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Abstract

In manufacturing, causal relations between components have become crucial to automate assembly lines. Identifying these
relations permits error tracing and correction in the absence of domain experts, in addition to advancing our knowledge
about the operating characteristics of a complex system. This paper is motivated by a case study focusing on deciphering
the causal structure of a wafer manufacturing system using data from sensors and abnormality monitors deployed within
the assembly line. In response to the distinctive characteristics of the wafer manufacturing data, such as multimodality,
high-dimensionality, imbalanced classes, and irregular missing patterns, we propose a hierarchical ensemble approach. This
method leverages the temporal and domain constraints inherent in the assembly line and provides a measure of uncertainty in
causal discovery. We extensively examine its operating characteristics via simulations and validate its effectiveness through
simulation experiments and a practical application involving data obtained from Seagate Technology. Domain engineers have

cross-validated the learned structures and corroborated the identified causal relationships.

Keywords Causal discovery - Data imbalance - Hierarchical ensemble - High-dimension - Wafer manufacturing

Introduction

In modern manufacturing, the production systems have
become increasingly automated yet complex to achieve
higher product quality and diversity (Liang et al., 2004).
However, the increased complexity imposes challenges in
understanding the underlying causal mechanisms of produc-
tion lines and identifying the root causes of system failures
and product defects. In such a situation, gaining knowledge of
causal relations between components in the assembly line is
crucial. It enhances engineers’ understanding while permit-
ting the root-cause tracing of a failure event to allow real-time
error corrections in the absence of on-site engineers. More-
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over, the causal relations provide precautionary warnings to
potential future errors (Huegle et al., 2020), which reduces
the chance of assembly line shutdown.

A standard practice in manufacturing is to learn causal
relationships through the design of experiments, which can
be both expensive and time-consuming given the thou-
sands of factors examined in a production environment.
Meanwhile, in high-volume manufacturing sectors like the
semiconductor industry, precise control and surveillance of
the production processes via sensors and metrology tools are
vital for maintaining quality and efficiency (Jeong & Cho,
2006). With the advances in sensor technology, automatic
metrology tools, and real-time data collection, we are better
capable to acquire causal relationships from observational
data by causal discovery (Spirtes et al., 2000; Pearl, 2009).
Consequently, much progress has been made in applying
causal discovery in the manufacturing domain, such as fault
propagation analysis on industrial board machines (Landman
& Jamsé-Jounela, 2016), failure precaution in automotive
body production (Huegle et al., 2020), and root cause diag-
nosis in fluid catalytic cracking unit (Gharahbagheri et al.,
2015) and semiconductor manufacturing (Shah et al., 2018).
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This paper focuses on learning causal relations in the
wafer manufacturing domain, specifically examining the
causal relations among the sensors and abnormal events in a
wafer assembly line. The manufacturing of wafers involves
a lengthy and complex process that follows a predetermined
recipe for creating intricate structures within the wafer. As
shown in Fig. 1, the recipe consists of a sequential series
of nano-scale process steps, such as photo-lithography, etch-
ing, deposition, plating, lift-off, resist strip, and chemical
mechanical polishing. Each process step is executed by
specific machines! (not shown in the diagram), and the oper-
ations are monitored by sensors that track various control
variables. As the demand for complex device designs with
multi-layered and advanced functioning circuit structures
increases, re-entrant multi-stage manufacturing lines have
become necessary (Kumar, 1993). Consequently, the same
set of processes, comprising a stage, are repeated for each
circuit board layer. After the completion of each layer, a
metrology tool is utilized to measure the product quality
based on several criteria, called fault types, to ensure that the
processing meets the required quality specifications. Every
wafer undergoes all stages of the manufacturing process, and
once a wafer product reaches the final stage, its routing his-
tory, along with all the sensor variables and the encountered
abnormalities related to fault types, is recorded.

Through a case study on a wafer assembly line from
Seagate Technology, we identify several notable challenges
regarding causal discovery in wafer manufacturing. First, to
help with error tracing, we need to learn the causal structure
among the sensors and the abnormal events from all pro-
cess steps along the assembly line. Given the considerable
number of process steps, usually exceeding 500, and the mul-

1 Machines are also known as tools in the semiconductor industry.
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titude of sensors employed in each machine, the recorded
data encompass tens of thousands of variables. This results
in a high-dimensional scenario where the algorithms’ scal-
ability and theoretical consistency may not be guaranteed
(Colombo and Maathuis, 2014; Nandy et al., 2018). Sec-
ond, causal discovery methods tailored for specific data types
may not be applicable when dealing with data from multiple
sources (sensors and metrology tools), and methods designed
for mixed data (Andrews et al., 2018; Cui et al., 2016) tend
to be computationally inefficient in high-dimensional scenar-
ios. Third, abnormal events are rare in practical production,
resulting in imbalanced classes. Our simulations (as shown
in Table 2) indicate that data imbalance has a substantial
impact on the accuracy of causal discovery. Surprisingly,
the research community has not given adequate attention
to effectively addressing data imbalance in causal discov-
ery. While Barnes et al. (2019) and Runge et al. (2019)
acknowledge the challenge of class imbalance in causal dis-
covery, they do not propose any effective method to address
it. Fourth, in real-life production, the products often do not
strictly follow the pre-specified manufacturing process flow.
Such deviations lead to irregularly missing data and few sam-
ples in the merged data across all steps, upon which it is
impossible to learn a causal structure. Existing approaches
for missing data (Gao et al., 2022; Tu et al., 2019) are either
computationally expensive or incapable of handling mixed
data. Finally, the manufacturing process imposes temporal
and domain constraints on the causal structure. Properly
incorporating these constraints helps reduce the candidate
causal graph complexity and helps avoid factual errors and
hence requires deliberate attention.

To address these challenges, we propose a hierarchical
ensemble approach that leverages temporal and domain con-
straints on the assembly line and quantifies the uncertainty
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of causal discovery. The approach consists of three phases:
(1) block-level learning, in which we cluster all steps on the
assembly line into blocks and learn a block-level structure
with distilled constraints; (2) step-level learning, in which
we learn constrained causal structures at a finer granular-
ity based on the block-level structure; and (3) aggregation,
where we aggregate the step-level structures and quantify
the uncertainty of the learned relations. Our approach offers
several advantages. First, it is scalable and can handle high-
dimensional data with mixed types. Second, it addresses
imbalanced data due to rare events and can handle irregular
missing patterns. Finally, it incorporates domain and tempo-
ral knowledge to refine the candidate graphs, increasing the
accuracy of causal discovery and avoiding factual errors. We
demonstrate the effectiveness of our approach through sim-
ulations and an application to the wafer manufacturing data
from Seagate Technology. The causal structure learned from
the data is cross-validated by domain experts, and our pro-
posed modeling pipeline and visualizing tool have received
positive feedback from engineers and technicians.

