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ABSTRACT

Data perturbation is a technique for generating synthetic data by adding ‘noise’ to raw data, which has an array
of applications in science and engineering, primarily in data security and privacy. One challenge for data
perturbation is that it usually produces synthetic data resulting in information loss at the expense of privacy
protection. The information loss, in turn, renders the accuracy loss for any statistical or machine learning
method based on the synthetic data, weakening downstream analysis and deteriorating in machine learning. In
this article, we introduce and advocate a fundamental principle of data perturbation, which requires the
preservation of the distribution of raw data. To achieve this, we propose a new scheme, named data flush,
which ascertains the validity of the downstream analysis and maintains the predictive accuracy of a learning
task. It perturbs data nonlinearly while accommodating the requirement of strict privacy protection, for

instance, differential privacy. We highlight multiple facets of data flush through examples.

Keywords: census, differential privacy, distribution preservation, data integration, statistical inference

Media Summary

The explosive growth of large volumes of data with complex structures demands the wide usage of data in
applied sciences. In privacy protection, data perturbation is an effective technique. For instance, it privatizes
the U.S. Decennial Census Data to protect the confidentiality of individuals by the standard of differential

privacy ;_United States Census Bureau, 2020)(Kenny et al., 2021. However, the scientific community criticizes

such privatization methods for producing synthetic data invalidating downstream statistical analysis at the
expense of satisfying differential privacy. The lack of statistical accuracy raises concern for the interpretability
and reliability of any statistical and machine learning solutions to a practical problem. Despite its great
potential in domain sciences, the data science community underappreciates the data perturbation technique.
Here, we introduce and advocate a fundamental principle of data perturbation that retains the distributional
information, validating downstream analysis, and delivering accurate prediction and reliable interpretation, for

raw and privatized data.

1. Introduction

Data perturbation gives rise to synthetic data by adding noise to raw data, which has had vast applications since
the pioneering work of Breiman on estimating the prediction error in regression (Breiman, 1992. In the data
privacy domain, data perturbation can ensure a prescribed level of privacy protection by imposing a suitable
noise level (Amazon Staff, 2018[5];_Erlingsson et al., 2014; Kaissis et al., 2020Santos-I.ozada et al. (2020);.

Venkatramanan et al., 2021). In statistics and data science, data perturbation is an effective tool for replicating a

sample, for example, developing Monte Carlo methods of model selection (Breiman, 1992Shen & Ye (2002).
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In this situation, data perturbation generates synthetic data to resemble raw data in terms of distribution.
Despite its great potential in many domain sciences, the data science community underappreciates the data

perturbation technique.

In the differential privacy literature, data perturbation privatizes raw data to satisfy the requirement of &-

differential privacy [5];_Dwork, McSherry, et al., 2006), for example, by the Laplace method ; Dwork,_

McSherry, et al., 2006);_ Dwork & Roth, 2014). Data perturbation can also mask sensitive classification rules in

data mining [13]. One major challenge for privacy protection is that most privatization methods suffer from
information loss in a privatization process to satisfy a prescribed level of privacy protection Gong and Meng_

(2020)Goroff (2015)Santos-L.ozada et al. (2020). As a result, privatization weakens downstream statistical

analysis and yields unreliable machine learning solutions. One remedy to information loss is to lower the level
of protection to trade for reasonably good accuracy of statistical analysis. This common practice refers to low-

error-high-privacy differential privacy in the survey literature (Chen et al., 2016[17].

In the statistics literature, data perturbation has been utilized for model assessment as in the generalized

degrees of freedom Ye (1998) and for developing adaptive model selection criteria (Shen & Huang, 2006Shen
& Ye (2002) and model averaging criteria for nonlinear models [20], estimating the generalization error Shen
& Wang (2006), and performing causal inference [22]. One challenge here is how to generate synthetic data to

validate statistical inference despite the significant progress for statistical prediction.

In many applied sciences, synthetic data must meet task-specific requirements for an end-user. In privacy
protection, synthetic data or privatized data must meet some privacy protection standards to guard against
disclosure. In statistics, synthetic data replicates a random sample so that users can perform statistical analysis,
simulate phenomena and operational behaviors of a real-world process, and train machine learning algorithms.

For instance, Candes et al. (2018) uses knockoffs, a special kind of synthetic data, to estimate the Type I error

or false discovery error rate in feature selection. In such a situation, one challenge is how to ensure that

synthetic data would represent raw data while satisfying task-specific requirements to meet an end user’s needs.

To meet the challenges, we first review the data perturbation technique and introduce a scheme of data
perturbation, what we call data flush, to guide users to design a perturbation process to validate the
downstream analysis and yield reliable solutions. Then, we demonstrate the utility of data flush in two
disparate yet intertwined areas: statistical inference and differential privacy. Critically, this scheme can satisfy
any level of privacy protection for differential privacy while maintaining the statistical accuracy of privatized
data as if one used raw data. Finally, we showcase the data-flush scheme in that it can simultaneously satisfy

requirements in both differential privacy and statistical inference.

