# Magnetocaloric properties of TbCrO<sub>3</sub> and TmCrO<sub>3</sub> and their comparison with those of the other $RCrO_3$ systems (R = Gd, Dy, Ho, and Er)

Cite as: J. Appl. Phys. 134, 103903 (2023); doi: 10.1063/5.0153110 Submitted: 4 April 2023 · Accepted: 27 August 2023 · Published Online: 13 September 2023







Jianhang Shi, <sup>1,2</sup> 🔟 Mohindar S. Seehra, ³ 🕩 Jacob Pfund, ⁴ 🕩 Shiqi Yin, ⁴ 🕩 and Menka Jain<sup>2,4,a)</sup> 🕩



**AFFILIATIONS** 

- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
- <sup>2</sup>Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
- $^{3}$ Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, USA
- <sup>4</sup>Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA

### **ABSTRACT**

Magnetocaloric properties of TbCrO<sub>3</sub> and TmCrO<sub>3</sub> are reported and compared with those of the previously reported rare-earth chromites  $\overset{\pm}{0}$  RCrO<sub>3</sub> (R = Gd, Dy, Ho, and Er) and other perovskite-type oxides. The samples of TbCrO<sub>3</sub> and TmCrO<sub>3</sub> in this work were synthesized using a citrate gel combustion technique, and their magnetic properties were investigated and compared with those reported previously on  $RCrO_3$  (R = Gd, Dy, Ho, and Er). The  $Cr^{3+}$ - $Cr^{3+}$  ordering temperatures were found to strongly depend on the ionic radii of the rare-earth. By fitting the dc magnetization data with modified Curie–Weiss law including the Dzyaloshinsky–Moriya antisymmetric exchange interaction (D) and the symmetric exchange constant  $I_e$ , spin canting angles ( $\alpha$ ) were obtained. In general,  $\alpha$  was found to increase with the decreasing ionic radii of  $R^{3+}$  in RCrO<sub>3</sub>. The magnetocaloric properties investigated included the magnetic entropy change  $(-\Delta S)$  for a  $\frac{\omega}{6}$ given change in magnetic field ( $\Delta H$ ), the corresponding adiabatic temperature change ( $\Delta T_{ad}$ ), and their relative variations ( $\Delta T_{ad}/\Delta H$ ) and  $(-\Delta S/\Delta H)$ . It is observed that for RCrO<sub>3</sub>,  $(-\Delta S)$  measured in the vicinity of the ordering temperature of  $R^{3+}-R^{3+}$ , varies almost as  $G^{2/3}$ where G is the de Gennes factor. Among RCrO<sub>3</sub>, GdCrO<sub>3</sub> shows the largest value of (-ΔS/ΔH), because of its largest G factor and its magnitudes of  $(\Delta T_{ad}/\Delta H)$  and  $(-\Delta S/\Delta H)$  compare well with the reported values for the perovskites GdFeO<sub>3</sub> and EuTiO<sub>3</sub>. These comparisons presented here provide useful information on the potential use of these materials in magneto-refrigeration technology.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0153110

### I. INTRODUCTION

Rare-earth chromites with the general formula of RCrO<sub>3</sub> (R = Gd, Tb, Dy, Ho, Er, and Tm) have recently received considerable attention due to their noteworthy properties for potential applications as oxygen ion conductors, interconnect materials for solid oxide cells, UV photonic devices, magnetic refrigerant, gas sensors, and multiferroics. 1-3 The chromites are isostructural and adopt a centrosymmetric orthorhombic structure with space group Pbnm (No. 62). They are p-type semiconductors at room temperature and exhibit a high conductivity at high temperatures.<sup>2,3,5</sup> Recent studies have also indicated that certain rare-earth chromites belong to a new family of ferroelectric and antiferromagnetic multiferroics<sup>2,6</sup> although the origin and ferroelectric transition

temperature are still under debate. The initially claimed ferroelectric transition temperature (472-516 K) has nowadays been observed just above  $T_N^{Cr}$ . 7-9 For example, the onset of polar order of HoCrO<sub>3</sub> was recently observed to be 240 K instead of the previously claimed 472 K.<sup>9</sup> It was proposed that the multiferroicity arises from exchange interactions between R<sup>3+</sup> ions and the Cr<sup>3+</sup> sublattice or special spin configuration. 6,10,11

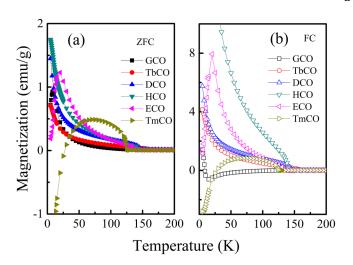
The novel magnetic properties of RCrO<sub>3</sub>, such as magnetization reversal and magnetization jump, arise from magnetic spin interactions between magnetic ions, namely, the Cr<sup>3+</sup>-Cr<sup>3+</sup>, R<sup>3+</sup>-R<sup>3+</sup>, and Cr3+-R3+ interactions, which are isotropic, symmetric, and antisymmetric anisotropic, respectively. 7,12 Consequently, RCrO<sub>3</sub> exhibits three magnetic transitions: the antiferromagnetic (AFM) Cr<sup>3+</sup> sublattice ordering, spin reorientation, and R<sup>3+</sup> sublattice

a)Author to whom correspondence should be addressed: menka.jain@uconn.edu

ordering. The Cr<sup>3+</sup>-ordering temperature of RCrO<sub>3</sub> is observed to shift to higher values with the increasing ionic radii of the R-ion. This evolution of magnetic or transport properties is also observed in other rare-earth oxides, which could be correlated to the steric effects due to the lanthanide contraction. 13 For example, the Mn ordering temperature of RMnO<sub>3</sub> was observed to decrease with the reduction of the ionic radii of R-ion as it influences the Mn-O-Mn bond angle and hence the Mn-Mn exchange modifies. 14 A sharp metal-to-insulator transition in RNiO<sub>3</sub> is also found to be dependent on the Ni-O-Ni bond angle. <sup>15</sup> Moreover, in such oxides, it has been observed that the multifunctional properties, such as magnetocaloric effect (MCE), magnetoelectric effect, and multiferroic properties, strongly depend on the magnetic interaction between the 4f rare-earth ions and 3d transition metal ions. 16 Thus, it can be inferred that the physical properties of the rare-earth oxides could be modulated by a number of parameters including, but not limited to, ionic radii of the R-ion, chemical (substitution) or external pressure, and epitaxial strain engineering.