The article consists of six sections. In ‘Data characteristics
and challenges’ section, we delve into the data characteris-
tics specific to the wafer manufacturing domain and outline
the challenges associated with them. ‘Preliminaries’ section
provides an introduction to the background of causal struc-
ture learning, while ‘Methodology’ section demonstrates the
proposed methods. In ‘Experiments’ section, we present sim-
ulation experiments and an application that analyzes a real
dataset from Seagate Technology to explore the operating
characteristics of the proposed methods. Finally, we conclude
the paper with a discussion in ‘Conclusions’ section.

Data characteristics and challenges

The data in our case study come from a wafer assembly line in
Seagate Technology and was collected from January 1, 2019,
to October 11, 2021. The data exhibit the following char-
acteristics, posing several challenges in learning the causal
structures.

1. High dimensionality: The assembly line consists of more
than 500 steps, each involving processing or measuring.
Each process step records hundreds of sensor values,
whereas each metrology step takes ten types of abnormal-
ity measurements. To make the learned causal structure
useful for error tracing, we need a fine granularity and
establish causal relations that capture which abnormal
event or sensor at a particular step is the cause of an abnor-
mality at another step. However, such a fine granularity
requires the dataset used in causal discovery algorithms to
contain all the variables from all steps, resulting in tens of
thousands of variables. Existing modifications targeting

high-dimensional settings, such as Fast Greedy Equiva-
lence Search-Markov Blanket (FGES-MB) (Ramsey et
al., 2017) and adaptively restricted greedy equivalence
search (ARGES) (Nandy et al., 2018), can handle thou-
sands of variables or millions of Gaussian variables with
sparse graph structures. However, they are unsuitable for
our case where the data is mixed and the dimension is
much greater than the thousands level.

. Multimodality: The data are derived from two distinct

sources: sensor data and metrology data. The sensor
data consist of multiple sub-datasets, each associated
with a specific machine and recording the sensor val-
ues as wafers pass through the machine. On the other
hand, the metrology data capture ten different types of
abnormalities observed at each metrology step, with each
abnormality represented by a binary variable. The sen-
sor data are continuous in nature, whereas the metrology
data are binary.

For such a mixed data type, methods designed for a sin-
gle type, such as PC (Spirtes et al., 2000) and greedy
equivalence search (GES) (Chickering, 2002), are not
applicable. Existing constraint-based mixed causal dis-
covery methods, such as Copula-PC (Cui et al., 2016),
symmetric conditional independence tests (Tsagris et al.,
2018), causal mixed graphical models (CausalMGM)
(Sedgewick et al., 2019), and Kernel Alignment PC algo-
rithm (KAPC) (Handhayani & Cussens, 2020), do not
apply to high-dimensional situations due to their high
computational complexity. Score-based methods, such
as the Conditional Gaussian (CG) score and the Mixed
Variable Polynomial (MVP) score (Andrews et al., 2018),
require a large sample size in high dimensions and lack
computational efficiency. Andrews et al. (2019) later
proposed the degenerate Gaussian (DG) score, which
is consistent and efficient in high-dimensional settings.
However, this approach must be more flexible in incor-
porating constraints and is hence unsuitable (see detailed
discussion in Appendix C).

. Imbalance: In a well-functioning assembly line, abnor-

malities rarely occur, which means that the binary vari-
ables in the metrology data are imbalanced. When applied
to imbalanced data, many learning algorithms are biased
towards the majority group (Krawczyk, 2016), which
makes the estimated effects of binary variables too weak
to be significant. In causal structure learning, this implies
that the learned structure will mainly capture the relations
among the continuous variables and miss a significant
proportion of those regarding binary variables, as shown
in Table 2. Moreover, since multiple imbalanced binary
variables exist, common downsampling or oversampling
techniques for classification (Chawla et al., 2002) are not
applicable. Downsampling or oversampling one variable
might lead to no information on the other variables. This
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problem has been pointed out in fields like atmospheric
science (Barnes et al., 2019) and Earth systems (Runge et
al., 2019), but effective methods have yet to be proposed
in the literature as far as we know.

4. Missingness. ldeally, wafers move along the assembly
line following the prespecified recipe, but in practice,
they often skip some steps based on their states. Wafers
skip different steps from each other irregularly, which
leads to an unstructured missing pattern.

Following Little and Rubin (2019), there are three miss-
ing types: missing completely at random (MCAR),
missing at random (MAR), and missing not at ran-
dom (MNAR). In the MCAR case, two straightforward
approaches apply to missing data: simply deleting exam-
ples with at least one missing value or performing
imputation on the missing values. The former may lead
to downgraded performance with a reduced sample size
due to reduced statistical power (Stidler & Biihlmann,
2012; Tu et al., 2019), whereas the latter may introduce
biases in modeling the data distribution (Kyono et al.,
2021).

Researchers have made much progress in handling miss-
ing data in causal discovery in recent years. Sokolova et
al. (2017) proposed a method to handle mixed and MAR
data simultaneously. However, they assumed the contin-
uous variables follow a non-paranormal distribution, and
their estimation was based on the computationally expen-
sive expectation—maximization (EM) algorithm (Demp-
steretal., 1977). Tuetal. (2019) proposed Missing Value
PC (MVPC) that has been shown to be asymptotically
correct even on data that are MNAR, but just like the PC
algorithm, it cannot handle high-dimensional and mixed
data. Regarding the MCAR case, Gao et al. (2022) pro-
posed MissDAG upon additive noise models. However,
it only applies to continuous data, and its estimation
involves Monte Carlo EM, which can be time-consuming
in high dimensions.

The wafer data in our case study could contain variables
of all three types, and due to the enormous problem scale,
it is hard to identify the missing type for each variable.
None of the existing methods suits our needs perfectly. If
we make a compromise regarding the missing type and
consider all the missing variables are MCAR and try the
naive approach, which simply deletes the samples with at
least one missing value, the challenge remains in that the
merged data contains too many variables which might be
missing, and after the deletion, no data are left.

5. Temporal & Domain Constraints. The production pro-
cess imposes a natural temporal order onto measure-
ments, suggesting the so-called causal order of occur-
rences of two events. Moreover, each step measures its
data values simultaneously, making it sensible to assume
the absence of contemporaneous effects. Namely, the
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variables at the same step are not causally related. In
addition, certain causal relationships are not plausible
based on domain knowledge. For example, two far-away
nodes in the causal graph should have no linkage; see
Appendix B for details. Properly leveraging these tempo-
ral and domain constraints can reduce the causal structure
space complexity and improve the quality of structure
learning. Failing to do so would lead to factual errors in
the learned structure. However, incorporating constraints
into some advanced algorithms (Andrews et al., 2019) is
not straightforward.

