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In explainable artificial intelligence, discriminative feature localization is
critical to reveal a black-box model’s decision-making process from raw data
to prediction. In this article we use two real datasets, the MNIST handwritten
digits and MIT-BIH electrocardiogram (ECG) signals, to motivate key char-
acteristics of discriminative features, namely, adaptiveness, predictive impor-
tance and effectiveness. Then we develop a localization framework, based
on adversarial attacks, to effectively localize discriminative features. In con-
trast to existing heuristic methods, we also provide a statistically guaranteed
interpretability of the localized features by measuring a generalized partial
R%. We apply the proposed method to the MNIST dataset and the MIT-BIH
dataset with a convolutional autoencoder. In the first, the compact image re-
gions localized by the proposed method are visually appealing. Similarly, in
the second, the identified ECG features are biologically plausible and consis-
tent with cardiac electrophysiological principles while locating subtle anoma-
lies in a QRS complex that may not be discernible by the naked eye. Overall,
the proposed method compares favorably with state-of-the-art competitors.
Accompanying this paper is a Python library dnn-locate that implements the
proposed approach.

1. Introduction. The empirical success of machine learning in real applications has pro-
found impacts on many scientific and engineering areas, including image analysis (LeCun et
al. (1989), He et al. (2016)), recommender systems (Wang, Wang and Yeung (2015)), natural
language processing (Hochreiter and Schmidhuber (1997)), drug discovery (Vamathevan et
al. (2019)) and protein structure prediction (Jumper et al. (2021), Evans et al. (2021)). How-
ever, the nature of a black-box model makes it challenging to interpret its decision-making
process. The lack of interpretability hinders transparency, trust and understanding of scientific
discovery. To meet challenges, explainable Al (XAI) is emerging, which includes localizing
discriminative features attributing to a model’s predictive performance, shaping or confirming
human intuitions and knowledge, for instance, visual explanation on image recognition.

1.1. Motivation: DL discriminative localization in the MIT-BIH ECG dataset. Our inves-
tigation responds to the need for locating features that are most critical to a learning outcome.
The present study is motivated by the MIT-BIH ECG dataset and the MNIST dataset. Specif-
ically, the MINIST dataset serves as a benchmark for studying XAI methods (Lundberg and
Lee (2017), Ribeiro, Singh and Guestrin (2016)), in part, because the results of localization
could be easily evaluated by human intuition. As demonstrated in Figures 3 and 7, local-
ized image pixels explain how a deep convolutional network differentiates digits “7”” and “9”
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FIG. 1. Five classes of ECG beat: { “N:” normal, left/right bundle branch block, atrial escape, nodal escape},
{ “S:” atrial premature, aberrant atrial premature, nodal premature, supra-ventricular premature}, { “V:” prema-
ture ventricular contraction, ventricular escape}, { “F”: fusion of ventricular and normal}, { “Q:” paced, fusion
of paced and normal, unclassifiable}.

on the MNIST data. A more substantial medical application is based on the MIT-BIH ECG
dataset; this dataset is a commonly used ECG benchmark dataset which consists of ECG
recordings from 47 different subjects recorded at the sampling rate of 360Hz by the BIH
Arrhythmia Laboratory. Each beat is annotated into five different classes under the Associ-
ation for the Advancement of Medical Instrumentation (AAMI) EC57 standard (Stergiou et
al. (2018)): “N, S, V, F” and “Q.” One random sample per class is demonstrated in Figure 1.

Broadly speaking, the existing ECG diagnosis methods in the literature can be categorized
into two: conventional machine learning (ML) and deep learning (DL) methods. Conventional
ML methods first extract manually-crafted features based on ECG background knowledge
and some signal morphological technique, including the QRS complex, T wave, R-R inter-
val, S-T interval (Wasimuddin et al. (2020)); see Figure 2. Next, conventional classification
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FI1G. 2. A typical ECG signal with its most common waveforms, where important points and intervals are
marked.
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methods, such as support vector machines (SVMs; Cortes and Vapnik (1995)), random forest
(Breiman (2001)) and gradient boosting (Friedman (2001)) can be used to implement ECG di-
agnosis under a supervised learning framework based on extracted features (Jambukia, Dabhi
and Prajapati (2015)). However, conventional methods strongly depend on the quality of the
manually-defined features which are limited by existing domain knowledge. Specifically, the
manually-crafted morphological features may not be able to capture all predictive informa-
tion in the original ECG signals (Bharti et al. (2021), Thygesen et al. (2007)). Moreover,
it is also challenging to perfectly extract morphological features from ECG signals due to
electrical noise caused by tray magnetic fields and accessories that vibrate (Elgendi (2013)).
Therefore, certain biases may be introduced during feature engineering, thus hampering the
accuracy of ECG diagnosis.

Recently, deep learning has garnered considerable success in ECG diagnosis. DL differs
from conventional ML methods in directly fitting a neural network based on raw ECG sig-
nals without feature engineering to extract manual-crafted features. DL. models have recently
delivered superior performance in the classification of ECG diagnosis. For instance, existing
convolutional neural networks (Attia et al. (2019), Ko et al. (2020), Rajpurkar et al. (2017))
achieved over 93% heartbeat classification accuracy. In contrast to conventional ML methods,
DL models can effectively and adaptively extract the underlying information from raw data.
Alternatively, the DL models may localize some novel discriminative features that even ECG
experts may not be aware of nor can discern. However, despite their merits, DL models are
often referred to as a black box, referring to the seeming mystery of their decision-making
processes. The lack of interpretable features relevant to the prediction stands out as a sig-
nificant barrier to the clinical use of their routine. Therefore, our primary goal is to develop
a localization framework to unmask unknown discriminative features of black-box models
to help bridge the bench-to-bedside gap and explore the domain knowledge of interpreting
ECGs.

