
Dynamic Refinement of Hardware Assertion Checkers

Hasini Witharana, Sahan Sanjaya and Prabhat Mishra

University of Florida, Gainesville, Florida, USA

AbstractÐPost-silicon validation is a vital step in System-on-
Chip (SoC) design cycle. A major challenge in post-silicon vali-
dation is the limited observability of internal signal states using
trace buffers. Hardware assertions are promising to improve
the observability during post-silicon debug. Unfortunately, we
cannot synthesize thousands (or millions) of pre-silicon assertions
as hardware checkers (coverage monitors) due to hardware
overhead constraints. Prior efforts considered synthesis of a small
set of checkers based on design constraints. However, these design
constraints can change dynamically during the device lifetime due
to changes in use-case scenarios as well as input variations. In
this paper, we explore dynamic refinement of hardware checkers
based on changing design constraints. Specifically, we propose a
cost-based assertion selection framework that utilizes non-linear
optimization as well as machine learning. Experimental results
demonstrate that our machine learning model can accurately
predict area (less than 5% error) and power consumption
(less than 3% error) of hardware checkers at runtime. This
accurate prediction enables close-to-optimal dynamic refinement
of checkers based on design constraints.

I. INTRODUCTION

Post-silicon validation is widely used to detect and fix bugs

in integrated circuits after manufacturing. Due to the increas-

ing design complexity, it is infeasible to detect all functional

as well as electrical bugs during pre-silicon validation [1].

Therefore, post-silicon validation is an essential step in SoC

design methodology. One of the biggest challenges in post-

silicon validation is the lack of observability of internal states.

Typically, a small trace buffer is used to trace few hundred

signals (out of millions of signals) during runtime [2]. A

prominent avenue to improve post-silicon observability is to

use hardware checkers (assertions). According to the 2020

Wilson research study [3], around 75% of ASIC design and

50% of FPGA design projects use assertion-based validation.

However, assertions also introduce hardware overhead. There-

fore, it is not practical to synthesize thousands or millions of

pre-silicon assertions to post-silicon checkers.

There are early efforts [4], [5] to select the most beneficial

set of assertions as hardware checkers based on area, power,

and performance constraints. The selected assertions may

not be beneficial since the design constraints can change

dynamically during the device lifetime due to changes in use-

case scenarios as well as input variations. For example, mobile

phone usage pattern can drastically change between two users.

Even for the same user, the usage of the phone varies during

the different time periods of a day. In other words, different

use-case scenarios and input variations can lead to dynamic

changes in power and performance. Moreover, the dynamic

This work was partially supported by the NSF grant CCF-1908131.

Design Selected
Assertions

Assertion
Generation

Assertion
SelectionAssertions

Pre-silicon Assertion
Based Validation

Fabricated Chip

Assertion
Synthesis

Hardware
Checkers

Fabrication

Dynamic
Constraints

Cost
Prediction

Subset
Selection

Model

Optimal
Checkers

Reconfigurable
Hardware

Dynamic Refinement

Fig. 1: Assertion-based validation framework. The dotted box

(dynamic refinement) shows our proposed contributions.

changes in design constraints can limit the resources available

for the hardware checkers. For example, the checkers can be

disabled when the phone battery is low, which compromises

the run-time checking capability. If the reconfigurability is

available, it would be beneficial to dynamically refine the

checkers to satisfy both dynamically changing circumstances

and runtime checking objectives.

Figure 1 shows a brief overview of our proposed framework

in the context of assertion-based validation. During pre-silicon

validation, assertions are generated for a given design [6], [7],

[8]. Due to design overhead constraints, assertion selection [4],

[5] can be used to identify the most profitable assertions.

The selected assertions are synthesised as hardware checkers.

The hardware checkers are used for our dynamic refinement

framework. A regression model is trained to predict the cost

(power and area) of synthesizing a set of checkers. When the

design constraints change dynamically, the subset selection

uses the regression model to select the optimal subset of

checkers that satisfies the design constraints at that time. The

selected checkers are synthesised in reconfigurable hardware.