The data-flush scheme is distinctive in three ways. First, it generates multiple perturbed copies of the raw data
following a target distribution. Second, it can ensure differential privacy while preserving the target

distribution. Third, it applies to nearly all kinds of data, particularly continuous, discrete, mixed, categorical,
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and multivariate. To the best of our knowledge, [24] and Woodcock and Benedetto (2009) are only methods of

preserving a target distribution, where the former satisfies differential privacy while the latter only limits
disclosure risk. Furthermore, data flush also maintains its link with the raw data identifier or the user’s

identification, permitting data integration, data sharing, and personalization.

This article consists of five sections. Section 2 introduces the data-flush scheme and discusses its applicability
in differential privacy and statistics. Section 3 develops a pivotal inference method based on data flush, which
ascertains the validity of statistical inference. Section 4 applies the data-flush scheme to the 2019 American
Community Survey Data to demonstrate its effectiveness in differential privacy protection and contrast
statistical inference before and after privatization. Section 5 discusses future directions of data perturbation.

The Appendix contains some technical details.

2. Data flush

This section introduces a fundamental principle of data perturbation, stating that data perturbation must
preserve the distribution of raw data to ascertain the validity of the downstream analysis and the reliability of a
machine learning solution. Applying this principle, we derive a data perturbation scheme, called data flush,
based on a family of nonlinear data perturbations, which simultaneously satisfy the requirements of differential

privacy and valid statistical analysis.

2.1. Data perturbation

Data perturbation adds noise directly to raw data (Breiman, 1992Shen & Ye (2002)Ye (1998), which is called

linear perturbation. As argued in [24], a nonlinear perturbation is necessary to preserve data distributions while

satisfying the requirement of e-differential privacy [5];_Dwork, McSherry, et al., 2006).

Next, we suggest a data-flush scheme, permitting more flexibility beyond linear perturbation for various types

of data.

Univariate continuous distributions. Given an independent sample (7, , ..., Z, ) from a cumulative

)
distribution function (CDF) F', we perturb the raw sample to follow a prespecified target distribution R. For

example, R can be a standard normal distribution or a uniform distribution. But more commonly, R = F'if F'
is known and R = F otherwise, where g is a smooth estimate of the empirical CDF [24] or a model-specific

distribution function Reiter (2005) such as a normal distribution with an estimated mean.

First, we sample (U, - - - ,U,, ) from Uniform|0, 1] and relabel them so that the rank of U; in (U ,- -+ ,U,)
remains the same as that of Z; in (Z,,. .., Z,). This transformation from Z; to U; encodes a positive
(Spearman’s rank) correlation between the perturbed and the original samples, see Lemma 1. Second, suppose
we are interested in generating m perturbed samples. We add independent continuous noise e;;, j = 1,...,m

, to U; independently. Then, we map U; + e;; to yield a perturbed sample following the target distribution R:
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(2.1) Z;; =H(Ui+ey;), H()=R'G()); i=1,...,n, j=1,...,m,
where G is the CDF of U; + ¢;; -

The perturbed observation Z;‘j follows the target distribution R while Z} IERREE zZ ; are independent across

1 =1,...,n. The distribution of e;; can be chosen to satisfy a task-specific requirement.

Multivariate continuous distributions. Given an independent sample (Z, ..., Z,,) following a p-
dimensional continuous distribution F', we apply (2.1) to each component Zz'(j) through the probability chain
rule, where Z; = (ZV), ..., Z?)). Thatis, (") yields Zi(;)*’ then Z(®) given Zi(;)* yields Zi(]?)* as in (2.1),
and so forth. A perturbed sample is

22) z"=HOUY +e)),z0" =HO WY +V); j=1,....m, 1=2,..

ij i ij

where (Ul(l), . ,U,gl)) isa Uniform[(), 1] random sample for Zi(l) and H; 0 _ ( (l))*l (G()) applies to Zi(l)

(]

given ZZ.(;)* b Zi(jl._l)* as in (2.1), with R() the conditional distribution of Zi(l) given Zi(;)* e Zi(jl._l)*.

Note that is unnecessary to relabel (Ul(l)7 e UT(LZ))’ 1l =2,...,p, as the first variable in the chain rule has

)

preserved the identifier of raw data.

Discrete and mixed distributions. A generalization of (2.2) to discrete or mixed distributions, including the
empirical distribution, is achieved through a smooth version of noncontinuous F', which agrees with F' at its

jump values, see [24] for more details. Then, (2.2) applies by replacing F' with its smooth version.

2.2. Key properties and benefits

Several characteristics of data-flush in (2.2) are worth mentioning. First, Z ; follows the target distribution R.
This distribution-preservation property ensures statistically valid analysis on perturbed data. Second, Z 1(]1)* is
positively correlated with Zl-(l)’ as measured by the Spearman’s rank coefficient when e;; is small;
i=1,...,n; cf., Lemma 1. In contrast to synthetic data generation methods, this property guarantees that
data flush maintains the data identifier or index 7 between Z ;kj and Z;, which is accomplished through the first
variable of interest Zi(l). Hence, it permits personalized analysis at the individual level. Third,

(Z%,...,2Z7,,) are conditionally independent given {7, = (U.(l) ,Ui(p )) ;i=1,...,n, while

i P

(Z ’{j A ;‘l]) are unconditionally independent; j = 1,... ,m.

