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AbstractÐQuantum measurement is one of the critical
steps in quantum computing that determines the probabilities
associated with qubit states after conducting several circuit ex-
ecutions and measurements. As a mesoscopic quantum system,
real quantum computers are prone to noise. Therefore, a major
challenge in quantum measurement is how to correctly inter-
pret the noisy results of a quantum computer. While there are
promising classification based solutions, they either produce
incorrect results (misclassify) or require many measurements
(expensive). In this paper, we present an efficient technique
to estimate a qubit’s state through analysis of probability dis-
tributions of post-measurement data. Specifically, we estimate
the state of a qubit using cumulative distribution functions
to compare the measured distribution of a sample with the
distributions of basis states |0⟩ and |1⟩. Our experimental
results demonstrate a drastic reduction (78%) in single qubit
readout error. It also provides significant reduction (12%)
when used to boost existing multi-qubit discriminator models.

Index TermsÐQuantum Computing, quantum measure-
ment, error mitigation, statistical learning

I. INTRODUCTION

Quantum computing is expected to significantly out-

perform classical computing on many hard problems due

to quantum mechanical effects such as entanglement and

superposition [1], [2]. While a classical computer can only

be in one possible state at a time, a quantum computer

can be in an arbitrary combination of states at the same

time. Unfortunately, quantum computing also introduces

a significant level of noise and uncertainty compared to

classical computing [3]±[5]. Moreover, the result of mea-

suring a quantum computer forces the arbitrary state to one

known state with some probability, which requires several

executions to identify the final output.

There are various sources of noise (errors) in quantum

computers including (a) initial state preparation, (b) actual

computation, and (c) measurement of results. In this paper,

we specifically focus on mitigation of quantum measurement

errors. In order to enable noise-resilient quantum computing,

it is crucial to mitigate measurement errors that ranges from

5% to 30% in today’s machines [6]. Modern quantum com-

puters approach measurement by coupling sensitive equip-

ment (which introduces noise) with statistical techniques

that infer properties of the quantum state. This analysis is

performed on classical computers using a large amount of

quantum data produced by repeatedly measuring quantum

circuit output across many iterations (shots) to converge to

a correct solution. The statistical model used for mapping a

quantum measurement to its inferred quantum state is known

as a qubit discriminator.

This work was partially supported by the NSF grant CCF-1908131.

Fig. 1: An overview of quantum measurement procedure.

Figure 1 shows an overview of the measurement proce-

dure in quantum computers. In popular physical realizations

of quantum computers, such as superconducting transmons,

quantum measurement devices represent a collapsed qubit

as a 2-component vector ± the in-phase and quadrature

components (IQ) of an observed wave transmitted through

the resonator [7]. The quantum measurement device returns

sets of measurement results, such as IQ points. A classifier

is then used to label each point as belonging to either |0⟩
or |1⟩. Our approach uses the measurement data to form a

cumulative distribution function, which is compared to that

of the training distributions using convex optimization. Such

an approach does not exclude hidden statistical properties

that may be present in the measurement data.

Quantum measurement error arises due to noisy mea-

surement readings as well as classification errors caused

by imperfect discriminators. Hence, the accuracy of the

quantum computer is contingent on the performance of the

qubit discriminator. We propose an efficient classification

technique to improve the measurement accuracy. Specifi-

cally, this paper makes the following major contributions.

• We propose a framework for mitigation of quantum

measurement errors using cumulative distribution func-

tions to accurately classify quantum measurements.

• Experimental evaluation demonstrates the effectiveness

of our model in terms of non-linearity, statistical con-

sistency, and versatility compared to state-of-the-art

qubit discriminator approaches.

This paper is organized as follows. Section II surveys

related efforts. Section III describes our proposed frame-

work. Section IV presents the experimental results. Finally,

Section V concludes the paper.