This paper makes the following major contributions:

• Formulates the dynamic refinement problem as a cost-

based non-linear optimization problem.

• Uses regression based machine learning techniques to

perform cost prediction for hardware checkers.

• Solves the non-linear optimization problem using gradient

decent with simulated annealing.

• Demonstrates close-to-optimal dynamic refinement of

hardware checkers.

This paper is organized as follows. Section II surveys

related efforts. Section III presents the problem formulation.

Section IV describes our proposed framework. Section V

presents experimental results. Section VI concludes the paper.

II. RELATED WORK

Pre-silicon assertions can be utilized during post-silicon

debug by synthesizing them as hardware checkers [1]. A major

challenge in assertion selection is to determine which asser-

tions should be added to the design as hardware checkers. Prof-

itable checker selection can be conducted using static synthesis

with different ranking algorithms [9], [10], [11], [12]. The

number of hardware checkers can be reduced [13], [4] by uti-

lizing the existing debug infrastructure (trace buffer). Another

promising alternative for cost effective hardware checkers is

the dynamic synthesis of checkers using FPGA [14]. In this

work, the hardware checkers are included in a re-configurable

embedded block (FPGA) in a time-multiplexed manner. This

approach enables to add a large number of checkers with a low

area overhead. To the best of our knowledge, our approach is

the first attempt to dynamically refine hardware checkers based

on changing design constraints.

III. PROBLEM FORMULATION

Cost-based optimization is a powerful technique to address

the problem of selecting a set of choices. It consists of

associating costs with various choices and then finding the

subset of choices with the smallest cost. We are defining the

selection of hardware checkers as a cost-based optimization

problem. Specifically, we need to solve:

minimize
S

(F(S))

P(S) ≤ P, A(S) ≤ A

where S is a subset of checkers and P and A encode

power and area constraints, respectively. F encodes the cost

of the design and F(S) can depend on any of the power or

area related costs together with any other considerations. In

general, F(S) is non-linear (i.e., not a simple summation of

cost for checker) and depends on the subset of checkers that

are implemented.

There are two major challenges in solving this optimization

problem. The first problem is how to compute the functions

F ,P andA given that there are 2N possible inputs, where N is

the number of checkers in the set S. This problem is difficult

since estimating power or area for a given design requires

expensive synthesis. Performing such an estimation for 2N

designs is infeasible. Our approach leverages machine learning

techniques to treat the estimation problem as a regression

problem. Instead of generating all possible designs, we will

generate a small subset and learn estimates for area and power.

Section IV-A describes our cost prediction scheme.

The second problem is how to solve the optimization

problem, i.e., how to find the set S that minimizes the cost

while satisfies the constraints. This problem is difficult due

to the size of the search space and the fact that the problem

is non-linear. The non-linearity translates into a potentially

large number of local minimums. To address the problem,

we use non-linear optimization techniques. We need to adapt

the techniques since we are optimizing over discrete sub-sets

rather than metric spaces. Section IV-B describes how our

approach solves the optimization problem.

IV. DYNAMIC REFINEMENT OF HARDWARE CHECKERS

Figure 2 shows an overview of our dynamic refinement

framework. It has two important steps: (1) cost prediction and

(2) optimization. The first step is to learn how to predict cost

for a given set of hardware checkers. The second step uses the

trained model to find the optimal set of hardware checkers that

satisfies the constraints while minimizing the cost of adding

the hardware checkers. The remainder of this section describes

these two steps in detail.

Random
Sampling

Hardware
Checkers

Sample
Checker Subset

Synthesis &
Simulate

Overhead
Cost

Train
Regression Model

Cost Prediction
Model

Constraint Optimized Subset
Selection

Optimal
Checker Set

Synthesis
(FPGA)

C
os

t P
re

di
ct

io
n

O
pt

im
iz

at
io

n

Fig. 2: Overview of our dynamic refinement scheme

A. Cost Prediction

In this section, we address the problem of estimating the

functions F ,P and A that appear in the optimization problem.