Lemmal. In(2.2), the Spearman’s rank coefficient p({Zi(l) T, {Zi(;)* r,)—1lase; —0
inprobability;i =1,...,n,57=1,...,m.

The proof is given in the Appendix.
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2.3. Applications

2.3.1. Differential privacy

This subsection reviews the application of data perturbation in differential privacy and present the advantages
of data flush. Differential privacy becomes the gold standard of privacy protection for publicly released data,

for example, census data (Kenny et al., 2021; United States Census Bureau, 2020). Given a prescribed level

(i.e., privacy factor) € > 0 of privacy protection, e-differential privacy [5] requires that the alteration of any

original data leads to a small change of the released information.

The differential privacy literature focuses on the design of privatization methods satisfying e-differential
privacy. Toward this end, [27] laid the statistical foundation of differential privacy. As noted in Goroff (2015),
Santos-L.ozada et al. (2020), and Gong and Meng (2020), essentially all privatization methods weaken

downstream statistical analysis at the expense of achieving a prescribed level of privacy protection, which is
referred to as the trade-off between data privacy and usefulness. Moreover, differential privacy usually entails

an impractical requirement on raw data, namely, the bounded support of its underlying data distribution [27].

To alleviate the accuracy loss and the boundedness requirement, scientists attempt to approximately preserve

some summary statistics of raw data in a privatization process. Snoke and Slavkovi¢ (2018) suggested a

privatization method by maximizing a distributional similarity between privatized and raw data. Liu, Vietri,_
Steinke, et al. (2021) leveraged public data as prior knowledge to improve differentially private query release,

and Liu, Vietri, and Wu (2021) (i.e., generative networks with the exponential mechanism, GEM) developed an

iterative method to approximately preserve the answers to a large number of queries for discrete data.
Boedihardjo et al. (2021) improved the statistical accuracy of the Laplacian method by estimating the
distribution of raw data. However, none of these methods preserved the probability distribution of raw data,
although they intend to retain some summary statistics such as the distributional similarity and answers of

queries. Furthermore, GEM focused on a weaker version of ¢-differential privacy, known as (¢, §)-differential

Despite the progress, information loss for downstream statistical analysis prevails for most privatization
methods. Preservation of summary statistics may be inadequate as an evaluation metric requires the knowledge
of the data distribution for statistical analysis or a machine-learning task. For example, GEM suffers from a
loss of statistical accuracy even if it intends to preserve the discrete distribution of multi-way interactions. As
illustrated in Table 1, GEM not only renders a significant amount of accuracy loss in terms of predictive
performance and parameter estimation in regression analysis but also requires excessive computation to
achieve privatization. In contrast, the data-flush scheme (2.2) maintains high statistical accuracy due to
distribution preservation, which has greater data usefulness for downstream analysis. More simulation details

are provided in the Appendix.
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Tablel. Private Poissonregression using raw data, data privatized by data-flushin(2.2),and
data privatized by GEM Liu, Vietri,and Wu (2021). Kullback-Leibler divergence (KL) and root
mean square error (RMSE) for regression coefficients (with the standard error in parenthesis),
together with privatization time (Time, in seconds) are presented based on 200 replications.
Herethe privacy factoreis 1, o is the standard deviation of each covariate before
discretization (a step required by GEM), and NA indicates that an algorithm fails to converge
withintwo days.

o=1 oc=10 o =100
KL
Raw Data 0.001 (0.001) 0.001 (0.001) 0.001 (0.001)
GEM 0.140 (0.126) NA NA
Data-flush 0.005 (0.003) 0.005 (0.003) 0.005 (0.004)
RMSE
Raw Data 0.040 (0.014) 0.005 (0.002) 0.001 (0.0002)
GEM 0.273 (0.108) NA NA
Data-flush 0.090 (0.033) 0.013 (0.005) 0.001 (0.0005)
Time
GEM 423.25 NA NA
Data-flush 0.35 0.34 0.33

Data flush adds suitable noise to guarantee a prescribed level of privacy protection while applying a nonlinear
transformation to preserve a target distribution to validate the downstream analysis and provide reliable
solutions. For example, one can adopt a version of (2.2) with noise ¢;; following a Laplace(0,1/¢)
distribution to guarantee e-differential privacy [24], and a smoothed empirical CDF to approximates the
original data distribution. However, the empirical CDF has to be built upon an independent sample to satisfy
the definition of e-differential privacy. Public data from similar studies can serve as the independent sample,
such as past American Community Survey data for the current American Community Survey or Census. As an
alternative, one can also consider a holdout sample, which is a random subset of the raw data [24]. In this
situation, the holdout sample is fixed once selected. Any alteration, query, or release of the holdout sample is
not permissible. This guarantees the strict privacy protection of individuals in the holdout sample. In this sense,
differential privacy does not apply to the holdout sample, since query and alteration as required by the

definition of differential privacy are not allowed.
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2.3.2. Inference

This subsection briefly comments on data flush as a tool for statistical inference. A crucial aspect of data flush
is its capability of recovering the exact distribution of a pivotal quantity in the finite sample regime, as shown

in Theorem 1. In contrast, a resampling method such as bootstrap [33];_R. J. Tibshirani & Efron, 1993)

approximates the distribution of a pivotal via a Monte Carlo method, which cannot recover the exact
distribution in the finite sample regime. Moreover, data flush has the great potential to treat the issue of the bias
in inference after model selection, as demonstrated in section 3. In contrast, standard bootstrap suffers from the
difficulty of discontinuities of an estimate [35].