II. RELATED WORK AND MOTIVATION

A. Related Work

Machine learning techniques are widely used for qubit

state discrimination [8]±[19]. Linear discriminant analysis
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Fig. 2: An overview of linear quantum state discrimination

in the IQ space. The model is trained by configuring the

quantum computer to output known samples of basis states

|0⟩ and |1⟩, which are measured and used to divide the

measurement space with a hyperplane. When performing

inference, a measurement that is located above the hyper-

plane will generate a prediction of |1⟩; and a measurement

located below the hyperplane will generate a prediction of

|0⟩. Training data was sampled from ibm quito, and the

hyperplane was computed using scikit learn.

is one of the popular models for qubit state discrimination.

Figure 2 shows the basic idea of the linear discriminator. A

hyperplane is selected to partition the IQ vector space into

regions of |0⟩ and |1⟩ based on the measured IQ outputs

from the training data, which the model assumes follows a

Gaussian distribution. The figure highlights the difficulty of

the classification task. Due to noise in quantum systems (im-

perfect measurement devices, environmental contamination,

and qubit cross-talk), sampled data contains high variance

and may collapse into an incorrect state.

Other machine learning models such as kNN [10], [11],

deep neural networks [11]±[18], and support vector ma-

chines [12] have been used with quantum IQ data to

partition the measurement space into regions of |0⟩ and |1⟩.
Some of these models also consider the effects of quantum

ªcrosstalkº ± a phenomena where unwanted interactions

among qubits can be predicted and accounted for post-

readout. While these methods offer alternative ways to

partition; they each implement the same inference workflow

by mapping each qubit measurement to a single location

within the partition space. An overall qubit state is obtained

by analyzing the frequencies associated with each predic-

tion. Beyond variations in the partitioning method, further

improvements have been obtained by enabling models to tag

samples as ªinconclusiveº [12], [19], and discarding such

samples from processing. Some of these methods can be

extended to classify higher energy states [18].

B. Limitations of State-of-the-Art Approaches

The existing quantum measurement classification methods

have the following fundamental limitations.

• The existing models operate by partitioning the IQ

space into regions corresponding to each basis state.

Regardless of the partitioning method used, the individ-

ual measurements are inherently noisy and often appear

to collapse into incorrect states, shown in Figure 2,

leading to incorrect mappings in the IQ space.

• The current methods map a single IQ measurement

tuple into a single quantum state. Since only a single

measurement tuple is used for prediction, valuable

statistical information encoded within the distribution

of test data is neglected. For example, the |1⟩ basis

state contains higher variance than the |0⟩ state [6],

and thus sample variance ± a distribution property ±

contains unused information about bitstate.

• Many current methods assume properties of quantum

data and partitions (Gaussian, linear, quadratic, etc).

Since quantum measurements diverge from ideal dis-

tributions, such assumptions may introduce bias.

• Some current methods operate by discarding data

deemed ªinconclusiveº. We believe a method that quan-

tifies uncertainty without discarding data can outper-

form these techniques.

• Most qubit discriminator models are difficult to ef-

fectively boost (combine with other models). While

ensemble techniques exist, such methods require signif-

icantly more computation and have not to date demon-

strated superior results for quantum discrimination.

• It is difficult to quantify or guarantee convergence

with many state of the art qubit discriminator meth-

ods. Quantum circuits are often sampled for tens of

thousands of iterations since no stochastic framework

exists to bound the error associated with classification.

In practice, many quantum engineers evaluate the ac-

curacy of the discriminator via the use of a test set.

Sampling is repeated until the discriminator reaches an

accuracy threshold on the test set, requiring potentially

thousands of additional quantum samples.

We propose a sophisticated quantum discriminator that

overcomes these limitations, guarantees convergence, and

as an additional benefit, can produce an estimate for the

number of samples needed to attain convergence within a

threshold without requiring a holdout (testing) set.