Discriminative feature localization for DL models is important but challenging. The major
difficulties include: (i) Discriminative features are data-dependent on an input instance. For
example, in the MNIST or ECG dataset the location of discriminative features may differ
with inputs; see Figures 8 and 10. On this premise classical variable selection methods, based
on tabular data, are unsuitable without modification; instead, it requires data-adaptive feature
selection. (ii) A reliable statistical measure supported by theory is required to quantify pre-
dictive importance of any discriminative feature. Most existing methods are heuristic and fail
to interpret the localized features. (iii) As indicated in Figure 3, the localized features should
effectively explain the discrimination of different outcomes. Hence, effectiveness and pre-
dictive importance should be simultaneously considered for selecting sensible discriminative
features.

1.2. Prior work and our contributions. Three major approaches have emerged for
discriminative feature localization, including two-stage methods, feature-importance-based
methods and backtracking methods. Specifically, two-stage methods use a simple explainable
model, such as a local linear model, to approximate a complex black-box model and then
to extract discriminative features. In particular, a method called local interpretable model-
agnostic explanations (LIME) (Ribeiro, Singh and Guestrin (2016)) approximates a classifi-
cation model by a local sparse linear model, based on a kernel smoother as in Davis, Lii and
Politis (2011), then highlights those features with positive linear coefficients. Deep-Taylor
(Montavon et al. (2017)) expands and decomposes a neural network output in terms of its
input variables and generates a heatmap by back-propagating explanations from output to
input. Feature-importance-based methods rank each feature’s contribution by its importance
based on an approximating model in a two-stage method. For example, SHAP (SHapley Ad-
ditive exPlanations) (Lundberg and Lee (2017)) develops a kernel method integrating LIME
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FI1G. 3. Examples to illustrate the concepts of adaptiveness, predictive importance and effectiveness of discrimi-
native features on the MNIST and MIT-BIH data. Upper panel. The left represents raw images of digits 7 and 9, the
middle represents images with localized pixels (marked in red) by the proposed method and the right represents
images with localized pixels from row 15 to 28. Here “loss” and “acc” denote the cross-entropy and classifica-
tion accuracy of a conventional neural network for each of the original and two disrupted dataset (by removing
the localized regions of all images). Lower panel. The top and bottom each show two extracted ECGs and their
localized regions from class “S” (blue) or “V” (red) in the MIT-BIH data. Specifically, the red/blue solid lines
are the extracted ECG signals, and the highlighted vertical blue/red bars are localized regions by the proposed
method. More discussion can be found in Sections 5 and 6.

with the SHAP-value as the kernel weights and feature importance to quantify the contri-
bution of features in an approximating local linear model. The backtracking methods map
the activation layers of a neural network back to the input feature space, identifying which
input patterns contribute more to prediction. In particular, Zhou et al. (2016) uses the global
average pooling (GAP) together with class activation mapping (CAM) at the last layer of a
convolutional neural network (CNN). Then it backtracks discriminative regions at the previ-
ous convolutional layers to the predicted scores. Gradient-CAM (Selvaraju et al. (2017)) ex-
tends GAP to a general CNN model by computing the gradient of a decision score concerning
the feature activation maps of a convolutional layer. DeconvNet (Zeiler and Fergus (2014))
and Layerwise Relevance Propagation (LRP) (Bach et al. (2015)) perform backtracking with
a deconvolution and conservative relevance redistribution, respectively. Finally, Patternnet
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(Kindermans et al. (2017)) identify discriminative features by localizing the signal and noise
directions for each neuron of a neural network.

Despite their merits, issues remain. First, a two-stage approach does not directly inter-
pret an original model since discriminative features are localized by a simple approximation.
For example, discriminative features generated by a linear approximation model (Lundberg
and Lee (2017), Ribeiro, Singh and Guestrin (2016)) may be neither discriminative nor in-
terpretable in the original model. Second, most existing methods are heuristic. As argued in
Tjoa and Guan (2019), an intermediate backtracking process for GAP, Gradient-CAM and
LRP are not amenable to scrutiny. Moreover, DeconvNet and LRP fail to produce a theo-
retically correct explanation, even for a linear model (Kindermans et al. (2017)). Finally, the
above methods usually provide a dense representation of discriminative features, as suggested
in Figure 9, yielding less effective interpretation.

There are three key contributions of our work in this paper:

e We propose a generalized partial R? in Definition 2.1 to quantify the degree of predic-
tive importance of discriminative features so that they can be interpreted similarly, as in
classical statistical analysis.

e The proposed localization framework (5) is able to simultaneously consider both predictive
importance and effectiveness. Specifically, as illustrated in Figures 7 and 10, it provides a
flexible framework to localize discriminative features corresponding to a certain amount of
accuracy, as measured by an R.

e Through numerical experiments in Section 5 (the MNIST dataset), the localized discrim-
inative features not only confirm the visual intuition but also are more efficient than the
other existing methods. The numerical experiments in Section 6 suggest that localized
ECG features are biologically plausible and consistent with cardiac electrophysiological
principles, while locating subtle anomalies in sinus rhythm that may not be discernible by
the naked eyes.