The magnetocaloric effect, which is a change in the temperature of a material by the application of magnetic field, can be evaluated as an adiabatic temperature change ( $\Delta T_{ad}$ ) of a material in the adiabatic limit or magnetic entropy change (ΔS) in the isothermal limit. The isothermal heat  $Q = T\Delta S$  represents the heat pumped in cooling and heating cycles in magnetic refrigeration, where T is the temperature. The giant MCE was first discovered in Gd<sub>5</sub>(Si<sub>2</sub>Ge<sub>2</sub>) in the late 1990s by Pecharksy and Gschneidner. 18 The magnetic entropy change was 13 J/kg K under a magnetic field change of 2 T (20 k Oe), which was about 50% larger than the previously known largest magnetic entropy change in Gd metal. A large  $\Delta S$  can be extracted from a magnetic material by sweeping an external magnetic field and using a temperature near magnetic transition. A few recent studies dedicated to the MCE properties of RCrO<sub>3</sub> exhibited large MCE at low temperatures. 16 For example, a giant MCE with a magnetic entropy change (-ΔS) of 31.6 J/kg K was observed in the GdCrO<sub>3</sub> single crystal with a field change (ΔH) of 4.4 T.<sup>12</sup> Selective rare-earth doping at the R-site of RCrO3 has been explored to optimize the MCE properties. 17,19 Our recent studies on HoCrO<sub>3</sub> and GdCrO<sub>3</sub> suggest that MCE could also be tuned by controlling the particle size. 4,20 The MCE of the thin RCrO<sub>3</sub> film has also been investigated and compared with its bulk sample.21,22 However, the study of evolution of MCE properties of RCrO3 across a series of rare-earth is still missing. With the variation of R ions, one can perform systematic studies of not only MCE in this family of materials but also magnetic behavior that depends on the interplay of 3d and 4f magnetism.<sup>23</sup> A comprehensive and comparative study throughout the R series may offer the possibility to reveal general criteria of large MCE and other physical properties in the RCrO<sub>3</sub> family. Therefore, in this paper, we report magnetic and magnetocaloric properties of TbCrO3 and TmCrO3 to complete our investigations of the rare-earth chromites which also enables us to present a comparative study of the magnetic and magnetocaloric properties of the RCrO<sub>3</sub> (R = Gd, Tb, Dy, Ho, Er, and Tm) system with a focus on the general trends and relationships between the MCE and ionic radii of the R<sup>3+</sup>-ions. We also provide a comparison of these properties of RCrO<sub>3</sub> with reported properties of other perovskite oxides such as RMnO<sub>3</sub> (R = Ho, Dy, Tb, and Yb), EuTiO<sub>3</sub>,

GdFeO<sub>3</sub>, and GdCoO<sub>3</sub> to determine the best materials for potential magnetocaloric applications.


#### II. EXPERIMENTAL

In our previous studies, we described the synthesis of polycrystalline bulk powder samples of RCrO3 using a citrate gel combustion technique. 4,17,20,24 In this method, high purity (99.999%) nitrate precursors of Gd, Tb, Dy, Ho, Er, Tm, and Cr along with citric acid were dissolved in water separately. The solutions were then mixed in a desired stoichiometric ratio and dried until combustion. The resultant powders were annealed at 900 °C in oxygen for 2h to form GdCrO<sub>3</sub>, TbCrO<sub>3</sub>, DyCrO<sub>3</sub>, HoCrO<sub>3</sub>, ErCrO<sub>3</sub>, and TmCrO<sub>3</sub> bulk powders (hereafter referred as GCO, TbCO, DCO, HCO, ECO, and TmCO, respectively). In this work, the samples of TbCO and TmCO were newly synthesized, and their magnetic properties were measured using a vibrating sample magnetometer (VSM) option attached to an Evercool Physical Property Measurement System from Quantum Design. Their measured properties were then compared with those of other rare-earth chromites RCrO<sub>3</sub> (R = Gd, Dy, Ho, and Er) presented in our previous and results from this comparative investigation of the six chromites are reported here.

### **III. RESULTS AND DISCUSSIONS**

### A. Temperature dependence of magnetization

The temperature dependence of zero-field-cooled (ZFC) and  $\frac{1}{4}$  field-cooled (FC) dc magnetization data (M-T) measured with an applied field of 50 Oe for all RCrO<sub>3</sub> samples studied here are illustrated in Fig. 1.  $^{4.17,20,24}$  These M-T curves reveal complex magnetic properties in RCrO<sub>3</sub>. Magnetization evolution for the six samples exhibits one transition point around 150 K, either in ZFC or FC modes, which is attributed to a transition from the high-



**FIG. 1.** Temperature dependence of the (a) zero-field-cooled (ZFC) and (b) field-cooled (FC) dc magnetization for  $RCrO_3$  at an applied dc magnetic field of H=50 Oe.

temperature paramagnetism to the lower temperature antiferromagnetism of  $Cr^{3+}$  sublattice below  $T_N^{Cr}$ . Other transitions observed for some RCrO<sub>3</sub> at around 20 K could be attributed to spin reorientation. In all RCrO<sub>3</sub> samples, the magnetic moments of Cr<sup>3+</sup> ions order antiferromagnetically with a typical G-type magnetic structure below  $T_N^{Cr}$ . Temperature dependent FC data of GCO and TmCO reveal temperature-induced magnetization reversal at the compensation temperature of  $T_{com}$  ~130 and ~30 K, respectively. The existence of  $T_{com}$  for TmCO could be attributed to the negative internal magnetic field ( $\sim$ -1500 Oe) antiparallel to the applied field, which is induced by coupling between Tm<sup>3+</sup> and Cr<sup>3+</sup> moments and the three singlet states of Tm3+ created by the crystalline field.<sup>25</sup> The negative magnetization for TmCO disappears when the applied magnetic field is larger than internal field. 25,26 The magnetization shows a maximum at 20 and 8 K for ECO and GCO, respectively, and, it becomes minimum at 6 K for TmCO. This phenomenon is ascribed to the spin reorientation of rare-earth ion at A-site which is induced by a balance of Zeeman energy of the applied magnetic field and anisotropy energies.<sup>27</sup> At spin reorientation temperature, the effective magnetic field on the R<sup>3+</sup> ions reverses sign.<sup>27</sup> Spins overcome the anisotropic energy of the canted Cr3+ and rotated by Zeeman energy between the R5+ moments and the applied field.<sup>25</sup> For example, the ECO undergoes a magnetic transition at ~22 K from  $\Gamma_4(G_xA_vF_z)$  to  $\Gamma_1(A_xG_vC_z)^{\perp}$  by an effective internal field of  $\sim$ -10 kOe along the c-axis.<sup>27</sup> For GCO and TmCO, the spin reorientation results in a parallel direction of R<sup>3+</sup> moments to the applied filed.<sup>26</sup> As for TbCO, DCO and HCO, in both ZFC and FC modes, the M-T curves show that the magnetization increase monotonously with deceasing temperature below the Néel temperature  $T_N^{Cr}$ .

