one year. For longer time scales, hydraulic conductivity is found to be the primary control of
filtering and power shift taking place in the subsurface with larger conductivities correlated to less filtering and less of a signal transformation. Deeper water table
depths lead to more signal transformation in saturated storage but are not correlated to filtering in unsaturated storage. This is likely due to counteracting effects of

higher conductivity (which decreases filtering) and deeper water table depths (which increase filtering).

1. Introduction

Watersheds can be conceptualized as a series of filters that damp and
attenuate climatic signals. Precipitation signals (i.e., watershed inputs)
are often considered to be white noise (Delworth & Manabe, 1988; Katul
et al., 2007); however, the resulting watershed outflow time series are
more organized with greater memory, and decreased noise. Input signals
get progressively filtered as they move through the watershed system
resulting in decreased high frequency variability moving downstream
along a river or working down into the subsurface (Li & Zhang, 2007;
Matsoukas et al., 2000; Yang et al., 2018).

While high frequency filtering is a well observed phenomenon
(Delworth & Manabe, 1988; Katul et al., 2007; Xiuyu Liang et al., 2016)
the watershed characteristics which control the properties of this
filtering are less well understood and often difficult to parse out in real
world, complex systems (Sauquet et al., 2008). Previous work has uti-
lized both numerical and observational data to demonstrate this filtering
(Katul et al., 2007; Li & Zhang, 2007; Matsoukas et al., 2000; Pandey
et al., 1998; Yang et al., 2018; Zhang & Yang, 2010); however, consid-
ering integrated groundwater behavior with numerical simulations has
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not yet been quantitatively explored.

As noted above, filtering occurs progressively as signals propagate
through watersheds resulting in a spectral shift towards low frequency
variability. Streamflow responds almost immediately to precipitation
and as a result precipitation generated runoff has a greater variance and
is more representative of the climatic input than other hydrologic sig-
nals. Still, filtering and signal transformations do occur as this precipi-
tation works its way through the stream network and slow processes like
baseflow further smooth the streamflow time series. As a result,
streamflow still exhibits filtering of the high frequency variability and
longer memory than precipitation (Gall et al., 2013; Guan et al., 2011;
Pandey et al., 1998; Sauquet et al., 2008; Tessier et al., 1996).

The subsurface is one of the most significant sources of damping in
the system. It has been demonstrated that the white noise precipitation
signal gets reddened as the high frequencies are damped even in shallow
soil moisture time series (Delworth & Manabe, 1988; Katul et al., 2007;
Vinnikov et al., 1996). As we move deeper into soil profile the soil
moisture variability and correlation with climatic signal decreases
indicating greater buffering as high-frequency fluctuations are damped
(Amenu et al., 2005; Entin et al., 2000; Manfreda, 2007; Wu et al.,
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2002). It has been shown that the decay time scales (time for a signal to
decrease to 1/e its original signal) of soil moisture as well as the tem-
poral scaling both increase with depth in the subsurface (Wu & Dick-
inson, 2004; Yang et al., 2018). Moving deeper into the subsurface, the
temporal scaling continues to increase with depth (Yang et al., 2018)
and subsurface acts as a fractal filter (Li & Zhang, 2007; Yang et al.,
2018; Zhang & Schilling, 2005).

While the general trends of increased filtering and reddening of the
signal with depth are well established, the impact of watershed char-
acteristics on this behavior is less well understood. Many observational
studies of streamflow have found that there is temporal scaling present
in the streamflow spectra and that there exists a breakpoint or crossover
point where the scaling exponent shifts (Gall et al., 2013; Guan et al.,
2011; Pandey et al., 1998; Sauquet et al., 2008; Tessier et al., 1996);
however, the value of the scaling exponent of streamflow and the fre-
quency of the break point vary from study to study based on the tem-
poral resolution of the data and the differences in the catchments
studied. Some studies have found that basin size does not affect the
spectral scaling of stream flow over a large spread of basin sizes (Pandey
et al., 1998; Tessier et al., 1996). While another study found the size of
the drainage area does affect the scaling parameters (Ozger et al., 2013).

Similarly, several studies have explored the controls of temporal
scaling in groundwater. Condon and Maxwell (2014) compared scaling
responses of latent heat and water table depth to changes in irrigation.
They found both that water table depth exhibited more scaling than
latent heat and that breaks in scaling for the water table depth depended
on proximity to the river. Areas more closely connected to the river had
breaks in scaling whereas other areas did not have scaling breaks. Zhang
and Li (2005) used a 1D transient model with both homogenous and
heterogenous hydraulic conductivities to look at the temporal scaling of
groundwater head. They found that switching between the two sub-
surface configurations has little effect on the scaling factor of ground-
water head. In Xiuyu Liang and Zhang (2013), a bounded unconfined
aquifer was investigated by developing a theoretical formula for the
input and output spectra of their domain. They found that the charac-
teristic time of an aquifer controls the scaling of the hydraulic head
which is a function of both the drainage area, hydraulic conductivity,
and specific yield. Related studies (X. Liang & Zhang, 2015; Xiuyu Liang
et al., 2016) found that while heterogeneity and boundary conditions
affect the hydraulic head scaling, the areal recharge has a more signif-
icant influence. Furthermore, Zhang and Yang (2010) systematically
altered hydraulic conductivity for a watershed simulation using MOD-
FLOW 2000 to explore connections between conductivity and temporal
scaling in the subsurface. They found that the influence of hydraulic
conductivity on groundwater head scaling varied based on the scenario
(constant river stage vs varied river stage and homogeneous vs hetero-
geneous subsurface). For the homogenous scenario with constant river
stage, it was found that as K increased the groundwater head spectra
shifted down indicating more filtering occurred across all frequencies.