Exploring causal relationships in wafer manufacturing is
not a novel research area. However, most previous studies
have approached the problem under simplified data settings,
such as focusing on a small segment of the manufactur-
ing process or assuming complete and continuous data. For
instance, Abu-Samah et al. (2015) utilized GES combined
with Minimum Description Length (MDL) score (Lam &
Bacchus, 1994) to learn the structure, but their data con-
sisted of only one module from the Thermal Treatment
machine, which encompassed 10 process steps. Similarly,
Sim et al. (2014) focused on a small segment of the man-
ufacturing line, with 10 process steps only. Another study
by Yang and Lee (2012) investigated an even smaller scale,
examining just one process step involving 18 variables. John-
ston et al. (2008) tackled a slightly larger-scale problem
involving a total of 450 variables, using genetic algorithms
(Sastry et al., 2005) combined with linear regression. How-
ever, the authors did not utilize the sensor data or address
challenges related to missing data and constraints incorpora-
tion. Marazopoulou et al. (2016) also worked on a large-scale
problem involving 69,000 variables, all continuous. They
incorporated the temporal constraints by modifying the PC
algorithm. Nonetheless, they did not address the challenges
of mixed data and missing data. To the best of our knowledge,
we are the first to acknowledge all of the aforementioned
five challenges in the context of wafer manufacturing. In the
following sections, we propose tailored methods to strike a
balance in addressing these challenges simultaneously.

Preliminaries

Directed graphical causal models

Here, we use directed graphical causal models (DGCMs) to
represent causal relations. A DGCM consists of three main
components: (1) a set of variables X, which corresponds to a
set of nodes in a graph G; (2) a set of directed edges E in the
graph G; (3) a joint probability distribution characterized by

p
P(X) = l_[ P (X; | Pa(G, X)), (D

i=1
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where Pa(G, X;) is the set of all parents of X; in the graph.

To interpret causal relations, we require that X; is a direct
cause of X; if X; — X; € E, that is, an intervention
on X; changes the distribution of X; when keeping the
other variables fixed (Glymour et al., 2019). For a directed
acyclic graph (DAG), learning causal relations from observa-
tional data requires three assumptions (Pearl, 2009; Scutari
& Denis, 2021; Spirtes et al., 2000).

1. Causal Markov. Each variable X; € X is conditionally
independent of its nondescendants given its parents.

2. Causal Faithfulness. There must exist a DAG faithful to
the joint probability distribution P, meaning that only the
dependencies arising from d-separation (Pearl, 2009) in
the DAG can appear in P.

3. Causal Sufficiency. There cannot be any unmeasured vari-
ables acting as confounding factors.

Causal discovery

Causal discovery works on learning the causal structure out
of observational data, and there are generally three types
of approaches: constraint-based, score-based, and functional
causal model (FCM) based. Constraint-based algorithms,
such as PC (Spirtes et al., 2000) and Fast Causal Infer-
ence (FCI) (Spirtes et al., 2000), estimate the graph skeleton
by conditional independence tests and orient the edges fol-
lowing some rules. Score-based algorithms use heuristics to
learn the causal structure by maximizing a score function
that quantifies the goodness of fit of the graphical network,
for example, the Bayesian Information Criterion (BIC) score
(Maxwell Chickering & Heckerman, 1997) and the Bayesian
Dirichlet equivalent uniform (BDe) score (Heckerman et al.,
1995). Finally, FCM-based algorithms, such as the Linear
Non-Gaussian Acyclic Model (LINGAM) (Shimizu et al.,
2006), parameterize a functional causal model in the form
of X; = f(Pa(G, X;), ¢;) and define a graph from the esti-
mated model.

Methodology

Asdiscussed in ‘Data characteristics and challenges’ section,
no existing approaches can handle the five challenges at the
same time. Therefore, we need to make some compromises
and try to balance these aspects. In the design of our proposed
method, scalability and the capability to handle missingness
is of top priority, followed by constraint incorporation and
mixed data modeling.

In the rest of the section, we first discuss data prepro-
cessing and how to incorporate the constraints. Then, we
introduce three constrained causal structure learning meth-
ods for mixed data and describe the hierarchical ensemble

modeling strategy. Finally, we describe three model evalua-
tion metrics and the overall pipeline in production.

Data preprocessing

Apart from some primary data preprocessing described in
Appendix A, we apply principal component analysis (PCA)
to alleviate high-dimensionality. At each process step, we
perform PCA to generate mgep principal components to
reduce the sensor data dimension. These principal compo-
nents would then be the sensor-related nodes in the learned
graph. To trace back to a specific sensor, we keep a record of
the principal components’ loading matrix to identify which
sensors are the most relevant given a principal component
associated with an abnormality’s cause.”

Incorporating constraints

To incorporate the temporal and domain constraints, we
transform them into implausible causal relations. For each
step on the assembly line, set a unique time stamp® associ-
ated with the sensor and abnormality variables to represent
the manufacturing order on the assembly line. Let X, repre-
sent all the variables at time . The temporal constraints then
imply that the variables at time ¢ 4 j cannot be the causes
of those at time 7, Vj > 0, namely, {X — X' | VX €
X;, VX' € Xy, t >t/ > 1} are implausible. Similarly, we
derive the implausible links based on the domain knowledge
in Appendix B. Different algorithms use these implausible
relations differently, as explained subsequently.

Constrained causal structure learning on mixed data

To treat the issue of mixed data types, we propose three causal
structure learning methods: Discretization-based learning,
Regression-based learning, and Constrained Kernel Align-
ment PC (CKAPC). Specifically, the first method discretizes
all continuous variables and uses existing methods to learn
a discrete causal network. The second fits node-wise regu-
larized generalized linear regressions and then combines the
selected variables to form the global causal structure. Finally,
the third applies the idea of kernel alignment to calculate a
pseudo-correlation matrix on the mixed data and then feeds it
into the PC algorithm (Spirtes et al., 2000) to learn the causal
structure.

2 Recall that the loading matrix of PCA contains the weights for each
original variable when calculating the principal components, so we can
check the absolute weight values in the loading matrix to identify which
sensors are contributing the most to the principal component.

3 Note that the time stamp here is different from that in time-series
causal discovery in that each time stamp here represents the manufac-
turing order of different steps and includes different sets of sensors or
abnormalities whereas time-series causal discovery focuses on the same
set of variables that change over time.

