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Abstract 43 

 44 

Understanding the temporal succession of ecological communities and the underlying 45 

mechanisms in response to climate warming is critical for future climate projections. 46 

However, despite its fundamental importance in ecology and evolution, little is known about 47 

how the Archaea domain responds to warming. Here, we showed that experimental warming 48 

of a tallgrass prairie ecosystem significantly altered the community structure of soil archaea 49 

and reduced their taxonomic and phylogenetic diversity. In contrast to previous observations 50 

in bacteria and fungi, we showed convergent succession of the soil archaeal community 51 

between warming and control. Although stochastic processes dominated the archaeal 52 

community, their relative importance decreased over time. Furthermore, the warming-53 

induced changes in the archaeal community and soil chemistry had significant impacts on 54 

ecosystem functioning. Our results imply that, although the detrimental effects of 55 

biodiversity loss on ecosystems could be much severer, the soil archaeal community structure 56 

would be more predictable in a warmer world. 57 

  58 



Since its formal recognition in 19901, the archaea domain has challenged our views on the 59 

diversity, ecology, and evolution of life, yet remains the least understood2. In contrast to the 60 

traditional wisdom that archaea prefer extreme environments3-5, archaea are prominent members 61 

of all terrestrial and marine communities2 and are abundant in water columns, ocean sediments, 62 

and soils5, 6. Possessing unusual physiologies2, 7, they play central roles in mediating global 63 

carbon (C), nitrogen (N), and sulfur (S) cycles8-10. They are also an important component of the 64 

human microbiome, though their role in health and disease remains undetermined11. 65 

Furthermore, the recent discovery of the Asgard archaeal superphylum leads to a possibility of 66 

archaea as ancestors of eukaryotic life12-14. Thus, understanding the physiology, ecology and 67 

evolution of archaea represents one of the most exciting frontiers in biology2. 68 

 69 

Despite such recent exciting discoveries, we have a limited understanding of archaea in 70 

terrestrial environments, particularly in soils6, 15-18. Archaea are ubiquitously present in soil, 71 

represent a mass of 0.5 Gt C (a comparable amount with 7 Gt C for soil bacteria)18, and are vital 72 

to soil nitrification and methanogenesis due to the high numbers of ammonia-oxidizing archaea 73 

(AOA) and methanogenic archaea19, 20. It was reported that their spatial distribution patterns in 74 

soils are distinct from those of soil bacteria6, 15, including biodiversity distribution and ecological 75 

drivers6, 15-17. However, our understanding of the responses of soil archaea to climate change 76 

remains rudimentary21-24. 77 

 78 

Climate warming represents one of the biggest disturbance factors imposed on human society 79 

and global ecosystems. As temperature is a major driver of biological processes, climate 80 

warming will impact various ecological communities. Based on long-term time-series data, our 81 



previous studies revealed that experimental warming leads to the divergent succession of soil 82 

bacterial and fungal communities25, accelerates microbial temporal scaling26, reduces the 83 

biodiversity of soil bacteria, fungi, and protists27, but increases bacterial network complexity and 84 

stability28. However, how climate warming affects the temporal succession of the archaeal 85 

community remains elusive. On the one hand, since archaea and bacteria are both prokaryotic 86 

and share greater structural similarity29, it is expected that climate warming could lead to the 87 

divergent succession of soil archaeal communities similarly as it does for bacteria and fungi. On 88 

the other hand, soil archaeal communities could exhibit distinct temporal responses to climate 89 

warming as convergent or idiosyncratic30 since archaea have unique physiology7. 90 

  91 

Here, we conducted a long-term in situ warming experiment in a native, tallgrass prairie 92 

ecosystem at the Kessler Atmospheric and Ecological Field Station (KAEFS) in the US Great 93 

Plains in Central Oklahoma (34° 59ʹ N, 97° 31ʹ W)25, 31. This long-term multifactor climate 94 

change experiment was established in 2009 with a split-block design, in which the warming 95 

treatment plots have been subjected to continuous + 3 °C warming by infrared radiators and the 96 

control plots by “dummy” infrared radiators to account for the shading effect31. In this study, we 97 

focus on the warming effects on soil archaeal community diversity and succession by 98 

determining: (i) whether and how warming affects the diversity and succession of soil archaeal 99 

community; (ii) what the relative roles of deterministic and stochastic processes are in 100 

controlling the temporal dynamics of soil archaeal community in response to climate warming; 101 

and (iii) whether and how warming-induced changes of soil archaeal community mediate 102 

ecosystem functioning. We hypothesize that soil archaeal community would undergo divergent 103 

succession under warming due to increased deterministic filtering effects over time, similar to 104 



what was observed for bacteria and fungi, and that decreases in the taxonomical and functional 105 

diversity of soil archaeal community under warming would negatively impact linked ecosystem 106 

functions. 107 

 108 

Impacts of warming on archaeal diversity. At the higher taxonomical levels, such as phylum 109 

and order, the soil archaeal community was primarily composed of Thaumarchaeota 110 

(Nitrososphaerales;  96.5% in abundance,  41.3% in incidence) and Euryarchaeota 111 

(Methanomassiliicoccales; ~ 0.35% in abundance, ~ 2.1% in incidence), and to a lesser extent of 112 

Pacearchaeota (unclassified), Woesearchaeota (unclassified), and Crenarchaeota (unclassified) 113 