Still few studies have systematically explored the impact of
groundwater and groundwater surface water interactions on temporal
scaling and memory across both surface and subsurface systems.
Conceptually, we expect groundwater configuration to influence
streamflow scaling. We know that water table configuration and
groundwater fluxes are dependent on topography, recharge rate, and
hydraulic conductivity (Freeze & Witherspoon, 1967; Gleeson &
Manning, 2008; Gleeson et al., 2011; Haitjema & Mitchell-Bruker, 2005;
Reed M Maxwell et al., 2016; Toth, 1963). High recharge rates, low
hydraulic conductivities, and shallow topography generally cause
shallower water tables. Whereas low recharge rates, high hydraulic
conductivities and steep topography generally cause deep water table
depths. Furthermore, its established that shallow water tables lead to
more local flow paths and deeper water tables lead to more regional flow
paths (Freeze & Witherspoon, 1967; Gleeson & Manning, 2008; Hait-
jema & Mitchell-Bruker, 2005; Téth, 1963), and we would expect to see
greater damping for longer flow paths than shorter flow paths (Li &
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Zhang, 2007; Yang et al., 2018).

Due to the complexity, heterogeneity, and interconnectedness of
watersheds, the controlling characteristics of the temporal scaling in a
watershed can be difficult to isolate. This study builds upon this previous
research, by using a simple idealized tilted-v watershed domain and a
fully integrated hydrology model to quantify changes in temporal
scaling as a function of both surface and subsurface watershed charac-
teristics. There are many interesting hydraulic components which could
be analyzed, in this research we elect to explore the scaling behaviors in
streamflow, soil moisture, unsaturated and saturated groundwater
storage and compare the dynamics of these system components as well
as the varying impacts of watershed characteristics on their signal
transformation and filtering properties.

2. Methods

An ensemble of idealized simulations was designed to investigate the
relationship between watershed properties, signal filtering and memory.
The simulations were run using an idealized tilted-v domain (Section
2.1) and an integrated physical hydrology model ParFlow (Section 2.2).
Adjustable parameters of the watershed such as hydraulic conductivity,
precipitation, and topographic slopes (Section 2.3) were altered to
develop an ensemble of simulations (Section 2.4). Hydrologic responses
from the simulations such as streamflow, storages, water table depth
were calculated for each of the runs (Section 2.5) and the temporal
dynamics of the simulations were then quantitatively evaluated using a
range of spectral methods, including power spectral density (Section
2.6) and transfer functions (Section 2.7). Finally, memory metrics were
computed to compare the input precipitation time series with the
resulting streamflow and storage time series (Section 2.8).

2.1. Baseline Configuration

In order to investigate the hydrologic controls of filtering, we chose
this simple watershed design so we could systematically manipulate the
characteristics with a small number of parameters, and because the
tilted-v domain is a commonly used benchmark problem in hydrology
(Carlier et al., 2018; S. Kollet et al., 2017; Reed M. Maxwell et al., 2014;
Rahman et al., 2019). The tilted-v (shown in Fig. 1) has two hillslopes of
equal length and width (2000m) with a river channel (40m) running
between the two hillslopes and is of uniform thickness (100m). The
domain was discretized into cells with lengths and widths of 40m (dx =
dy = 40m) and thicknesses of 2.5m (dz = 2.5m). The slope of the two
hillslopes (HS) varied while the slope along the axis of the river, River
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Fig. 1. A conceptual schematic of the idealized tilted-v domain of two hill-
slopes and river channel.
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Slope (RS), was constant at 0.01. The subsurface was kept homogenous
for this study, with the same subsurface properties used for both the
channel and hillslope as has been implemented in previous tilted-v
studies (S. Kollet et al., 2017; Rahman et al., 2019). Additionally, for
all simulations, the porosity is 0.4 and the Van Genuchten parameters
are alpha equal to 6 and n equal to 2. These additional parameters for the
subsurface parameters can alter the domain’s response; however, they
were unchanged in this study.

2.2. Hydrologic Model and Boundary Conditions

All the simulations were run using the integrated physical hydrologic
model ParFlow, which solves three-dimensional variably saturated
groundwater flow and surface water flow. The subsurface is simulated
with Richards Equation and overland flow is simulated using the two-
dimensional kinematic wave equation. The details of ParFlow are pro-
vided in Ashby and Falgout (1996), Jones and Woodward (2001), S. J.
Kollet and Maxwell (2006), and Reed M. Maxwell (2013). We chose to
use an integrated hydrologic model because we want to explore the role
of subsurface buffering on streamflow dynamics. Therefore, it is
important to select a hydrologic model which simulates lateral
groundwater flow and captures the dynamics of groundwater-surface
water interactions. With ParFlow, there is a terrain following grid op-
tion which was implemented in this study with the assumption that our
100m domain is sufficiently deep for this configuration to not affect the
results.

For our simulations, the surface boundary conditions of the tilted-v
domain included is a free surface overland flow boundary condition.
In the subsurface, no flow boundary conditions were implemented
across the domain with the surface being the only outlet in the system.
ParFlow fully integrates the groundwater surface water systems with a
free surface overland flow boundary condition. This approach dynami-
cally swaps to solving the overland flow equations when and wherever
the pressure is greater than zero at the land surface. This boundary
condition allowing groundwater-surface water interactions to evolve
dynamically over the course of a simulation (i.e. for streams to form and
disappear depending on saturation levels). Tilted-V domains similar to
the one being used here have been thoroughly validated in previous
model benchmarking and intercomparison studies (S. Kollet et al., 2017;
Reed M. Maxwell et al., 2014), and are included in ParFlow’s standard
test suite.