@ Springer
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Although more advanced mixed data causal discovery
methods exist, they are either inflexible with constraints
incorporation (Andrews et al., 2019) or computationally
expensive in high-dimensions (Andrews et al., 2018; Cui et
al., 2016). The three proposed methods are sub-optimal but
allow for convenient constraint insertion and represent three
schemes for distilling constraints. Examining all three would
give us a more comprehensive idea of the suitable modeling
choice.

Discretization-based learning

Given mixed data, one straightforward idea is to discretize
all continuous variables into factors and then learn a discrete
DAG. Discretization allows us to employ existing meth-
ods and improves computational speed, with the price of
losing potentially important information. Commonly used
discretization methods include quantile discretization, inter-
val discretization, and information-preserving discretization
(Scutari & Denis, 2021).

After discretizing the data, we apply the existing methods*
to learn a discrete network. To ensure the constraints are satis-
fied, we input the list of implausible relations as the blacklist
argument in the learning algorithms (Scutari & Denis, 2021).

Regression-based learning

Recall that regression usually cannot determine the causes
and effects due to the bi-directionality of correlation. For
example, if a regression model ¥ ~ X is significant on X,
then the causal relation can be either X — Y orY — X given
that there are no confounders. Traditional FCM-based meth-
ods, such as LINGAM (Shimizu et al., 2006), need to assume
the non-Gaussian noise and apply independent component
analysis (ICA) (Hyvarinen, 1999) to find the causal order.
However, with prior knowledge of txy < ty, we can infer that
only X — Y is plausible. Therefore, temporal constraints
open the door to learning causal relations via regressions.
As in Sedgewick et al. (2019), we assume the data fol-
low a Mixed Graphical Model (MGM) (Lee & Hastie,
2015), where Gaussian linear and logistic regression specifies
the conditional distributions. Given the conditional distribu-
tions, we identify the conditional independence directly from
regression coefficients, with nonzero indicating conditional
dependence. For each variable X;, which corresponds to a
node in the causal graph, we solve a regularized conditional
log-likelihood problem subjective to constraints:

m@in €(0; Xi | X\i) + A - Penalty(9),

s.t. 0; =0if X; — X; is implausible by constraints,  (2)

4 See Chapter 6 of Scutari and Denis (2021) for a comprehensive review.
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where £(-) is the log-likelihood function, 6; is the coef-
ficient for variable X; € X\;, Penalty(-) is the penalty
function that induces sparsity,” and A is the tuning param-
eter for the penalty.® Then, we estimate the parent set as

Pa(X;) = {Xj : éj # O}. After fitting the regression mod-
els for all variables, we obtain the overall structure as E =
Ux,ex UXjeFa(X,-) {(Xj — X}

Constrained kernel alignment PC (CKAPC)

We adopt the KAPC method of Handhayani and Cussens
(2020). First, we apply the RBF kernel for continuous vari-
ables and the Categorical Kernel (Belanche et al., 2013) for
binary variables while transforming each variable into a sin-
gle Gaussian variable in the feature space. Then we apply
the idea of kernel alignment to build a pseudo-correlation
matrix. The original KAPC method considers no constraints,
whereas CKAPC reinforces the constraints by modifying the
PC algorithm.

Starting with a complete graph, we remove the contem-
poraneous edges and then orient the edges by temporal
constraints, after which we remove implausible ones from
domain constraints. On top of that, we then perform condi-
tional independence tests using the pseudo-correlation matrix
to remove more edges and get the ultimate structure. Since
all edges are oriented temporally, we do not have to use the
orientation rules as in the traditional PC algorithm.

Hierarchical ensemble modeling

As mentioned in ‘Data characteristics and challenges’ sec-
tion, although existing causal discovery methods for missing
data can handle the MCAR (Sokolova et al., 2017; Gao et
al., 2022) and even the MNAR case (Tu et al., 2019), they
are usually computationally expensive and do not fit high-
dimensional and mixed data. As a compromise, we assume
all missing variables are MCAR and employ a straightfor-
ward approach that deletes examples with at least one missing
value. However, suppose we try to learn the causal structure
in one run and use the overall merged data, which contains all
the variables from all steps. Then, after applying the missing
deletion strategy, we are likely to end up with few examples.’
In response, we propose a hierarchical modeling strategy,
which learns the causal structure at two granularity levels.
In addition, we fuse in the ensemble idea similar to that in

5 Common choices include LASSO (Tibshirani, 1996), the smoothly
clipped absolute deviation (SCAD) (Fan & Li, 2001) penalty, the min-
imax concave penalty (MCP) (Zhang, 2010), and the truncated L
penalty (TLP) (Shen et al., 2013).

6 We tune A using cross-validation in each node-wise regression model.

7 In our case study, we get no examples left at all, making it impossible
to learn the structure.
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random forest (Breiman, 2001) to alleviate the imbalance
problem and to provide uncertainty measures for the learned
relations. The modeling framework is shown in Fig. 2.

Hierarchical Modeling. There are three main steps in
hierarchical modeling: block-level learning, step-level learn-
ing, and aggregation. To perform this modeling strategy,
domain knowledge is required in terms of which steps along
the assembly line can be clustered into a block.® The block-
level learning will capture which two blocks are causally
related, whereas step-level learning is finer-grained and cap-
tures which two sensor/abnormality variables are causally
related. Moreover, once we learn the block-level structure,
we can perform the step-level learning in parallel and then
union all step-level results to get the final structure.

1. Block-level Data Processing and Structure Learning.
After discussing with expert engineers and establishing
nplock blocks, for each block, we aggregate the metrology
data such that as long as a certain type of abnormal-
ity occurs inside this block, no matter from which step,
we label the corresponding abnormality type indicator
to be 1. And the sensor data are aggregated by PCA
with mpjock principal components. The processed data for
each block contains ten abnormality variables and mpjock
sensor variables. Next, we merge the npjock block-level
data sets into one big data set, with rows representing
wafers and columns representing abnormality or sensor
variables from blocks. This data set has enough records
for learning in that although few wafers go through all
steps, many wafers pass through all blocks. Based on
this data, we apply the proposed constrained mixed-data
causal structure learning methods to learn a causal graph
where each node is an abnormal event or a sensor-related
variable in a certain block. Finally, we map this graph to
a block-level graph Gpjock Where each node represents a
block.

2. Step-level Data Processing and Structure Learning. For
the jth block bj, 1 < j < nplock, We pick out its parent
setin Gylock and denote it as Pa(Gylock, b;)-

We merge the data from all steps inside blocks {b;} U

Pa(Gplock, bj). Since we are merging a subset of steps,

we get much more observation records than merging

across all steps. Based on the step-level merged data,
we then learn a step-level causal structure Ggfejg, where
each node represents an abnormality variable or a sensor-
related variable from some step.