2. Generalized partial R? for discriminative localization. In this section we intro-
duce generalized partial R? to quantify the degree of predictive importance of discriminative
features.

2.1. Motivation. In alearning paradigm, a prediction function d is trained to predict an
outcome Y for a given instance X, where X = (X1, ..., X,)T is a p-dimensional continuous
feature vector. Without loss of generality, each feature component X; is rescaled to [0, 1].
For example, in the MNIST dataset, X is a gray-scale image, and Y is its associated digit
label (LeCun and Cortes (2010)). To assess the performance, a loss function L(-, -) is used,
such as the cross-entropy loss L(d(X),Y) = —1{, log(softmax(d(X))), where 1y is the one-
hot encoding of Y and softmax(z) = (softmax(z)1, ..., softmax(z),)T with softmax(z); =
exp(zi)/_j exp(z;).

Our goal is to identify discriminative features that effectively disrupt or deteriorate the pre-
diction performance of a given learner d. To proceed, we highlight three distinctive character-
istics of discriminative features motivated from real applications, namely, adaptiveness, pre-
dictive importance and effectiveness. As an illustrative example based on the MNIST dataset,
consider two localized feature sets in the left panel of Figure 3. The feature set removed in the
middle or right panel decreases the predictive accuracy of d by the same amount from 0.986
to 0.614 which suggests that the discriminate features should contribute largely to the predic-
tive performance of d. Moreover, with the same amount of deterioration of performance, the
highlighted features in the middle panel appear more compact, which we call more effective
in the sequel, and thus more preferred as discriminative features. Furthermore, key charac-
teristics are also captured by the MIH-BIH data. In particular, the amplitudes and locations
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of the QRS complexes (Kusumoto (2020)) as well as of P and T waves, varying across ECG
signals even of the same class, dictate that the discriminative features should be adaptive to
the input ECG signals, as shown in the right panel of Figure 3. Note that the QRS complex
corresponds to the spread of a stimulus through the ventricles and is usually the most visu-
ally important part of an ECG tracing (Kusumoto (2020)). Moreover, ion channel aberrations
and structural abnormalities in the ventricles can affect electrical conduction in the ventricles
(Rudy (2004)), manifesting with subtle anomalies in the QRS complex in sinus rhythm that
may not be discernible by the naked eyes, yielding sparse or effective discriminative features.
In summary, three distinctive characteristics of discriminative features are desired:

e Adaptiveness. Discriminative feature extraction has to be adaptive to an input instance
and a specific learner d. For example, in the MNIST/MIT-BIH dataset the location of
discriminative features may differ with input images/signals.

e Predictive importance. The prediction accuracy of a learner d would significantly deteri-
orate without discriminative features. Alternatively, discriminative features can explain a
large proportion of its predictive performance.

e Effectiveness. Discriminative features should effectively describe the discrimination of the
outcome. Therefore, under the same predictive importance, the number/amount of local-
ized discriminative features should be as small as possible. For example, compact localized
pixels in the MNIST dataset or compact and accurate location of QRS complexes of ECG
signals in the MIT-BIH ECG dataset.

To address adaptiveness, we introduce a localizer §(x) = (61(x),...,8,(x))T : R? — R?
to produce a disruption adaptively based on an instance x to yield disrupted features xg =
x —&(x). Without loss of generality, assume that each |§;(x)| < 1 because x; is rescaled to be
in [0, 1]. In practice, the restriction |6;(x)| < 1 is usually met by construction, for example,
in an autoencoder in image classification; see Section 3.2 for illustration.

2.2. Generalized partial R*>. To measure the degree of predictive importance of a local-
izer 8(-), we introduce a generalized partial R?> which mimics the partial R? in regression
(Nagelkerke (1991)) and McFadden’s R? (McFadden et al. (1973)) in classification. Specif-
ically, the main idea of the partial R? is one minus the ratio of the full-model risk to the
partial-model risk. On this ground we generalize the partial R? to black-box models in Defi-
nition 1.

DEFINITION 2.1 (Generalized partial R%). Given a predictive model d, we define the
generalized partial R? based on a localizer 8(-) as
E(Ld(X),Y))

1 R*d,8)=1— .
& (.9 E(L(d(Xs),Y))

If R%(d, 8) > r2, we say that the localized features by §(-) is r2-discriminative.

The generalized partial R? is one minus the proportion of the risk on full features X
over that of the disrupted features Xs = X — §(X). It is a natural and clear criterion to
extend the classical R? and to measure the predictive importance of the features disrupted
by a localizer. Specifically, a higher R? yields stronger predictive importance of the lo-
calized discriminative features. When 8(x) does not affect the performance of d, that is,
E(L(d(X3),Y)) =E(L(d(X),Y)), or R3(d, §) = 0, the localized features contain no infor-
mation for prediction. On the other hand, rr%lax = maxg R%(d, §) the largest R? among all pos-
sible localizers, gives an upper bound of R”. For instance, a localizer with each 8 j(xX)=x;
disrupts extremely by removing all features which forces a learner d to predict without fea-

tures. In general, 0 < R% < rﬁm indicates the percentage of performance explained by §.
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3. Methods. Our main idea of identifying effective discriminative features is to seek a
localizer 8(x) yielding the most effective disruption of the features to reduce the prediction
accuracy of a learner d.