2.3.3. Other applications

Data flush has applications in other areas.

Shen & Wang (2006) define the generalized degrees of freedom using the notion of model sensitivity through a
linear perturbation form Z* = Z; + ¢; withe; ~ N (0, 52) for a Gaussian sample (Z1,. .., Z, ). Data flush

provides a means of evaluating the model sensitivity for various data.

Data integration and personalization. Data-flush in (2.2) retains a positive rank correlation between

perturbed and raw observations for the first component ( Z{l) e Zf(Ll) )> as suggested by Lemma 1. This first

)
component serves as a data identifier for data integration and personalization. In privacy protection, for
instance, privatized data is released for one time period and can be merged with forthcoming data for different

periods via a data identifier. By comparison, a resampling method distorts any data identifier.

3. Pivotal Inference

This section develops a data perturbation tool for pivotal inference based on raw data without privacy
concerns. We apply the data-flush scheme (2.2). The perturbed data replicate raw data to simulate the sampling

distribution of a pivotal, which constructs a confidence interval or a test for parameter 6.

Let T = T'(9,0) and § = §(Z) denote a pivotal and an estimate based on a random sample
Z = (Z,...,Zy), with each Z; following a probability distribution F'(6), and F' is known but & is

unknown.

The distribution of T is independent of 8, which requires a Monte-Carlo resampling method such as bootstrap
to estimate, as its analytic form is often unavailable. However, such a resampling method may suffer the
difficulty of inference after model selection. As pointed out in Efron (2014), one needs to adjust for bootstrap
by smoothing through bagging [37] to treat the erratic discontinuities of an estimate. In such a situation, data

flush provides an effective means of approximating the distribution of 7'
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Data flush generates a pseudo sample Z* = (Z7,...,Z}) from Z = (Z,,...,Z,) according to (2.2) so
that the conditional distribution Z given Z; follows a target distribution R = F'(6)| o—g- Then, we compute
the perturbed pivotal T* — T(é , 0 ), where o = é( Z*) is the estimate based on Z * by applying the same
statistical procedure for é( VA )

Theorem 1 exhibits a useful yet less known fact about the conditional distribution of T given Z, which can
substitute an unknown distribution of T for pivotal inference. Note that the former can be computed but not the

latter.

Theorem 1 (Distribution preservation). The conditional distribution of T* given Z remains
the same as the distribution of T for any Z.Hence, any test or a confidence interval on the
conditional distribution of T* given Z is exactly as if the distribution of T would have been
used.

The proof is given in the Appendix.

Data-flush Monte-Carlo inference. For an exact or asymptotic pivotal, we may compute the conditional
distribution of T™* given Z via a Monte-Carlo approximation while correcting bias through data perturbation to
improve the finite-sample performance. Data perturbation permits estimation of the bias of a statistical
procedure through repeated experiments as in simulations, as illustrated in a subsequent data example. The

following data-flush Monte-Carlo method summarizes this proposal.

Step 1: Monte-Carlo approximation of the distribution of T". Generate D independent perturbed samples
Zy = (Zt,,...,2;,) according to (2.2), with each Z}; following R = F(6);d = 1,...,D,m = D.
Note that we may choose any continuous unbounded distribution of e;; in (2.2) for a task-specific purpose
(such as a Laplace distribution to satisfy e-differential privacy). In what follows, D refers to as a Monte-Carlo
size. Compute the perturbed pivotal T = T(é , é( ZZ)); d=1,...,D. Compute the empirical distribution

of Ty, ... ,Th, rendering the exact distribution of 7" as D — oo.

Step 2: Bias-correction. Compute the bias estimate B= D1 Zf: L (é( Z:’;) — é) Compute the biased-

corrected estimate §¢ — § 4 B.

Step 3: Inference. Use T (éc , ) to construct a confidence interval based on the empirical distribution of

17, ..., ThH-
Next, we illustrate this data-flush inference method by two examples.

Exact distribution of a pivetal. The first example concerns the distribution of a pivotal quantity for
construction of a confidence interval of the population mean @ of a normal distribution with unknown 2. The
pivotal is of the form T(Y’, 9) = %, where ¥ is the sample mean and S is the sample standard deviation.
Here, we apply the data-flush inference scheme to simulate the distribution of perturbed pivotal 7* and
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compare it with the bootstrapped pivotal [33] and the exact distribution of 7". To generate perturbed samples
for inference, we apply (2.1) with e;; following a Laplace(0,1/¢) distribution with e = 0.01 and R being
the CDF of N (Y, 5?) given Z.