(Fig. 1a, Extended Data Fig. 1). The major Nitrososphaerales clade identified was potentially 114 

responsible for ammonia oxidation process32, and the Methanomassiliicoccales clade was 115 

potential methanogens33.  116 

 117 

To examine the warming effects on soil archaeal community diversity, linear mixed-effects models 118 

(LMM) were used, in which the regression coefficients represent the directions and magnitudes of 119 

the warming effect, namely effect sizes (β). Warming had strong negative effects (β = -0.64 ~ -120 

0.60, p < 0.008) on archaeal richness and Faith’s phylogenetic diversity (PD) (Fig. 1b), as richness 121 

decreased by 1.4% (β = -0.64, p = 0.008) and PD by 7.3% (β = -0.60, p = 0.006). Similarly, 122 

warming also decreased the functional richness of the archaeal community measured by a probe-123 

based microarray GeoChip (β = -0.17, p = 0.070). However, such decreases in functional richness 124 

were not detected by metagenome EcoFUN-MAP (β = 0.14, p = 0.533; Fig. 1b), which was most 125 

likely due to the inherent problems of lower reproducibility, quantitative capability and sensitivity 126 

associated with shotgun sequencing approaches34-36. These results indicate that experimental 127 



warming significantly reduced soil archaeal biodiversity, consistent with the observations for 128 

bacteria, fungi, and protists27, 37-39.  129 

 130 

The warming effects on soil archaea varied considerably for individual operational taxonomic 131 

units (OTUs). Warming significantly decreased the relative abundance of Nitrososphaerales-132 

affiliated OTU2 (response ratios (RR) = -0.45 ± 0.32; 9.1% under warming vs 14.3% under 133 

control; Supplementary Table S1), but increased the relative abundance of other 134 

Nitrososphaerales-affiliated taxa, including OTU4 (RR = 0.40 ± 0.27; 10.9% vs 7.4%) and 135 

OTU11 (RR = 0.75 ± 0.60; 1.3% vs 0.6%). Two rare Methanobacteriales-affiliated taxa 136 

(OTU1057 and OTU535) were significantly negatively impacted by warming (RR < -2.30; 137 

<0.001% under warming vs. 0.01% under control). These results suggest high variability even 138 

within the same taxonomical clade in responses to warming, consistent with our previous 139 

observations on the differential effects of warming on various microbial groups of bacteria and 140 

fungi25.  141 

 142 

Effects of warming on community structure and succession. As revealed by three 143 

complementary non-parametric multivariate statistical tests (Adonis, ANOSIM, and MRPP), the 144 

overall archaeal community structure was significantly different (p < 0.05) between the warmed 145 

and control plots (Table 1, Supplementary Table S2). Time also had significant (p < 0.03) effects 146 

on the soil archaeal community (Table 1). The detrended correspondence analysis (DCA) 147 

showed that the soil archaeal community structure was shifted over time by warming (Extended 148 

Data Fig. 2). Before starting warming treatment in 2009, the soil samples from both warmed and 149 

control plots were closely clustered. In the subsequent years, the warmed samples were generally 150 



separated from the control samples on a yearly basis (Extended Data Fig. 2). Together, these 151 

results suggest that experimental warming significantly altered soil archaeal community structure 152 

and succession, which agrees with the results for bacteria and fungi observed in this site25. 153 

Studies with plants have shown similar results with climate warming impacting phylogenetic 154 

diversity of grassland plant communities39, abundance within species ranges of trees40, and local 155 

species extinctions of plants41. 156 

 157 

The community differences between the paired warmed and control plots decreased significantly 158 

with time based on both the Sorensen metric (Fig. 1c; slope = -0.009, p = 0.043) and 159 

phylogenetic distance metric (Fig. 1c; slope = -0.013, p = 0.020). In contrast, the corresponding 160 

community differences between warming and control increased with time for bacteria (Fig. 1c; 161 

slope = 0.011, p = 0.004 for Sorensen metrics and slope = 0.009, p = 0.001 for unweighted 162 

Unifrac metrics), and fungi (Extended Data Fig. 3; slope = 0.020, p = 0.007 for Sorensen metrics 163 

and slope = 0.014, p = 0.003 for unweighted Unifrac metrics). Also, both potential ammonia 164 

oxidizer (Nitrososphaerales) and the dominant methanogen (Methanomassiliicoccales) showed 165 

similar trends as the domain Archaea (Extended Data Fig. 4). In addition, the archaeal functional 166 

gene-based (amoA gene) community distances between warming and control decreased 167 

significantly (p < 0.05) over time (Fig. 1d). All these results suggest the convergent succession 168 

of the soil archaeal community between warming and control, which is opposite to those 169 

observed in bacteria.  170 

 171 

The contrasting directions of succession between the domains of Archaea and Bacteria in 172 

response to experimental warming invalidated our hypothesis of similar succession patterns 173 



between the two domains. The opposite directions in succession between soil archaea and 174 

bacteria could be due to distinctions in biochemistry, genetics, physiology, ecology, and 175 

evolution42, 43. For instance, the soil archaeal community has relatively low taxonomic and 176 

phylogenetic diversity (primarily Nitrososphaerales). These detected archaeal species are also 177 

functionally similar with narrow ecological niches (i.e., nitrification) and are replacing each 178 

other over time, which could result in convergent succession between warming and control. In 179 

contrast, the soil bacterial community is taxonomically, phylogenetically, and functionally highly 180 

diverse. They occupy heterogeneous niches, and could be subjected to multiple selection forces 181 