III. DISTRIBUTION-BASED CLASSIFICATION FOR

MITIGATING QUANTUM MEASUREMENT ERRORS

The goal of measurement classification is to take the

results of measuring qubits in a quantum register (a collec-

tion of IQ points) and correctly identify the corresponding

bitstring labels. For example, after measuring the quantum

state 1√
2
(|00⟩+ |11⟩), the classifier should provide bitstrings

ª00º and ª11º, each occurring with equal probability. Tra-

ditionally, classifiers are trained to partition the IQ space, as

shown in Figure 2. We choose to use the linear discriminator

as a baseline for this work, due to its prevalence in the

community and widespread use in open source libraries,
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Fig. 3: Visualization of the distribution approach to single

qubit state discrimination. The training |0⟩ and |1⟩ eCDFs

are shown in gray. The sample qubit eCDF is shown in

blue, and the fitted eCDF estimate is shown in red. The

fitted eCDF is obtained by creating a convex combination

of both gray curves with weights selected to follow the blue

curve as closely as possible, as outlined in Section III-B.

The coefficients used for the combination are the estimate

for the quibt’s state. Data obtained from ibm quito.

such as Qiskit, and its high performance among other

discrimination methods [11] on IBM’s quantum machines.

Rather than providing yet another approach to partition

the IQ space, we propose an entirely novel distribution-

based classification workflow that overcomes the shortcom-

ings outlined in Section II. Unlike previous methods which

produce classifications for every measurement shot, our

method directly estimates the probabilities of |0⟩ and |1⟩
in one task.

In this section, we first outline the use of cumulative

distribution functions (CDF) for classification. We then show

an example of classification on a single qubit using CDFs.

Finally, we incorporate our CDF approach to existing clas-

sification techniques, as highlighted in Figure 4 ± providing

the advantages of CDF while also being scalable even for a

large number of qubits.

A. Classification using Cumulative Distribution Functions

It is a well established fact that the Cumulative Distri-

bution Function (CDF) uniquely characterizes a probability

distribution. Since a qubit exists in a superposition of states

|0⟩ and |1⟩, it follows that the qubit exists in a mixed

distribution of basis states |0⟩ and |1⟩. Thus, its unique

CDF can be decomposed into a linear (convex) combination

of |0⟩ and |1⟩ CDFs, where the weights associated with

the constituent |0⟩ and |1⟩ CDFs directly represent the true

proportion of measurements that collapsed into each of the

|0⟩ and |1⟩ states. This decomposition for an arbitrary qubit

superposition is depicted in Figure 3.

Properties like randomness, state stability, and variance

are inherently accounted for in the CDF. Additionally, by

analyzing the CDF of the qubit as a whole, we avoid

the need to classify each shot individually to arrive at a

state estimate. Instead, we analyze properties of the qubit

distribution, the |0⟩ distribution, and the |1⟩ distribution.

Next, we discuss methods for estimating each of these CDFs

and the procedure used for the decomposition.

B. Empirical CDF-based Single Qubit Classification

We begin by preparing a training data set of size k for

both |0⟩ and |1⟩ quantum states. Each state is prepared,

measured, and tagged with the associated |0⟩ or |1⟩ label.

Since each measurement consists of both the in-phase and

quadrature components, both the |0⟩ and |1⟩ data sets have

dimensions (k by 2). We then construct a test distribution

of dimensions (k by 2) by placing the qubit into a random

mixed distribution of |0⟩ with frequency α and |1⟩ with

frequency 1 − α, where α is randomly selected. We will

evaluate our method’s ability to reproduce α given the test

data, the training data, and the training labels. Next, we

study the distribution of both the |0⟩ and |1⟩ training data

sets. We estimate the CDF of both sets by computing the

empirical CDF (eCDF). The empirical CDF is a consistent

and unbiased estimator that converges absolutely to the

true CDF. Moreover, as an additional benefit, the Dvoret-

zky±Kiefer±Wolfowitz inequality [20] provides a closed

form error bound for each of the eCDF estimators as a

function of the sample size. The eCDF is computed by

finding the proportion of values in the data set less than

or equal to x, given by

P̂ (X ≤ x) =
1

k

k
∑

i=1

I(ti ≤ x) (1)

where ti runs through each element of the set. Here, I(q) is

the indicator function, which is given as 1 if q is true, and 0

otherwise. We implement binary search to compute this sum

in log(k) complexity. We then perform a linear interpolation

to transform these staircase-like empirical CDFs to smooth

estimates Ð a technique useful for small data sets.