Figure 1 reveals one salient aspect of data flush: It renders a nearly identical distribution of 7", whereas
nonparametric bootstrap differs substantially for a small sample size nn = 5. In other words, nonparametric
bootstrap’s approximation accuracy depends highly on the sample size n. Indeed, data flush yields an exact
distribution of a pivotal as the Monte-Carlo size D — oo. This observation agrees with the result of Theorem

1.

04

Density
03
Density

02
L
02

00
|

Figure 1. Illustration of the exact distribution of pivotal for three sample sizesn =5.10.20 based on simulated data. Pivotal’s
- ) )
densities for data flush with a Monte Carlo size 1 05, nonparametric bootstrap with a bootstrap size 1 05, and the t-distribution on

n—1 degrees of freedom are represented by solid, dot, and dash curves, respectively.

High-dimensional regression. Our second example focuses on the construction of a confidence interval in

linear regression on a vector of p predictors:

(31) Y;::BTXZ'+51'; EiNN(OaU2);i:17°"7na

where p could be substantially larger than the sample size n, 8 = (f31,. .., 3,) is a vector of regression
coefficients, X; = (X;1,...,Xjp) ~ N(0,X) is a vector of predictors that are independent of the error ¢;,
and the (j, k)-th element of the covariance matrix X is p‘j —kI, and o2 is an unknown error variance. Our goal
is to construct a confidence interval for an individual coefficient 8; with other covariates involving model

selection.

In a high-dimensional situation, one often applies the method of regularization for dimension reduction. As a
result of the inherent bias from regularization, a standard method needs debiasing and uses an asymptotic
distribution of debiased least absolute shrinkage and selection operator (LASSO) estimate [38] with the L, -

penalty (R. Tibshirani, 1996) given a prespecified regularization parameter. Alternatively, one may invert a

10
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constrained likelihood ratio test with the Ij-constraint [40]. Yet, the inherent bias due to regularization persists

in the finite sample regime even after debiasing.

To construct a confidence interval for parameter (3;, we apply the constrained Lj-norm regression [41] to
select variables excluding variable X; while treating other regression parameters as a nuisance, where the
truncated I, -penalty function (TLP) constraint approximates the [ -constraint for computation. Toward this
end, we apply the data-flush Monte-Carlo inference method based on (2.1) for a confidence interval to generate
synthetic samples to estimate the distribution of an asymptotic pivotal quantity 7" — ( Bl — B1)/SE( [S’l) [40],

where SF( Bl) is the standard error of the constrained Lj-norm regression (CTLP) estimate Bl'

To replicates { X;,Y; }? ; for inference, we apply (2.1), where e;; is independently sampled from the
Laplace(0,1/¢) distribution and ¢ = 0.01, Then, Y}
any j, where g;‘j = R! (G((Us +ei;)) in(2.D)and g(X;) = S0, BZX“ and 52 are the fitted value and
the standard estimate of g2 based on a holdout sample that is independent of the inference sample, R is the
CDF of N(0,6?), and G is the CDF of U; + e; ; with U; following the Uniform|0, 1] distribution.

= [(X;) + €f; satisfies e-differential privacy for

We perform simulations with the true parameters 8, = 8, = 3 = 1 and 3; = 0 otherwise, with o = 0.5
and p = 0.5. Then, we apply (2.1) withm = D/n and D = 10p to construct a 95% confidence interval for
each 3; based on CTLP. The results for B, and /34 are representative and are presented. Specifically, we use the

glmtlp package in R (https://cran.r-project.org/web/packages/glmtlp/index.html) to compute the constrained

truncated Lasso penalty (CTLP) estimate Bj and the default 42 there.

Table 2. Empirical coverage probability (Coverage %) of a95% confidence interval for 5; and
B4 based on CTLP over 500 simulationsin (3.1), where p, n, D represent the number of
predictors, the samplesize,and the Monte Carlo size, respectively.

p w D % Coverage
A 50 100 1000 92.4
B 200 100 2000 93.0
A 500 100 5000 94.6
B 50 100 1000 95.4
B 200 100 2000 93.6

B 500 100 5000 92.0

1


https://cran.r-project.org/web/packages/glmtlp/index.html
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Table 2 shows that the empirical coverage probability for 3; and 3, are close to the nominal level 95% in
each scenario. The discrepancy between the empirical converge and its target 95% is because the asymptotic
pivotal may suffer from the bias in the finite-sample situation. Overall, the data-flush Monte-Carlo inference

scheme yields a credible confidence interval for a nonsmooth problem involving model selection.

4. American Community Survey data analysis

This section applies the data-flush scheme (2.2) to the 2019 American Community Survey (ACS) Data. Notice
that the existing literature in privacy has not thoroughly depicted low-error-high-privacy differentially private
methods for complex sample surveys such as the ACS [17]. We show that data generated by data flush is valid
for statistical inference while simultaneously guaranteeing differential privacy. In particular, we demonstrate
that confidence intervals constructed upon perturbed copies of raw data are close to those on perturbed copies
of privatized data. In other words, the data-flush scheme can simultaneously achieve two disparate objectives:

differential privacy and statistical inference.

The American Community Survey collects demographic data from 3.24 million persons nationwide, roughly
1% of the population in the Year 2019 [42].