(e.g., resource limitation and intraspecific competition)42 structuring community composition in 182 

response to climate warming, which could lead to the more dissimilar community over time.  183 

 184 

Effects of warming on archaeal functional structure. The warming-altered archaeal 185 

taxonomic and phylogenetic composition could affect functional community structure. To test 186 

this, the microbial communities were further analyzed by both GeoChip-based functional gene 187 

arrays34, 44 and shotgun metagenomic sequencing. While the shotgun sequencing-based 188 

metagenomic approach is ideal for the novel discovery of phylotypes, functional genes, 189 

regulators, and/or metabolic pathways, the microarray-based detection has advantages for 190 

comparative studies in terms of sensitivity, quantitation, and reproducibility34. Warming had 191 

significant (p < 0.001) impacts on the archaeal community functional structure (Adonis analysis, 192 

Table 1). Among the 188 archaea-specific genes detected by GeoChip, the abundances of 45 193 

genes (23.9%) significantly decreased under warming (Supplementary Table S3). Some of these 194 

significantly impacted genes (16 out of 45 genes) were involved in C and N cycling (Fig. 1e, 195 

Supplementary Table S3). Among the 163 archaea-specific genes detected by metagenome 196 



EcoFUN-MAP, warming had positive impacts on the abundances of eight genes and negative 197 

impacts on 16 genes, as shown by the response ratios (Supplementary Table S4). Four out of 24 198 

genes significantly altered by warming were involved in C and N cycling (Fig. 1e, 199 

Supplementary Table S4). Two genes, aceB and ara, involved in C cycling were detected by 200 

both GeoChip and metagenome EcoFUN-MAP with significant differences between warming 201 

and control (Fig. 1e). However, the impacts of warming on these two genes by the two methods 202 

were opposite. It was most likely that the direction determined by GeoChip (decreased in 203 

abundance under warming) reflected the actual impact of warming as the results from amoA gene 204 

amplicon sequencing agreed with GeoChip data (Fig. 1e). In addition, four genes (ara, cda, 205 

xylanase, and amoA) from GeoChip but none from EcoFUN-MAP were strongly correlated with 206 

ecosystem C fluxes, including gross primary productivity (GPP) and ecosystem respiration (ER) 207 

(Supplementary Table S5 and S6). The ara, cda, and xylanase genes involve in C degradation 208 

processes, and amoA gene in nitrification. Collectively, these results indicate that warming 209 

significantly decreased the abundances of certain C and N cycling genes in the soil archaeal 210 

community but could strengthen the linkages between the archaeal functional community 211 

structure and ecosystem processes.  212 

 213 

Community assembly processes in response to warming. To disentangle the community 214 

assembly mechanisms involved in the observed temporal succession patterns of soil archaeal 215 

community, we used a phylogenetic bin-based null model analysis (iCAMP)45 and found that 216 

homogeneous selection (HoS; selection under homogeneous abiotic and biotic conditions in 217 

space and time) and drift (DR; random changes in the relative abundances of different species 218 

within a community due to the inherent stochastic processes of birth, death, and reproduction) 219 



dominated archaeal community assembly, with the relative importance of 14.7% and 84.4% (Fig. 220 

2a), respectively. Correspondingly, the partial canonical correlation analysis (CCA)-based 221 

variation partitioning analysis indicated that the majority of the community variations (86.4%) 222 

could not be explained by the measured soil and plant variables and time (Supplementary Fig. S5 223 

and S6), suggesting that stochastic processes could play dominant roles in the assembly of soil 224 

archaeal community.  225 

 226 

Over the years, the archaeal community variation between warming and control showed 227 

significant declines in stochasticity (Fig. 2b; slope = -0.015, p = 0.016) and DR (Fig. 2b; slope = 228 

-0.016, p = 0.028), but increase in HoS (Fig. 2b; slope = 0.015, p = 0.015), suggesting 229 

cumulatively enhanced deterministic filtering effect of warming on soil archaeal community. The 230 

increase in warming-induced determinism over time was significantly correlated with total plant 231 

biomass and total N (Fig. 2c, Supplementary Table S7; |R| ≥ 0.186, p ≤ 0.060). Previous studies 232 

reported mixed effects of plant variables (richness and biomass) on deterministic assembly 233 

processes of soil bacterial communities45, 46, but few on those of soil archaeal communities. Soil 234 

N content can be a determining factor for the fitness of AOA, the predominant group in soil 235 

archaeal communities47. 236 

 237 

The relative importance of different ecological processes varied substantially among different 238 

lineages (bins) (Fig. 3). The members of the predominating order Nitrososphaerales distributed 239 

in two bins, Bin2 (containing 23 OTUs, and accounting for 83.5% relative abundance) and Bin1 240 

(46 OTUs, 15.1% relative abundance) (Fig. 3a, b). Unexpectedly, these two bins were dominated 241 

by different ecological processes — DR for Bin2 (99.8%) and HoS for Bin1 (97.2%). 242 



Furthermore, the warming-induced decrease of DR was mainly due to Bin2 (69.1%, Fig. 3c and 243 

Extended Data Fig. 7), with OTU1 and OTU2 as the major contributors (contributed 24.3% and 244 