Typically, the function F is a simple cost model depending

on the functions P(S) (power) and A(S) (area) when im-

plementing assertions in the set S. While the two problems

(power and area) capture different aspects of circuit design,

the estimation problem is essentially the same. We solve the

estimation problem by modeling the problem as a regression

problem with sets as inputs: Given samples S1, . . . , Sk and

power consumption estimates p1 = P(S1), . . . , pk = P(Sk)
find a good approximation of the function P(S). The same

solution can be used for A as well.

Most of the regression models in machine learning and

statistics literature only accommodate continuous inputs. Es-

sentially, the regression models find non-linear mapping from

R
k −→ R. To finish our translation of the cost estimation

problem into a regression problem, we transform the set input

S into a continuous input by introducing an input i for the

regression problem for each checker Ci. Next, we set the input

value at 0.0 if Ci /∈ S and at 1.0 if Ci ∈ S. Thus, each set S
is always mapped into a vector of size N that contains only

0.0 or 1.0 entries.

As shown in Figure 2, random sampling is conducted on

hardware checkers to get different sample subsets. These sam-

ple subsets are synthesized and simulated to get the overhead

cost with respect to power and area. The overhead costs are

used to train the regression model. Once a learning model

is built, it can be used to predict F(S) simply by encoding

the input S using the same 0.0, 0.1 mapping and using the

predictor for the estimate.

B. Optimization

In order to solve the non-linear optimization problem (for-

mulated in Section III), we use non-linear optimization tech-

niques, including gradient descent and simulated annealing.

Algorithm 1: Gradient Descent

Data: Estimators for F(S) & C(S)
Result: Locally optimal solution S

1 Find starting point;

2 repeat

3 select random S
4 until C(S) is true;

5 Done ← False;

6 while ¬Done do

7 Done ← GD(S)

8 end

9 Function GD(S):

10 Keep track of the best solution;

11 S′ ← S;

12 for i← 1 to N do

13 Add or remove checker Ci to S;

14 Si ← S ⊕ Ci;

15 if C(Si) & F(Si) < F(S
′) then

16 S′ ← Si

17 else

18 end

19 if S′ ̸= S then

20 New better solution;

21 S ← S′;

22 Done ← False;

23 else

24 Reached local minimum;

25 Done ← True;

26 end

27 return Done

28

The gradient descent algorithm used in our framework is

presented in Algorithm 1. Inputs of the algorithm are F(S)
and C(S). Function F(S) is retrieved using the cost prediction

model described in Section IV-A. Function C(S) represents

a Boolean function which combines all the constraints and

indicates whether the constraints are satisfied for S or not.

The results of this function will be a locally optimal solution

S, which satisfy C(S). Gradient descent method starts with

a random initial point (line 1 - 3). Function GD is repeated

until the local optimal solution is found (line 6 - 8). Function

GD (line 9 - 27) presents the gradient descend method for

finding the optimal solution. This method takes steps that

stay within the feasible region (i.e., satisfy the constraints)

and decrease the cost. Eventually, points where this is no

longer possible (i.e., local minimums) are reached. The step

function of the gradient descent method is defined as the

addition or removal of each checker Ci to the current best set

S at every step (line 12 - 18). Here, N means the number

of hardware checkers (line 12). The optimal solution S is

selected based on the constraint satisfaction and the minimal

cost prediction (line 15 - 17). The termination condition checks

whether all the neighbors of S are worse. The neighbors are

the sets that differ by at most one element. If all neighbors

are worse, S is considered as a local minimum (line 19 -

26). The algorithm guarantees feasible solutions since the

condition C(S) is checked for both the initial point and each

Si candidate. By considering multiple random restarts for

Algorithm 1 and keeping track of the best solution, optimized

set of checkers can be found for a given set of constraints.