8 The process steps within a specific stage should be consolidated into
the same block. During the creation of these blocks, engineers usually
conduct clustering at the stage level and subsequently determine the
assignment of individual steps to their respective blocks.

3. Combination of Step-level Causal Structures. In the end,

we combine all the learned step-level causal structures
;)

and get the ultimate causal structure ( J; ;o Gy .

This scheme alleviates both the missingness and the
high-dimensional problem. Instead of merging all steps and
obtaining a small sample with high dimensions, we only
merge the steps inside a subset of blocks. This subset consists
of significantly fewer steps, resulting in a substantial num-
ber of remaining records after removing missing data, and
the merged data has a reduced dimensionality. Moreover, the
hierarchical scheme grants us two levels of causal structures,
providing the engineers with more insights. Meanwhile, it is
worth noting that the quality of this scheme highly depends
on the block division given by the engineers, so a thorough
conversation with the engineers is crucial.

Ensemble Modeling. In manufacturing, including extra
relations costs additional engineers’ validation time, whereas
missing true relations leads to false root cause diagnosis,
which is much more costly. Also, missing block-level rela-
tions in hierarchical modeling leads to accumulative errors in
subsequent step-level modeling. Therefore, we prefer conser-
vative estimates and want to control the false negative rate.
We employ stability selection (Meinshausen & Biihlmann,
2006) and bagging (Breiman, 1996) to construct an ensem-
ble model for both the block-level and the step-level structure
learning. First, we resample the original data with replace-
ment to generate K new data sets, each of the original data
sample size. Then, we learn a causal structure Gy on the
kth resampled data for Vk € {1,2,---, K}. Finally, dif-
ferent from the threshold aggregation in Meinshausen and
Biihlmann (2006) and mean aggregation in Breiman (1996),
we union these K learned structures and obtain Uf:]Gk
as the ultimate causal structure. The temporal constraint
enforced on the structures guarantees the directions of causal
relations.

There are three benefits of ensemble modeling. First, it
helps alleviate the bias towards the majority group and the
weak signal problem due to imbalanced data. With ensem-
ble modeling, we have many resampled data, some of which
might magnify the weak signals of certain imbalanced vari-
ables. Every single model acts as a weak learner to capture
the partial information, granting the ensemble model more
capability to detect signals. Second, the estimate is stabler
with the union aggregation, which is crucial for engineers’
validation and technicians’ usage. Third, it allows us to quan-
tify the strength of the learned relations. As in (3), we define
the strength of a causal relation e in U,le G as the propor-
tion it appears in the K learned structures. Such a measure
not only quantifies uncertainty® but also helps with valida-

9 The greater the strength, the higher our confidence and the less uncer-
tainty in the learned relation.
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Fig.2 Hierarchical ensemble modeling. (a) for block-level data processing and structure learning, (b) for step-level data processing and structure

learning, and (c¢) for union aggregation of step-level structures

tion. Given a large number of learned causal relations to be
fully validated, engineers can start by checking the ones with
strengths above a threshold and provide feedback to the mod-
elers timely. In this way, the pipeline loop runs at a faster
pace. Also, with the reduced workload, the engineers would
be more willing to get involved, a factor we must consider in
a real-life production environment.

K
_1l(eeG
- w Ve € UK_ Gy 3)

Evaluation

We propose three metrics to evaluate the results in real pro-
duction, collectively assessing a method’s performance.

1. Engineers’ Validation. Given the learned causal relations
and associated strengths, domain engineers validate the
causal relations with strengths higher than a prespecified
threshold.

2. Comparison against Known Knowledge. Given some
known relations on which two steps are causally related,
we validate the results by transforming the learned rela-
tions to step-wise relations (if 3X € step;, Y € step;
s.t. X — Y, then the corresponding step-wise relation is

step; — step).

3. Conditional Independence Tests. Given a learned net-
work, we select a few nodes of interest and test if
the conditional independence relationship given by d-
separation (Pearl, 2009) is the same as that by conditional
independence tests on the data. Specifically, if S d-

@ Springer

separates X from Y according to the learned graph,
implying X 1L Y|S, but the conditional independence
tests tell us that X AL YIS, then this relationship is
not trustworthy. We consider three conditional indepen-
dence tests for the mixed data, including Pearson X 2 test,
the symmetric conditional independence test (Tsagris et
al., 2018), and the Conditional Dependence Coefficient
(CODEC) measure (Azadkia & Chatterjee, 2021).

Modeling pipeline in production

The overall modeling pipeline is a positive feedback loop,
as shown in Fig. 3. First, we query data from the databases
and consult expert engineers to establish the domain con-
straints. Second, we apply hierarchical ensemble modeling
to learn the causal relations among the variables along the
assembly line. Third, we validate the learned results through
comparisons with the known causal relations and via engi-
neers’ validation. When the engineers determine an identified
relationship to be definite, we add it to the inclusion (if true)
or the exclusion (if false) databases. Otherwise, we take no
action. Afterward, the engineers update the constraints based
on these included and excluded relations.

This approach applies to online and offline data. For a
streaming pipeline, we dynamically update the database and
causal structures. Otherwise, we circle through the pipeline
for several rounds by updating the constraints and rerunning
the structure learning model. As a result, we keep improv-
ing the accuracy of the learned structure. The inclusion and
exclusion databases also serve as a knowledge base for tech-
nicians to trace the root causes of failure events. In some
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Fig.3 Modeling Pipeline in
Production
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situations, the technicians can check the databases to resolve
an issue without consulting an expert engineer.

Experiments

To validate the efficacy of the proposed method, we conduct
simulation studies and apply it to real-world data.

Simulation studies

We conduct three simulation experiments to examine the per-
formance of structure learning methods on mixed data, the
influence of ensembles on data imbalance, and the effect of
hierarchical modeling. As discussed in ‘Data characteristics
and challenges’ section and Appendix C, existing methods
for mixed data are either not scalable (Cui et al., 2016;
Handhayani & Cussens, 2020) or inflexible in incorporat-
ing constraints (Andrews et al., 2019). Furthermore, to the
best of our knowledge, no approaches have been proposed to
simultaneously address the challenges of imbalanced, high-
dimensional, and missing data in causal discovery. Hence, we
do not compare our methods with other approaches. Instead,
we focus on investigating the operational characteristics of
the proposed methods under different scenarios to enhance
understanding and provide guidance to practitioners.