Statistical analysis of survey data has a long history. Muralidhar and Sarathy (2003) provided a theoretical

basis for data perturbation with a definition of disclosure risk requirement. Raghunathan et al. (2003) and
Reiter (2005) proposed to use multiple imputation to limit the disclosure risk of microdata. Woodcock and
Benedetto (2009) applied a transformation to maximize data utility while minimizing incremental disclosure
risk. Jiang et al. (2021) proposed a perturbation method with a masking component to preserve inferential
conclusions such as confidence intervals. While most of the above methods aim at limiting the data disclosure

risk, they are not designed for differential privacy and are not able to preserve distributions for most data types.

Alternatively, an investigator can apply data flush to privatize survey data like ACS data without incurring
information loss when the data-flush scheme preserves the distribution of raw data. For the ACS dataset, we
use (2.2) for privatization while applying the data-flush Monte-Carlo inference method to both the raw and
privatized data. For an illustration, we make a pairwise comparison of two confidence intervals before and after

privatization for coefficients of weighted regression.

In particular, we investigate the impact of privatization by (2.2) on the statistical accuracy of regression
analysis of the total personal income on 16 covariates, including an individual’s age (AGE), geographical
region (REGION), the population of the residential metro/micro area (METPOP10, the logarithm of
METPOP10 to be used), metropolitan status (METRO), mortgage status (MORTGAGE), sex (SEX), marital
status (MARST), race (RACE), ethnicity (HISPAN), ability to speak English (SPEAKING), health insurance
coverage (HCOVANY), educational attainment (EDUCD), employment status (EMPSTAT), occupation
(OCCQ), migration status (MIGRATE1), and veteran status (VETSTAT). For our analysis, we select individuals

with a positive total pretax personal income from all sources during the 12 months precedent to the survey.
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This preprocessing renders a sample of 2,389,971 individuals. See the Appendix for more specific details
regarding preprocessing. The data types, as well as the number of levels for nominal variables, are summarized
in Table 3. Then, we regress the logarithm of total personal income on these 16 covariates using the person
weight (PERWT) as the weights for regression. A confidence interval (CI) for each regression coefficient is

constructed accordingly before and after privatization.

To satisfy e-differential privacy, we apply (2.2) with ¢;; following a Laplace(0,17/¢) distribution to
preserve the joint distribution of 16 covariates and 1 response variable across common data types. In this
fashion, privatization protects each individual’s information. To illustrate this point, we scrutinize the
histogram of the variable AGE before and after privatization in Figure 2, which suggests that little
distributional difference is evident. Note that the two histograms before and after privatization are nearly
identical, with the mean (standard deviation) being 50,80(19,1 7 ) and 50.82 (19,17 ), respectively. Moreover,
we randomly choose two categorical variables, namely, employment status (EMPSTAT) and migration status
(MIGRATE1), to examine the joint distribution before and after privatization, which are the 13th and 15th
variables out of 17 variables in the sequential privatization process through (2.2). As suggested by Table 4, the
data flush scheme preserves the joint distribution quite well after privatization, particularly for the two-way
associations, except for one cell (States-abroad, Non-labor) with small counts. In conclusion, the distribution
preservation property of data flush ascertains the validity of downstream statistical inference while protecting

data privacy.

We apply the data-flush Monte-Carlo method to construct confidence intervals for raw and privatized data. In
particular, for each replication, we only perturb the linear regression residuals and follow the high-dimensional
regression example in Section 3. As indicated by Figure 3, the data-flush scheme (2.2) preserves the target
distribution of raw data and hence yields nearly identical confidence intervals except for several ones with

shifting centers.

Table 3. Summary statistics for variables used in the American Community Survey analysis,
including variable’s names (Name), types (Type), the number of levels for nominal variables (#
Level), as well as the mean (Mean) and standard deviation (Standard deviation). Here NA
means “Not applicable.”

Name Type # Level Mean (Standard deviation)
AGE empirical NA 50.80 (19.17)

REGION nominal 9 NA

METPOP10 empirical NA 3.30 x 10% (5.00 x 106)

METRO nominal 5 NA
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MORTGAGE

SEX

MARST

RACE

HISPAN

SPEAKENG

HCOVANY

EDUCD

EMPSTAT

OCC

MIGRATE1

VETSTAT

INCTOT

nominal

binary

nominal

nominal

binary

nominal

binary

nominal

nominal

nominal

nominal

binary

continuous

NA

NA

NA

13

NA

NA

Data Flush

NA

0.50 (0.50)

NA

NA

0.12 (0.32)

NA

0.93 (0.26)

NA

NA

NA

NA

0.08 (0.28)

51365.44 (69097.25)

Table 4. Joint distribution between employment status (EMPSTAT) and migration status
(MIGRATE1) before and after privatization, where each cell in the contingency tableindicates
the number of individuals in the release sample before (after) privatization. For MIGRATEL,
“House,” “State,” and “States- Abroad” indicate staying in the same house, moving withina
state, and moving between states or abroad; for EMPSTAT, “Employed,” “NA/Unemployed,” and
“Non-labor” mean that anindividual is employed, unemployed or not applicable,and not in
thelaborforce, respectively.