Algorithm 2: Gradient Descent + Simulated Annealing

Data: Estimators for F(S) & C(S), Max, Prob

Result: Locally optimal solution S
1 Find starting point;

2 repeat

3 select random S
4 until C(S) is true;

5 Probability of a random step;

6 p ← 1/2;

7 Annealing loop; probability gets halved;

8 while p > Prob do

9 Done ← False;

10 Steps took since last change in p;

11 Steps ← 0;

12 while ¬ Done & Steps < Max do

13 Steps ← Steps + 1;

14 Coin ← FlipCoin(p);

15 if Coin == Head then

16 Take random step;

17 i ← random(1,n);

18 S ← S ⊕ Ci;

19 else

20 Gradient descent step;

21 Done ← GD(S)
22 end

23 end

24 p ← p/2;

25 end

In general, when the optimization problem is relatively sim-

ple (i.e., it has a small number of local minimums), gradient

descent methods perform fairly well. We do not expect this

to be true for our optimization problem since the interaction

between the hardware checkers is likely to be complicated.

In such situations, simulated annealing methods are preferred.

The basic idea is to modify the gradient descent strategy by

adding random feasible steps that allow local minimums to

be escaped. The random steps are allowed more often in the

beginning but less and less often as the computation progresses

so the solution finds a better local minimum. Algorithm 2

depicts this more complicated process.

Algorithm 2 presents a gradient descent search of the subset

space with annealing. The algorithm begins at a random initial

feasible subset (line 2 - 4). First the probability of random

step is given value 0.5 (line 6). Then this probability is halved

through the annealing loop (line 8 - 25). The loop is conducted

for ‘Max’ steps by checking whether the probability is greater

than ‘Prob’. For each iteration, ‘FlipCoin’ is conducted to

determine whether we will move to the best feasible neigh-

boring subset (line 19 - 22) or will move to a random feasible

neighboring subset (line 15 - 18). A neighboring subset of

S is one which has only one hardware checker added or

removed relative to S. A subset is feasible when it satisfies

the applied constraints. Function ‘FlipCoin’ will allow more

random steps in the beginning (i.e., when p is large) but less

random steps when p is smaller. For the best feasible solution,

gradient descent function GD in Algorithm 1 is used (line

21). The probability of a random move decreases by a factor

of 0.5 every ‘Max’ steps (line 24). The algorithm stops when

it attempts to move to the best neighboring subset, and no

feasible neighbor is superior to the current solution.

There are several aspects that can change the parameters

of the cost-based optimization problem. One is the value of

including an assertion can shift significantly throughout the

life-cycle. Assertions that seem marginal now can become

very important due to discoveries of new functional exploits.

Similarly, assertions that seem important now, can prove to

have only marginal benefits in the future. Either the number of

samples, the quality of the synthesis estimation or the learning

methods can improve throughout the life-cycle. Another aspect

is that if more computation can be afforded, it can result in

better quality solutions for the optimization problem.

Based on our formulation and solution for the cost-based

optimization problem, a number of shortcuts can be taken to

improve the running time of the solver. Specifically, the current

best solution can be used as the starting point for the modified

future optimization problem. It is likely that the problem will

not shift significantly; the current solution should be in the

neighborhood of the new optimal solution.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed

approach. First we describe our experimental setup. Next, we

outline the results of our experiments.

A. Experimental Setup

For the experimental evaluation, we have selected bench-

marks from TrustHub [15], OpenCores [16] and RISC-V CPU

core [17] as shown in Table I. The first column of the table

shows the benchmarks. The second and third column show the

number of LUTs in the design and the number of assertions

selected as hardware checkers for synthesis, respectively. The

last column shows the number of samples used for the cost

prediction model. The assertion generation was conducted

manually as well as using Goldmine [6]. We have evaluated the

dynamic refinement of hardware checkers using the Zynq-7000

SoC based evaluation platform. We synthesized the original

design as well as the design with embedded assertions, of

both the concurrent and immediate form, to the FPGA in the

SoC. We utilized Xilinx Vivado Design Suite 2021 to perform

synthesis, optimization, and place and route for the designs.