3.1. A discriminative localization framework. In Figure 3 the r2-discriminative localizer
in the right panel is ineffective, although it also affects the same amount of prediction accu-
racy. Therefore, discriminative features should have an effective (or compact) representation,
in addition to their contribution to a learner’s prediction accuracy.

To achieve this goal, we introduce an activity L1-regularizer J(8) to quantify the effective-
ness of a localizer,

p
2) J(@) =sup ) |8;(x)|.
x =1

The benefits of this regularizer are twofold. First, it coincides with greedy feature selection
results, as indicated in Appendix A (Dai et al. (2023)). Second, the supremum in (2) makes
the localized features more balanced over an entire sample, as suggested in Section 5. More-
over, we specify ||[§(x)]lc < 1, for any x, to control the magnitude of the disruption. This
requirement can be trivially satisfied, for instance, using the proposed truncated rectified lin-
ear unit (TReLU) or Tanh as an activation function in the output layer of any deep neural
network; see (9) in Section 3.2.

Next, we define an effective r2-discriminative localizer 8° as the one minimizing J ()
among all r2-discriminative localizers. Then 89 can be regarded as an optimal localizer for
identifying discriminative features to inferpret a learner’s predictability through effective dis-
ruption.

DEFINITION 3.1 (Effective r2—discriminative). For 0 < r? < rr%]ax, an effective r2-
discriminative localizer to d is defined as

3) 80 ¢ argmin J(3),

8eHp:R2(d,8)>r2
where H,, is a candidate collection of localizers such that sup, [|d(x)||cc < 1, and we say that
the localized features by 8°(-) is effective r2-discriminative.

As noted in Definition 3.1, 8° is a most effective localizer that minimizes the regularization
J(-) among all r2-discriminative localizers. Without loss of generality, we assume that §°
always exists' but may not be unique in the sequel. Note that, in the presence of multiple
global minimizers in (3), each of them could be useful, since our goal is to estimate such an
effective r2-discriminative localizer.

To identify an effective discriminative localizer for a learner d, we maximize R*(d, §) or
the prediction risk E(L(d(X — §(X)), Y)) with respect to § under the restriction of J(§).
This leads to our proposed framework,

4) max E(L(d(X —8(X)),Y)), subjectto J(8) <T,
eHyp

where 7 > 0 is a tuning parameter to balance the objective of deteriorating the prediction
performance and magnitude of a localizer §(-). To make the constraint sensible, we let 7 < p
since supseyy, J (8) = p. As shown in Lemma 3.2, a most effective r2-discriminative localizer

89 can be identified by (4).

1Otherwise, the definition can be adapted to an e-global minimizer, where the difference between its minimum
value and the global minimum is no less than or equal to €.
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LEMMA 3.2. Let 39 be a global maximizer of (4), and
0= min{z € (0, p]: Rz(d, 8?) > rz};

then 820 is an effective r>-discriminative localizer with J (880) =170,

Lemma 3.2 says that (4) recovers an effective r>-discriminative localizer, defined in Def-
inition 3.1, in a similar fashion as Fisher consistency in classification (Bartlett, Jordan and
McAuliffe (2006), Lin (2004)).

Given a training sample (x;, y;)7_,, we propose an empirical risk function to estimate 69
and 79,

1 n
(5) max L,(d,8) ==Y L(d(x; —8(x;)), i), subjto, () <.
deHyp n im1

Denote 3\1 as a maximizer of (5) for a given . In view of Lemma 3.2, our final estimate of
(680, 70) is

(6) 8 is a maximizer of (5), where T = min{z € (0, p]: R*(d,8;) > rz}.

In practice, T € (0, p] is replaced by t € T, where 7 is the candidate set of the tuning param-
eter 7, as some grid points for positive real numbers, and the estimated R? is evaluated, based
on an independent test sample Diegt = (X, y,-):.‘;rr’l"_H ,

Z(x,y)eD[est L(d(x), )’)

2:(x,y)e’Dlesl L(d(x - St(x))a y)

Taken together, we iteratively solve (5) for T € 7 from the smallest to the largest via a grid
search (Bergstra and Bengio (2012)), and it terminates once I/Q\Z(d ,8z; Deest) exceeds a pre-
specified target r2.

(7) R2(d,8:; D) = 1 —

3.2. A convolutional autoencoder discriminative localizer. The proposed framework (5)
admits a general localizer, such as a deep neural network. In practice, a network architecture
incorporating data structure would be preferred (Bengio (2012)). For example, for the image-
to-image localization in the MNIST dataset or the sequence-to-sequence localization in the
ECG dataset, convolutional autoencoder architectures are natural options to impose a “local
smoothing” structure of the localized features. Therefore, this section illustrates the localizer
d as a convolutional autoencoder. It is noted that the network architecture of a discriminative
model sets a standard for designing a localizer’s architecture.

Consider a localizer of the form §(x) = x ® m(x); x is an image, where © is the elemen-
twise product and 0 < (x) < 1 represents the percentage of image features that a localizer
removes from the original feature x.