To clearly locate the transition temperature of  $T_N^{Cr}$ , the temperature derivative of the product of temperature and magnetic susceptibility ( $\chi = M/H$ ) is plotted and presented in Fig. 2(a).<sup>4,17,2</sup>

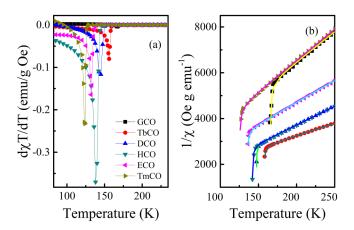



FIG. 2. (a) Temperature dependence of the derivative of the product of temperature (T) and magnetic susceptibility  $(\chi)$  with respect to the temperature for RCrO<sub>3</sub>. (b) The plots of field-cooled  $1/\chi$  vs T for the RCrO<sub>3</sub> samples with the solid lines as fitting of the data to the modified Curie-Weiss equation [Eq. (1)]. The parameters obtained from these fits are listed in Table I.

From the position of the peaks,  $T_N^{cr} = 167$ , 156, 145, 138, 132, and 124 K are determined for GCO, TbCO, DCO, HCO, ECO, and TmCO, respectively. These values are also listed in Table I. For temperatures well above  $T_N^{Cr}$ , all samples of RCrO<sub>3</sub> show clear Curie-Weiss behavior since plots of  $1/\chi$  vs T are linear as evident in Fig. 2(b). However, on approach to  $T_N^{Cr}$ , there are strong departures from this linear behavior, which has been explained to be due to the presence of the antisymmetric Dzyaloshinsky-Moriya (DM) interaction between the Cr3+ ions. In this case, the modified Curie-Weiss law modeled by Moriya leads to the following equations:<sup>2</sup>

$$\chi = \frac{C}{(T-\theta)} \frac{T - T_0}{(T - T_N^{C_r})},\tag{1}$$

$$T_0 = \frac{2J_e ZS(S+1)}{3k_B},$$
 (2)

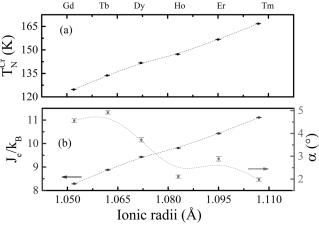
$$T_N^{Cr} = \frac{2J_e ZS(S+1)}{3k_B} \left[ 1 + \left(\frac{D}{2J_e}\right)^2 \right]^{1/2},$$
 (3)

where  $T_N^{Cr}$  is the ordering temperature of  $Cr^{3+}$ , C is the Curie constant,  $T_0$  is a fitted parameter,  $\theta$  is the Weiss temperature,  $k_B$  is the Boltzmann constant, and  $J_e$  and D are the strength of symmetric and antisymmetric exchange interactions between nearest Cr<sup>3+</sup> ions, respectively. In addition, Z(Z=6) and S(S=3/2) are the coordination number and spin quantum number of  $Cr^{3+}$ , respectively. The excellent fits to Eq. (1) near  $T_N^{Cr}$  as depicted in Eq. (2(b) indicate the dominant contribution of D to the temperature variation of the magnetic susceptibility on approach to  $T_N^{Cr}$ . ture variation of the magnetic susceptibility on approach to  $T_N^{Cr}$ . The parameters obtained from these fits are listed in Table I. It has been observed that the strength of symmetric exchange interaction  $J_e$  is found to decrease systematically with the decreasing of ionic radii of rare-earth ions. More importantly,  $\theta$  is negative for all samples indicating antiferromagnetic (AFM) alignment of Cr<sup>3+</sup> for all RCrO<sub>3</sub>. The magnitude of  $\theta$  in ECO is significantly greater than that found in other rare-earth chromites. The sensitivity of the modified Curie-Weiss law near  $T_N^{Cr}$  may be the reason for this observation regarding the choice of data to fit. The strength of interactions  $\theta$  in rare-earth magnets is typically overestimated as a result of contributions from crystal field levels that are thermally populated when fitting high-temperature paramagnetic data.<sup>2</sup> However, overestimation of  $\theta$  would not necessarily impact the precision of other obtained fitting parameters, such as the effective magnetic moment.2

The effective magnetic moment  $\mu_{\it eff}$  was also evaluated based on the C from the modified Curie–Weiss law according to  $\mu_{eff} = \sqrt{3Ck_B/N}$ , where N and the Avogadro's constant  $N_A$  are related by the equation:  $N/(\text{molecular weight}) = N_A$ . As listed in Table I, these calculations based on the C values obtained from the plots yield  $\mu_{eff}=8.74~\mu_{B},\,11.10~\mu_{B},\,11.21~\mu_{B},\,11.46~\mu_{B},\,10.81~\mu_{B},\,$  and  $8.93\,\mu_{\rm B}$  for GCO, TbCO, DCO, HCO, ECO, and TmCO, respectively. The theoretical effective moment values were also estimated based on the spin-only moment of free-ions according to  $\mu_{theo} = \sqrt{\mu_{Cr}^2 + \mu_R^2}$  , which are also listed in Table I. The  $\mu_{eff}$  values are in close agreement with the theoretical values  $\mu_{theo}$ . It should be

TABLE I. For RCrO<sub>3</sub>, the values for the following magnetic parameters are listed:  $T_{N}^{Cr'}$ : Née/ temperature measured by the  $d(\chi T)/dT$  method along with the Weiss temperature  $\theta$ , the Néel temperature  $T_N^{Cr}$  where Cr-ions order, Curie constant C, fitting parameter  $T_0$ , symmetric exchange constant  $J_e$ , antisymmetric exchange constant D, canting angle  $(\alpha)$ , and the effective magnetic moment  $\mu_{eff}$ , obtained from fitting the field-cooled magnetic data to the modified Curie–Weiss equation (1). Also listed is the the theoretical magnetic moment  $\mu_{theo}$ .

|                     | GCO          | ТЬСО          | DCO          | HCO           | ECO            | TmCO         |
|---------------------|--------------|---------------|--------------|---------------|----------------|--------------|
| $T_N^{Cr'}$         | 167          | 156           | 145          | 138           | 132            | 124          |
| $\theta(K)$         | -38.95(3.31) | -38.58(6.34)  | -22.0(1.24)  | -31.84(5.68)  | -60.99 (11.48) | -43.8(4.17)  |
| $T_N^{Cr}(K)$       | 166.8 (1)    | 156.7 (1)     | 147.3 (1)    | 141.7 (1)     | 133.7 (1)      | 124.7 (1)    |
| C (emu K/Oe g)      | 0.03710 (44) | 0.05954 (133) | 0.05981 (28) | 0.06202 (128) | 0.05469 (213)  | 0.03709 (56) |
| $T_0(K)$            | 166.7 (1)    | 156.5 (2)     | 147.2 (1)    | 141.4 (2)     | 133.2 (2)      | 124.3 (1)    |
| $J_e/k_B$           | 11.11 (0)    | 10.43 (1)     | 9.81 (0)     | 9.43 (1)      | 8.88 (1)       | 8.29 (1)     |
| $D/k_B$             | 0.77(3)      | 1.06 (4)      | 0.72(2)      | 1.23 (3)      | 1.54(2)        | 1.33 (2)     |
| $D/J_e$             | 0.0693 (23)  | 0.1011 (34)   | 0.0737 (25)  | 0.1304 (29)   | 0.1735 (24)    | 0.1606 (27)  |
| α (°)               | 1.98 (7)     | 2.89 (10)     | 2.11 (7)     | 3.72 (9)      | 4.92 (7)       | 4.56 (8)     |
| $\mu_{eff}(\mu_B)$  | 8.74 (5)     | 11.10 (12)    | 11.21 (3)    | 11.46 (12)    | 10.81 (21)     | 8.93 (26)    |
| $\mu_{theo}(\mu_B)$ | 8.81         | 10.45         | 11.29        | 11.29         | 10.36          | 8.54         |