26.1%, respectively; Supplementary Table S8). In contrast, the warming-induced increase of 245 

HoS was mainly attributed to the responses of Bin1 (98.6%, Fig. 3d and Extended Data Fig. 7), 246 

with OTU3 and OTU11 as top contributors (contributed 33.6% and 20.3%, respectively; 247 

Supplementary Table S8). Altogether, these results demonstrated complex assembly mechanisms 248 

of different taxa in response to warming, even within Nitrososphaerales.  249 

 250 

Links between archaeal community structure and functioning. We compared correlations 251 

between archaeal community structure and environmental variables and ecosystem functioning 252 

under control and warming (Fig. 4a, Extended Data Fig. 8). The archaeal community measured 253 

by both taxonomical and gene functional compositions generally exhibited stronger correlations 254 

with various environmental variables and ecosystem functioning under warming than control 255 

(Fig. 4a, Extended Data Fig. 8). In fact, NH4
+-N, C3 plant biomass, ER, and GPP were 256 

significantly correlated with archaeal community structure under warming (Fig. 4a, Extended 257 

Data Fig. 8; p < 0.05). Year was the most influential factor affecting archaeal community 258 

taxonomical and functional compositions under both warming and control, followed by total 259 

plant biomass. In addition, soil pH, precipitation of the sampling month, drought index, soil 260 

moisture, and ecosystem C fluxes including net ecosystem exchange (NEE) and heterotrophic 261 

soil respiration (Rh) were also factors significantly associated with archaeal community structure 262 

shared under warming and control (Fig. 4a, Extended Data Fig. 8; p < 0.05). Nevertheless, only a 263 

limited number of examined variables showed significant correlations with archaeal community 264 

taxonomical and functional structures under both warming and control.  265 



 266 

Partial least squares (PLS) analysis was further used to understand the environmental drivers of 267 

archaeal community diversity, succession, and associated functions under warming treatment 268 

(Fig. 4b, Supplementary Table S9). Warming had a strong positive influence on soil temperature 269 

(Pearson correlation r = 0.92, partial R2= 0.38, p = 0.044) and to a lesser extent on soil pH (r = 270 

0.003, partial R2= 0.17, p = 0.015), but a negative influence on soil moisture (r = -0.50, partial 271 

R2= 0.22, p = 0.007). Warming decreased archaeal community richness (r = -0.52, partial R2= 272 

0.21, p = 0.016), archaeal C degradation gene abundances (r = -0.57, partial R2= 0.25, p = 0.002) 273 

and N functional gene abundances (r = -0.62, partial R2= 0.20, p = 0.001). In addition, warming 274 

could shape archaeal community structure (i.e., -diversity, PC2) indirectly through soil 275 

temperature (r = -0.03, partial R2 = 0.23, p = 0.036) and archaeal community richness (r = -0.94, 276 

partial R2 = 0.45, p = 0.005). Soil total N (partial R2  0.24, p  0.005) and archaeal functional 277 

traits (i.e., nitrification and denitrification; partial R2  0.20, p  0.011) also had strong effects on 278 

archaeal -diversity. Furthermore, the archaeal community functional traits involved in methane 279 

and denitrification could positively impact ecosystem functions by affecting ER (partial R2  280 

0.17, p  0.006). Lastly, the PLS model showed that soil properties such as soil total organic C, 281 

soil NH4
+-N, soil moisture, and soil temperature could directly shape ecosystem functions, 282 

including autotrophic respiration (Ra), Rh, NEE, and ER (partial R2  0.34, p  0.006). Together, 283 

these results indicated that experimental warming could shape the soil archaeal community 284 

directly or indirectly through soil temperature and that soil archaeal community structure was 285 

crucial in mediating changes in ecosystem functioning.  286 

 287 

Concluding remarks 288 



Understanding temporal dynamics and its underlying mechanisms within the context of climate 289 

change is a fundamental issue in ecology; however, very few studies have examined the impacts 290 

of climate warming on Archaea. This study provides several important insights into the responses 291 

of the archaeal community to climate warming. First, consistent with our recent findings on the 292 

soil bacteria, fungi, and protists27, we demonstrate that climate warming reduced the taxonomic, 293 

phylogenetic, and possibly functional diversity of soil archaeal community, which provides 294 

explicit evidence supporting microbial biodiversity loss under long-term climate warming in a 295 

field setting. Second, in contrast to the soil bacteria and fungi25, we reveal that warming played an 296 

important role in accelerating the temporal succession of the soil archaeal community towards 297 

higher convergence, which could be primarily due to their distinct differences in biochemistry, 298 

physiology, ecology, and evolution8. In addition, our results demonstrated that the succession of 299 

soil archaeal community to the perturbations of climate warming was primarily controlled by 300 

stochastic processes, and experimental warming, acting as a filtering factor, reduced stochasticity.  301 

