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ABSTRACT

Data perturbation is a technique for generating synthetic data by adding ‘noise’ to raw data, which has an array 

of applications in science and engineering, primarily in data security and privacy. One challenge for data 

perturbation is that it usually produces synthetic data resulting in information loss at the expense of privacy 

protection. The information loss, in turn, renders the accuracy loss for any statistical or machine learning 

method based on the synthetic data, weakening downstream analysis and deteriorating in machine learning. In 

this article, we introduce and advocate a fundamental principle of data perturbation, which requires the 

preservation of the distribution of raw data. To achieve this, we propose a new scheme, named data flush, 

which ascertains the validity of the downstream analysis and maintains the predictive accuracy of a learning 

task. It perturbs data nonlinearly while accommodating the requirement of strict privacy protection, for 

instance, differential privacy. We highlight multiple facets of data flush through examples.

Keywords: census, differential privacy, distribution preservation, data integration, statistical inference

Media Summary
The explosive growth of large volumes of data with complex structures demands the wide usage of data in 

applied sciences. In privacy protection, data perturbation is an effective technique. For instance, it privatizes 

the U.S. Decennial Census Data to protect the confidentiality of individuals by the standard of differential 

privacy ; United States Census Bureau, 2020)(Kenny et al., 2021. However, the scientific community criticizes 

such privatization methods for producing synthetic data invalidating downstream statistical analysis at the 

expense of satisfying differential privacy. The lack of statistical accuracy raises concern for the interpretability 

and reliability of any statistical and machine learning solutions to a practical problem. Despite its great 

potential in domain sciences, the data science community underappreciates the data perturbation technique. 

Here, we introduce and advocate a fundamental principle of data perturbation that retains the distributional 

information, validating downstream analysis, and delivering accurate prediction and reliable interpretation, for 

raw and privatized data.

1. Introduction
Data perturbation gives rise to synthetic data by adding noise to raw data, which has had vast applications since 

the pioneering work of Breiman on estimating the prediction error in regression (Breiman, 1992. In the data 

privacy domain, data perturbation can ensure a prescribed level of privacy protection by imposing a suitable 

noise level (Amazon Staff, 2018[5]; Erlingsson et al., 2014; Kaissis et al., 2020Santos-Lozada et al. (2020); 

Venkatramanan et al., 2021). In statistics and data science, data perturbation is an effective tool for replicating a 

sample, for example, developing Monte Carlo methods of model selection (Breiman, 1992Shen & Ye (2002). 
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In this situation, data perturbation generates synthetic data to resemble raw data in terms of distribution. 

Despite its great potential in many domain sciences, the data science community underappreciates the data 

perturbation technique.

In the differential privacy literature, data perturbation privatizes raw data to satisfy the requirement of -

differential privacy [5]; Dwork, McSherry, et al., 2006), for example, by the Laplace method ; Dwork, 

McSherry, et al., 2006); Dwork & Roth, 2014). Data perturbation can also mask sensitive classification rules in 

data mining [13]. One major challenge for privacy protection is that most privatization methods suffer from 

information loss in a privatization process to satisfy a prescribed level of privacy protection Gong and Meng 

(2020)Goroff (2015)Santos-Lozada et al. (2020). As a result, privatization weakens downstream statistical 

analysis and yields unreliable machine learning solutions. One remedy to information loss is to lower the level 

of protection to trade for reasonably good accuracy of statistical analysis. This common practice refers to low-

error-high-privacy differential privacy in the survey literature (Chen et al., 2016[17].

In the statistics literature, data perturbation has been utilized for model assessment as in the generalized 

degrees of freedom Ye (1998) and for developing adaptive model selection criteria (Shen & Huang, 2006Shen 

& Ye (2002) and model averaging criteria for nonlinear models [20], estimating the generalization error Shen 

& Wang (2006), and performing causal inference [22]. One challenge here is how to generate synthetic data to 

validate statistical inference despite the significant progress for statistical prediction.

In many applied sciences, synthetic data must meet task-specific requirements for an end-user. In privacy 

protection, synthetic data or privatized data must meet some privacy protection standards to guard against 

disclosure. In statistics, synthetic data replicates a random sample so that users can perform statistical analysis, 

simulate phenomena and operational behaviors of a real-world process, and train machine learning algorithms. 

For instance, Candes et al. (2018) uses knockoffs, a special kind of synthetic data, to estimate the Type I error 

or false discovery error rate in feature selection. In such a situation, one challenge is how to ensure that 

synthetic data would represent raw data while satisfying task-specific requirements to meet an end user’s needs.

To meet the challenges, we first review the data perturbation technique and introduce a scheme of data 

perturbation, what we call data flush, to guide users to design a perturbation process to validate the 

downstream analysis and yield reliable solutions. Then, we demonstrate the utility of data flush in two 

disparate yet intertwined areas: statistical inference and differential privacy. Critically, this scheme can satisfy 

any level of privacy protection for differential privacy while maintaining the statistical accuracy of privatized 

data as if one used raw data. Finally, we showcase the data-flush scheme in that it can simultaneously satisfy 

requirements in both differential privacy and statistical inference.