noted that this family of materials exhibit G-type AFM behavior with canted spins of  $Cr^{3+}$ . The spin canting angle ( $\alpha$ ) was estimated by the molecular filed theory based on the ratio of antisymmetric (D) to symmetric  $(J_e)$  exchange constant using the following equation:  $\alpha = \frac{1}{2} \arctan(D/J_e)^{30}$  These angles, also listed in Table I, are non-zero indicate that the magnetic moments of Cr3+ are not totally antiparallel to their nearest neighbor due to the DM interaction resulting in weak ferromagnetism (WFM). Spin canting could arise due to a variety of reasons, most of which are antisymmetric DM interaction and the single-ion magnetic anisotropy.<sup>31</sup> been argued that for relatively high  $T_N$  ( $T_N \ge 100$  K), the canting is caused primarily for DM interactions.<sup>31</sup> The magnitudes of this  $\alpha$  varying from 1.98° for GCO to 4.92° for ECO are typical of the canting observed in other weak ferromagnets and the ones reported for some RCrO<sub>3</sub>. <sup>33,34</sup> For example, Shamir *et al.* reported a neutron diffraction-measured spin canting angle of 3.2° in HoCrO<sub>3</sub><sup>34</sup> that is in agreement with our calculated  $\alpha = 3.7^{\circ}$  for HoCrO<sub>3</sub> listed in Table I.

The evolution of several key magnetic parameters with the ionic radii of R3+, such as symmetric exchange constant, spin canting angle, and the Cr3+-Cr3+ ordering temperature obtained from modified Curie-Weiss fitting, has been plotted in Fig. 3. The value of  $T_N^{Cr}$  increases almost linearly with the increasing ionic radii of  $\mathbb{R}^{3+}$ , which is consistent with the reported variation in  $\mathrm{RCrO}_3$ . A similar relationship between the  $\mathbb{R}^{3+}$  ionic radii and  $T_N$ has also been reported in RMnO<sub>3</sub>.35 Qualitatively, this phenomenon has been attributed to the dependence of the Cr-O-Cr bond angle on the size of R3+ ionic radii since the Cr-O-Cr bond angle affects the superexchange interaction of neighboring t2g electrons of Cr<sup>3+</sup> ions through the DM interaction. In Fig. 3(b), the effect of ionic radii on the exchange constant and  $\alpha$  have been revealed for the first time. The antisymmetric exchange constant does not show strong correlation with the ionic radii as listed in Table I and hence, D is not plotted in this figure.  $J_e/k_B$  increases monotonically with the ionic radii of R-ion and α decreases with ionic radii in general. This result is consistent with the observations for other Pbnm perovskites that largest canting should be present in systems

with small  $J_e$ .<sup>36</sup> An increase of the strength of symmetric  $Cr^{3+}-Cr^{3+}$ interaction is reflected in the increase of  $T_N^{Cr}$ . This finding establishes direct experimental evidence of the relationship between the exchange constant and the ionic radii of rare-earth.

### **B.** Magnetic hysteresis

Isothermal magnetization vs applied field (M−H) loops were ∓ recorded for RCrO<sub>3</sub> in a field sweep from -40 to  $40 \text{ kOe} \stackrel{6}{\cancel{9}}$  (10 kOe = 1 T) at various temperatures. Figure 4 shows the representative isothermal M-H loops of RCrO<sub>3</sub> at only 5 K. Obviously, all loops depict noticeable hysteresis. The origin of the WFM component is related to the canting of Cr3+ spins due to the DM type antisymmetric exchange interaction as mentioned



ionic radii of rare-earth ions and (b) variation of the symmetric exchange constant  $(J_{e}/k_{B},$  left) and spin canting angle  $(\alpha,$  right) as a function of ionic radii of various R ions. The lines connecting the data points are visual guides.

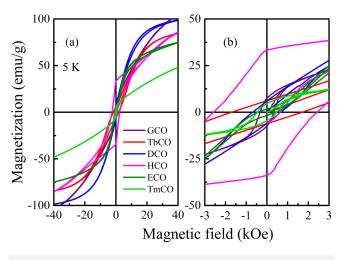
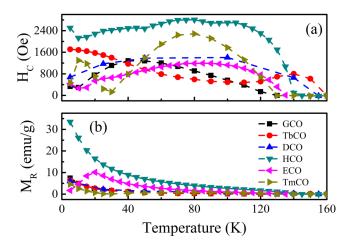




FIG. 4. (a) Magnetic field dependence of magnetization of RCrO<sub>3</sub> at 5 K. (b) Zoomed view of the hysteresis loops for lower fields at 5 K.

before.<sup>37</sup> For all the present samples, magnetization did not saturate up to 40 kOe but exhibited a near linear variation on approach to 40 kOe. The hysteresis loops at low fields are due to weak ferromagnetism produced by canting of the Cr3+ spins whereas the linear component has contributions from the antiferromagnetic susceptibility of the Cr3+ sublattices and the paramagnetic (antiferromagnetic) susceptibility of the R3+ ions above (below) their ordering temperatures (<10 K).<sup>37,38</sup> Furthermore, as the temperature gradually increases and reaches above  $T_N^{Cr}$ , all samples show paramagnetic behavior (not shown here).

The temperature dependence of the coercive field  $(H_C)$  and remanent magnetization  $(M_R)$  extracted from the hysteresis loops is illustrated in Figs. 5(a) and 5(b), respectively. 4,17,20,24 As depicted in



**FIG. 5.** The temperature dependence of (a) coercive field  $(H_C)$  and (b) remnant magnetization ( $M_R$ ) of the RCrO<sub>3</sub> bulk samples.