 302 

Our findings have important implications for understanding and predicting the ecological 303 

consequences of climate change. Because stochasticity reduces under warming as time proceeds, 304 

the communities can converge more quickly to a community state with less stochasticity under 305 

warming. As a result, the archaeal community composition and structure might be less variable 306 

and more predictable under future climate warming. Also, since soil archaeal biodiversity 307 

decreases under warming, the future ecosystems in a warmer world will be less diverse. It is 308 

expected that the linked ecosystem functions and services could become more vulnerable under 309 

future climate warming scenarios38. Consequently, the detrimental effects of biodiversity loss 310 

could be more severe. However, further research is needed to examine whether the warming-311 



induced convergent succession, archaeal biodiversity loss, and associated mechanisms are 312 

applicable to other ecosystems.   313 
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Table 1. Summary of permutational multivariate analysis of warming, year, block on soil 334 

archaea community structure. 335 

 336 

Variables 
16S rRNA gene  GeoChip  Metagenome EcoFUN-

MAP 

F R2 p  F R2 p  F R2 p 

Warming (W) 3.923 0.040 0.014  6.037 0.047 0.001  2.215 0.031 0.001 

Year (Y) 3.877 0.274 0.001  8.857 0.485 0.001  1.922 0.189 0.001 

Block (B) 2.277 0.069 0.026  1.847 0.043 0.031  1.194 0.050 0.071 

Y*B 1.437 0.305 0.066  1.113 0.183 0.278  1.002 0.295 0.443 

 337 
Permutational multivariate analysis of variance (Adonis) was used based on Bray–Curtis dissimilarity 338 
matrices. The two-way repeated measures ANOVA model was set as dissimilarity ~ warming + year  block 339 
using function adonis in R package vegan. Significant effects (p < 0.05) are shown in bold text. EcoFUN-MAP 340 
is a method designed for annotating metagenomic sequences by comparing them with functional genes used to 341 
fabricate GeoChip. 342 



Figure Legends 343 

 344 

 345 

Fig. 1. Effects of experimental warming on the archaeal community diversity and 346 

succession across seven years. a, Archaeal community composition under unwarmed and 347 

warmed conditions. Cumulative richness is expressed as the number of operational taxonomic 348 

units (OTUs). b, The effect sizes of warming on archaeal biodiversity (including taxonomic, 349 

phylogenetic, and functional diversity). The estimated effect sizes (β) are regression coefficients 350 

based on rescaled response variables (rescaled to one with mean zero and unit standard 351 

deviation) in the linear mixed-effects (LMMs) models. Bars represent mean ± s.e.m. of effect 352 

sizes. Statistical significance is based on Wald type II χ² tests (n = 64; two-sided; p = 0.008, 353 

0.006, 0.070, 0.533 for 16S richness, 16S PD, GeoChip richness, and EcoFUN-MAP richness, 354 

respectively). Significance was expressed as ***p < 0.01; **p < 0.05; *p < 0.10. EcoFUN-MAP 355 

is a method designed for annotating metagenomic sequences by comparing them with functional 356 

genes used to fabricate GeoChip. c and d, Temporal changes in community differences between 357 

warming and control conditions. c, 16S rRNA genes (left: Sorensen dissimilarity metrics; right: 358 

unweighted UniFrac dissimilarity metrics); d, amoA genes. The slopes of the archaeal 359 

community and the bacterial community are significantly different in c (p = 0.007 and p < 360 

0.001). The first year is 2009 (year 0). Considering the repeated-measures design, the warming-361 

versus-control dissimilarity values at each block were fitted to LMMs with a fixed effect of time 362 

and a random intercept and slope effect among different pairs of plots (blocks). The slopes are 363 

presented as a coefficient in fixed effect ± standard error in random effect. The r2 values are 364 

calculated (details in Methods) to reflect the variance explained by the whole LMM model. p 365 

values were based on permutation tests (two-sided). The lines showed the fixed effects of the 366 

LMM. e, Differences in functional gene abundances between warming and control by response 367 

ratios. Bars represent mean ± 95% confidence interval of response ratios. Only genes showing 368 

significant differences between warming and control (p < 0.05, n = 64) are shown. EFM: 369 

metagenome EcoFUN-MAP; A: amoA genes (mean relative abundance > 10.0%).  370 

 371 

 372 



Fig. 2. Ecological processes and community assembly mechanisms associated with the 373 

temporal dynamics in the soil archaeal community. a, Relative importance of deterministic 374 

processes (homogeneous selection, HoS; heterogeneous selection, HeS) and stochastic processes 375 

(dispersal limitation, DL; homogenizing dispersal, HD; and drift and others, DR) between 376 

warming and control treatment. b, Changes in the relative importance of stochastic processes, 377 

HoS, and DR (%) between warming and control at each block over the years. Results are based 378 

on LMMs (statistical tests and significance are the same as in Fig. 1c-d). c, Effects of 379 

environmental factors on deterministic processes defined by the phylogenetic bin-based null 380 

model analysis (iCAMP) based on the Mantel test (two-sided). It only shows the factors with 381 

significant correlations (p = 0.039, 0.062, 0.049, 0.029 for total N, total organic C, total plant 382 

biomass, and the difference of plant richness). See Supplementary Table S7 for other factors. R, 383 

coefficient of determination from the Mantel analysis. The correlation was determined based on 384 

the difference (with a triangle before the name) or the mean (without a triangle) of a factor 385 

between each pair of samples. Significance was expressed as ***p < 0.01; **p < 0.05; *p < 0.10.  386 