The data-flush scheme is distinctive in three ways. First, it generates multiple perturbed copies of the raw data 

following a target distribution. Second, it can ensure differential privacy while preserving the target 

distribution. Third, it applies to nearly all kinds of data, particularly continuous, discrete, mixed, categorical, 

ε
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and multivariate. To the best of our knowledge, [24] and Woodcock and Benedetto (2009) are only methods of 

preserving a target distribution, where the former satisfies differential privacy while the latter only limits 

disclosure risk. Furthermore, data flush also maintains its link with the raw data identifier or the user’s 

identification, permitting data integration, data sharing, and personalization.

This article consists of five sections. Section 2 introduces the data-flush scheme and discusses its applicability 

in differential privacy and statistics. Section 3 develops a pivotal inference method based on data flush, which 

ascertains the validity of statistical inference. Section 4 applies the data-flush scheme to the 2019 American 

Community Survey Data to demonstrate its effectiveness in differential privacy protection and contrast 

statistical inference before and after privatization. Section 5 discusses future directions of data perturbation. 

The Appendix contains some technical details.

2. Data flush
This section introduces a fundamental principle of data perturbation, stating that data perturbation must 

preserve the distribution of raw data to ascertain the validity of the downstream analysis and the reliability of a 

machine learning solution. Applying this principle, we derive a data perturbation scheme, called data flush, 

based on a family of nonlinear data perturbations, which simultaneously satisfy the requirements of differential 

privacy and valid statistical analysis.

2.1. Data perturbation

Data perturbation adds noise directly to raw data (Breiman, 1992Shen & Ye (2002)Ye (1998), which is called 

linear perturbation. As argued in [24], a nonlinear perturbation is necessary to preserve data distributions while 

satisfying the requirement of -differential privacy [5]; Dwork, McSherry, et al., 2006).

Next, we suggest a data-flush scheme, permitting more flexibility beyond linear perturbation for various types 

of data.

Univariate continuous distributions. Given an independent sample  from a cumulative 

distribution function (CDF) , we perturb the raw sample to follow a prespecified target distribution . For 

example,  can be a standard normal distribution or a uniform distribution. But more commonly,  if  

is known and  otherwise, where  is a smooth estimate of the empirical CDF [24] or a model-specific 

distribution function Reiter (2005) such as a normal distribution with an estimated mean.

First, we sample  from Uniform  and relabel them so that the rank of  in  

remains the same as that of  in  This transformation from  to  encodes a positive 

(Spearman’s rank) correlation between the perturbed and the original samples, see Lemma 1. Second, suppose 

we are interested in generating  perturbed samples. We add independent continuous noise , 

, to  independently. Then, we map  to yield a perturbed sample following the target distribution : 

ε

(Z ,… ,Z )1 n

F R

R R = F F

R = F̂ F̂

(U ,⋯ ,U )1 n [0, 1] Ui (U ,⋯ ,U )1 n

Zi (Z ,… ,Z ).1 n Zi Ui

m eij j = 1,… ,m

Ui U +i eij R



Harvard Data Science Review • Issue 4.2, Spring 2022 Data Flush

5

 where  is the CDF of .

The perturbed observation  follows the target distribution  while  are independent across 

. The distribution of  can be chosen to satisfy a task-specific requirement.

Multivariate continuous distributions. Given an independent sample  following a -

dimensional continuous distribution , we apply (2.1) to each component  through the probability chain 

rule, where . That is,  yields , then  given  yields  as in (2.1), 

and so forth. A perturbed sample is 

 where  is a Uniform  random sample for  and  applies to 

 given  as in (2.1), with  the conditional distribution of  given . 

Note that is unnecessary to relabel , , as the first variable in the chain rule has 

preserved the identifier of raw data. 

Discrete and mixed distributions. A generalization of (2.2) to discrete or mixed distributions, including the 

empirical distribution, is achieved through a smooth version of noncontinuous , which agrees with  at its 

jump values, see [24] for more details. Then, (2.2) applies by replacing  with its smooth version.

2.2. Key properties and benefits

Several characteristics of data-flush in (2.2) are worth mentioning. First,  follows the target distribution . 

This distribution-preservation property ensures statistically valid analysis on perturbed data. Second,  is 

positively correlated with , as measured by the Spearman’s rank coefficient when  is small; 

; c.f., Lemma 1. In contrast to synthetic data generation methods, this property guarantees that 

data flush maintains the data identifier or index  between  and , which is accomplished through the first 

variable of interest . Hence, it permits personalized analysis at the individual level. Third, 

 are conditionally independent given ; , while 

 are unconditionally independent; .

Lemma 1.  In (2.2), the Spearman’s rank coefficient  as  
in probability; , .

The proof is given in the Appendix.
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2.3. Applications

2.3.1. Differential privacy

This subsection reviews the application of data perturbation in differential privacy and present the advantages 

of data flush. Differential privacy becomes the gold standard of privacy protection for publicly released data, 

for example, census data (Kenny et al., 2021; United States Census Bureau, 2020). Given a prescribed level 

(i.e., privacy factor)  of privacy protection, -differential privacy [5] requires that the alteration of any 

original data leads to a small change of the released information.