Effects of mixed data structure learning methods

We first examine the proposed constrained mixed-data struc-
ture learning methods. The simulation mimics the assembly
line subject to temporal constraints. We vary the sample
size n € {100, 300, 600, 6000}, the number of variables
p € {20,50, 100, 600}, and the number of steps k €

Inclusion Database |
N

Update P

Exclusion Database
- @@

Y
Definitely False

{2, 5, 10, 60}, while fixing the number of variables in each
step to be 10, the vertex degree to be 4, and the propor-
tion of continuous variables to be 0.2.'9 We first generate
graphs with the constraints enforced and then generate the
data following the MGM framework (Lee & Hastie, 2015).
All simulations run for 30 repetitions with different seeds and
are implemented on a Linux server with an Intel(R) Xeon(R)
CPU E5-2686 v4 @ 2.30GHz and 124GB RAM.

We compare six methods, including three discretization-
based methods: tabu-bic (Tabu search (Glover, 1989, 1990)
with BIC score), tabu-bde (Tabu search with BDe score),
and pc.stable (PC-Stable algorithm (Colombo & Maathuis,
2014)); two regression-based methods: lasso-min (Lasso-
penalized regressions (Tibshirani, 1996) with A, in cross-
validation) and Iasso-1se (Lasso-penalized regressions with
Mlse in cross-validation); and one CKAPA method (6 = 0.01
for the RBF kernel; 6 = 1 for the Categorical kernel).

Four metrics are employed to assess the model perfor-
mance: adjacency precision (AP), adjacency recall (AR)
(Jia et al., 2022), Structural Hamming Distance (SHD)
(Tsamardinos et al., 2006), and elapsed time. Given the true
graph Gye and the learned graph Gieamn, denote their respec-
tive binary lower-triangular adjacency matrices as A¢qye and
Alearn- AP and AR are defined as the precision and recall
of these two adjacency matrices, as shown in (4) and (5),
respectively. On the other hand, SHD quantifies the number
of edge insertions, deletions, or flips required to transform

10" We pick these numbers to mimic the real data in our case study.
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We report the mean performance and their standard
deviations (in parentheses) in Table 1. When n > p,
discretization-based learning generally achieves the highest
performance in terms of AP. On the other hand, regression-
based learning tends to outperform others in terms of AR,
which aligns with our expectations considering the tendency
of Lasso to over-select variables. Across all settings, tabu-bic
and pc.stable consistently rank among the top two algorithms
in terms of SHD. In terms of runtime, tabu-bic is typically
the fastest, especially in high-dimensional scenarios, while
CKAPC proves to be too slow for all tasks except Setting 5.
When n < p, as demonstrated in Settings 7 and 8, pc.stable
significantly outperforms the other algorithms in terms of AP,
although it comes with a considerable increase in time cost.

Effects of ensemble on data imbalance

We also investigate how the ensemble strategy alleviates the
weak signal problem due to data imbalance. We simulate the
data as before, with n = 3000, p = 200, k = 20, and an
additional hyper-parameter controlling the imbalance ratio.
All simulations run ten repetitions with different seeds and
are implemented in parallel on 20 CPU cores. We use tabu-
bic as the base model and set the number of weak learners
K = 1000 in ensemble models. We compare two model
types: single models and ensemble models with a strength
threshold o € {0,0.05,0.1,...,0.95, 1}. The focus is to
reduce the false negative rate, so we consider different types
of AR while controlling the overall AP.

Table 2 shows the mean performance and their stan-
dard deviations with @ € {0, 0.05,0.1,0.15, 0.2}!? under
six imbalanced scenarios. We can see that data imbalance
impacts the AR, particularly those relating to discrete nodes.
If we can tolerate a low AP, then ensem_0 (ensemble model
with no threshold) greatly helps identify the edges the base

Il For the algorithmic implementation of SHD, interested readers
can refer to the code available at https://github.com/cran/pcalg/blob/
afe34d671144292350173b6£534c0eeb7fd0bb90/R/pcalg R#1.1086.

12 For clarity, we do not show all the results here. Refer to Yang (2023)
for full results with other thresholds and other types of AP.
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model easily misses. If, however, we want to control the AP
at an acceptable level, then o € [0.05, 0.2] would be a good
choice, and a smaller « gives higher ARs but a lower AP.

Effects of hierarchical modeling

We now investigate the effects of hierarchical model-
ing. The data are simulated similarly to before, except
that we now impose a hierarchical structure by adding a
few hyper-parameters: the number of blocks npjock, miss-
ing_rate which specifies the probability that a step is
missing,13 block _tightness, which controls the relative close-
ness of the within-block versus between-block relations,
and max_step_distance, which specifies the maximum steps
apart for two connected nodes. We set n = 2000, p =
600, k = 60, nplock = 10, max_step_distance = 30, the
imbalance ratio tobe 0.1, missing_rate € {0, 0.02, 0.05, 0.1},
and block_tightness € {0.3,0.5,0.7, 0.9, 1.0}. We use tabu-
bic as the base model, set the number of weak learners K
= 1000 in ensemble models, and perform hierarchical learn-
ing with strength threshold ¢ = 0.2 at both the block level
and the step level. We examine both levels’ precision, recall,
SHD, and elapsed time. All simulations run ten repetitions
with different seeds and are implemented in parallel on 20
CPU cores.

Table 3 shows the mean performance and their standard
deviations. As the missing rate increases, the block-level
recovery does not change much, whereas the step-level learn-
ing accuracy decreases significantly. When the missing rate is
0.02, close to the real data scenario, the step-level AP and AR
are acceptable, implying the applicability to the real data. In
addition, we note that high block tightness usually associates
with low block-level recovery accuracy and high step-level
AP.'* In contrast, the step-level AR is pretty robust against
the change in block tightness. As discussed in ‘Hierarchical
ensemble modeling’ section, we usually prefer to control the
false negative rate in manufacturing. Hence, step-level AR
is the most important out of all the metrics. Its robustness
against block tightness is desirable because even if the steps
are not well clustered, the final fine-grained AR will not be
affected much.

13 To mimic the case study data, if a step is missing, then all variables
in this step are missing. Moreover, we set the probability to be the same
for all wafers and all steps in the simulation.