Fig. 5(a), the temperature dependence of  $H_C$  shows significant difference among RCrO<sub>3</sub> in a temperature range of 5-160 K. In contrast,  $M_R$  was found to decrease quite rapidly with increasing temperature reaching zero at  $T_N^{Cr}$  for all the samples except that for ECO. The abnormal  $M_R$  peak of ECO at around 22 K may be attributed to the spin reorientation from  $\Gamma_4$  to  $\Gamma_1$  magnetic phases.<sup>38</sup> For  $H_C$ , there is a general trend in temperature dependent plot with a decreasing temperature for  $T < T_N^{Cr}$ :  $H_C$  first increases, then reaches a broad plateau with a further decrease in temperature, except for TmCO (before going to zero at  $T \geq T_N^{Cr}$ ). The broad peak in the temperature dependence of  $H_C$  data has also been recently reported for some of the RCrO3, which could be qualitatively explained on the basis of superimposing  $\text{Cr}^{3+}$  and  $\text{R}^{3+}$ magnetic sublattices.<sup>37</sup> The initial increase in  $H_C$  with decreasing temperature below  $T_N^{Cr}$  is due to the contribution of  $Cr^{3+}$  sublattice. As the temperature is lowered, the weak ferromagnetic signal from the Cr<sup>3+</sup> sublattice is expected to saturate and the paramagnetic contribution from the R<sup>3+</sup> sublattice is expected to increase.<sup>24</sup> Therefore, the combined effect of ferromagnetic and paramagnetic contributions is expected to result in a broad plateau or decreased  $H_C$  as the temperature is further decreased.<sup>24</sup> The reason for a local minimum of TmCO in  $H_C$  at around ~28 K could be related to the reversal of the antiparallel coupling between Tm<sup>3+</sup> and Cr<sup>3+</sup>.

Another quantity of interest in connection with magnetocaloric materials is the hysteresis loss, which is the energy dissipated in the medium and can be defined as the enclosed area inside the hysteresis loops and often simplified as the energy product  $M_R \cdot H_C$ .<sup>4</sup> As can be seen in Fig. 4, all samples exhibit hysproduct  $M_R \cdot H_C$ . As can be seen in Fig. 4, all samples exhibit hysteresis loops indicating the nature of irreversible processes. The hysteresis loss calculated based on the values of  $H_C$  and  $M_R$  in Fig. 5 is plotted in Fig. 6. In general, the hysteresis loss reduces  $\frac{10}{100}$ 

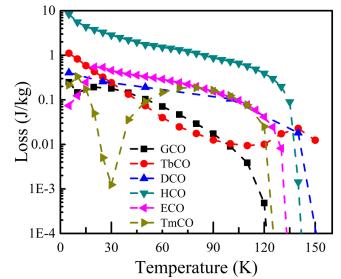



FIG. 6. Temperature dependence of hysteresis loss of the present RCrO<sub>3</sub> samples. The lines connecting the data points are visual guides.

quite rapidly approaching to zero at  $T_N^{Cr}$  for all the present samples. The hysteresis loss is less than 1 J/kg for all the present RCrO<sub>3</sub> samples except for HCO. At 5 K, the hysteresis loss values for GCO, TbCO, DCO, HCO, ECO, and TmCO are 0.25, 1.11, 0.41, 8.38, 0.07, and 0.21 J/kg, respectively. The stronger exchange interaction of  $\mathrm{Ho^{3+}}$  with  $\mathrm{Cr^{3+}}$  may be responsible for largest  $H_C$ ,  $M_R$ , and resulting hysteresis loss in HCO.37 For the TmCO sample, the significant drop in H<sub>C</sub> and the resulting hysteresis loss near 30 K are possibly related to the temperature-induced magnetization reversal.

### C. Magnetocaloric properties

To investigate the magnetocaloric properties of the RCrO<sub>3</sub> samples, magnetic field dependence of the magnetization (M) in magnetic fields H from 0 to 4 T was measured for the TbCrO3 and TmCrO<sub>3</sub> to complement our similar measurements reported previously for the other four RCrO<sub>3</sub> (R = Gd, Dy, Ho, and Er).<sup>4,17,20,24</sup> The magnetic entropy change  $(-\Delta S)$  was then calculated based on the following equation:

$$\Delta S(T)_{\Delta H} = \int_{H_i}^{H_f} \left( \frac{\partial M(T, H)}{\partial T} \right)_H dH, \tag{4}$$

where  $H_i$  is the initial field,  $H_f$  is the final field, M(T,H) is the magnetization of sample under a magnetic field H and temperature T. Based on Eq. (4) and the plots of M vs H at different temperatures (not shown), the values of  $(-\Delta S)$  of RCrO<sub>3</sub> were calculated for different temperatures and the results are presented in Fig. 7. These results show that maximum  $(-\Delta S)$  in the plot occurs at lowest measured temperature (5 K) for GCO. For the other RCrO<sub>3</sub>, the  $(-\Delta S)$ value peaks at temperatures above 5 K. It is clearly seen in Fig. 7

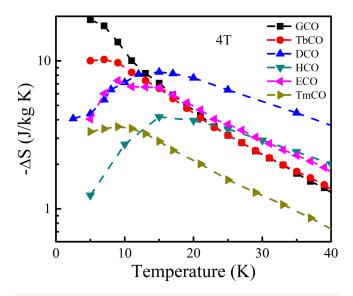
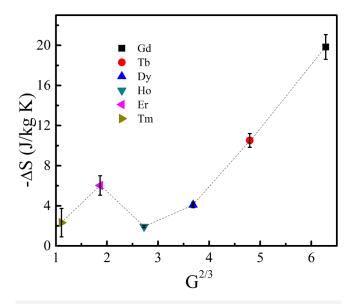


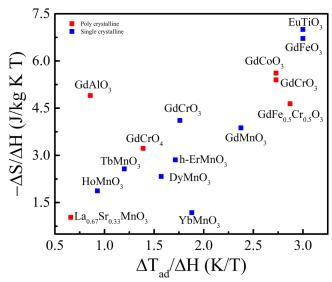

FIG. 7. Temperature dependence of the magnetic entropy change  $(-\Delta S)$  under a magnetic field change of 4 T for the six RCrO<sub>3</sub> samples.

that  $(-\Delta S)$  decreases rapidly with increasing temperature above 15 K for all the samples. The largest value of  $(-\Delta S)$  in units of J kg<sup>-1</sup> K<sup>-1</sup> with a  $\Delta H$  of 4 T is 19.0, 10.2, 8.4, 4.2, 7.4, and 3.6 for GCO, TbCO, DCO, HCO, ECO, and TmCO, respectively, and they occur at 5, 7, 15, 15, 9, and 9 K, respectively. The peak values of  $(-\Delta S)$  of RCrO<sub>3</sub> below 20 K can be attributed to the complex magnetic interactions, such as  $Cr^{3+}$ – $Cr^{3+}$  (spin reorientation),  $Cr^{3+}$ – $R^{3+}$  (spin reorientation), and  $R^{3+}$ – $R^{3+}$  (rare-earth ordering) at those temperatures.<sup>12</sup> It should be noted that for GCO, the continued increase in the  $(-\Delta S)$  value with decreasing temperature to the lowest measured temperature of 5 K [with a maximum in  $(-\Delta S)$ expected at around  $T_N^{Gd}$ ] indicates the dominant contribution from the Gd<sup>3+</sup>-Gd<sup>3+</sup> interaction.<sup>12</sup>