The same software was then used to perform timing-accurate

simulation of the FPGA mapped designs, emulating both the

functional and timing constraints of the FPGA architecture.

TABLE I: Benchmarks

Benchmark # LUT # Checkers Sample Size

D-Cache 146 15 1000

Ibex Decoder 152 20 1000

Ibex Controller 159 10 300

PCI 222 12 500

Ibex ID-Stage 425 20 1000

AES 1765 10 300

B. Cost Prediction Results

To emphasize that our cost function F(S) is not simply

linear, we conducted an experiment where we calculated the

power consumption of individual checkers and the power

consumption of number of the checkers together. Figure 3

presents the power consumption (in watts) for different number

of checkers for PCI design. The figure shows the cumulative

cost (addition of individual checkers) and the actual power

consumption for the same number of checkers. The cumulative

cost of the 12 individual checkers is 0.087 watts. However,

when we get the 12 checkers together, the power consumption

is 0.018 watts. This shows that out cost function F(S) is

non-linear. Therefore, it is important to use cost prediction

techniques to predict the cost rather than synthesizing all

possible combinations of checkers.

1 2 3 4 5 6 7 8 9 10 11 12
Checkers

0.00

0.02

0.04

0.06

0.08

Po
we

r C
on

su
m

pt
io

n
(W

)

Cumulative Cost
Actual Cost

Fig. 3: Power consumption (W) for checkers in PCI

The size of Lookup Tables (LUT) and power overhead are

selected as parameters for the cost prediction framework. To

enable approximate prediction of the cost function, we have

explored the efficacy of four models: (1) linear regression

(LR), (2) linear regression with quadratic interaction (LRQ),

(3) linear regression with cubic interaction terms (LRC), and

ridge regression (RR). The training data was generated by

collecting LUT and power data from a random sample of

subsets from the set of all possible subsets for each design.

Each assertion subset in the sample was then synthesized,

optimized, placed, and routed. Hardware and power utilization

data for each subset in the sample was then dumped, which

would serve as the training data. For example, in case of PCI,

a sample of 500 subsets was collected, covering 12.21% of all

possible subsets. Similarly, in case of D-Cache, 1000 subsets

were collected, covering 3.05% of all possible subsets. This

data set was then randomly partitioned into a train and test

set, using an 80-20 train-test split. First, the performance of

the models on unseen data was estimated by training and

evaluating the models on the train set using 10-fold cross

D-Cache Decoder Controller PCI ID-Stage AES
0.0

0.5

1.0

1.5

2.0

NR
M

SE
 P

er
ce

nt
ag

e
LR
LRQ
LRC
RR

(a) Model accuracy for power consumption prediction

D-Cache Decoder Controller PCI ID-Stage AES
0

1

2

3

4

5

NR
M

SE
 P

er
ce

nt
ag

e

(b) Model accuracy for LUT prediction

Fig. 4: Model accuracy for different regression models

TABLE II: Dynamic refinement results for PCI with different iterations

LUT Power(W) Iterations = 10 Iterations = 20 Iterations = 30 Iterations = 40 Iterations = 50

5 0.125
ª001000010100º (3)
P=0.124, LUT=3.61

ª000000011100º (3)
P=0.122, LUT=4.85

ª000000011100º (3)
P=0.122, LUT=4.85

ª000000011100º (3)
P=0.122, LUT=4.85

ª000000011100º (3)
P=0.122, LUT=4.85

5 0.155
ª001000010110º (4)
P=0.127, LUT=4.75

ª101000010100º (4)
P=0.127, LUT=4.8

ª001000010110º (4)
P=0.127, LUT=4.75

ª101000010100º (4)
P=0.127, LUT=4.8

ª101000010100º (4)
P=0.127, LUT=4.8

25 0.135
ª100110011111º (8)
P=0.134, LUT=16.9

ª001110011111º (8)
P=0.134, LUT=16.9

ª101110011101º (8)
P=0.133, LUT=16.8

ª101110011101º (8)
P=0.133, LUT=16.8

ª001110011111º (8)
P=0.134, LUT=16.9

45 0.155
ª111111011111º (11)
P=0.144, LUT=27.89

ª111111011111º (11)
P=0.144, LUT=27.89

ª111111011111º (11)
P=0.144, LUT=27.89

ª111111011111º (11)
P=0.144, LUT=27.89

ª111111011111º (11)
P=0.144, LUT=27.89

validation, with normalized root mean squared error (NRMSE)