The differential privacy literature focuses on the design of privatization methods satisfying -differential 

privacy. Toward this end, [27] laid the statistical foundation of differential privacy. As noted in Goroff (2015), 

Santos-Lozada et al. (2020), and Gong and Meng (2020), essentially all privatization methods weaken 

downstream statistical analysis at the expense of achieving a prescribed level of privacy protection, which is 

referred to as the trade-off between data privacy and usefulness. Moreover, differential privacy usually entails 

an impractical requirement on raw data, namely, the bounded support of its underlying data distribution [27].

To alleviate the accuracy loss and the boundedness requirement, scientists attempt to approximately preserve 

some summary statistics of raw data in a privatization process. Snoke and Slavković (2018) suggested a 

privatization method by maximizing a distributional similarity between privatized and raw data. Liu, Vietri, 

Steinke, et al. (2021) leveraged public data as prior knowledge to improve differentially private query release, 

and Liu, Vietri, and Wu (2021) (i.e., generative networks with the exponential mechanism, GEM) developed an 

iterative method to approximately preserve the answers to a large number of queries for discrete data. 

Boedihardjo et al. (2021) improved the statistical accuracy of the Laplacian method by estimating the 

distribution of raw data. However, none of these methods preserved the probability distribution of raw data, 

although they intend to retain some summary statistics such as the distributional similarity and answers of 

queries. Furthermore, GEM focused on a weaker version of -differential privacy, known as -differential 

privacy (Dwork, Kenthapadi, et al., 2006), where  denotes the probability of information being leaked.

Despite the progress, information loss for downstream statistical analysis prevails for most privatization 

methods. Preservation of summary statistics may be inadequate as an evaluation metric requires the knowledge 

of the data distribution for statistical analysis or a machine-learning task. For example, GEM suffers from a 

loss of statistical accuracy even if it intends to preserve the discrete distribution of multi-way interactions. As 

illustrated in Table 1, GEM not only renders a significant amount of accuracy loss in terms of predictive 

performance and parameter estimation in regression analysis but also requires excessive computation to 

achieve privatization. In contrast, the data-flush scheme (2.2) maintains high statistical accuracy due to 

distribution preservation, which has greater data usefulness for downstream analysis. More simulation details 

are provided in the Appendix.

ε > 0 ε

ε

ε (ε, δ)

δ
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Table 1. Private Poisson regression using raw data, data privatized by data-flush in (2.2), and 
data privatized by GEM  Liu, Vietri, and Wu (2021). Kullback-Leibler divergence (KL) and root 
mean square error (RMSE) for regression coefficients (with the standard error in parenthesis), 
together with privatization time (Time, in seconds) are presented based on 200 replications. 
Here the privacy factor ε is 1, σ is the standard deviation of each covariate before 
discretization (a step required by GEM), and NA indicates that an algorithm fails to converge 
within two days.

Data flush adds suitable noise to guarantee a prescribed level of privacy protection while applying a nonlinear 

transformation to preserve a target distribution to validate the downstream analysis and provide reliable 

solutions. For example, one can adopt a version of (2.2) with noise  following a  

distribution to guarantee -differential privacy [24], and a smoothed empirical CDF to approximates the 

original data distribution. However, the empirical CDF has to be built upon an independent sample to satisfy 

the definition of -differential privacy. Public data from similar studies can serve as the independent sample, 

such as past American Community Survey data for the current American Community Survey or Census. As an 

alternative, one can also consider a holdout sample, which is a random subset of the raw data [24]. In this 

situation, the holdout sample is fixed once selected. Any alteration, query, or release of the holdout sample is 

not permissible. This guarantees the strict privacy protection of individuals in the holdout sample. In this sense, 

differential privacy does not apply to the holdout sample, since query and alteration as required by the 

definition of differential privacy are not allowed.

σ = 1 σ = 10 σ = 100

KL

Raw Data

GEM

Data-flush

0.001 (0.001)

0.140 (0.126)

0.005 (0.003)

0.001 (0.001)

NA

0.005 (0.003)

0.001 (0.001)

NA

0.005 (0.004)

RMSE

Raw Data

GEM

Data-flush

0.040 (0.014)

0.273 (0.108)

0.090 (0.033)

0.005 (0.002)

NA

0.013 (0.005)

0.001 (0.0002)

NA

0.001 (0.0005)

Time

GEM

Data-flush

423.25

0.35

NA

0.34

NA

0.33

eij Laplace(0, 1/ε)

ε

ε
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2.3.2. Inference

This subsection briefly comments on data flush as a tool for statistical inference. A crucial aspect of data flush 

is its capability of recovering the exact distribution of a pivotal quantity in the finite sample regime, as shown 

in Theorem 1. In contrast, a resampling method such as bootstrap [33]; R. J. Tibshirani & Efron, 1993) 

approximates the distribution of a pivotal via a Monte Carlo method, which cannot recover the exact 

distribution in the finite sample regime. Moreover, data flush has the great potential to treat the issue of the bias 

in inference after model selection, as demonstrated in section 3. In contrast, standard bootstrap suffers from the 

difficulty of discontinuities of an estimate [35]. 