We next investigate any relationship between the magnitudes of  $(-\Delta S)$  in RCrO<sub>3</sub> and the de Gennes factor (G) of rare earths R. The de Gennes factor, G, is defined using the following equa-


$$G = (g-1)^2 J(J+1),$$
 (5)

where g is the Landé g factor and J is the total angular momentum quantum number of trivalent R-ion.<sup>39</sup> The conventional G indicates the exchange interaction given by the inner product of the effective spin components of ions of the same kind. 40 It was found that the MCE of single crystal alloys of rare-earth metals at their respective magnetic ordering temperatures in a field directed along the easy magnetization axis depends linearly on the concentration of the magnetic ions and  $G^{2/3}$ , where G is defined by Eq. (5).  $^{39,4}$ The magnetic ordering temperatures are expected to scale with the de Gennes factor G for isostructural rare-earth intermetallic compounds within the RKKY (Ruderman–Kittel–Kasuya–Yosida) model.<sup>42</sup> This dependence was first proposed in work by  $\frac{2}{6}$  Weinstein *et al.*,<sup>43</sup> but tested in the case of rare-earth alloys<sup>44,45</sup> and  $\frac{2}{6}$ recently in rare-earth metals.<sup>46</sup> In the present study, the validity of this relation and the dependence of change in entropy at  $T_N$  on the  $G^{2/3}$  was experimentally tested for the present RCrO<sub>3</sub> materials. The rare-earth ordering temperature,  $T_N^R$ , for RCrO<sub>3</sub> has been collected from the literature and listed together with its corresponding G and  $(-\Delta S)$  in Table II. The dependence of  $(-\Delta S)$  at  $T_N^R$  on  $G^{2/3}$ is plotted in Fig. 8. It should be noted that the value of  $(-\Delta S)$  for GCO in Table II was taken at 5 K instead of 2.3 K due to limitation of measurable temperature range of PPMS and lack of data from the literature. It can be observed from Fig. 8 that  $(-\Delta S)$  at  $T_N^R$ shows a generally linear dependence on  $G^{2/3}$ . This could possibly imply that the variation of the energy of the exchange interaction under a field provides a significant contribution to the variation of


**TABLE II.** Rare-earth ordering temperature  $T_N^R$ , de Gennes factor G, and magnetic entropy change  $(-\Delta S)$  at  $T_N^R$  are listed here.

|               | GCO                | TbCO              | DCO               | HCO               | ECO         | TmCO            |
|---------------|--------------------|-------------------|-------------------|-------------------|-------------|-----------------|
| $T_N^R$ (K)   | 2.347              | 5.0 <sup>16</sup> | 3.8 <sup>16</sup> | 7.5 <sup>48</sup> | 6.549       | 5 <sup>50</sup> |
| G             | 15.75              | 10.50             | 7.08              | 4.50              | 2.55        | 1.17            |
| $(-\Delta S)$ | 18.96 <sup>4</sup> | 10.03             | $4.28^{24}$       | $1.85^{20}$       | $5.34^{17}$ | 3.32            |





**FIG. 8.** The dependence of the magnetic entropy change  $(-\Delta S)$  in RCrO<sub>3</sub> at the rare-earth ordering temperature on the de Gennes factor raised to the two thirds power,  $G^{2/3}$ . The dotted line connecting the data points is a visual guide.



**FIG. 9.** Comparison of relative adiabatic temperature ( $\Delta T_{\rm ad}/\Delta H$ ) and relative isothermal magnetic entropy change ( $-\Delta S/\Delta H$ ) of some rare-earth oxide compounds.

entropy, and the exchange interaction can be attributed mainly to the R<sup>3+</sup>-R<sup>3+</sup> exchange interaction.<sup>39</sup>

### D. Comparison of MCE for different systems

Among the studied six samples of RCrO $_3$  reported here, GdCrO $_3$ (GCO) shows the largest ( $-\Delta S$ ) at 5 K (Figs. 7 and 8) making it a promising candidate for magnetic refrigeration. To better assess its potential in magnetic refrigeration among other rare-earth oxides, a survey on the comparison of MCE in rare-earth

oxides is given in Table III and plotted in Fig. 9. In several recent studies of the MCE in single crystals, <sup>53,57,61,63</sup> it has been depicted that MCE is highly anisotropic, the largest effect often observed for H parallel to the easy axis. In Table III, we have included reported numbers for polycrystals as well as for single crystals, the number listed for the latter are maximum values. In a recent paper, Balli et al. have exploited this anisotropy of MCE in single crystals of hexagonal ErMnO<sub>3</sub> by rotating the crystal between easy and hard directions in a constant magnetic field leading to unusual and large rotational MCE. <sup>61</sup>

**TABLE III.** MCE properties of some rare-earth oxides from the literature.

| Material                  | Crystalline | $-\Delta S$ (J/kg K) | $\Delta T_{ad}$ (K) | Reference |
|---------------------------|-------------|----------------------|---------------------|-----------|
| GdFeO <sub>3</sub>        | Single      | 47.0 (7 T, 2.5 K)    | 21.0 (7 T, 5 K)     | 51        |
| $GdFe_{0.5}Cr_{0.5}O_3$   | Poly        | 32.5 (7 T, 6 K)      | 20.1 (7 T, 6 K)     | 21        |
| GdCrO <sub>3</sub>        | Poly        | 37.8 (7 T)           | 19.1 (7 T)          | 52        |
| GdCrO <sub>3</sub>        | Single      | 57.5 (14 T, 6 K)     | 24.7 (14 T, 16 K)   | 53        |
| GdCrO <sub>4</sub>        | Poly        | 29.0 (9 T, 22 K)     | 12.5 (9 T, 22 K)    | 54        |
| GdAlO <sub>3</sub>        | Poly        | 34.3 (7 T)           | 6.0 (7 T)           | 55        |
| GdCoO <sub>3</sub>        | Poly        | 39.3 (7 T)           | 19.1 (7 T)          | 55        |
| $GdMnO_3$                 | Single      | 31.0 (8 T, 7 K)      | 19.0 (8 T, 19 K)    | 56        |
| TbMnO <sub>3</sub>        | Single      | 18.0 (7 T)           | 6.0 (5 T)           | 57 and 58 |
| HoMnO <sub>3</sub>        | Single      | 13.1 (7 T)           | 6.5 (7 T)           | 57 and 59 |
| DyMnO <sub>3</sub>        | Single      | 16.3 (7 T)           | 11.0 (7 T)          | 57 and 60 |
| h-ErMnO <sub>3</sub>      | Single      | 20.0 (7 T, 10 K)     | 12.0 (7 T)          | 61        |
| $La_{0.67}Sr_{0.33}MnO_3$ | Poly        | 5.2 (5 T, 370 k)     | 3.3 (5 T)           | 62        |
| YbMnO <sub>3</sub>        | Single      | 9.42 (8 T, 8 K)      | 15 (8 T, 8 K)       | 57        |
| EuTiO <sub>3</sub>        | Single      | 49 (7 T, 6 K)        | 21 (7 T, 6 K)       | 63        |