MIGRATE1

House

State

States-abroad

Employed

996078 (1012469)

120963 (100515)

32120 (31436)

EMPSTAT

NA/Unemployed

31207 (31163)

5697 (4652)

2072 (2230)

Non-labor

542095 (574287)

48451 (32242)

13796 (3485)

Total

1569380 (1617919)

175111 (137409)

47988 (37151)
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Total 1149161 (1144420) 38976 (38045) 604342 (610014) 1792479 (1792479)
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Figure 2. Histogram of the AGE variable in the American Community Survey data before and
after privatization.
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Figure 3. Confidence intervals of regression coefficients based on raw data and privatized
data, represented by gray and red lines and constructed using the data-flush scheme in
section 3. Regressors from the top to the bottom are the intercept (shifted to the left by 8 units
for better visualization), AGE, REGION (8 dummy variables), METPOP10, METRO (2 dummy
variables), MORTGAGE (2 dummy variables), SEX, MARST (5 dummy variables), RACE (5
dummy variables), HISPAN, SPEAKENG (2 dummy variables), HCOVANY, EDUCD (6
dummy variables), EMPSTAT (2 dummy variables), OCC (12 dummy variables), MIGRATE (2
dummy variables), and VETSTAT. The confidence intervals based on raw data are
comparable with those after privatization in terms of the signs of interval centers and lengths.

Privacy loss usually occurs for high-dimensional data, which is an inherent challenge for any method in
differential privacy. In particular, to maintain the same accuracy level, the overall level of privacy protection
for each variable tends to decay as the number of variables increases. In our situation, the overall level of
privacy protection, defined by the privacy factor ¢, is 1 for e-differential privacy, which requires a stricter level
of privacy protection 1/17 for each of the 17 variables. It is equivalent to that each variable requires
independent Laplace(0,17/€), where the noise variance greatly exceeds the ranges of many variables in the

ACS data, especially for binary dummy variables.

16



Harvard Data Science Review « Issue 4.2, Spring 2022 Data Flush

5. Discussion

Data perturbation has its great potential as an effective tool for replicating a sample, which can apply to data
security, statistical inference, and data integration, among others. The fundamental principle, distribution
preservation for data perturbation, that we described in this article, allows users to design data perturbation
schemes such as data flush to satisfy task-specific requirements, as we showcase for statistical inference with
differential private data in section 4. On this ground, synthetic data generated by such a scheme yields

statistically valid analysis and high predictive accuracy of a machine learning task.

Several future directions of research include a more flexible model-based estimation (e.g., one including both
parametric and empirical components) for high-dimensional target distributions and a compatible data
perturbation scheme, as well as generalizations to independent but non-identically distributed data, time-series

data, and unstructured data.
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Appendices
Appendix A: Proof of Lemmal

By construction, ( U1(1)7 ... Ur(Ll)) follows the uniform distribution and retains the ranks of 2{1)7 e Zr(Ll)).

b
Then, the Spearman’s rank correlation p({ Zi(l) n {Ui(l) n ) = 1. It follows from the strictly increasing
property of H(1) that p({Z l.(l) LI {Zi(;)* n ) = 1 whene;; = 0 for any fixed j. By continuity,

p({Zl.(l) n . {Z Z(Jl)* " ;) — lase;; — 0 in probability. This completes the proof.

Appendix B: Simulation Comparison for Poisson Regression

To compare with the method of generative networks with the exponential mechanism (GEM) Liu, Vietri, and
Wu (2021), we generate a sample of paired data (Xz ,Y; );‘:1 , where X; and Y; need to be discrete to
accommodate the requirement for GEM. First, we sample (Xl, . ,Xn) from a 5-dimensional normal
distribution V' (0, X), where the off-diagonal and diagonal values of the covariance matrix 3 are 0.702 and
0%, and ¢ = 1,10, 100. Then, we discretize them by rounding each component of X to the smallest integer
above its value. The average numbers of distinct values for (Xl R Xn) are 8, 64, and 465, respectively,

for ¢ = 1, 10, and 100. This discretization allows us to evaluate the performance of each method under an

unknown true distribution. Second, we generate a Poisson response Y; with mean exp(Xg ,B); t1=1,---,n,
1 1Y o
where 8 = (5—0_, ceey 5—0) yields a reasonable range of Y;.

For data flush, we set the privacy factor to be ¢ = 1 to ensure strict protection under ¢-differential privacy. To

apply (2.2), we randomly select 25% of (X;,Y;)? ; as a holdout sample to construct a smoothed empirical
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cumulative distribution function (CDF) and use the remaining sample for privatization. For GEM, we let
(e,6) = (1, T—Llf) for (g, §)-differential privacy. Note that (e, §)-differential privacy with § = 0 reduces to -
differential privacy. GEM intends to preserve W three-way interactions, where we choose W = 5 out of 20
possible three-way interactions from 6 variables (Y; and components of X,), with W denoting the number of

interactions to consider. Then, we apply the GEM algorithml in Liu, Vietri, and Wu (2021) to privatize

(X;,Y;)™, of n = 2,500 using the default values with the number of iterations 7" = 10.2

Given privatized data, we obtain estimated regression coefficient vector B in Poisson regression and evaluate
predictive performance by the Kullback-Leibler divergence and parameter estimation by the root mean square
error between the estimated and true regression coefficients 3. As a reference, we also report simulation results

on the nonprivate data (X, Y;)" ;.