2.3. Adjustable Parameters

The conditions outlined in Section 2.1 and Section 2.2 remained
constant throughout this study and across all the simulations in the
ensemble that was created. Three model parameters were adjusted as
follows to better understand their influence of the power shift on the
input precipitation signal;

1 Three hillslope (HS) values were used; 0.02, 0.05, and 0.08. These
values are consistent with other hillslope or tilted-v studies (Bearup
et al., 2016; Reed M. Maxwell, 2010; Mikkelson et al., 2013).

2 Hydraulic conductivity (K) values range from 0.5 to 15 m/day. This
range was selected to span common literature values for K.

3 Five precipitation scalers (Pscale) were tested: 0.1, 0.25, 0.5, 0.75
and 1. Pscale values are applied by simply multiplying the entire
precipitation time series by this value.

Our approach treats the precipitation signal as an approximately
“white noise” input signal (the slope of the log-log periodogram for this
signal is 0.12), and our goal is to study its evolution through the
watershed. It should be noted that other processes like evapotranspira-
tion and snowpack would also modify the input moisture signal to a
watershed. For the purposes of this study, we don’t consider this input
signal variability though. We focus on the ways in which topography
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and geology transform a white noise input.

Our full ensemble includes 59 simulations and is outlined in Table 1.
We test every Pscale and HS combination; however, we run transient
simulations only for the K values that resulted in reasonable ground-
water configurations in our initial spin up runs (i.e. water table depths
with minimal ponding occurring outside the river, and where there was
still sufficient water for a river to form).

2.4. Ensemble Spin-up Protocol and Transient Simulations

For each simulation, the following ‘spin-up’ protocol was followed to
initialize the groundwater configuration. First, we run 100-year simu-
lations with a daily time step and a constant precipitation forcing equal
to the long-term average of precipitation to reach steady state ground-
water configurations. Next, using the water table configurations from
the steady state simulations as the initial condition, an additional 30-
year transient spin up simulation was run with the first two years of
the full precipitation time series being repeated 15 times, also with a
daily timestep.

After the transient spin ups were complete 95-year transient simu-
lations were run utilizing a historically based precipitation time series
applied uniformly over the domain. Here too all simulations are
completed with a daily timestep. The original precipitation time series is
a 95-year daily record from rain gauge data from Fredonia, NY from the
climate Data Online database through the NOAA National Centers for
Environmental Information. This dataset was selected because it had a
continuous record of rainfall measurements for a sufficiently long re-
cord. As previously discussed, the precipitation time series was altered
by multiplicative factors of 0.1, 0.25, 0.5. 0.75. and 1. It is important to
note that evapotranspiration was not modeled in this study as we used
this precipitation time series to represent a white noise input signal.

2.5. Model output calculations: Streamflow, Storage, and Soil moisture

From the ParFlow model outputs, several time series and metrics
were directly calculated from the ParFlow simulation gridded outputs of
pressure and saturation. The methods for each of these calculations are
outlined individually.

Streamflow: For each daily timestep of the transient simulations, the
streamflow leaving the domain was calculated. Streamflow is the sum of
any overland flow exiting the domain at any cell along the bottom edge
(y = 0) with the overland flow formulation Eq. 1:

L / n * dx, €))
3 (S +8y?)

where Q is the daily streamflow (ms/d), P is the ponded pressure head of

0= P«

Table 1
Complete ensemble of simulations.

Slope of Hillslope Precipitation Factor Hydraulic Conductivity (m/
(HS) (Pscale) d)

0.02 0.1 1,15,2,5,10
0.02 0.25 1,1.5,2,5,10
0.02 0.5 1.5,2,5,10
0.02 0.75 2,5,10

0.02 1 5,10

0.05 0.1 0.5,1,1.5,2,5
0.05 0.25 0.5,1,1.5,2,5
0.05 0.5 1,15,2,5,10
0.05 0.75 1,1.5,2,5,10
0.05 1 1.5,2,5,10, 15
0.08 0.25 05,1,2,5
0.08 0.5 0.5,1,1.5,2,5
0.08 0.75 1,1.5,2,5,10
0.08 1 1,2,5
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the cell (m), Sx and Sy are the slopes in the x- and y- direction, n is
manning’s coefficient, and dx is the cell width in (m).

Storage: The total storage (m?) of the domain was calculated at each
timestep as the sum of subsurface storage, both saturated and unsatu-
rated, as well as surface storage. Surface storage found by multiplying
the cell area (dx * dy) by the pressure value for each cell with ponded
water. For the subsurface storage the saturation was multiplied by the
porosity (0.4) and then by the cell volume (dx * dy * dz) to find the
volume of incompressible storage in each cell. Subsurface storage is
divided into several components for analysis:

- Soil Moisture Storage: The storage in the top 2.5m of the domain (i.
e., just the top layer). Note that this can include both saturated and
unsaturated grid cells.

- Saturated Storage: The storage in cells with a saturation value of 1.
The location of these cells may change over the course of the simu-
lation as the subsurface drains and fills thus there is not constant
spatial definition here.

- Unsaturated Storage: The storage in cells with saturation values less
than 1.

Water Table Depth (WTD): For each simulation, the WTD was calcu-
lated for each timestep as the average distance from the surface to the
water table for the entire domain. These values were then averaged
across the time series of the whole simulation so that there is a single
WTD value for each simulation.

2.6. Power Spectral Density

Power Spectral Densities (PSDs) and power spectra are established
methods to explore the temporal scaling behavior of physical and
chemical watershed signals. Previous researchers have applied spectral
methods to analyze the temporal scaling behavior of streamflow (Gall
et al., 2013; Guan et al., 2011; Pandey et al., 1998; Sauquet et al., 2008;
Tessier et al., 1996), soil moisture (Amenu et al., 2005; D’Odorico &
Rodriguez-Iturbe, 2000; Wu et al., 2002), water table depth (Condon &
Maxwell, 2014), hydraulic head and groundwater well levels (Li &
Zhang, 2007; Schilling & Zhang, 2012; Zhang & Li, 2005; Zhang &
Schilling, 2004; Zhang & Yang, 2010), latent heat (Condon & Maxwell,
2014; Little & Bloomfield, 2010), chemical responses (C. J. Duffy &
Gelhar, 1985; Christopher J. Duffy & Gelhar, 1986), chloride concen-
trations (Kirchner et al., 2000), and nitrogen concentrations (Zhang &
Schilling, 2005).