Subsequently, we implement our proposed localizer by taking an image x as input and giv-
ing output as disruption proportion m (x). Specifically, we build a convolutional autoencoder
discriminative localizer, based on a convolutional autoencoder network (CAE; Masci et al.
(2011), Rumelhart, Hinton and Williams (1985)), which is composed of three components:
Encoder-CNN (E-CNN), hidden neural network (HNN) and Decoder-CNN (D-CNN), as il-
lustrated in Figure 4. Besides, on the CAE backend model we introduce a TReL.U-softmax or
Tanh-+softmax activation function to control the activity L{-regularizer of the localizer. On
this ground we consider a localizer class,

(8) Hp ={8:(x) =x Omy(x):my(x) = A;(CAEy(x)); 0 € O},
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FI1G. 4.  Our localization network structure, based on a convolutional autoencoder, which is composed of three
components: Encoder-CNN (E-CNN), hidden neural network (HNN) and Decoder-CNN (D-CNN).

o] o [e]

Encoder-CNN hidden layers Decoder-CNN

where CAEy(x) is a convolutional autoencoder with @ € RY denoting its parameters, ® is a
parameter space of @ and A; (-) is a structured activation function, such as

9) A(z) = TReLu(t - softmax(z)), or A;(z) =Tanh(z - softmax(z)),

where TReLu(#) = min(u, 1) is the truncated ReLU function.
Note that for any § € 7—[};, based on the definition of A, the following conditions are
automatically satisfied: (i) sup, [|6(x)|lec < 1; (i1) J(8) = sup, [|6(x)[|1 < t. Therefore, the

constraints in (5) can be removed, given H;, and the optimization of (5) becomes
1 n
(10 mglx;ZL(d(xi —x; Omh(x1)), vi)
i=1

which can be solved by gradient descent (GD) or stochastic gradient descent (SGD; Raginsky,
Rakhlin and Telgarsky (2017)). The GD solution of (10) attains a local maximizer of (10)
under some mild assumptions (Lee et al. (2016)). Note that the convergence result can be
extended to SGD, as in (Ge et al. (2015)), and a global maximizer may be obtained by GD
or SGD with additional assumptions (Raginsky, Rakhlin and Telgarsky (2017)). Once 0 is
obtained, the estimated localizer is specified as

(11) 8.(x) =x © A, (CAE;(x)).

3.3. Interpretation uncertainty. Robustness is a general challenge to existing interpre-
tation approaches. For example, Ghorbani, Abid and Zou (2019) indicate that systematic
perturbations can lead to dramatically different interpretations without changing the label. To
distinguish the interpretability and robustness for the proposed framework, we propose an
unexplainable R? as a confidence interval for the generalized partial R? to distinguish the
prediction deterioration caused by discriminative features from model instability. In particu-
lar, given a learner d and a localizer ,3\,, we construct a confidence interval for R2(d, ,8;) via
bootstrap on a test sample.

First, we generate a bootstrap sample Dt(fs)t by drawing B independent observations from
the test data Dyeg With replacement. Then the unexplainable R? for Rz(d, &) is obtained us-
ing the sampling distribution of the bootstrapped estimates (R%(d, 8; Dt(elzt) )} 521. For exam-
ple, for the MNIST dataset we obtain a 95% confidence interval of R*(d ,/6}) by computing
the |0.025B |th and |0.975B |th ordered estimated R? on the bootstrap samples, as indicated

in Figure 5. More detail can be found in Section 5.

4. Theoretical guarantee. This section indicates that the proposed framework yields
discriminative features attaining a target R? with optimal effectiveness asymptotically.

To proceed, let 89 be a global maximizer of (4) over a function class Hy = {6 € H :
sup, [|8(x)|loc < 1}. Without loss of generality, assume that 0 < L(d(xs),Y) < U for a suffi-
ciently large constant U > 1, for any § € Hj; and x € R”? (Wu and Liu (2007)). To make the
constraint sensible, we let T < p since supscq,, J(8) = p.
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F1G. 5. Boxplot of the estimated R? of the proposed method based on 500 bootstrap samples for the MNIST
benchmark example. This example illustrates the concept of an unexplainable R2.

Denote the Rademacher complexity for the function class Hp, as k, = ER,(Hp) =
SUP§c3y, n! Y Ini(L(d(X; —&(X;)),Y))| and {n;}/_, arei.i.d. Rademacher random vari-
ables with »; taking the values 4+1 and —1 with probability 1/2 each. To make the constraint
sensible, we let T < p since supseq, J(8) = p. Theorem 4.1 gives a convergence rate for the

discrepancy between 8? and §; in terms of R2 uniformly over 0 < 7 < p.

THEOREM 4.1 (Asymptotics of R?). Let 8. bea global maximizer of (5), for &, > 8ky,
and any predictive model d, we have

2
P R2(d.8%) — R%(d.3,) > ¢,) <K (—"8">,
(jsup, R 80) = R, 80) 2 ) = K exp( =

where K > 0 is a constant. Hence,
sup (R2(d, 5(,)) — Rz(d,;f,)) = 0, (max (k,, n—1/2))‘

O<t<p

Note that the asymptotics of the Rademacher complexity «, for a candidate class H has
been extensively investigated in the literature (Bartlett and Mendelson (2002), Bartlett, Bous-
quet and Mendelson (2005)). Therefore, the uniform convergence rate can be obtained for a
generic candidate class by Theorem 4.1. Moreover, the asymptotics for a fixed t is also pro-
vided in Appendix C, where the rate can be further 1mproved

Next, we show that 8z is an asymptotically effective r dlscrlmlnatlve localizer. Note that
3 already is an r2-discriminative localizer, since R?(d, 82) > r2 by the definition of T in (6).