14 This is as expected. For example, when block tightness is 1, only the
initial node of each block is connected with other blocks, and hence the
between-block relations are too weak to be well detected. Furthermore,
once we get into the step level, the high value of block tightness implies
smaller candidate parent node sets, and hence a sparser learned graph
and a higher step-level AP.


https://github.com/cran/pcalg/blob/afe34d671144292350173b6f534c0eeb7fd0bb90/R/pcalg.R#L1086
https://github.com/cran/pcalg/blob/afe34d671144292350173b6f534c0eeb7fd0bb90/R/pcalg.R#L1086
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Table 1 Simulation results on constrained mixed data causal structure learning methods

Setting Method AP 42 AR 1 SHD | Elapsed time® |
Setting 1 (n=600 p=100 k=10) tabu-bic 0.863 (0.037) 0.497 (0.036) 88.6 (10.988) 0.693 (0.063)
tabu-bde 0.848 (0.049) 0.478 (0.032) 92.567 (12.016) 0.709 (0.072)
pe.stable 0.882 (0.041) 0.475 (0.038) 89.867 (10.67) 5.087 (0.523)
lasso-min 0.26 (0.02) 0.735 (0.039) 360.467 (47.963) 15.064 (2.428)
lasso-1se 0.664 (0.056) 0.601 (0.042) 107.733 (14.249) 15.985 (4.25)
Setting 2 (n=6000 p=100 k=10) tabu-bic 0.967 (0.018) 0.742 (0.038) 43.3 (7.452) 2.843 (0.291)
tabu-bde 0.963 (0.021) 0.73 (0.04) 45.333 (7.941) 2.901 (0.267)
pe.stable 0.929 (0.025) 0.759 (0.038) 45.833 (8.91) 7.207 (0.947)
lasso-min 0.259 (0.021) 0.911 (0.022) 412.167 (44.772) 65.127 (5.172)
lasso-1se 0.878 (0.056) 0.814 (0.035) 45.767 (10.251) 65.065 (5.106)
Setting 3 (n=600 p=600 k=60) tabu-bic 0.702 (0.016) 0.497 (0.012) 799.133 (25.704) 40.766 (4.482)
tabu-bde 0.686 (0.022) 0.478 (0.011) 828.8 (28.602) 41.905 (3.814)
pe.stable 0.796 (0.019) 0.435 (0.017) 756.767 (30.514) 5449.623 (142.001)
lasso-min 0.171 (0.006) 0.695 (0.014) 4110.5 (178.198) 1888.124 (187.423)
lasso-1se 0.48 (0.027) 0.599 (0.015) 1177.133 (79.856) 1904.291 (170.195)
Setting 4 (n=6000 p=600 k=60) tabu-bic 0.908 (0.011) 0.746 (0.011) 368.567 (15.174) 117.23 (13.325)
tabu-bde 0.9 (0.014) 0.73 (0.01) 392.267 (17.066) 119.978 (13.454)
pe.stable 0.901 (0.011) 0.716 (0.014) 405.667 (22.202) 5792.206 (203.995)
lasso-min 0.184 (0.008) 0.898 (0.011) 4580.933 (247.047) 4804.765 (587.206)
lasso-1se 0.782 (0.033) 0.826 (0.013) 453.433 (54.219) 4772.73 (565.064)
Setting 5 (n=6000 p=20 k=2) tabu-bic 0.997 (0.014) 0.748 (0.135) 2.9 (1.826) 0.363 (0.041)
tabu-bde 0.99 (0.032) 0.748 (0.144) 2.967 (2.025) 0.35 (0.041)
pe.stable 0.972 (0.047) 0.797 (0.098) 2.633 (1.671) 0.329 (0.029)
lasso-min 0.408 (0.224) 0.762 (0.355) 13.2 (9.264) 2.916 (1.354)
lasso-1se 0.799 (0.37) 0.649 (0.315) 3.533 (1.795) 2.898 (1.373)
ckapc® 0.228 (0.099) 0.769 (0.19) 36.833 (21.001) 277.488 (345.531)
Setting 6 (n=6000 p=50 k=5) tabu-bic 0.984 (0.023) 0.745 (0.068) 15.533 (3.875) 0.896 (0.104)
tabu-bde 0.979 (0.028) 0.732 (0.067) 16.5 (4.125) 0.915 (0.116)
pe.stable 0.936 (0.044) 0.782 (0.055) 15.833 (4.684) 1.083 (0.159)
lasso-min 0.316 (0.04) 0.916 (0.049) 122.3 (22.426) 15.409 (1.862)
lasso-1se 0.91 (0.056) 0.807 (0.06) 15.8 (3.8) 15.423 (1.636)
Setting 7 (n=300 p=600 k=60) tabu-bic 0.705 (0.021) 0.442 (0.013) 846.333 (34.262) 23.337 (0.557)
tabu-bde 0.683 (0.034) 0.428 (0.012) 879.1 (44.167) 23.818 (0.86)
pe.stable 0.8 (0.026) 0.307 (0.014) 876.9 (28.672) 3360.496 (44.588)
lasso-min 0.159 (0.007) 0.734 (0.02) 4737.233 (289.529) 224.692 (31.804)
lasso-1se 0.49 (0.035) 0.632 (0.022) 1177.367 (117.802) 250.967 (34.115)
Setting 8 (n=100 p=600 k=60) tabu-bic 0.434 (0.016) 0.288 (0.008) 1240.167 (28.314) 22.949 (1.188)
tabu-bde 0.334 (0.022) 0.286 (0.007) 1466.133 (56.033) 44.685 (13.178)
pe.stable 0.651 (0.029) 0.159 (0.007) 1055.433 (19.199) 3220.144 (40.112)
lasso-min 0.136 (0.006) 0.566 (0.019) 4613.5 (236.002) 53.01 (1.916)
lasso-1se 0.382 (0.02) 0.452 (0.022) 1460 (74.525) 55.262 (1.816)

The entries highlighted in bold indicate the top performers within the group for their respective metrics
4 4 means the higher the better, | means the lower the better.

b In seconds.

¢ Settings 1-4 and Setting 6 have no ckapc results as CKAPC is too slow to be finished
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Real data analysis

We adhered to the pipeline illustrated in Fig. 3 and employed
our proposed methods to analyze the wafer data obtained
from Seagate Technology. The dataset encompasses informa-
tion collected from metrology tools and 24 machines, which
collectively form the complete assembly line and consist of
125 stages and 592 steps. The data incorporate a total of
2766 sensors, > ten fault types, and a total of 66996 wafers.
All ensemble models, with K = 1000, were executed on
a Linux server with an Intel(R) Xeon(R) CPU E5-2686 v4
@ 2.30GHz and 124GB RAM, utilizing 30 CPU cores in
parallel.

We performed data preprocessing as described in ‘Data
preprocessing’ section, and set mgep to 4 for PCA on the
sensor data. For block-level data processing, the engineers
aggregate all the steps into npjock = 68 blocks. We set mpjock
to 4, creating merged block-level data with 8026 rows and
653 columns. We then applied the ensemble tabu-bic method,
which has the shortest runtime and recovers the most known
mappings from both simulations and analyses. The runtime
for this phase was 2.25 hours. Finally, we discovered 1460
block-wise relations and identified 32 out of 46 known block-
wise relationships.