 387 

 388 

Fig. 3. Variations of ecological processes across different phylogenetic groups. The 389 

phylogenetic tree is displayed at the center. a, Relative importance of different ecological 390 

processes in each bin (stacked bars in the 1st annulus). b, Relative abundance of individual 391 

taxonomic units (2nd annulus). All 287 taxonomic units are shown. c, Warming-induced change 392 

in taxonomic unit contribution to drift (3rd annulus), and d, homogeneous selection (4th annulus), 393 

where positive (outward bar) and negative (inward bar) represented increase and decrease by 394 

warming, respectively. The most abundant bins are marked in the figure, including Bin2 (83.5% 395 

relative abundance; dominated by Nitrososphaerales), Bin1 (15.1%; Nitrososphaerales), Bin4 396 

(0.9%; Methanomassiliicoccales) and Bin3 (0.2%; unclassified Euryarchaeota).  397 

 398 

 399 

Fig. 4. Environmental drivers of archaeal community structure and functioning. a, 400 

Relationships between archaeal community structure and environmental variables and ecosystem 401 

processes under warming. See Supplementary Fig. S8 for under control. Archaeal community 402 

structures, which include taxonomical composition by 16S rRNA genes and functional gene 403 



composition by GeoChip and EcoFUN-MAP, were tested against time, soil and plant variables, 404 

and ecosystem C fluxes. The edge width corresponds to Mantel’s r value, and the edge color 405 

denotes statistical significance (two-sided). Pairwise correlations of these variables are shown 406 

with a color gradient denoting Pearson’s correlation coefficient. Soil variables include soil nitrate 407 

(NO3
-), ammonium (NH4

+), total nitrogen (TN), total organic C (TOC), pH, precipitation of the 408 

sampling month (Prcp_SM), temperature, moisture, and drought index; plant variables include 409 

C3 and C4 aboveground biomass, plant richness, and total biomass; ecosystem C fluxes include 410 

ecosystem respiration (ER), gross primary productivity (GPP), net ecosystem exchange (NEE), 411 

autotrophic respiration (Ra), heterotrophic respiration (Rh), and total soil respiration (Rt). b, 412 

Partial least squares (PLS) models on the relationships among treatments (warming), soil 413 

properties, plant variables, archaeal community diversity and functional traits, and ecosystem 414 

functions. Directions for all arrows are from independent variable(s) to a dependent variable in 415 

the forward selected PLS models (p < 0.05 for both R2
Y and Q2

Y; two-sided); only the most 416 

relevant variables (variable influence on projection > 1) are presented. The numbers near the 417 

pathway arrow indicate the proportion of variance explained for every dependent variable, with 418 

the top row representing the partial R2 index based on PLS (See details in Methods) and the 419 

bottom row representing Pearson correlation R2. The asterisks denote the significance levels of 420 

each optimum PLS model (top row) and Pearson correlation (bottom row). ***p < 0.01, **p < 421 

0.05 and *p < 0.10. The widths of pathways are proportional to the partial R2 index. 422 

 423 
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  531 



Methods:  532 

Site description. The study site was located at the Kessler Atmospheric and Ecological Field 533 

Station (KAEFS) in the US Great Plains in McClain County, Oklahoma (34 ̊ 59ʹ N, 97 ̊ 31ʹ W)31. 534 

The design of this site has been described in detail in our previous publications25, 28, 48. Briefly, 535 

KAEFS is a temperate grassland with an average air temperature of 16.3 °C and an average 536 

annual precipitation of 914 mm (data from the Oklahoma Climatological Survey from 1948 to 537 

1999). The experimental site was dominated by C3 forbs (Solanum carolinense, Ambrosia trifida 538 

and Euphorbia dentate), C3 grasses (Bromus sps) and C4 grasses (Tridens flavus and Sorghum 539 

halapense). The soil type was Port-Pulaski-Keokuk complex, with a neutral pH, a high available 540 

water holding capacity (37%) and a deep (ca. 70 cm), moderately penetrable root zone25. The soil 541 

has a high available water holding capacity (37%), neutral pH, and a deep (ca. 70 cm), 542 

moderately penetrable root zone. The concentrations of soil organic matter and total N are 1.9% 543 

and 0.1%, respectively, and the soil bulk density is 1.2 g/cm3. 544 

 545 

The field experiment started in July 2009 and is a split-block design, with warming (+3 °C) as 546 

the primary factor. Two levels of warming (ambient and + 3°C) were set for four pairs of 2.5 m  547 

1.75 m plots by utilizing a ‘real’ infrared radiator (Kalglo Electronics) for warmed plots or a 548 

‘dummy’ infrared radiator (Kalglo Electronics) for the corresponding control plots to account for 549 

the shading effects. In this study, data generated from this site between 2009 and 2016 was used.  550 

 551 

Field measurements. Soil temperature was monitored using constantan-copper thermocouples 552 

every 15 min at 7.5, 20, 45 and 75 cm in the center of each plot. We used the annual average 553 

values at 7.5 cm depth across the whole year to represent the microclimate of the surface soil 554 



sampled (0-15 cm). Soil moisture, expressed as volumetric soil water content (%V), was 555 

measured once or twice a month using a portable time domain reflectometer (Soil Moisture 556 