Therefore, it suffices to show effectiveness, that is, |J (6?) —J (820)| =T — 1Y 2,0.To
proceed, we require a smoothness condition of R?(d, 8?) over 7 in Assumption A.

ASSUMPTION A (Smooth). Assume that R%(d, 6?) is a continuous function in 7. More-
over, there exists a constant o > 0 such that |1] — 12| <  if |[R%(d, 6%) —R%*(d, 822)| < cou®
for any p < o.

THEOREM 4.2 (Oracle property). Let 89 be an effective r2-discriminative localizer
in Definition 3.1 and 8% be a global maximizer of (6). Under Assumption A, for w, >
2(8k,/co)/?, we have

) R . na)zo‘
P(|T =" = w,) =P(|J82) — J (8 )|2wn)5K/eXp( KfUZ)’
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where K' > 0 is a universal constant. Therefore,
7 @) — J(8%)| = —°| L0,
and 8z is an asymptotically effective r?-discriminative localizer.

Therefore, the proposed framework yields an effective r2-discriminative localizer, as de-
fined in (3.1), rendering theoretical reliable discriminative features for a target R>. Moreover,
the theorems are illustrated for the proposed convolutional autoencoder neural network (10)
in Corollary B.1, where the convergence rates are computed depending on the sample size
and the network architecture.

5. MNIST benchmark. This section examines the numerical performance and visual-
izes discriminative features generated from the proposed localizer for the MNIST handwrit-
ten digit dataset (LeCun and Cortes (2010)) (http://yann.lecun.com/exdb/mnist/). All em-
pirical results are produced in our Python library dnn-locate (https://github.com/statmlben/
dnn-locate).

For the MNIST data, we extract 14,251 images (28 x 28 field) from the dataset with labels
“7” and “9.” Our goal is to localize discriminative features for distinguishing digits “7” and
“9” with a specific generalized partial R.

First, we train a decision function d as a CNN, where we regularize each parameter of the
CNN by the Li-norm with weight 0.001. Here the CNN model is optimized by the Adam al-
gorithm with an initial learning rate of 0.001, early stopping based on the validation accuracy
with patience as 10, and 20% of the training data as a validation set.

Then a convolutional autoencoder (CAE), as in (8) and Figure 4, is constructed as the
localizer. For training we optimize the model by stochastic gradient descent with an initial
learning rate of 10/t and reduce the learning rate by a factor of 0.382 (Bengio (2012)), when
the validation loss has stopped improving. Moreover, early stopping is conducted based on
validation accuracy with patience as 15 (Raskutti, Wainwright and Yu (2014)).

For the proposed method, we implement (10) based on 7 =4, 6, §, 10, 12, 14, 18, 20 and
the relation between 7 and its corresponding estimated R?s are demonstrated in Figure 6.

Type .

I
— X
09 —e— R square_train S T
-®- R square_test e

0.8 -

-

0.7
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0.3

4 6 8 10 12 14 16 18 20
tau

FIG. 6. Training and testing estimated RZs for the proposed framework in handwritten digit dataset with
T =06,8,10,12, 14, 16, 18, 20 which indicates that the R? increases as the magnitude for an estimated local-
izer becoming large.
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F1G. 7. llustrative instances of localized discriminative features (red) by the proposed method for “1” and “9”
digits (black) as well as their corresponding estimated RZs (the heatmap in x-axis). The gray color bar indicates
gray scale of original images, and the red color bar indicates the proportion of removing features, that is, 7 (x)
in (10).
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FI1G. 8. Data-adaptive localized discriminative features (red) for the proposed method with T = 20 based on
different “7” and “9” digits (black). The gray color bar indicates gray scale of original images, and the red color
bar indicates the proportion.

Note that the estimated R? increases as the activity L-norm of the localizer becoming large.
Furthermore, the discriminative features, identified by the proposed method for two illustra-
tive instances of “7” and “9,” are visualized in Figure 7. Specifically, as the estimated R?
becomes larger, the disrupted instance labeled as “9” becomes more and more like “7.”

As illustrated by the boxplot (Figure 5), a 95% confidence interval [0.867, 0.882] for the
R%(d, 3\1) indicates some uncertainty with the fitted localizer (t = 17), where the R? is cate-
gorized as unexplainable if it falls inside the confidence interval.

Next, we compare the proposed method with five state-of-the-art methods by both hu-
man visual and numerical evaluations, including deep Taylor explainer (Montavon et al.
(2017)), gradient-based explainer (Selvaraju et al. (2017)), Irp.z (Bach et al. (2015)), De-
convNet (Zeiler and Fergus (2014)) and pattern.net (Kindermans et al. (2017)). All competi-
tors are implemented by the Python library innvestigate (https://github.com/albermax/
innvestigate), and the batch size is set as 64 for pattern.net. In particular, a heatmap of
discriminative features produced by each method is validated by a visual inspection and by
a numerical comparison based on the estimated R, given the same amount/magnitude of
feature disruption.


https://github.com/albermax/innvestigate
https://github.com/albermax/innvestigate
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deep_taylor gradient Irp.z deconvnet pattern.net

FI1G. 9. lllustrative instances of localized discriminative features (red), based on five competitors, for “71” and
“9” digits (black), and their corresponding generalized partial RZs (the heatmap in x-axis). The gray color bar
indicates gray scale of original images, and the red color bar indicates importance of pixels produced by a
localizer.