2.3.3. Other applications

Data flush has applications in other areas.

Model sensitivity. To quantify the impact of model selection on estimation, Ye (1998), Shen & Ye (2002), and 

Shen & Wang (2006) define the generalized degrees of freedom using the notion of model sensitivity through a 

linear perturbation form  with  for a Gaussian sample . Data flush 

provides a means of evaluating the model sensitivity for various data.

Data integration and personalization. Data-flush in (2.2) retains a positive rank correlation between 

perturbed and raw observations for the first component , as suggested by Lemma 1. This first 

component serves as a data identifier for data integration and personalization. In privacy protection, for 

instance, privatized data is released for one time period and can be merged with forthcoming data for different 

periods via a data identifier. By comparison, a resampling method distorts any data identifier.

3. Pivotal Inference
This section develops a data perturbation tool for pivotal inference based on raw data without privacy 

concerns. We apply the data-flush scheme (2.2). The perturbed data replicate raw data to simulate the sampling 

distribution of a pivotal, which constructs a confidence interval or a test for parameter .

Let  and  denote a pivotal and an estimate based on a random sample 

, with each  following a probability distribution , and  is known but  is 

unknown.

The distribution of  is independent of , which requires a Monte-Carlo resampling method such as bootstrap 

to estimate, as its analytic form is often unavailable. However, such a resampling method may suffer the 

difficulty of inference after model selection. As pointed out in Efron (2014), one needs to adjust for bootstrap 

by smoothing through bagging [37] to treat the erratic discontinuities of an estimate. In such a situation, data 

flush provides an effective means of approximating the distribution of .

Z =i
∗ Z +i εi ε ∼i N(0, ε )2 (Z ,… ,Z )1 n

(Z ,⋯ ,Z )1
(1)

n
(1)

θ

T = T (θ, )θ̂ =θ̂ (Z)θ̂

Z = (Z ,… ,Z )1 n Zi F (θ) F θ

T θ

T
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Data flush generates a pseudo sample  from  according to (2.2) so 

that the conditional distribution  given  follows a target distribution . Then, we compute 

the perturbed pivotal , where  is the estimate based on  by applying the same 

statistical procedure for .

Theorem 1 exhibits a useful yet less known fact about the conditional distribution of  given , which can 

substitute an unknown distribution of  for pivotal inference. Note that the former can be computed but not the 

latter.

Theorem 1  (Distribution preservation). The conditional distribution of  given  remains 
the same as the distribution of  for any . Hence, any test or a confidence interval on the 
conditional distribution of  given  is exactly as if the distribution of  would have been 
used.

The proof is given in the Appendix.

Data-flush Monte-Carlo inference. For an exact or asymptotic pivotal, we may compute the conditional 

distribution of  given  via a Monte-Carlo approximation while correcting bias through data perturbation to 

improve the finite-sample performance. Data perturbation permits estimation of the bias of a statistical 

procedure through repeated experiments as in simulations, as illustrated in a subsequent data example. The 

following data-flush Monte-Carlo method summarizes this proposal.

Step 1: Monte-Carlo approximation of the distribution of . Generate  independent perturbed samples 

 according to (2.2), with each  following ; , . 

Note that we may choose any continuous unbounded distribution of  in (2.2) for a task-specific purpose 

(such as a Laplace distribution to satisfy -differential privacy). In what follows,  refers to as a Monte-Carlo 

size. Compute the perturbed pivotal ; . Compute the empirical distribution 

of , rendering the exact distribution of  as .

Step 2: Bias-correction. Compute the bias estimate . Compute the biased-

corrected estimate .

Step 3: Inference. Use  to construct a confidence interval based on the empirical distribution of 

.

Next, we illustrate this data-flush inference method by two examples.

Exact distribution of a pivotal. The first example concerns the distribution of a pivotal quantity for 

construction of a confidence interval of the population mean  of a normal distribution with unknown . The 

pivotal is of the form , where  is the sample mean and  is the sample standard deviation. 

Here, we apply the data-flush inference scheme to simulate the distribution of perturbed pivotal  and 

Z =∗ (Z ,… ,Z )1
∗

n
∗ Z = (Z ,… ,Z )1 n

Z i
∗ Z i R = F (θ)∣

θ= θ̂

T =∗ T ( , )θ̂ θ̂∗ =θ̂∗ (Z )θ̂ ∗ Z∗

(Z)θ̂

T ∗ Z

T

T ∗ Z

T Z

T ∗ Z T

T ∗ Z

T D

Z =d
∗ (Z ,… ,Z )1d

∗
nd
∗ Zid

∗ R = F ( )θ̂ d = 1,… ,D m = D

eij

ε D

T =d
∗ T ( , (Z ))θ̂ θ̂ d

∗ d = 1,… ,D

T ,… ,T1
∗

D
∗ T D→∞

=B̂ D ( (Z ) −−1 ∑
d=1
D

θ̂ d
∗ )θ̂

=θ̂c +θ̂ B̂

T ( , θ)θ̂c

T ,… ,T1
∗

D
∗

θ σ2

T ( , θ) =Ȳ
S
−θȲ

Ȳ S

T ∗
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compare it with the bootstrapped pivotal [33] and the exact distribution of . To generate perturbed samples 

for inference, we apply (2.1) with  following a  distribution with  and  being 

the CDF of  given .