After processing the data at the step level, we obtained 68
step-level datasets. We used the ensemble tabu-bic method
to learn structures from these datasets and combined them to
obtain the ultimate causal structure. The total time required
for this process was approximately 6 hours. We discov-
ered 9774 relationships among the abnormality and sensor
variables, corresponding to 1439 step-wise relationships.
Moreover, out of 56 known step-wise relationships, we recov-
ered 29 of them.

The engineers examined the causal relations with a
strength of 1 (totaling 122), of which approximately 50%
were found to be true, 20% were likely true but required more
context to verify, and nearly 30% were likely false. The 50%
true relations were added to the inclusion database, while the
20% likely true and 30% likely false relations suggest that
we have discovered unestablished relationships that could
enhance the engineers’ understanding of the manufacturing
system with further investigation.

We also developed a zoomable network visualization tool
that allows engineers and technicians to visualize and manip-
ulate the causal structure. For example, Fig. 4 displays the
causal structure filtered with a strength threshold of 0.8, while
Fig. 5 shows a zoomed-in subgraph. Each node is labeled with
a machine name (if it is a sensor node), stage, step, temporal
order, and variable name, while each edge is labeled with a

15 Since the sensors can be activated multiple times for different process
steps within the same machine, the actual number of sensor variables
is much larger.

Fig.4 Ultimate Learned Causal Structure (strength > 0.8)

strength value indicating its credibility.

Conclusions

This article presents a causal structure learning approach for
wafer manufacturing data that addresses several challenges,
such as mixed data types, missing entries, high dimensional-
ity, data imbalance, and temporal and domain constraints.
We propose three constrained mixed-data models and a
hierarchical ensemble strategy to handle these challenges
simultaneously. Our simulation studies demonstrate that the
discretization-based method performs the best in accuracy
and time cost and that the ensemble models are more effective
at capturing weak signals with imbalanced data. Moreover,
the hierarchical modeling strategy performs well under rea-
sonable missing rates and produces robust fine-grained recall
rates against the hierarchy setup. Finally, our hierarchical
ensemble approach helps alleviate problems with data miss-
ing, high dimensionality, and data imbalance, and we have
validated its effectiveness with an application to a wafer man-
ufacturing data set.

Although we focus on wafer manufacturing, the chal-
lenges and data characteristics we address are not unique to
this field. Therefore, our proposed approach can be applied
to other domains with similar challenges. However, it is
essential to note that our approach aims to balance all
five challenges and may not be optimal for addressing a
single aspect. Moreover, our proposal profoundly depends
on the existence of temporal constraints. For example, the
regression-based method and the union aggregation in the
ensemble modeling would be invalid in situations without
global temporal order. Additionally, when a high AR rate is

@ Springer
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Fig.5 A Zoomed-in Subgraph
of Fig. 4. s_pck represents the
kth principal component of
sensors and the green numbers
represent the strengths
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a top priority, and the dimension is not very high, regression-
based methods may be the preferred option at the cost
of increasing computing time. Therefore, we recommend
that practitioners carefully examine the data characteristics
before selecting a modeling method.

We have observed that most existing work focuses on solv-
ing a single problem, whereas industrial applications often
require integrated approaches that handle multiple aspects
simultaneously. Therefore, further research is necessary to
design integrated methods for such applications.

Acknowledgements We thank Seagate Technology for providing the
data and Govi Veeraraghavan and Karen Terry for their time and effort
in domain support and validation. This work was supported in part
by a grant from Seagate Technology, in part by the National Science
Foundation (NSF) Division of Mathematical Sciences (DMS) Award
1952539, and in part by National Institutes of Health (NIH) Grants
RO1AG069895, RO1AG065636, RO1AG074858, UO1AG07307.

Funding This work was supported in part by a grant from Sea-
gate Technology, in part by the National Science Foundation (NSF)
Division of Mathematical Sciences (DMS) Award 1952539, and in

part by National Institutes of Health (NIH) grants RO1AGO069895,
RO1AG065636, RO1AG074858, U0O1AGO07307.

Declarations

Competing interest The authors have no competing interests to declare
that are relevant to the content of this article.

Ethics approval Not applicable.
Consent to participate Yes.

Consent for publication Yes.

@ Springer

Availability of data and materials The real datasets analyzed in this
study are not publicly available due to confidential company data by
Seagate Technology. The full result file for simulations in ‘Effects of
ensemble on data imbalance’ section is available in the Harvard Data-
verse repository at https://doi.org/10.7910/DVN/ONTUOL.

Code availability Code for generating the simulated datasets is available
from the corresponding author upon request.

Appendix A: Data preprocessing

The metrology and sensor data require basic preprocess-
ing, such as removing missing, duplicate, and uninformative
records. For the metrology data, the abnormal events at every
step are a long list of strings, so we extract the abnormalities
by textual processing and then transform them into binary
variables, with one indicating abnormal. And for the sensor
data, since they are collected every 3 seconds, and most val-
ues do not change much within a step, we aggregate them by
averaging. We use the mean instead of the median because
the latter is robust against outliers and insensitive to abnor-
malities.

Appendix B: Constraints by domain knowl-
edge

1. Foranode from ‘MEAS(2)_MON’, its parent must come
from the same stage, and if its child node is also from
‘MEAS(2)_MON’, then the steps in between must be
‘MEAS*’ or ‘INSPECT".

2. Sensors from different tools cannot be linked.
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3. Ifachild node does not come from ‘MEAS*’, ‘INSPECT’,
or ‘TEST*’, then either its stage is “*_VE’ or its step is
one of ['DRYETCH’, ‘LAP_EBARA’, ‘ASH’].

4. Two nodes that are 60 steps apart cannot be linked.

5. The child node cannot be from ‘INSPECT".

Appendix C: Applicability analysis of the DG
score-based approach

The degenerate Gaussian (DG) score-based approach (Andrews

et al., 2019) lacks flexibility when it comes to incorporat-
ing constraints. Specifically, DG is implemented in Tetrad, '
which has two versions: Tetrad-GUI and Tetrad-CLI. Tetrad-
GUI relies on the manual input of nodes and edges for
constraint incorporation, making it challenging to integrate
with hierarchical modeling and pipeline modeling based
on programming languages including R, Python, and SQL.
The manual input requirement for domain knowledge makes
it unsuitable for automatic causal learning. On the other
hand, Tetrad-CLI allows for domain knowledge incorpora-
tion through a file, but it currently does not support the DG
score. Therefore, despite DG demonstrating consistency and
efficiency in high-dimensional scenarios, it does not apply to
our specific case.
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