Essentially this approach consists of a Fourier transform to shift time
series to the frequency domain (as illustrated in Fig. 2). The power
spectral density (PSD) represents the power of the signal present at each
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frequency and it squares the magnitude of a discrete Fourier transform.
Higher values in the power spectrum indicate that a given frequency is
contributing more to the variance in the signal.

There are numerous methods to estimate the PSD of a time series.
Here, the PSD of the input (precipitation) and output (streamflow, un-
saturated storage, and saturated storage) time series were generated
utilizing the Scipy signal.periodogram function in Python and applied
the “Hann” window. In order for the PSD to not be a function of the size
of the storage values, the PSDs were normalized by the maximum PSD
value so that each periodogram had a range of 0 to 1; however, we did
not normalize the areas under the curves.

2.7. Transfer functions

Transfer functions (TF) are a method to quantify the differences
between two power spectral densities. Here we use this method to
explore shifts in the temporal dynamics between the input precipitation
signal and the simulated streamflow. Transfer functions have been
applied in hydrologic context to analytical solutions of aquifer models of
varying complexity (Gelhar, 1974; Russian et al., 2013) and have also
been used for parameter estimation (Pedretti et al., 2016). Traditionally,
transfer functions are derived from stationary linear systems. This is of
course not true for hydrologic systems. However, our goal is not to
derive transfer functions that can fully describe the system. Rather, we
are simply using the transfer function as a method to investigate the
controls of signal filtering. Our method of calculating transfer functions
from the input PSD and output PSD is consistent with Pedretti et al.
(2016) and Schuite et al. (2019).The transfer function is calculated as
the ratio of the PSD of the output signal to the input signal (Pedretti
et al., 2016; Schuite et al., 2019) as in Eq. 2:

PSD puipus

TF =
PSDinpur ’

(2)

where the output is the streamflow PSD, and the input is the precipita-
tion PSD for the same frequency range. Here the Transfer Function is
first calculated across all frequencies in the PSDs and is then smoothed
using a simple moving average following the approach of (Schuite et al.,
2019). Here we also average the TF across specific period windows of
interest (3-14d, 14d-3m, 3m-1y, 1-5y, 5-10y, 10-30y) to provide sum-
mary metrics of high and low frequency damping.

2.8. Soil Moisture and Total Storage Memory

In addition to spectral methods which can provide information about
individual timescales of variability, memory metrics can provide an
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Fig. 2. Conceptual workflow of how the periodograms, transfer function, and transfer function averages were calculated from the streamflow and precipitation
signals. The red lines on the transfer function show the range of the window averaged for finding the boxed value in the bar plot.
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intuitive way to quantify overall signal persistence. The memory of a
hydrologic variable is generally a measure of how that variable is likely
to evolve in time and the timescale at which an anomaly is likely to
persist. There are many ways to calculate memory; for example, calcu-
lating the time needed for an anomaly to dissipate using an autocorre-
lation calculation, finding the mean persistence time or length of time
the value spends over a certain threshold, or calculating remaining
precipitation fractions (Fp).

For this study, the surface storage, total storage, and soil moisture
storage memory were evaluated by calculating the fraction of precipi-
tation anomalies (Fp) that remain after a given time lag as presented by
McColl et al. (2017). More specifically, the remaining precipitation
fraction is defined as the ratio of positive changes for a given storage
time series (e.g., soil moisture) divided by the total amount of precipi-
tation. In this study, Fp was calculated for the time series of both soil
moisture storage and total storage. For a given time series (f), the
calculation for Fp is found using Eq. 3 for a storage moisture time series
(0) with T timesteps (days):

> a6,
Jo P(dt’

where A0; ;. is the positive change in the soil moisture (A0; ;, = Owhen
there is no change or a negative change in storage), dt is the frequency of
the time series (1 once per day), and the denominator is the total pre-
cipitation across the domain for the entire time series. The sampling
frequency (or time lag), i, was altered by changing the number of days
between the positive changes in soil moisture. Note that Fp is dependent
on the frequency that the time series is sampled, which corresponds to

Fp(f) = &)

led

20
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the time lag that is being evaluated (i.e., the value of i). Here we
calculate Fp over a range of memory sampling frequencies (or time lags)
to explore how much of the signal is left at various time scales. Fp was
calculated at the sampling frequencies of 1, 2, 3, 5, 7, 10, 14, 30, 60, and
90 day(s). For a memory sampling frequency of 1 day the A®; , is
calculated between each day whereas for a memory sampling frequency
of 7 days the A®; ;. value would only be calculated each 7 days.

We selected this approach based on the findings of (McColl et al.,
2017) who compared the Fp method to various other memory metrics
and demonstrated that many of the historically used methods, such as
autocorrelations with fixed time lag, overestimate soil moisture mem-
ory. Additionally, we could readily apply the remaining precipitation
fraction method to other time series other than soil moisture such as
total storage.