 Figure 1 reveals one salient aspect of data flush: It renders a nearly identical distribution of , whereas 

nonparametric bootstrap differs substantially for a small sample size . In other words, nonparametric 

bootstrap’s approximation accuracy depends highly on the sample size . Indeed, data flush yields an exact 

distribution of a pivotal as the Monte-Carlo size  This observation agrees with the result of Theorem 

1. 

Figure 1. Illustration of the exact distribution of pivotal for three sample sizes  based on simulated data. Pivotal’s 

densities for data flush with a Monte Carlo size , nonparametric bootstrap with a bootstrap size , and the -distribution on 

 degrees of freedom are represented by solid, dot, and dash curves, respectively.

High-dimensional regression. Our second example focuses on the construction of a confidence interval in 

linear regression on a vector of  predictors: 

 where  could be substantially larger than the sample size ,  is a vector of regression 

coefficients,  is a vector of predictors that are independent of the error , 

and the -th element of the covariance matrix  is , and  is an unknown error variance. Our goal 

is to construct a confidence interval for an individual coefficient  with other covariates involving model 

selection.

In a high-dimensional situation, one often applies the method of regularization for dimension reduction. As a 

result of the inherent bias from regularization, a standard method needs debiasing and uses an asymptotic 

distribution of debiased least absolute shrinkage and selection operator (LASSO) estimate [38] with the -

penalty (R. Tibshirani, 1996) given a prespecified regularization parameter. Alternatively, one may invert a 

T

eij Laplace(0, 1/ε) ε = 0.01 R

N( ,S )Ȳ 2 Z

T

n = 5

n

D→∞.

n = 5, 10, 20

105 105 t

n− 1

p

(3.1)     Y = β X + ε ; ε ∼ N (0, σ ); i = 1,… , n,i
T

i i i
2

p n β = (β ,… ,β )1 p

X =i (X ,… ,X ) ∼i1 ip N(0,Σ) εi

(j,k) Σ ρ∣j−k∣ σ2

βl

L1
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constrained likelihood ratio test with the -constraint [40]. Yet, the inherent bias due to regularization persists 

in the finite sample regime even after debiasing.

To construct a confidence interval for parameter , we apply the constrained -norm regression [41] to 

select variables excluding variable  while treating other regression parameters as a nuisance, where the 

truncated -penalty function (TLP) constraint approximates the -constraint for computation. Toward this 

end, we apply the data-flush Monte-Carlo inference method based on (2.1) for a confidence interval to generate 

synthetic samples to estimate the distribution of an asymptotic pivotal quantity  [40], 

where  is the standard error of the constrained -norm regression (CTLP) estimate .

To replicates  for inference, we apply (2.1), where  is independently sampled from the 

 distribution and , Then,  satisfies -differential privacy for 

any , where  in (2.1) and  and  are the fitted value and 

the standard estimate of  based on a holdout sample that is independent of the inference sample,  is the 

CDF of , and  is the CDF of  with  following the Uniform  distribution. 

We perform simulations with the true parameters  and  otherwise, with  

and . Then, we apply (2.1) with  and  to construct a  confidence interval for 

each  based on CTLP. The results for  and  are representative and are presented. Specifically, we use the 

glmtlp package in R (https://cran.r-project.org/web/packages/glmtlp/index.html) to compute the constrained 

truncated Lasso penalty (CTLP) estimate  and the default  there.

Table 2. Empirical coverage probability (Coverage %) of a 95% confidence interval for  and 
 based on CTLP over 500 simulations in (3.1), where  represent the number of 

predictors, the sample size, and the Monte Carlo size, respectively.

L0

βl L0

Xl

L1 L0

T = ( −β̂l β )/SE( )l β̂l

SE( )β̂l L0 β̂l

{X ,Y }i i i=1
n eij

Laplace(0, 1/ε) ε = 0.01 Y =ij
∗ (X ) +μ̂ i εij

∗ ε

j ε =ij
∗ R (G((U +−1

i e ))ij (X ) =μ̂ i X∑l=1
p

β̂l il σ̂2

σ2 R

N(0, )σ̂2 G U +i eij Ui [0, 1]

β =1 β =2 β =3 1 β =j 0 σ = 0.5

ρ = 0.5 m = D/n D = 10p 95%
βj β1 β4

β̂j σ̂2

β1
β4 p, n,D

p n D % Coverage

β1 50 100 1000 92.4

β1 200 100 2000 93.0

β1 500 100 5000 94.6

β4 50 100 1000 95.4

β4 200 100 2000 93.6

β4 500 100 5000 92.0

https://cran.r-project.org/web/packages/glmtlp/index.html
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Table 2 shows that the empirical coverage probability for  and  are close to the nominal level  in 

each scenario. The discrepancy between the empirical converge and its target 95% is because the asymptotic 

pivotal may suffer from the bias in the finite-sample situation. Overall, the data-flush Monte-Carlo inference 

scheme yields a credible confidence interval for a nonsmooth problem involving model selection.