as the performance metric. The performance evaluation for all

the 4 models for each benchmark with respect to power and

LUT consumption is shown in Figure 4. For all the designs,

the four models achieved less than 3% error predicting the

power consumption and less than 5% error predicting LUT.

The model with the best performance on the test set for

each metric and design pair (Figure 4) was then utilized

during the subset selection algorithm in dynamic refinement

to predict the LUT and power overhead for potential selected

hardware checker subsets. By estimating whether a checker

subset satisfied the applied constraints, the subset selection

algorithm produced results without the processing bottleneck

of HDL synthesis for each subset and its neighbors.

C. Dynamic Refinement Results

The subset selection algorithm was run for all designs with

a variety of parameters, including LUT constraints, power

constraints, and number of iterations (by changing the ‘prob’

value). Figure 5 shows the dynamic refinement of hardware

checkers for each benchmark with different constraints. For

each benchmark, the number of checkers selected as optimal

subset is shown in checker coverage as a percentage of all

the number of checkers in the initial set (N). The dynamic

refinement is performed with increasing iterations from 5 to

100 for all the constraints pairs. Figure 5 shows the optimal

selection of hardware checkers for each constraints pair chosen

from the results from different iterations.

When the design constraints are loosened, the achievable

assertion coverage increases. For all the designs, the highest

coverage values are achieved with maximum LUT of 45

and power of 0.155 watts. As the constraints are tightened,

the coverage value tends to decrease as the algorithm must

sacrifice coverage for feasibility. The loss in coverage for each

decreasing step in one constraint value is not linear. Instead,

the coverage begins to decrease more rapidly as the constraints

decrease to values significantly below the mean value of the

metrics for random subsets. This may be indicative of the fact

that the propensity of the algorithm to find locally optimal,

but globally sub-optimal solutions increases as the constraints

are tightened due to the local search being constrained by a

high amount of infeasible neighbors. It also may arise from

the underlying distribution of subset overhead values being

non-uniform. In other words, the fraction of subsets satisfying

the tight constraints is lower than we would expect from a

uniform distribution.

The results of running the dynamic refinement algorithm for

PCI benchmark with increasing iterations (10 to 50) are shown

in Table II. The first two columns provide design constraints

in terms of upper limit on the number of LUTs available

and power consumption (in Watts). Each row represents a

different configuration in terms of constraints. The number

of checkers selected for synthesis is shown in brackets. The

solution subset is presented as a bit-string, where the i-th

bit being 1 implies that the i-th checker was included in

the solution. For each solution, the power and LUT values

are also shown in the table. Note that significant increase

in the number of iterations does not dramatically improve

the achieved coverage. For example, the algorithm achieved

a coverage of 11 (91.67%) with optimal solution even from

Max LUT

10
20

30
40 Max

 Po
wer

(W
)

0.125

0.135

0.145

0.155

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(a) D-Cache (N=15)

Max LUT

5
10

15
20 Max

 Po
wer

(W
)

0.110

0.112

0.114

0.116

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(b) Ibex Decoder (N=20)

Max LUT

1
3

6
9 Max

 Po
wer

(W
)

0.110

0.115

0.120

0.125

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(c) Ibex Controller (N=10)

Max LUT

10
20

30
40 Max

 Po
wer

(W
)

0.125

0.135

0.145

0.155

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(d) PCI (N=12)

Max LUT

10
15

20
25 Max

 Po
wer

(W
)

0.105

0.115

0.125

0.135

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(e) Ibex ID-Stage (N=20)

Max LUT

10
20

30
40 Max
 Po

wer
(W

)

0.125

0.135

0.145

0.155

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(f) AES (N=10)

Fig. 5: Checker subset selection for changing requirements

10 iterations for LUT=45 and Power = 0.155 W on the PCI

design. However, for some constraints increasing the number

of iterations helped to achieve the optimal solution (LUT=5

and Power=0.155).