3. Results
3.1. General trends

Three representative cases are selected in Fig. 3 to illustrate a range
of response behaviors in the surface and subsurface for a given precip-
itation input. For every simulation in Fig. 3, there are increases in
structure and reddening of the signal from the initial noisy precipitation
input moving through the domain from streamflow to soil moisture,
unsaturated storage, and finally saturated storage. This illustrates the
increased filtering that occurs with depth as signals move through the
subsurface and more energy is removed. In all three of the saturated
storage signals shown in Fig. 3, hourly and daily variability is almost
entirely absent.
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Fig. 3. a) Precipitation input time series for the three selected simulations with Pscale equal to 0.25. The output time series include b-d) streamflow, e-g) soil
moisture, h-j) unsaturated storage, and k-m) saturated storage for three simulations with varying K and HS values and the same Pscale value of 0.25 (left column: K =
0.5, HS = 0.08, middle column: K = 10, HS = 0.02, right column: K = 1.5 HS = 0.02).
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The difference between the cases (i.e., columns) shown in Fig. 3
highlight the impact of watershed characteristics on the filtering pro-
cess. The left (b, e, h, k) simulation has the lowest K value in Fig. 3,
which causes the most energy to be removed in the subsurface and by
the time the signal has reached the saturated storage the high frequency
components of the input signal have been removed and results in the
smoothest unsaturated and saturated storage signal. Additionally, with
this lower K value we would expect this system to be the most stable and
which can be observed as there is an observed attenuation in the peak
value between 60 and 80 years.

The center (c, f, i, 1) and right (c, g, j, m) simulations are flatter and
drier than the first column and both have HS values of 0.02 (relative to
the first case with HS=0.08). The right and left simulations of stream-
flow signals are similar; however, have very different subsurface signals.
The only difference between the center and right cases are their K
values. The center simulation has a high K value resulting in a very
responsive streamflow signal whereas the right simulation has a more
stable streamflow baseline with larger daily peaks from larger overland
flow events. When comparing the saturated storages, both the center
and right simulations have higher K values and therefore have more
variability in the storage signals less energy is lost as it moves through
the subsurface. The raw time series of these select simulations illustrates
qualitatively the impact that watershed properties can have on the de-
gree of filtering and how it varies with depth.

To evaluate ensemble characteristics more quantitatively, the
memory of soil moisture, surface storage, unsaturated storage, and
saturated storage were all calculated using the fraction of precipitation
(Fp) (McColl et al., 2017) at various sampling frequencies. As the sam-
pling frequency decreases (i.e., the time scales increase) the memory
intuitively decreases (consistent with the idea that signals are dampened
out over time). The ranges of Fp for each sampling frequency across the
entire ensemble of simulations are plotted in Fig. 4. The surface storage
is the smallest storage body with the fastest response times; its Fp values
are significantly smaller than the other parts of the system and decay to
zero much more quickly.

The subsurface storages (unsaturated, saturated, and soil moisture)
all have larger values for daily sampling frequencies and maintain
memory much longer than the surface system. Memory is calculated
based on the precipitation signal, the unsaturated zone responds most
quickly to this signal and has the greatest memory due to the long-term
correlation with the precipitation signal. The soil moisture is the top
2.5m of the domain and can contain both saturated and unsaturated cells
and therefore is in-between the saturated and unsaturated storage
memories. The saturated storage memory drops off more quickly and is
lower than the unsaturated and soil moisture memories. This is consis-
tent with Fig. 3 where we demonstrate significant dampening in the
saturated storage component of the system. Also, due to the larger role of
lateral redistribution that happens with the saturate storage (flow in the
unsaturated zone is primarily vertical) we expect for the direct

0.7 Sat Storage
Unsat Storage
0.6 Surface Storage
Soil Moisture
0.5
04
=
=
0.3
0.2
0.1
0.0

0 10 2 30 4 0 6 M s 9%
Sampling Frequency (days)

Fig. 4. The range of Fp values for soil moisture, unsaturated storage, saturated
storage, and surface storage for sampling frequencies between 1 and 90 days.
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correlation to precipitation to be weaker in this component of the
system.

3.2. Connection between watershed properties and degree of filtering

Next, we explore how watershed properties affect the temporal
filtering properties using transfer functions. As described in the methods
section, we are presenting the average transfer functions over a pre-
selected set of time periods for streamflow, unsaturated storage, and
saturated storage. It is important to note that in these results, transfer
functions are used as a method to understand the signal transformation
of the input signal that takes place. Transfer function values greater than
one indicate a shift in power or signal transformation whereas transfer
function less than one indicate filtering has occurred. As is consistent
with the analysis of Schuite et al. (2019), we showed that the cumulative
power spectrum for streamflow is expected to asymptote at a value of
one but other variables, in our case saturated and unsaturated storage,
approach values greater than one. Base on previous studies such as Yang
et al. (2018), filtering and memory increase as we move deeper into the
subsurface. As such, relative to streamflow we expect a larger proportion
of groundwater signal to be in the longer periods.

Fig. 5 shows the average transfer function (i.e., portion of the signal
that is maintained) for the entire time series. The values are colored by
the ratio of the Pscale over K. This ratio was chosen because it reflects
the degree of partitioning between runoff and infiltration. Recall the
larger transfer functions indicate that less filtering has occurred, and
smaller transfer function values indicate more filtering or signal trans-
formation has occurred. For streamflow (Fig. 5a) steeper hillslopes lead
to deeper WTD, which in turn correlates to a larger unsaturated zone
buffer, and greater filtering. Fig. 5a shows three distinct curves
depending on the slope of the watershed that illustrate this relationship.
For a given water table depth steeper slopes result in less filtering.
Additionally, larger Pscale over K ratios lead to more runoff (and smaller
values leading to more infiltration). Thus, as the Pscale over K ratio
increases (darker colors in Fig. 5a) there is less filtering due to more of
the precipitation generating runoff rather than infiltrating.