Algorithm 1 eCDF summation with binary Search

in: x: the value to find, array: the sorted array to search

out: the interpolated index with which x lies

1: procedure INDXINTER(x, array)

2: if x ≥ array[len(array)− 1] then

3: return 1

4: else if x ≤ array[0] then

5: return 0

6: end if

7: upper ← binarySearch(x, array)

8: lower ← upper− 1
9: difference← array[upper]− array[lower]

10: return lower + ((x− array[lower])/difference)
11: end procedure

Algorithm 1 describes the procedure for finding an element

x in an array with linear interpolation. If a value x



lies between indices i − 1 and i, Algorithm 1 returns a

decimal value estimating an index between i − 1 and i
per the linear interpolation formula. For example, an array

containing [1, 3, 4] would return index 0.5 for the query 2, as

the value 2 lies directly in between values at indices 0 and 1.

Using this method, we compute the eCDF for both

the in-phase and quadrature component across all values

x ∈ Xin ∪ Xquad of each set. To compute the joint eCDF

of a set given by P̂ (X ≤ x), we assume independence be-

tween component measurement distributions, and compute

the product of the eCDF estimates for both components.

Thus, we have produced estimates for the |0⟩, |1⟩, and test

distributions CDF.

Algorithm 2 Computation of empirical CDF

in: x: the domain input to the CDF function, inPhase: the

sorted in-phase data from the measurement device, quad:

the sorted quadrature data from the measurement device

out: the estimate CDF for the value x

1: procedure ECDF(x, inPhase, quad)

2: ind1← indxInter(x, inPhase)
3: ind2← indxInter(x, quad)
4: return (ind1/len(inPhase)) ∗ (ind2/len(quad))
5: end procedure

Algorithm 2 describes the procedure for producing an

eCDF estimate for the value x. Rather than computing

the sum explicitly ± as defined in Equation 1 ± a

binary search is performed using Algorithm 1 to

identify the indices where x would lie within the in-

phase and quadrature distributions. The indices are

interpolated, and the joint estimate is returned as the eCDF.

We use least squares regression to obtain a value for α̂,

under the constraint 0 ≤ α̂ ≤ 1, such that they minimize

∥(α̂ · F (x) + (1− α̂) ·G(x))−H(x)∥

where F (x) and G(x) are the eCDF estimates for |0⟩ and

|1⟩, and H(x) is the estimate eCDF of the sample. α̂ and

1 − α̂ are the estimates for the qubit’s state. Overall, α̂ is

computed in k log(k) time complexity.

C. Empirical CDF-based Multi-Qubit Classification

In the above section, we demonstrated how an eCDF

single qubit discriminator can be used instead of a tra-

ditional discriminator. This is possible since the eCDF

discriminator fully constrained all two basis states. In this

section, we show how the method can be employed with

existing methods for quantum computers with more than

one qubit.

With the single qubit eCDF estimation method, it is

possible to effectively decompose the mixed distribution of

a single qubit into known distributions of |0⟩ and |1⟩ states

using estimation and regression techniques. On a machine of

n qubits, this method generates n constraints on the position

Fig. 4: A high-level overview of the multi-qubit measure-

ment classification procedure that consists of three stages.