Appendix C: Proof of Theorem1

By the definition of a pivotal quantity, T° (01 , él ) has the same distribution as T(02 , éQ) when éj = é( z ( ))
is obtained via the same statistical procedure, where Z () follows F(Oj ); j=1,2.Let§; = 0 and

0, = 6(Z).Letg, = §(Z) and §, = G(Z*). Note that Z* given Z follows F'(§) while Z follows F(8).
Therefore, the conditional distribution of 7* — T (02 , é2) given Z remains the same as the unconditional

distribution of T = T'(6,, él) for any Z. This completes the proof.

Appendix D: ACS Data Preprocessing

We preprocess the 2019 American Community Survey data, available at https://usa.ipums.org. For variable

METRO, we combine all other levels exceeding level 2 with level 2 to form a new level 2 to indicate “In
metropolitan area.” For variable MORTGAGE, we merge all levels above level 3 into level 3 to indicate “Yes,
have or will have mortgage.” For the RACE variable, we merge levels 4 (“Chinese”) and 5 (“Japanese”) with
level 6 to represent “Other Asian or Pacific Islander” and merge level 9 (“Three or more major races”) into
level 8 (“Two major races”) to represent (“More than one major race”). For variable HISPAN, we merge levels
from 1 to 4 into level 1 to represent “Hispanic” as there are no individuals in the data reporting 9 (“Not
Reported”). For variable SPEAKING, we merge levels 4 and 5 into level 6 to indicate (“Speak English, but not
only English”). For variable EDUCD, we merge levels 0 to 2 into 0 to represent “No school (completed),”
levels from 10 to 61 into 1 to indicate “Nursery school to grade 12,” and levels from 62 to 64 into 2 to
represent “High school graduate, GED, or alternative credential,” levels from 65 to 100 into 3 for “Some
college,” level 101 into 4 for “Bachelor’s degree”), level 114 into 5 for “Master degree,” and levels 115 and
116 into level 6 for “Professional degree beyond a bachelor’s degree or Doctoral degree.” No other levels are
available for EDUCD. For variable OCC, we merge occupations based on the 13 subcategories provided at

https://usa.ipums.org/usa/volii/occ2018.shtml, including “Not Applicable,” “Management, Business, and

Financial Occupations,” “Computer, Engineering, and Science Occupations”, “Education, Legal, Community

Service, Arts, and Media Occupations,” “Healthcare Practitioners and Technical Occupations,” “Service
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Occupations,” “Sales and Related Occupations,” “Office and Administrative Support Occupations,” “Farming,
Fishing, and Forestry Occupations,” “Construction and Extraction Occupations,” “Installation, Maintenance,
and Repair Occupations,” “Production Occupations,” and “Transportation and Material Moving Occupations.”
For EMPSTAT, we merge “N/A” with “Unemployed,” and for MIGRATE1, we merge “Moved between states”
and “Abroad one year ago.” For VETSTAT, we merge “N/A” with “Not a veteran.” For METPOP10 and
INCTOT, we take the logarithmic transformation before fitting regression to deal with the long-tail

distribution. The remaining variables are intact.

Appendix E: Implementation Details of the ACS Data

After sampling 25% of the ACS data as the holdout sample and leaving the other 75% as the to-be-privatized
sample to be released, we apply (2.2) to 16 covariates in addition to the response sequentially following the

order and variable types listed in Table 3.

To achieve privatization, we estimate the conditional distribution of each variable given all the previous
variables via a corresponding generalized linear model. First, we prioritize AGE using the marginal empirical
distribution of AGE based on the holdout sample. Second, we privatize REGION by fitting multinomial
logistic regression of REGION on AGE in the holdout sample to estimate the corresponding parameters and
then compute the probability of each REGION in the to-be-privatized data given the privatized AGE as the
new covariate. This privatization process continues with the remaining variables following the sequential order
in Table 3 and using an estimated conditional distribution on the holdout sample by logistic regression,
multinomial logistic regression, and linear regression for binary, nominal, and normally distributed data such as
log(INCTOT). Note that we privatize METPOP10 by the conditional distribution of METPOP10 given
REGION without using AGE. This assumption appears sensible given that the sample correlation is —(.036

between the area and the participant’s age.

The data-flush scheme in (2.2) generates D = 500 conditionally independent samples with noise
independently following Laplace(0,0.2), followed by the three steps described in section 3 with a

confidence level of 95%.

©2022 Xiaotong Shen, Xuan Bi, and Rex Shen. This article is licensed under a Creative Commons Attribution
(CC BY 4.0) International license, except where otherwise indicated with respect to particular material

included in the article.

Footnotes

1. GEM'’s code is also available at

https://colab.research.google.com/drive/106vbYotTlovfQnucsFi2f28 X Jiu5B eS?usp=sharing. <
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2. In an unreported study, we note that numerical results are stable for T = 15 and W = 10, 15, 20. However,

the computational time increases dramatically as T or W increases. <
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