Conversely, for unsaturated storage (Fig. 5b) these relationships are
flipped. Here there is a slight positive relationship between WTD and
transfer function values (indicating less filtering with deeper water table
depths). This relationship is much weaker than what was observed for
streamflow though. Also, we see a positive relationship between the
Pscale ratio and filtering (i.e., less filtering when the Pscale over K ratio
is smaller). This makes sense as precipitation partitioning will shift to-
ward infiltration as the Pscale over K ratio decreases leading to greater
infiltration and a noisier signal in the subsurface.

Finally, for saturated storage (Fig. 5¢) the degree of filtering is much
greater than unsaturated or streamflow components (roughly an order of
magnitude higher as can be seen from the x-axis ranges). This is
consistent with Fig. 3 that illustrated the significant filtering of the
storage signal. Interestingly, we do not see a relation to WTD for satu-
rated storage. Once again, the Pscale over K ratio color gradient shows
that as the ratio increases, the filtering increases which is once again due
to increasing infiltration as the ratio decreases.

To further investigate the controls of the filtering at different tem-
poral scales, the transfer functions for each metric are binned and
averaged over periods of interest. Fig. 6 shows the degree of filtering at
six different period windows for the streamflow signals of the entire
ensemble. For streamflow less than ~5 years (Fig. 6a-d), there is a direct
relation between WTD and the amount of filtering that we see; deeper
water tables lead to more filtering (smaller transfer function values) and
shallower water tables lead to less filtering. Furthermore, at these pe-
riods less than 5 years, as the Pscale to K ratio increases there is also a
decrease in the amount of filtering. This indicates that configurations
with higher precipitation and lower K values have less filtering occur-
ring and is consistent with increased runoff partitioning for infiltration
excess overland flow when precipitation exceeds the infiltration rate
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controlled by K. For longer periods (greater than 5 years), the rela-
tionship between water table depth and degree of signal transformation
is less clear. Note, that the TF values especially for the periods over 10
years for are often greater than one, indicating the power shift rather
than true filtering taking place. At these longer timescales, there is
stronger connection to precipitation here with higher precipitation
correlating to less filtering (i.e., a noisier streamflow signal).

The same period windows are used in Fig. 7 for the unsaturated
storage transfer function averages; however, the points are shaded by
their K values (as opposed to the Pscale/K ratio) because stronger re-
lationships were found for K in this part of the system. For the shorter
periods, less than 3 months (Fig. 7a, b), there is significant filtering, and
a very small portion of the original signal remains (less than 1%). Nearly
all the power at these periods is removed from the signal as it is filtered
through the subsurface. Generally, for all period windows, filtering de-
creases (i.e., transfer function values increase) as K increases. This
makes sense because higher K values allow for greater infiltration and
for the signal to transfer more quickly through the subsurface.

Looking at the periods greater than 3 months, there is still a positive
inverse relationship between K and the degree of filtering or signal
transformation taking place. As with the previous plots, steeper slopes
lead to deeper water tables. There is not a clear relationship between
water table depth and filtering for periods less than one year. However,
for a given water table, higher K values result in less filtering. For the
longest periods (Fig. 7d, e, f) we can again see distinct trends emerging
between water table depth and degree of signal transformation for a
given slope value. The deeper the water table leads to greater TF values.
This seems counterintuitive as we would expect to see greater filtering
with depth; however, WTD is also a function of K and indeed we see a
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positive correlation in the coloring with higher K values for the deeper
WTD of a given slope. Here we are likely seeing the nonlinear impacts of
increasing K in the unsaturated zone, which is controlling the signal
transformation and filtering.

Finally, Fig. 8 shows the degree of filtering or the power shift taking
place over the six period windows for the saturated storage component
of the domain. Similar to the unsaturated storage in Fig. 7, the shorter
periods experience significant filtering and nearly all the power at these
periods is removed from the signal (less than 1% remains). However,
since the signal must move through more of the subsurface before
reaching the saturated storage, and given the dampening impacts of
lateral flow, even more filtering and damping occurs. For this reason, the
saturated transfer function values are smaller than the unsaturated
storage value at all time scales and the periods of significant damping
includes all periods less than 1 year (Fig. 8 a-c, note that for unsaturated
storage this was only up to 3 months).

Focusing on the relationships for periods greater than 1 year, once
again the filtering is inversely correlated to the K values. Simulations
with the high K values exhibit the least filtering across all periods in the
saturated storage. Once again, the slopes are still positively correlated to
the WTD and for a given WTD, the K value determines the degree of
filtering. Interestingly though, for a given slope and K value (e.g., the red
squares or the purple dots in Fig. 8e, f) we now see an inverse rela-
tionship between WTD and TF indicating more filtering or more of a
transformation with deeper water table depths. This is consistent with
the idea of increased filtering and more of a power shift in the subsurface
with depth. As noted above we hypothesize that the nonlinear rela-
tionship between saturation and hydraulic conductivity in the unsatu-
rated zone increases the relative importance of K leading to decreased
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Fig. 7. The average unsaturated storage transfer function values versus the average WTD across six period windows a) 3-14d, b) 14d-3m, c) 3m-1y, d) 1-5y, €) 5-10y,
f) 10-30y. The color indicates the K (m/d) values, and the shape indicates the hillslope.
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filtering with increased depths.

Figs. 6-8, show the controls of the filtering and signal trans-
formations for the entire ensemble. To further illustrate how the
watershed parameters affect the signal transformation behavior, repre-
sentative cross sections of the ensemble were selected where only a
single variable is altered. In Fig. 9, only the K values change over an
order of magnitude as the Pscale and HS values are held constant. For
the streamflow (Fig. 9a), higher K values lead to more filtering, with the
strongest relationship occurring for periods less than 5 years. For the
longest period (10-30y), this relation flips and higher K values lead to
less filtering for periods 10-30 years. Conversely for both unsaturated
storage (Fig. 9b) and saturated storage (Fig. 9c), the relation is consis-
tent across nearly all periods with higher K values leading to higher TF
values. These findings are consistent with what was discussed in Figs. 7
and 8, and the basic physical controls of these system components. At

the land surface higher K values lead to more infiltration, less overland
flow and a larger baseflow component (i.e., greater filtering). Whereas
in the subsurface the K value controls the flux rates.