Equipment Corp.) from the soil surface to a 15-cm depth. The average values of three 557 

measurements in each plot were used as monthly averages and the average of soil moisture data 558 

across each year was presented in this study. All species within each plot were identified to 559 

estimate species richness. Above-ground plant biomass was estimated by a modified pin-touch 560 

method31, 49 with C3 and C4 species separated50.  561 

 562 

Ecosystem C fluxes, including NEE, ER, GPP, soil total respiration (Rt), Rh, and Ra were 563 

measured once or twice a month between 10:00 and 15:00 (local time)31, 51. NEE and ER were 564 

measured using an LI-6400 portable photosynthesis system (LI-COR) attached to a transparent 565 

chamber (0.5 m  0.5 m  0.7 m). Rt and Rh were measured using an LI-8100A soil flux system 566 

attached to a soil CO2 flux chamber (LI-COR)52. GPP was estimated as the difference between 567 

NEE and ER and Ra was the difference between Rt and Rh. The average values of ecosystem C 568 

fluxes and respirations across each year were used in this study. 569 

 570 

Sampling. We collected eight surface (0-15 cm) soil samples annually in four control and four 571 

warmed plots from 2010 to 2016 (Y1-Y7) during the peak plant biomass season (September to 572 

October). Eight pre-warmed samples were taken in 2009 (Y0). Each soil sample was a mixture 573 

of three soil cores (2.5 cm diameter × 15 cm depth) taken with a soil sampler tube to reduce the 574 

variation caused by soil heterogeneity. A total of 64 soil samples from four replicate plots under 575 

warming and control (ambient) conditions were included and analyzed in this study. Soil samples 576 



were kept on ice for less than two hours before they were transferred to the laboratory located at 577 

the University of Oklahoma.  578 

 579 

Soil chemistry. After removing visible roots (> 0.25 cm) and rocks, soil samples were sent to the 580 

Soil, Water, and Forage Analytical Laboratory at the Oklahoma State University (Stillwater, OK, 581 

USA) for chemical analyses, including organic C and total N contents, soil nitrate (NO3
−) and 582 

ammonia (NH4
+), and soil pH. Detailed information was provided in our previous publication by 583 

Guo et al.25. As shown previously, experimental warming significantly altered aboveground 584 

plants, ecosystem processes, and soil conditions25, 48. For microbiological analyses, samples were 585 

stored at -80 °C before DNA extraction. 586 

 587 

DNA extraction. Soil DNA was extracted from 1.5g of each well-mixed soil sample by a 588 

protocol25, 53 including freeze-grinding treatment, SDS-based lysis, followed by purification with 589 

a MoBio PowerSoil DNA isolation kit (MoBio Laboratories, Carlsbad, CA, USA). DNA quality 590 

was assessed with a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific, 591 

Waltham, MA, USA) and a ratio of 2.0-2.2 for OD260/OD230 and 1.7-2.0 for OD260/OD280 592 

indicated good quality. The final DNA concentrations were quantified by PicoGreen using a 593 

FLUOstar Optima fluorescence plant reader (BMG Labtech, Orthenberg, Germany). DNAs were 594 

stored at -80 °C before sequencing analysis25. 595 

 596 

Amplicon sequencing. We used a two-step PCR amplification protocol for constructing the 597 

sequencing library to reduce sequencing errors, minimize amplification bias, and preserve semi-598 

quantitative information of PCR amplification36, 54, 55. In this study, we used one primer set 599 



targeting the V3–V4 hypervariable region of the archaeal 16S rRNA genes, 519F (5ʹ - 600 

CAGYMGCCRCGGKAAHACC -3ʹ) and 806R (5ʹ - GGACTACNSGGGTMTCTAAT -3ʹ)56-58. 601 

To amplify the archaeal amoA genes, the primer set (5ʹ -STAATGGTCTGGCTTAGACG-3ʹ) 602 

and (5ʹ -GCGGCCATCCATCTGTATGT-3ʹ)59 was used. In addition, the primer set, 515F (5ʹ -603 

GTGCCAGCMGCCGCGGTAA-3ʹ) and 806R (5ʹ -GGACTACHVGGGTWTCTAAT-3ʹ), were 604 

used for bacterial community profiling60. During the first amplification step, 10 ng DNA from 605 

each sample was PCR-amplified for 10 cycles in a 25 μl reaction volume with the primers 606 

without adaptors. The obtained PCR products were then purified and dissolved in 50 μl 607 

deionized water. During the second amplification step, 15 μl of the PCR products from each 608 

sample were amplified using the primers with adaptors, barcodes, and spacers for an additional 609 

15 cycles. The PCR reactions at each step were done in triplicates. Paired‐end sequencing of the 610 

amplicons (2 × 250 bp) was done with an Illumina MiSeq platform (Illumina, Inc., San Diego, 611 

CA, USA) following manufacturer’s instructions for both the archaeal and bacterial 16S rRNA 612 

genes54, 55. For sequencing the archaeal amoA gene amplicons, MiSeq Reagent Kit v3 (2 × 300 613 

bp) (Illumina, Inc., San Diego, CA, USA) was used. An average of 29,900 ± 20,800, 25296 ± 614 

20560, and 59900 ± 36,700 sequence reads per sample were obtained for the archaeal 16S rRNA 615 

genes, archaeal amoA genes, and bacterial 16S rRNA genes, respectively. 616 

 617 

Sequence preprocessing. The raw reads of sequences were analyzed using a sequence analysis 618 

pipeline built on the Galaxy platform (version 0.1.0), developed by the Institute for 619 