Overall, the subset selection algorithm allowed for con-

sistent performance under constraints in achievable ranges,

and did not require significant iterations to find satisfactory

solutions. The algorithm’s speed and relative simplicity are

positive indicators of the potential efficacy of this method in

the dynamic refinement of on-chip security assertions. Our

proposed algorithm represents a highly extensible foundation

which can be augmented with additional constraints, such as

novel cost functions, and time dependent behaviors, all of

which potentially appear in industrial applications.

VI. CONCLUSION

Post-silicon validation and in-field debug relies on observ-

ability infrastructure such as trace buffers. Hardware checkers

can improve the observability for debugging functional as well

as non-function (e.g., security) violations. Due to hardware

overhead considerations, it is not feasible to map all pre-silicon

assertions as post-silicon hardware checkers. While there are

promising approaches for selecting a small set of profitable

assertions for synthesis, they are not useful under changing

workloads and input variations. We presented a framework

to dynamically refine hardware checkers for changing design

constraints. We formulated the dynamic refinement problem

as a cost-based non-linear optimization problem. we used

regression based learning to perform cost prediction for hard-

ware checkers. We solved the non-linear optimization problem

using gradient descent with simulated annealing. Experimental

evaluation demonstrated the effectiveness of our framework.

REFERENCES

[1] H. Witharana, Y. Lyu, S. Charles, and P. Mishra, ªA survey on assertion-
based hardware verification,º ACM Computing Surveys, 54 (11), 2022.

[2] P. Mishra et al., ªPost-silicon validation in the soc era: A tutorial
introduction,º IEEE Design & Test, 34(3), 2017.

[3] H. Foster, ªWilson research group functional verification study 2020.º
[4] F. Farahmandi et al., ªCost-effective analysis of post-silicon functional

coverage events,º in DATE. IEEE, 2017.
[5] P. Taatizadeh and N. Nicolici, ªAutomated selection of assertions for

bit-flip detection during post-silicon validation,º TCAD, 2016.
[6] S. Vasudevan et al., ªGoldmine: Automatic assertion generation using

data mining and static analysis,º in DATE, 2010.
[7] H. Witharana et al., ªDirected test generation for activation of security

assertions in rtl models,º ACM TODAES, vol. 26, no. 4, 2021.
[8] ÐÐ, ªAutomated generation of security assertions for RTL models,º

ACM Journal on Emerging Technologies in Computing Systems, 2022.
[9] M. Eslami et al., ªReusing verification assertions as security checkers

for hardware trojan detection,º arXiv preprint arXiv:2201.01130, 2022.
[10] R. Hariharan et al., ªFrom rtl liveness assertions to cost-effective

hardware checkers,º in DCIS, 2018.
[11] A. Adir et al., ªLeveraging pre-silicon verification resources for the

post-silicon validation of the ibm power7 processor,º in DAC, 2011.
[12] P. Taatizadeh and N. Nicolici, ªEmulation infrastructure for the evalua-

tion of hardware assertions for post-silicon validation,º VLSI, 2017.
[13] Y. Kimura et al., ªSignal selection methods for efficient multi-target

correction,º in ISCAS, 2019.
[14] M. Gao and K.-T. Cheng, ªA case study of time-multiplexed assertion

checking for post-silicon debugging,º in HLDVT, 2010.
[15] ªTrusthub,º https://www.trust-hub.org/.
[16] OpenCores, https://www.opencores.org/, 2020.
[17] ªLowRISC/ibex,º https://github.com/lowRISC/ibex.