5.1. Visual comparison. As displayed in Figure 7, the proposed method produces more
compact discriminative features. By comparison, the other competitors yield dense image
features spreading over the entire digits. Moreover, the proposed method gives roughly equal
attention to two images in discriminating digits “7” from “9” which conforms with human
intuition. However, as depicted in Figure 9, all competitors generate imbalanced discrimina-
tive features that are more in one of the two images of “7” and “9,” as shown in Figure 9. As
a result, the proposed method is more conducive for label-specific analysis.

5.2. Numerical comparison. To make a fair comparison, we conduct a pairwise com-
parison between the proposed localizer and each competitor under the same magnitude of
J (). Specifically, we compute the value of J(-) and the estimated R> of detected regions
by a competitor. To fairness, we chose our tuning parameter T to be the same as the J(-)
of the competitor. Then compare the R’s for the proposed method and the corresponding
competitor.

As indicated in Table 1, under the same magnitude J (-) the proposed localizer outperforms
all competitors in terms of R2, where the amounts of improvement are 58.47%, 147.1%,
146.5%, 308.0% and 44.14%.

In summary, the proposed method has significant benefits. First, as illustrated in Figure 7, it
provides a flexible framework to localize desirable discriminative features to explain a certain

TABLE 1
A pairwise comparison for the proposed framework and five existing methods based on 10-fold cross validation.
Here J (-) is the activity L-regularizer, as defined in (2), and the estimated R2, as in (@)

Activity Li-norm J (-) R? (competitor in the first column) R? (our method)
deep-Taylor 11.698(0.228) 0.236(0.016) 0.374(0.084)
gradient 26.028(0.319) 0.289(0.012) 0.714(0.033)
Irp.z 14.689(0.219) 0.256(0.014) 0.631(0.077)
DeconvNet 27.832(0.955) 0.175(0.015) 0.714(0.023)

pattern.net 374.709(2.762) 0.648(0.006) 0.934(0.001)
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amount of predictive performance as measured by an R”. Second, the visual and numerical
results in Figures 7 and 9 and Table 1 suggest that the proposed method can produce compact
and effective discriminative features which are consistent with human visual judgment.

6. ECG data analysis. Finally, we present the results of applying our method to the
MIT-BIH arrhythmia electrocardiogram (ECG) dataset for heartbeat classification (Moody
and Mark (1990)). The MIT-BIH dataset consists of ECG recordings from 47 different sub-
jects recorded at the sampling rate of 360 Hz by the BIH Arrhythmia Laboratory. Each beat
is annotated into five different classes by following the Association for the Advancement
of Medical Instrumentation (AAMI) EC57 standard: labeled as “N, S, V, F” and “Q.” The
preprocessed dataset is publicly available at https://www.kaggle.com/shayanfazeli/heartbeat.
The MIT-BIH ECG dataset has been extensively studied, including using deep convolutional
neural networks (Kachuee, Fazeli and Sarrafzadeh (2018), Martis et al. (2013), Acharya et
al. (2017)). In spite of the impressive predictive performance obtained by the devised net-
works (with more than 93% classification accuracy), it is unknown why and how the net-
works achieved their good performance. To advance our understanding and possibly offering
new insights, our goal is to localize discriminative signal fragments, based on the deep CNN
developed in Kachuee, Fazeli and Sarrafzadeh (2018), which is one of the state-of-the-art
ECG classification methods.

For implementation we build a localizer by using a convolutional autoencoder structure in
Figure 4 with two convolutional layers as an encoder and two transposed convolution lay-
ers as a decoder. For training, we use the SGDW optimizer with “learning rate=.1,
weight_decay=1le-4,‘momentum=.9.” Besides, a reducing learning rate scheme is
used with “factor=.382" and “patience=3,” and early stopping is adopted with
“patience=20. Moreover, we tune the hyperparameter t to achieve various R’s: 10%,
50%, 60%, 710%, 75%. Training one network takes less than half an hour on a GeForce GTX
2060Ti GPU. All the Python codes are publicly available in https://github.com/statmlben/
dnn-locate.

To demonstrate our localization results, we concentrate on the localized ECG signals under
the label “S” (including atrial premature, aberrant atrial premature, nodal premature, and
supra-ventricular premature) and the label “V” (including premature ventricular contraction,
and ventricular escape).

As shown in the lower panel of Figure 10, the localized regions (highlighted by the red
bars) of ECG complexes in sinus rhythm are most informative in distinguishing presence of
ventricular ectopic beats from supraventricular ectopic beats in a particular individual. The
localized regions lie in the QRS complex which correlates with ventricular depolarization
or electrical propagation in the ventricles (Mirvis and Goldberger (2001)). Ion channel aber-
rations and structural abnormalities in the ventricles can affect electrical conduction in the
ventricles (Rudy (2004)), manifesting with subtle anomalies in the QRS complex in sinus
rhythm that may not be discernible by the naked eye but is detectable by the convolutional
autoencoder. Of note, as the R? increases from 10% to 88%, the highlighted color bar is
progressively broader, covering a higher proportion of the QRS complex. The foregoing ob-
servations are sensible: the regions of interest resided in the QRS complex are biologically
plausible and consistent with cardiac electrophysiological principles.