In Table III, two quantitative characteristics of MCE, adiabatic temperature change ( $\Delta T_{ad}$ ) and magnetic entropy change ( $-\Delta S$ ), have been listed together with their corresponding magnetic field change and temperature. In Fig. 9, relative adiabatic temperature change ( $\Delta T_{\rm ad}/\Delta H$ ) vs relative magnetic entropy change ( $-\Delta S/\Delta H$ ) are plotted. The best candidates are single crystal of EuTiO3 and GdFeO<sub>3</sub> exhibiting a  $\Delta T_{ad}$  of 21.0 K and a (- $\Delta S$ ) of 49.0 J/kg K, and a  $\Delta T_{\rm ad}$  of 21.0 K and a  $(-\Delta S)$  of 47.0 J/kg K, respectively, under a field variation of 7 T.<sup>51,63</sup> It is important to note that both Eu<sup>2+</sup> and Gd3+ have the same spin configuration, resulting in a shared de Gennes factor. Additionally, Gd-containing oxides generally show superior MCE properties compared to other rare-earth oxides (Fig. 9). It could be inferred from this study that perovskite oxides containing rare-earth elements with a spin configuration similar to Gd may display competitive MCE performance in magnetic refrigeration. The MCE of rare-earth oxides at cryogenic temperatures may be attributed to the rare-earth itself (probably the G factor since Gd and Eu exhibit largest value of G among the other rare earths). This information could guide the designing of desirable materials with high MCE in cryogenic temperature ranges.

### IV. CONCLUDING REMARKS

In this study, we have summarized the magnetic and magnetocaloric properties of series of high-quality samples of polycrystalline RCrO<sub>3</sub> (R = Gd, Tb, Dy, Ho, Er, and Tm) synthesized by a combustion reaction method. Magnetization measurements revealed that  $T_N^{Cr}$  of RCrO<sub>3</sub> decreases with decreasing ionic radii of R<sup>3+</sup> ion. The modified Curie-Weiss law including Dzyloshinskii-Moriya (DM) interaction was used to fit the temperature dependence of susceptibility data above  $T_N^{Cr}$ . The symmetric exchange constant  $(J_e)$  was found to decrease, while the spin canting angle ( $\alpha$ ) was found to generally increase with the decreasing size of R<sup>3+</sup> ion. Strong correlation is obtained between the magnetic entropy change  $(-\Delta S)$  at  $T_N^R$  and  $G^{2/3}$ , where G is the de Gennes factor. Among RCrO<sub>3</sub>, GdCrO<sub>3</sub> shows the largest value of  $(-\Delta S/\Delta H)$ , likely because of its largest G factor. This may indicate that the R3+-R3+ exchange interaction provides significant contribution to the magnetic entropy change  $(-\Delta S)$  at  $T_N^R$ . The magnetocaloric properties of RCrO<sub>3</sub> are compared with those of other perovskitetype oxides and it is found that the magnitudes of  $(\Delta T_{ad}/\Delta H)$  and  $(-\Delta S/\Delta H)$  for GdCrO<sub>3</sub> compare well with the reported values for the perovskites GdFeO<sub>3</sub> and EuTiO<sub>3</sub>. These comparisons presented here provide useful information on assessing the potential use of these materials in magneto-refrigeration technology.

### **ACKNOWLEDGMENTS**

M.J. acknowledges the support of National Science Foundation EAGER Grants (Nos. CBET 2233149 and ECCS 2236879) as well as funding from UConn's Research Excellence Program for the work presented here.

## AUTHOR DECLARATIONS

### **Conflict of Interest**

The authors have no conflict to disclose.

#### **Author Contributions**

Jianhang Shi: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Writing – original draft (equal); Writing – review & editing (equal). Mohindar S. Seehra: Formal analysis (equal); Methodology (equal); Writing – review & editing (equal). Jacob Pfund: Methodology (equal); Writing – review & editing (equal). Shiqi Yin: Data curation (equal). Menka Jain: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Resources (equal); Software (equal); Supervision (equal); Writing – review & editing (equal).

### **DATA AVAILABILITY**

The data that support the findings of this study are available within the article.

### **REFERENCES**

- <sup>1</sup>S. Wang, X. Wu, T. Wang, J. Zhang, C. Zhang, L. Yuan, X. Cui, and D. Lu, Inorg, Chem. **58**, 2315 (2019).
- <sup>2</sup>J. Prado-Gonjal, R. Schmidt, J.-J. Romero, D. Ávila, U. Amador, and E. Morán, Inorg. Chem. **52**, 313 (2013).
- <sup>3</sup>R. Mguedla, A. B. J. Kharrat, M. Saadi, K. Khirouni, N. Chniba-Boudjada, and W. Boujelben, J. Alloys Compd. 812, 152130 (2020).
- <sup>4</sup>J. Shi, T. Sauyet, Y. Dang, S. L. Suib, M. S. Seehra, and M. Jain, J. Phys. Condens. Matter 33, 205801 (2021).
- <sup>5</sup>J. Shi, G. W. Fernando, Y. Dang, S. L. Suib, and M. Jain, Phys. Rev. B **106**, 165117 (2022).
- <sup>6</sup>V. S. Bhadram, D. Swain, R. Dhanya, M. Polentarutti, A. Sundaresan, and C. Narayana, Mater. Res. Express 1, 026111 (2014).
- <sup>7</sup>G. N. P. Oliveira, A. L. Pires, P. Machado, A. M. Pereira, J. P. Araújo, and A. M. L. Lopes, J. Alloys Compd. 797, 269 (2019).
- <sup>8</sup>R. Saha, A. Sundaresan, and C. N. R. Rao, Mater. Horiz. 1, 20 (2014).
- A. Ghosh, A. Pal, K. Dey, S. Majumdar, and S. Giri, J. Mater. Chem. C 3, 4162
- <sup>10</sup>J. Shi, M. E. Johnson, M. Zhang, P.-X. Gao, and M. Jain, APL Mater. 8, 031106 (2020).
- <sup>11</sup>A. McDannald, S. Vijayan, J. Shi, A. Chen, Q. X. Jia, M. Aindow, and M. Jain, J. Mater. Sci. 54, 8984 (2019).
- <sup>12</sup>L. H. Yin, J. Yang, X. C. Kan, W. H. Song, J. M. Dai, and Y. P. Sun, J. Appl. Phys. 117, 133901 (2015).
- <sup>13</sup>M. L. Medarde, J. Phys. Condens. Matter **9**, 1679 (1997).
- <sup>14</sup>B. S. Nagaraja, A. Rao, P. Poornesh, and G. S. Okram, J. Supercond. Novel Magn. 31, 2271 (2018).
- 15S. Catalano, M. Gibert, J. Fowlie, J. Iniguez, J.-M. Triscone, and J. Kreisel, Rep. Prog. Phys. 81, 046501 (2018).
- <sup>16</sup>L. Yin, J. Yang, P. Tong, X. Luo, C. Park, K. Shin, W. Song, J. Dai, K. Kim, and X. Zhu, J. Mater. Chem. C 4, 11198 (2016).
- 17 J. Shi, S. Yin, M. S. Seehra, and M. Jain, J. Appl. Phys. 123, 193901 (2018).
- <sup>18</sup>V. K. Pecharsky and K. A. Gschneidner, Jr., Phys. Rev. Lett. **78**, 4494 (1997).
- <sup>19</sup>S. Yin, W. Zhong, C. J. Guild, J. Shi, S. L. Suib, L. F. Cótica, and M. Jain, J. Appl. Phys. **123**, 053904 (2018).
- S. Yin, T. Sauyet, M. S. Seehra, and M. Jain, J. Appl. Phys. 121, 063902 (2017).
   J. Shi, M. S. Seehra, Y. Dang, S. L. Suib, and M. Jain, J. Appl. Phys. 129, 243904 (2021)
- 22S. Yin, T. Sauyet, C. Guild, S. L. Suib, and M. Jain, J. Magn. Magn. Mater. 428, 313 (2017).
- <sup>23</sup>M. Fiebig, T. Lottermoser, T. Lonkai, A. V. Goltsev, and R. V. Pisarev, J. Magn. Magn. Mater. **290–291**, 883 (2005).
- <sup>24</sup>A. McDannald, L. Kuna, and M. Jain, J. Appl. Phys. **114**, 113904 (2013).