4. American Community Survey data analysis
This section applies the data-flush scheme (2.2) to the 2019 American Community Survey (ACS) Data. Notice 

that the existing literature in privacy has not thoroughly depicted low-error-high-privacy differentially private 

methods for complex sample surveys such as the ACS [17]. We show that data generated by data flush is valid 

for statistical inference while simultaneously guaranteeing differential privacy. In particular, we demonstrate 

that confidence intervals constructed upon perturbed copies of raw data are close to those on perturbed copies 

of privatized data. In other words, the data-flush scheme can simultaneously achieve two disparate objectives: 

differential privacy and statistical inference.

The American Community Survey collects demographic data from 3.24 million persons nationwide, roughly 

1% of the population in the Year 2019 [42].

Statistical analysis of survey data has a long history. Muralidhar and Sarathy (2003) provided a theoretical 

basis for data perturbation with a definition of disclosure risk requirement. Raghunathan et al. (2003) and 

Reiter (2005) proposed to use multiple imputation to limit the disclosure risk of microdata. Woodcock and 

Benedetto (2009) applied a transformation to maximize data utility while minimizing incremental disclosure 

risk. Jiang et al. (2021) proposed a perturbation method with a masking component to preserve inferential 

conclusions such as confidence intervals. While most of the above methods aim at limiting the data disclosure 

risk, they are not designed for differential privacy and are not able to preserve distributions for most data types.

Alternatively, an investigator can apply data flush to privatize survey data like ACS data without incurring 

information loss when the data-flush scheme preserves the distribution of raw data. For the ACS dataset, we 

use (2.2) for privatization while applying the data-flush Monte-Carlo inference method to both the raw and 

privatized data. For an illustration, we make a pairwise comparison of two confidence intervals before and after 

privatization for coefficients of weighted regression.

In particular, we investigate the impact of privatization by (2.2) on the statistical accuracy of regression 

analysis of the total personal income on 16 covariates, including an individual’s age (AGE), geographical 

region (REGION), the population of the residential metro/micro area (METPOP10, the logarithm of 

METPOP10 to be used), metropolitan status (METRO), mortgage status (MORTGAGE), sex (SEX), marital 

status (MARST), race (RACE), ethnicity (HISPAN), ability to speak English (SPEAKING), health insurance 

coverage (HCOVANY), educational attainment (EDUCD), employment status (EMPSTAT), occupation 

(OCC), migration status (MIGRATE1), and veteran status (VETSTAT). For our analysis, we select individuals 

with a positive total pretax personal income from all sources during the 12 months precedent to the survey. 

β1 β4 95%
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This preprocessing renders a sample of 2,389,971 individuals. See the Appendix for more specific details 

regarding preprocessing. The data types, as well as the number of levels for nominal variables, are summarized 

in Table 3. Then, we regress the logarithm of total personal income on these 16 covariates using the person 

weight (PERWT) as the weights for regression. A confidence interval (CI) for each regression coefficient is 

constructed accordingly before and after privatization.

To satisfy -differential privacy, we apply (2.2) with  following a  distribution to 

preserve the joint distribution of 16 covariates and 1 response variable across common data types. In this 

fashion, privatization protects each individual’s information. To illustrate this point, we scrutinize the 

histogram of the variable AGE before and after privatization in Figure 2, which suggests that little 

distributional difference is evident. Note that the two histograms before and after privatization are nearly 

identical, with the mean (standard deviation) being  and , respectively. Moreover, 

we randomly choose two categorical variables, namely, employment status (EMPSTAT) and migration status 

(MIGRATE1), to examine the joint distribution before and after privatization, which are the 13th and 15th 

variables out of 17 variables in the sequential privatization process through (2.2). As suggested by Table 4, the 

data flush scheme preserves the joint distribution quite well after privatization, particularly for the two-way 

associations, except for one cell (States-abroad, Non-labor) with small counts. In conclusion, the distribution 

preservation property of data flush ascertains the validity of downstream statistical inference while protecting 

data privacy.

We apply the data-flush Monte-Carlo method to construct confidence intervals for raw and privatized data. In 

particular, for each replication, we only perturb the linear regression residuals and follow the high-dimensional 

regression example in Section 3. As indicated by Figure 3, the data-flush scheme (2.2) preserves the target 

distribution of raw data and hence yields nearly identical confidence intervals except for several ones with 

shifting centers.

Table 3. Summary statistics for variables used in the American Community Survey analysis, 
including variable’s names (Name), types (Type), the number of levels for nominal variables (# 
Level), as well as the mean (Mean) and standard deviation (Standard deviation). Here NA 
means “Not applicable.”