The first stage (Traditional Classification) uses existing

methods to produce an estimate. The second stage (Con-

straint Generation) applies the eCDF method to each qubit

to generate constraints. The final stage applies the con-

straints to the existing estimate to produce a new estimate

(Refined Classification).

space of 2n basis states. To illustrate this point, suppose

we have a quantum computer with n = 2 bits, and it is

estimated from the above method that qubit 0 decomposes

into |0⟩ with frequency α0 and that qubit 1 decomposes into

|0⟩ with frequency α1. From this, we have the following

constraints (X indicates a ªdon’t careº bit that can take any

value): (1) The frequencies of states |X0⟩ given by |00⟩ and

|10⟩ sum to α0, (2) the frequencies of states |0X⟩ given by

|00⟩ and |01⟩ sum to α1, and (3) the frequencies of states

|00⟩, |01⟩, |10⟩, and |11⟩ sum to 1.

For a computer with n qubits, the solution space contains

2n unique basis states, n+1 constraints, with 2n− (n+1)
remaining free variables. For time complexity purposes, a

qubit discriminator can not typically constrain all 2n states.

We demonstrate how the constraints can improve perfor-

mance and enhance state of the art classification methods. To

underscore this claim, we employ a linear discriminator to

classify quantum measurements and measure classification

performance before and after the constraints are applied. Our

workflow is highlighted in Figure 4.

We begin by creating a training distribution for each

qubit in the |0⟩ and |1⟩ quantum states in the same manner

as the single qubit method. We then generate a sample

convex label vector α by sampling a random proportion

of measurements from each of the 2n states. For example,

if α =
[

0.25 0.75 0 . . . 0
]

, then 25% of our test

distribution would be sampled from the 00000 state, and

75% of our test distribution would be sampled from the

00001 state.

Next, we employ the existing state-of-the-art linear dis-



criminator method to produce an estimate for the qubit’s

state, given as α̂1. This is done by first training n linear

discriminator models on each qubit’s training set. In the

traditional manner, each IQ pair in the test set is classified

independently as |0⟩ or |1⟩, producing an estimate bitstring.

This is repeated for every qubit string in the test set and the

frequencies are computed to generate α̂1.

Finally, we generate the constraints and produce a refined

estimate α̂2 that adheres to each constraint. As described in

the previous section, we create eCDF estimates for each

qubit’s |0⟩, |1⟩, and test distributions. We compile these

constraints into β, a vector of length n which, for each

qubit, independently estimates the proportion of that qubit’s

test distribution measured in the |0⟩ state.

Due to the presence of free variables, there are many

possible candidates which adhere to all β constraints. Rather

than considering all of them, we define the refined estimate

α̂2 as the distribution closest to α̂1 that adheres to all β
constraints. In other words, we update the estimate α̂1 to

satisfy the marginal probabilities given by the constraints β

while minimizing ∥α̂1 − α̂2∥.

IV. EXPERIMENTS

This section demonstrates the effectiveness of our pro-

posed quantum measurement methods compared to the state-

of-the-art approaches. We first outline our experimental

setup. Next, we present our experimental results.

A. Experimental Setup

We use ibm quito, a 5-qubit machine, to initialize states

and perform measurements. Quantum circuits and measure-

ments are performed to output |0⟩ and |1⟩ basis states for

each qubit. Each measurement is performed 20,000 times

(shots), thereby obtaining 20,000 samples of IQ measure-

ments in each of the |0⟩ and |1⟩ quantum states. Data

was partitioned into a training and testing set. We evaluate

the effectiveness of our proposed methods compared to the

state-of-the-art approach implemented in Qiskit [21] as the

linear discriminator. We use Scipy’s optimizations library

to perform all necessary minimization using the ªNelder -

Meadº method.