As shown in the upper panel of Figure 10, similarly, the regions of interest (highlighted
by the blue bars) of ECG complexes in sinus rhythm are most informative in distinguishing
the presence of supraventricular ectopic beats from ventricular ectopic beats in a particular
individual. As in the left panel, the regions of interest lies in the QRS complex, which is
intuitive and biologically plausible, as explained above.

As shown in the last three figures in the upper panel of Figure 10 for supraventricular
complexes, as the R? increases from 80% to 84% and finally 88%, the blue bar progressively


https://www.kaggle.com/shayanfazeli/heartbeat
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F1G. 10. The proposed method reveals subtle discriminative features used by a deep convolutional neural net-
work for ECG classification on the MIT-BIH dataset. The left/right panel highlights the localized features for a
particular individual under label ‘V'’/‘S’. Note that the R? increases from 10% to 88% for both upper and lower
panels. The medical literature provided in Section 6 gives supporting evidence for biological plausibility of the
localized features; see more discussion in Section 6.
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TABLE 2
RZs for the proposed framework with different network architectures. Here “CAE” indicates a convolutional
autoencoder, “MLP” indicates a multilayer perceptron and the estimated R%is computed, as in (7), based on
10-fold cross-validation

CAE64 CAE128 CAE256 MLP512 MLP1024 MLP2048

0.816(0.028) 0.872(0.011) 0.872(0.015) 0.141(0.252) 0.156(0.255) 0.133(0.242)

highlights the P wave of ECG complexes in sinus rhythm. This observation is consistent
with our understanding of the mechanistic underpinnings of atrial depolarization which cor-
relates with the P wave. Ion channel alterations and structural changes in the atria can affect
electrical conduction in the atria (Rudy (2004)), manifesting with subtle anomalies in the P
wave in sinus thythm that may not be discernible by the naked eye but are detectable by the
convolutional autoencoder.

Collectively, the examples above underscore the fact that the discriminative regions of
interest identified by our proposed method are biologically plausible and consistent with
cardiac electrophysiological principles while locating subtle anomalies in the P wave and
QRS complex that may not be discernible by the naked eye. By inspecting our results with an
ECQG clinician (Dr. Chen in the authorship), the localized discriminative features of the ECG
are consistent with medical interpretation in ECG diagnosis.

6.1. Robustness against localization network architecture. This section examines the ro-
bustness of the proposed framework against network architectures. We use the same imple-
mentation configuration with T = 0.05 and examine CAE network architectures with different
numbers of neurons, denoted as CAE64, CAE128, CAE256 and CAE512, where CAE64 is
constructed as: Conv1D(64)+Conv1D(32)+4Conv1DTranspose(32)+Conv1DTranspose(64),
and other CAE networks are defined likewise. Moreover, we also implement a localizer
with a multilayer perceptron (MLP) structure: MLP256, MLP512, MLP1024 and MLP2048.
For example, MLP256 is constructed as: Dense(256)+Dense(128)+Dense(64)+Dense(187),
and other MLP networks are defined likewise. As indicated in Table 2, R%s of the localized
discriminative features provided by convolutional autoencoders are significantly higher and
more stable than those produced by MLPs. In particular, for CAE-based networks larger net-
works generally improve the performance. The localization results by the CAE networks are
illustrated in Figure 11: the localized discriminative features are fairly consistent with differ-
ent CAE-based network architectures.

7. Discussion. XAI methods have gained prominence in many scientific domains, for
example, medical diagnostics which require both interpretability and predictive accuracy.
To identify discriminative features, we quantify the quality of interpretability by a general-
ized partial R? while measuring the interpretation effectiveness by an activity L{-norm. On
this ground we construct a localizer by disrupting the original features and seek a localizer
yielding the most deteriorated performance of a learner while having the smallest activity
norm for minimal feature disruption. Theoretically, we show that the proposed localization
method identifies discriminative features asymptotically. Moreover, we apply the proposed
framework to the MNIST and MIT-BIH ECG datasets to interpret a learning outcome of a
convolutional autoencoder neural network. Numerical results suggest that the proposed local-
izer compares favorably with state-of-the-art competitors in the literature while identifying
discriminative regions that are not only visually/biologically plausible but also concise. Fur-
thermore, it is of interest to know if any localized features are genuinely important for which
hypothesis testing targeting a data-adaptive localizer, as in Dai, Shen and Pan (2022), would
be needed as a possible extension of our framework.
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FI1G. 11. The localized discriminative features of one ECG signal in the MIT-BIH dataset based on the proposed
framework with different CAE network architectures: CAE64 - CAE256.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Data-adaptive discriminative feature localization with statistically
guaranteed interpretation” (DOI: 10.1214/22-A0AS1705SUPPA; .pdf). The supplemen-
tary materials consist of: Appendix A indicates that the proposed framework incorporates
greedy feature selection for a linear regression model and a piecewise linear regression
model; Appendix B provides details of assumptions and asymptotic results for the proposed
framework; Appendix C refines the asymptotic results of the proposed framework based on a
fixed 7; Appendix D provides the technical proofs.

Python package dnn-locate (DOI: 10.1214/22-AOAS1705SUPPB; .zip). The Python
package dnn-locate is available in PyPi (https://pypi.org/project/dnn-locate/). For the most
recent version of the package, see https://github.com/statmlben/dnn-locate.
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