ε eij Laplace(0, 17/ε)

50.80(19.17) 50.82(19.17)

Name Type # Level Mean (Standard deviation)

AGE empirical NA 50.80 (19.17)

REGION nominal 9 NA

METPOP10 empirical NA  3.30 × 106 (5.00 × 10 )6

METRO nominal 5 NA
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Table 4. Joint distribution between employment status (EMPSTAT) and migration status 
(MIGRATE1) before and after privatization, where each cell in the contingency table indicates 
the number of individuals in the release sample before (after) privatization. For MIGRATE1, 
“House,” “State,” and “States-Abroad” indicate staying in the same house, moving within a 
state, and moving between states or abroad; for EMPSTAT, “Employed,” “NA/Unemployed,” and 
“Non-labor” mean that an individual is employed, unemployed or not applicable, and not in 
the labor force, respectively.

MORTGAGE nominal 3 NA

SEX binary NA 0.50 (0.50)

MARST nominal 6 NA

RACE nominal 6 NA

HISPAN binary NA 0.12 (0.32)

SPEAKENG nominal 3 NA

HCOVANY binary NA 0.93 (0.26)

EDUCD nominal 7 NA

EMPSTAT nominal 3 NA

OCC nominal 13 NA

MIGRATE1 nominal 3 NA

VETSTAT binary NA 0.08 (0.28)

INCTOT continuous NA 51365.44 (69097.25)

EMPSTAT

MIGRATE1 Employed NA/Unemployed Non-labor Total

House 996078 (1012469) 31207 (31163) 542095 (574287) 1569380 (1617919)

State 120963 (100515) 5697 (4652) 48451 (32242) 175111 (137409)

States-abroad 32120 (31436) 2072 (2230) 13796 (3485) 47988 (37151)
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Total 1149161 (1144420) 38976 (38045) 604342 (610014) 1792479 (1792479)

Figure 2. Histogram of the AGE variable in the American Community Survey data before and 
after privatization.
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Privacy loss usually occurs for high-dimensional data, which is an inherent challenge for any method in 

differential privacy. In particular, to maintain the same accuracy level, the overall level of privacy protection 

for each variable tends to decay as the number of variables increases. In our situation, the overall level of 

privacy protection, defined by the privacy factor , is 1 for -differential privacy, which requires a stricter level 

of privacy protection 1/17 for each of the 17 variables. It is equivalent to that each variable requires 

independent , where the noise variance greatly exceeds the ranges of many variables in the 

ACS data, especially for binary dummy variables.

Figure 3. Confidence intervals of regression coefficients based on raw data and privatized 
data, represented by gray and red lines and constructed using the data-flush scheme in 

section 3. Regressors from the top to the bottom are the intercept (shifted to the left by 8 units 
for better visualization), AGE, REGION (8 dummy variables), METPOP10, METRO (2 dummy 
variables), MORTGAGE (2 dummy variables), SEX, MARST (5 dummy variables), RACE (5 

dummy variables), HISPAN, SPEAKENG (2 dummy variables), HCOVANY, EDUCD (6 
dummy variables), EMPSTAT (2 dummy variables), OCC (12 dummy variables), MIGRATE (2 

dummy variables), and VETSTAT. The confidence intervals based on raw data are 
comparable with those after privatization in terms of the signs of interval centers and lengths.

ε ε

Laplace(0, 17/ε)
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5. Discussion
Data perturbation has its great potential as an effective tool for replicating a sample, which can apply to data 

security, statistical inference, and data integration, among others. The fundamental principle, distribution 

preservation for data perturbation, that we described in this article, allows users to design data perturbation 

schemes such as data flush to satisfy task-specific requirements, as we showcase for statistical inference with 

differential private data in section 4. On this ground, synthetic data generated by such a scheme yields 

statistically valid analysis and high predictive accuracy of a machine learning task.

Several future directions of research include a more flexible model-based estimation (e.g., one including both 

parametric and empirical components) for high-dimensional target distributions and a compatible data 

perturbation scheme, as well as generalizations to independent but non-identically distributed data, time-series 

data, and unstructured data.
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Appendices

Appendix A: Proof of Lemma 1

By construction,  follows the uniform distribution and retains the ranks of . 

Then, the Spearman’s rank correlation . It follows from the strictly increasing 

property of  that  when  for any fixed . By continuity, 

 as  in probability. This completes the proof.

Appendix B: Simulation Comparison for Poisson Regression

To compare with the method of generative networks with the exponential mechanism (GEM) Liu, Vietri, and 

Wu (2021), we generate a sample of paired data , where  and  need to be discrete to 

accommodate the requirement for GEM. First, we sample  from a -dimensional normal 

distribution , where the off-diagonal and diagonal values of the covariance matrix  are  and 

, and . Then, we discretize them by rounding each component of  to the smallest integer 

above its value. The average numbers of distinct values for  are , , and , respectively, 

for , , and . This discretization allows us to evaluate the performance of each method under an 

unknown true distribution. Second, we generate a Poisson response  with mean ; , 

where  yields a reasonable range of .

For data flush, we set the privacy factor to be  to ensure strict protection under -differential privacy. To 

apply (2.2), we randomly select 25% of  as a holdout sample to construct a smoothed empirical 
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cumulative distribution function (CDF) and use the remaining sample for privatization. For GEM, we let 

 for -differential privacy. Note that -differential privacy with  reduces to -

differential privacy. GEM intends to preserve  three-way interactions, where we choose  out of 20 

possible three-way interactions from 6 variables (  and components of ), with  denoting the number of 

interactions to consider. Then, we apply the GEM algorithm1 in Liu, Vietri, and Wu (2021) to privatize 

 of  using the default values with the number of iterations .2

Given privatized data, we obtain estimated regression coefficient vector  in Poisson regression and evaluate 

predictive performance by the Kullback-Leibler divergence and parameter estimation by the root mean square 

error between the estimated and true regression coefficients . As a reference, we also report simulation results 

on the nonprivate data .