B. Classification Results for Single Qubits

For a single test, we first shuffle the entirety of the

experiment dataset. The set is then partitioned into training

and testing data. We then generate 1,000 random values

for α, each of which lies between 0 and 1. For each value

of α, we then build a mixed testing dataset of size 5,000

composed of α% randomly selected values from the testing

data of |0⟩ and (1 − α)% randomly selected values from

the testing data of |1⟩. The model is then evaluated on how

well it can reconstruct the value of α. We evaluate the mean

absolute error (MAE) as the absolute difference between the

measurement and truth, given as |α̂− α|.
Figure 5 shows the resulting Mean Absolute Error (MAE)

of using a basic linear discriminator versus our eCDF-based
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Fig. 5: Mean Absolute Error (MAE) for reconstruction using

traditional linear discriminator and our proposed eCDF

discriminator method. The data was shuffled across 66

iterations; and for each iteration, 1000 random distributions

were generated, reconstructed, and evaluated as described

above. The error bar depicts one standard deviation in the

sample mean MAE performance of each method.

method. The eCDF model attained a lower error at all

training sizes and greatly reduced in variance as the sample

size enlarged. This demonstrates that our proposed approach

(eCDF) can outperform traditional discriminators.
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Fig. 6: Percent improvement in Mean Absolute Error (MAE)

of proposed eCDF method compared with existing linear

discriminator across different training sample sizes.

Figure 6 shows the relationship between number of

samples and the MAE provided by our proposed approach

(CDF) as well as existing approach (Linear Discriminator).

It highlights two important points: (1) increasing training

samples improves the performance at a disproportionately

higher rate than the baseline, and (2) our proposed solution

significantly outperforms (up to 78.69%) state-of-the-art,

and attains significant improvements above the baseline at

each training size.



C. Classification Results for Multiple Qubits

We begin by configuring the quantum computer to output

each of 25 basis states for the 5 qubit machine. Similarly,

each measurement is performed k = 20, 000 times. It should

be noted, however, that for the purposes of evaluating the

method, we consider all 2n states as candidates for output

of the quantum computer. In practice, our method does not

require enumeration of all 2n states; and only considers a

maximum of min (2n, k) states.

For a single test, we shuffle the dataset and partition

the experimental data into training and testing datasets. We

generate a test vector by producing a random convex vector

α of size 2n. We construct a test dataset of size 5,000 by

randomly sampling αi% values from the ith basis state.

The pipeline is evaluated on how well it can reconstruct

the value of α. We compute the mean absolute error as the

value
∥α−α̂2∥2

2n
, which we compare to the baseline mean

absolute error given by
∥α−α̂1∥2

2n
.
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Fig. 7: Mean Absolute Error (MAE) for reconstruction using

traditional linear discriminator and the proposed linear dis-

criminator / eCDF estimation pipeline. The data was shuffled

across; and for each iteration 100 random distributions were

generated, reconstructed, and evaluated as described above.

As shown in Figure 7, the qubit discriminator pipeline

with our proposed eCDF model outperforms the traditional

discriminator at all training sizes. Therefore, it is beneficial

to combine eCDF with traditional models.

V. CONCLUSION

Quantum measurement classification is fundamental to a

successful execution of any quantum algorithm. Measure-

ment classification includes several nuances, such as inher-

ent physical error, as well as randomness associated with

measured data. In this work, we have introduced a new qubit

classifier model that is able to outperform the current state-

of-the-art linear discriminator. The models performance is

achieved by assuming a statistical distribution viewpoint,

which enables the model to capture important features

while ignoring the noise and bias associated with individual

measurement. Specifically, our proposed eCDF technique

significantly outperforms (up to 78.69% for single qubits)

state-of-the-art in single qubit classification accuracy. We

showed that this method offers a fundamental improvement

(up to 12%) to state of the art multi-qubit classification

methods by building a qubit discriminator pipeline that first

performs any standard qubit discriminator method, followed

by an eCDF qubit correction stage.

As demand for quantum computing increases, techniques

that can attain convergence with fewer measurements enable

quantum providers to trade off valuable quantum computer

resources with processing performed on classical computers.

This work opens a path to building robust, yet simple,

measurement classifiers based on fundamental statistical

principles. It invites quantum engineers to engage with quan-

tum data at the distribution level and provides a framework

to add independent qubit distribution insights into existing

quantum classification workflows.
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