Fig. 10 shows a different cross section where the K and HS values are
held constant and the Pscale values change. As shown here, both
streamflow and saturated storage have inverse relations between the
amount of precipitation and filtering. As the precipitation increases,
there is less filtering (larger transfer function) across all the scales and
for all Pscale values. Interestingly, for unsaturated storage (Fig. 10b) this
is true for Pscale values < 0.5, after which the trend reverses and there is
actually more filtering for larger Pscale values. For HS, there was a
larger variety of trends across the cross sections of the full ensemble and
a single representative trend was not possible.

TF Average

3-14d 14d-3m 3m-1y
Period Window

1-5y 510y 10-30y

3-14d 14d-3m 3m-1y
Period Window

15y 510y 10-30y
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Fig. 9. The average transfer function values for representative K ensembles across six period windows on a log scale for a) streamflow, b) unsaturated storage, c)
saturated storage. The color indicates the K value with darker blues indicating higher K values.
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Fig. 10. The average transfer function values for representative precipitation ensembles across six period windows on a log scale for a) streamflow, b) unsaturated
storage, c) saturated storage. The color indicates the K value with darker oranges indicating higher Pscale values.

4. Discussion

Previous research has demonstrated that filtering and damping of the
precipitation signal increases moving deeper into the subsurface (Li &
Zhang, 2007; Yang et al., 2018). Here we explore the way that watershed
characteristics control the degree of signal transformation moving from
streamflow to unsaturated and saturated storage through a series of
controlled numerical experiments. It should be noted that the storages
which we investigated are not independent variables and the dynamics
of saturated storage depends on infiltration, recharge, and baseflow. Our
goal in this study is not to fully attribute all sources of variability, but
rather to understand the interactions between subsurface storage dy-
namics and streamflow.

In order to achieve well controlled numerical experiments, numerous
simplifications were made in our models. First, we used a real-world
precipitation and with this input signal all of the precipitation adjust-
ments are scalers. We did not explore changing precipitation variability
and instead focus on the ways in which topography and geology trans-
form a white noise input. However, changes in the temporal distribution
of rainfall events and not just their magnitude would alter the driving

Table 2

frequencies of the domain and could influence our results. We also
assumed a homogenous and idealized domain to limit the topographic
and hydrogeologic complexity. More complex watersheds configura-
tions would impart additional temporal structure through the close in-
teractions between groundwater configuration, geology and
topography.

We also excluded evapotranspiration from our simulations, this
could also be spatially variably depending on land cover type. However,
we recognize that evapotranspiration is an important hydrologic control
especially for real-world studies. Furthermore, these simulations were
run at a daily scale so that we could run sufficiently long simulations to
analyze the long-term trends; however, running at this temporal reso-
lution limits our ability to analyze short-term phenomena like pressure
propagation. Finally, the baseline configuration and boundary condi-
tions, and resolutions also are considerations that would alter the re-
sults. As stated in the Methods (Section 2.2), no-flow boundary
conditions were set in the subsurface. Using these boundary conditions,
our water tables might be shallower than if another boundary condition
was used and then alter the streamflow responses of the simulations.
Furthermore, in this study, some of the lowest WTD simulations resulted

A conceptual table to indicate how each variable controls the observed filtering or signal transformation behavior of the watershed. Blue up arrows indicate that as the
variable increases the degree of filtering/transformation will increase. Red down arrows indicate that as the variable increases the degree of filtering/transformation

will decrease. Key variable controls are highlighted by the bold arrows.

Short Term Controls

Long Terms Controls

Periods (3d-5y)

Periods (5-30y)

Streamflow K: f
wtD: @ WTD: —
Pscale: @
Pscale/K: ‘ Pscale/K: -
Slope: 4

K: '
Pscale: '

Slope: -

Periods (3d-3m)

Periods (3m-30y)

Unsaturated K: .
Storage Most of signal removed WTD: ¥
Pscale: -—
Pscale/K:
Slope: '
Periods (3d-1y) Periods (1-30y)
Saturated
Storage K: ‘
Most of signal removed WTD: *
Pscale: '
Pscale/K: ---

Slope: ---
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in considerable excess ponding outside of the river channels. One area
where excess ponding could affect our results is in the Fp of saturated
memory. The ensemble member with the highest Saturated Storage Fp at
the daily scale had considerable ponding, without this member or runs
with similar ponding we’d expect the range of Saturated Storage Fp to be
reduced.

Even in this relatively simple system the range of controls is complex
and varies by the temporal scale. Looking at individual parameters (K,
Pscale, or HS) can sometimes explain the filtering behaviors and signal
transformations of the system, but a combination of these parameters
better encapsulates the physical processes at work such as WTD or
Pscale/K. Table 2 provides a conceptual summary of the short-term and
long-term signal transformation and filtering controls based on the re-
sults in Figs. 6-8.

For streamflow, the filtering controls vary depending on the period
length. For short periods (3d-5y), we show that as the WTD increases,
the degree of filtering increases. This is consistent with a deeper and
more filtered baseflow component with deeper water table depths. The
other key control for these periods is the Pscale/K ratio, which de-
termines the amount of infiltration versus overland flow we would
expect to see. With higher Pscale/K values, there is more overland flow
and less infiltration, leading to less filtering (Fig. 6).