Appendix C: Proof of Theorem 1

By the definition of a pivotal quantity,  has the same distribution as  when  

is obtained via the same statistical procedure, where  follows ; . Let  and 

. Let  and . Note that  given  follows  while  follows . 

Therefore, the conditional distribution of  given  remains the same as the unconditional 

distribution of  for any . This completes the proof.

Appendix D: ACS Data Preprocessing

We preprocess the 2019 American Community Survey data, available at https://usa.ipums.org. For variable 

METRO, we combine all other levels exceeding level 2 with level 2 to form a new level 2 to indicate “In 

metropolitan area.” For variable MORTGAGE, we merge all levels above level 3 into level 3 to indicate “Yes, 

have or will have mortgage.” For the RACE variable, we merge levels 4 (“Chinese”) and 5 (“Japanese”) with 

level 6 to represent “Other Asian or Pacific Islander” and merge level 9 (“Three or more major races”) into 

level 8 (“Two major races”) to represent (“More than one major race”). For variable HISPAN, we merge levels 

from 1 to 4 into level 1 to represent “Hispanic” as there are no individuals in the data reporting 9 (“Not 

Reported”). For variable SPEAKING, we merge levels 4 and 5 into level 6 to indicate (“Speak English, but not 

only English”). For variable EDUCD, we merge levels 0 to 2 into 0 to represent “No school (completed),” 

levels from 10 to 61 into 1 to indicate “Nursery school to grade 12,” and levels from 62 to 64 into 2 to 

represent “High school graduate, GED, or alternative credential,” levels from 65 to 100 into 3 for “Some 

college,” level 101 into 4 for “Bachelor’s degree”), level 114 into 5 for “Master degree,” and levels 115 and 

116 into level 6 for “Professional degree beyond a bachelor’s degree or Doctoral degree.” No other levels are 

available for EDUCD. For variable OCC, we merge occupations based on the 13 subcategories provided at 

https://usa.ipums.org/usa/volii/occ2018.shtml, including “Not Applicable,” “Management, Business, and 

Financial Occupations,” “Computer, Engineering, and Science Occupations”, “Education, Legal, Community 

Service, Arts, and Media Occupations,” “Healthcare Practitioners and Technical Occupations,” “Service 
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n2
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Occupations,” “Sales and Related Occupations,” “Office and Administrative Support Occupations,” “Farming, 

Fishing, and Forestry Occupations,” “Construction and Extraction Occupations,” “Installation, Maintenance, 

and Repair Occupations,” “Production Occupations,” and “Transportation and Material Moving Occupations.” 

For EMPSTAT, we merge “N/A” with “Unemployed,” and for MIGRATE1, we merge “Moved between states” 

and “Abroad one year ago.” For VETSTAT, we merge “N/A” with “Not a veteran.” For METPOP10 and 

INCTOT, we take the logarithmic transformation before fitting regression to deal with the long-tail 

distribution. The remaining variables are intact.

Appendix E: Implementation Details of the ACS Data

After sampling 25% of the ACS data as the holdout sample and leaving the other 75% as the to-be-privatized 

sample to be released, we apply (2.2) to 16 covariates in addition to the response sequentially following the 

order and variable types listed in Table 3.

To achieve privatization, we estimate the conditional distribution of each variable given all the previous 

variables via a corresponding generalized linear model. First, we prioritize AGE using the marginal empirical 

distribution of AGE based on the holdout sample. Second, we privatize REGION by fitting multinomial 

logistic regression of REGION on AGE in the holdout sample to estimate the corresponding parameters and 

then compute the probability of each REGION in the to-be-privatized data given the privatized AGE as the 

new covariate. This privatization process continues with the remaining variables following the sequential order 

in Table 3 and using an estimated conditional distribution on the holdout sample by logistic regression, 

multinomial logistic regression, and linear regression for binary, nominal, and normally distributed data such as 

log(INCTOT). Note that we privatize METPOP10 by the conditional distribution of METPOP10 given 

REGION without using AGE. This assumption appears sensible given that the sample correlation is  

between the area and the participant’s age.

The data-flush scheme in (2.2) generates  conditionally independent samples with noise 

independently following , followed by the three steps described in section 3 with a 

confidence level of 95%.

©2022 Xiaotong Shen, Xuan Bi, and Rex Shen. This article is licensed under a Creative Commons Attribution 

(CC BY 4.0) International license, except where otherwise indicated with respect to particular material 

included in the article.

Footnotes

−0.036

D = 500

Laplace(0, 0.2)

1.  GEM’s code is also available at 

https://colab.research.google.com/drive/1O6vbYotTlovfQnucsFi2f28XJiu5B_eS?usp=sharing. ↩
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