- 25 K. Yoshii, Mater. Res. Bull. 47, 3243 (2012).
- 26K. Yoshii, J. Appl. Phys. 126, 123904 (2019).
- <sup>27</sup>L. Holmes, M. Eibschütz, and L. G. Van Uitert, J. Appl. Phys. **41**, 1184 (1970).
- <sup>28</sup>S. Mahana, U. Manju, and D. Topwal, Complex Magnetic Behavior in GdCrO<sub>3</sub> (AIP Publishing LLC, 2017), p. 130046.
- <sup>29</sup>S. Mugiraneza and A. M. Hallas, Commun. Phys. 5, 95 (2022).
- 30W. K. Zhu, C.-K. Lu, W. Tong, J. M. Wang, H. D. Zhou, and S. X. Zhang, Phys. Rev. B 91, 144408 (2015).
- <sup>31</sup>T. Moriya, Phys. Rev. **120**, 91 (1960).
- 32D. Treves, Phys. Rev. 125, 1843 (1962).
- 33X.-Y. Wang, Z.-M. Wang, and S. Gao, Inorg. Chem. 47, 5720 (2008).
- <sup>34</sup>N. Shamir, H. Shaked, and S. Shtrikman, Phys. B+C **90**, 211 (1977).
- 35 T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. Takahashi, K. Ishizaka, and Y. Tokura, Phys. Rev. B 68, 060403 (2003).
- <sup>36</sup>E. Bousquet and A. Cano, J. Phys.: Condens. Matter 28, 123001 (2016).
- <sup>37</sup>A. McDannald, L. Kuna, M. S. Seehra, and M. Jain, Phys. Rev. B **91**, 224415
- 38Y. Su, J. Zhang, B. Li, B. Kang, Q. Yu, C. Jing, and S. Cao, Ceram. Int. 38, S421 (2012).
- 39 A. M. Tishin, J. Alloys Compd. 250, 635 (1997).
- 40Y. Hirayama, T. Nakagawa, and T. A. Yamamoto, Solid State Commun. 151, 1602 (2011).
- <sup>41</sup>A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, Sov. Phys. Usp. 32, 649 (1989).
- 42 L. Xue, L. Shao, Q. Luo, and B. Shen, J. Alloys Compd. 790, 633 (2019).
- <sup>43</sup>S. Weinstein, R. S. Craig, and W. E. Wallace, J. Appl. Phys. 34, 1354 (1963).
- 44R. M. Bozorth, J. Appl. Phys. 38, 1366 (1967).
- 45H. R. Child and J. W. Cable, J. Appl. Phys. 40, 1003 (1969).
- 46R. R. Gimaev, A. S. Komlev, A. S. Davydov, B. B. Kovalev, and V. I. Zverev, Crystals 11, 82 (2021).
- <sup>47</sup>A. H. Cooke, D. M. Martin, and M. R. Wells, J. Phys. C: Solid State Phys. 7, 3133 (1974).

- <sup>48</sup>S. Yuling, J. Zhang, F. Zhenjie, L. Zijiong, S. Yan, and C. Shixun, J. Rare Earths 29, 1060 (2011).
- 49 Y. Su, J. Zhang, L. Li, B. Li, Y. Zhou, D. Deng, Z. Chen, and S. Cao, Appl. Phys. A 100, 73 (2010).
- 50 T. Tamaki, K. Tsushima, and Y. Yamaguchi, Phys. B+C 86-88, 923 (1977).
- <sup>51</sup> M. Das, S. Roy, and P. Mandal, Phys. Rev. B **96**, 174405 (2017).
- 52S. Mahana, U. Manju, and D. Topwal, J. Phys. D: Appl. Phys. 51, 305002
- 53 Y. Zhu, P. Zhou, T. Li, J. Xia, S. Wu, Y. Fu, K. Sun, Q. Zhao, Z. Li, and Z. Tang, Phys. Rev. B 102, 144425 (2020).
- <sup>54</sup>E. Palacios, C. Tomasi, R. Sáez-Puche, A. J. Dos santos-García, F. Fernández-Martínez, and R. Burriel, Phys. Rev. B 93, 064420
- 55Q. Y. Dong, K. Y. Hou, X. Q. Zhang, L. Su, L. C. Wang, Y. J. Ke, H. T. Yan, and Z. H. Cheng, J. Appl. Phys. 127, 033904 (2020).
- 56 A. A. Wagh, K. Suresh, P. A. Kumar, and S. Elizabeth, J. Phys. D: Appl. Phys. 48, 135001 (2015).
- 57 A. Midya, S. N. Das, P. Mandal, S. Pandya, and V. Ganesan, Phys. Rev. B 84, 235127 (2011).
- 58J.-L. Jin, X.-Q. Zhang, G.-K. Li, Z.-H. Cheng, L. Zheng, and Y. Lu, Phys. Rev. B 83, 184431 (2011).
- 59 A. Midya, P. Mandal, S. Das, S. Banerjee, L. S. Chandra, V. Ganesan, and S. R. Barman, Appl. Phys. Lett. 96, 142514 (2010).
- 60 M. Balli, S. Mansouri, S. Jandl, P. Fournier, and D. Z. Dimitrov, Solid State Commun. 239, 9 (2016).
- 61 M. Balli, S. Jandl, P. Fournier, J. Vermette, and D. Z. Dimitrov, Phys. Rev. B 98, 184414 (2018).
- 62 A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati, and J. M. D. Coey, J. Magn. Magn. Mater. 323, 2214 (2011).
- J. Magn. Magn. Mater. 323, 2214 (2011).

  63 A. Midya, P. Mandal, K. Rubi, R. Chen, J.-S. Wang, R. Mahendiran, G. Lorusso, and M. Evangelisti, Phys. Rev. B 93, 094422 (2016).