For longer-term streamflow filtering (greater than 5 years), WTD and
Pscale/K ratio are no longer the key controls of filtering. Rather, here we
see a positive relationship between filtering and K. Indicating that it is
instead how readily the precipitation signal can propagate through the
surface that controls the degree of filtering. Higher K values allow for
less energy to be lost in the subsurface and less filtering of the precipi-
tation signal. Furthermore, we see less filtering with the higher Pscale
values as the increased precipitation leads to larger gradients in the
subsurface which maintain more of the signal. The changes in rela-
tionship seen with longer time scales are likely due to the increased
importance of baseflow dynamics in determining low frequency
streamflow variability.

The increased filtering behavior at shorter timescales is consistent
with the findings of Li and Zhang (2007). They looked at how the scaling
of different hydrological signals (rainfall, streamflow, groundwater,
baseflow) compared and then also analyzed how they changed at
different timescales. They similarly found that the scaling increased as
the subsurface buffer increased and that this trend could be attributed to
the dampening of the signal. Additionally, they found that the scaling
decreases at longer timescales. While they considered significantly
smaller time scales (less than 1 year) and did not directly analyze the
unsaturated zone, the general findings are consistent with our results.

For both saturated and unsaturated storage nearly all of the signal is
removed for the shortest periods (3d-3m). This agrees with previous
findings of (Yang et al., 2018), that the greatest signal filtering occurs in
the unsaturated zone. At the longer scales, K and Slope appear to be the
primary controls. This is consistent with the drivers of infiltration. K
determines the amount of energy lost as water passes through the sub-
surface. Furthermore, the impact of K can be amplified in the unsatu-
rated zone where K varies nonlinearly as a function of saturation. HS has
an inverse relation with the degree of filtering as steeper slopes lead to
higher gradients. The primary role of K and HS in the unsaturated zone
indicates that filtering here is a function of how quickly the signal moves
through the subsurface. Increased K and steeper gradients both allow the
signal to move more quickly and experience less filtering.

Perhaps counterintuitively though it should be noted that higher K’s
are also correlated with deeper water table depths, and therefore a
deeper (thicker) unsaturated zone. We also find decreased filtering with
increased water table depth in this part of the system. This would seem
to contradict the logic of more filtering happening with more time spent
in the subsurface as you move deeper. We hypothesize that this rela-
tionship occurs because the nonlinear relationship between K and
saturation has a stronger impact on the filtering than WTD. Close in-
spection of Fig. 7 shows that for a constant K and slope values there is
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actually more filtering with deeper water tables.

Similar to unsaturated storage, saturated storage also exhibits nearly
complete filtering for short time periods which was expected as it is well
established that there is increased filtering with depth. An important
difference for saturated storage is that the periods of nearly complete
filtering extend further to 3d-1y. Once again in the subsurface K is a key
control and as K increases less energy is lost and the signal can more
readily move through the subsurface and less filtering occurs. For
saturated storage, neither WTD, Pscale/K, nor HS have a strong influ-
ence on the signal filtering, but Pscale does have some influence. Unlike
the unsaturated storage, the deeper WTID of the same K shows more
filtering for saturated storage as was shown in Fig. 8. As for Pscale, as it
increases the system is transmitting more water and the larger fluxes
lead to larger gradients which in turn leads to high velocities and more
noise can make it through the system. Like the unsaturated storage, it
seems the WTD is not as important as the time spent in the subsurface.

5. Conclusions

In this study, the temporal dynamics of streamflow, soil moisture and
groundwater storage are simulated with an integrated hydrologic model
and through the use of spectral methods, the degree of filtering and
signal transformation and how the transformation evolves in time is
examined and trends at the short- and long-term timescales. Consistent
with previous work we see persistent damping and attenuation as pre-
cipitation moves through the watershed — with the largest filtering
occurring in the deepest parts of the subsurface, especially at the higher
frequencies. Our work extends beyond previous studies to evaluate the
connection between watershed characteristics and temporal filtering
across times scales and at different parts of the system. Overall, we show
that filtering and power shift between frequencies is controlled by the
amount of time spent in the subsurface and the degree of groundwater
surface water exchanges.

For the streamflow signal, the short-term and long-term controls vary
by time period and represent the two different streamflow generation
mechanisms, runoff and baseflow. For short periods, the primary con-
trols of filtering are those most closely linked to runoff generation (i.e.,
Pscale/K ratio and WTD which can influence infiltration excess and
saturation excess overland flow). At longer periods, the signal trans-
formation is more strongly correlated to variables that control baseflow.
We found that the higher K and higher Pscale values causes less filtering:
higher K values lead to faster signal transmission in the subsurface and
larger Pscale values increase the amplitude of the total signal in the
subsurface.

In the subsurface, we found that both the saturated and unsaturated
zones have significant filtering at the shorter timescales, and nearly all
the high frequency variability is removed. Additionally, across all time
scales K was the primary control of the subsurface filtering; however,
there were some differences between the saturated and unsaturated
zone and their filtering responses to Pscale and WTD. Specifically, there
is more filtering in the saturated zone and for a wider range of time-
scales. Furthermore, the two storages show different signal trans-
formation responses to WTD with unsaturated storage showing less
filtering for deeper WTD and saturated storages showing more filtering
for increases in WTD.

This work highlights the complexity of temporal filtering and signal
transformations across hydrologic systems. We demonstrate differences
in the physical controls across time scales and consider different com-
ponents of the system. Additional studies looking at a wider range of
watershed variables and their influence on filtering is needed for a better
understanding on how hydrologic variables control signal filtering. This
study attempts to minimize the complexities of the hydrologic system
with an idealized watershed. In order to learn about the controls in real
world watersheds, these analyses should be applied to more complex
and differing watersheds. Finally, this research did not implement par-
ticle tracking software. Coupling similar research to particle tracking
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could provide additional information about how these watershed vari-
ables alter the filtering ability of the subsurface.
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