Environmental Genomics61 (http://zhoulab5.rccc.ou.edu:8080). Primer sequences were trimmed 620 

from the paired-end sequences and filtered by the Btrim program62 with a threshold of QC > 20 621 

over a 5-bp window size. Forward and reverse reads of the same sequence with at least 20 bp 622 

http://zhoulab5.rccc.ou.edu:8080/


overlap and < 5% mismatches were combined using FLASH63. Any joined sequences with an 623 

ambiguous base or a length of < 245 bp were discarded. Because the expected lengths of the 624 

archaeal amoA gene amplicons (635 bp) were larger than the summed length of forward and 625 

reverse reads (600 bp), we only used the forward reads of the archaeal amoA gene amplicons 626 

with a cutoff length of 273 nt. Thereafter, OTUs were clustered by UPARSE64 at 97% identity 627 

and singletons were removed from the remaining sequences64, 65. The Greengenes reference data 628 

set66 for 16S data was used as reference databases to remove chimeras. For the archaeal 629 

community, each sample was rarefied to a sequencing depth of 7,860 to achieve the same total 630 

read abundance. A total of 287 OTUs (at 97% similarity) were obtained across all samples. 631 

Rarefaction curves approached saturation, suggesting that this level of sequencing effort was 632 

sufficient to estimate the diversity of the soil archaeal community (Extended Data Fig. 9). In 633 

comparison, the bacterial community was rarefied to a sequencing depth of 21,200 with 35,306 634 

OTUs across all samples. OTU taxonomic classification was performed using representative 635 

sequences from each OTU through the Ribosomal Database Project Classifier with 50% 636 

confidence estimates67. We also constructed community profiling based on amplicon sequence 637 

variants (ASVs) by three widely-used denoising packages UNOISE368, DADA269, and Deblur70. 638 

We compared the effects of experimental warming on the resulting community profiles by three 639 

non-parametric multivariate statistical tests (Adonis, ANOSIM, and MRPP; Supplementary 640 

Table S2). OTU-based archaeal community structure was significantly altered by seven years’ 641 

warming treatment with all three statistical tests (p < 0.050), while UNOISE3, DADA2, and 642 

Deblur community profiles showed significant (p < 0.050) or marginally significant (p < 0.100) 643 

differences by warming treatment in some of the tests but not all (Supplementary Table S1). It 644 

suggested that the community structure obtained from OTU-based clustering was more robust to 645 



different statistical tests and agreed with the experimental setup. Therefore, the community 646 

profiling obtained from OTU-based clustering was used in the following analyses.  647 

 648 

Diversity analyses. Richness and Faith’s index were used to measure taxonomic and phylogenetic 649 

-diversity, respectively, and they were computed using the Picante R package71. To estimate 650 

phylogenetic β-diversity, the representative amplicon sequences were aligned using Clustal 651 

Omega v1.2.272 for constructing the phylogenetic tree by FastTree2 v2.1.1073. The FastTree 652 

topology search was constrained with the relatively reliable 16S-based phylogenetic tree in Silva 653 

Living Tree Project74 release 132. Unweighted UniFrac distances and Sorensen dissimilarity 654 

metrics were calculated to estimate β-diversity based on the resampled OTU tables in R using the 655 

vegan package75.  656 

 657 

Measurement of community turnover. The impacts of warming on the temporal change in the 658 

archaeal and bacterial community structure were measured by the distances of microbial 659 

communities between warming and control at each block in each year76. As we had four 660 

replicates (one replicate within each block) for both warming and control treatments, four 661 

pairwise comparisons were obtained each year. In this way, the difference between each pair of 662 

plots (D) was not subject to (in theory) the effects of experimental noise due to annual sampling 663 

time differences, environmental fluctuations, molecular marker resolution, and/or technical 664 

variation on community temporal turnovers. We then fitted the temporal change to the linear 665 

mixed effects model (LMM) with a random intercept and sloped effect among different pairs of 666 

plots (blocks)25, D ~ t + (1 + t)|Block. In this model, D represents dissimilarity between warming 667 

and control and t represents year. The slope of the model is the rate of temporal change in 668 



community structure between warming and control, which is a measure of community turnover. 669 

The coefficient of determination (R2) was calculated for each LMM as described previously 670 

(named conditional R2 in Nakagawa and Schielzeth’s method)77. The significance of each LMM 671 

was calculated by a permutation test, randomized the eight time points (years) for > 40,000 times 672 

(complete enumeration), and the p value was calculated by comparing the Akaike information 673 

criterion of the observed LMM with the permuted ones. We also performed a permutation test to 674 

calculate the significance of the difference in slopes between warming and control78. The p-value 675 

was generated by comparing the observed slope difference between warming and control with 676 

the difference in the permuted data sets25.  677 

 678 

Functional profiling. GeoChip 5.0 M, a functional gene array34, was used for functional 679 

profiling for the 64 samples from 2009 to 2016. GeoChip hybridization, scanning, and data 680 

processing were performed in the Institute for Environmental Genomics, the University of 681 

Oklahoma, following an established protocol34, 44.  682 

 683 

The slides hybridized with genomic DNA were imaged as a Multi-TIFF with a NimbleGen 684 

MS200 Microarray Scanner (Roche NimbleGen, Madison, WI, United States). The raw signals 685 

from NimbleGen were submitted to the Microarray Data Manager (http://ieg.ou.edu/microarray), 686 

cleaned, normalized, and analyzed using the data analysis pipeline. First, probes with poor or low 687 

signals were removed using a cutoff for the coefficient of variance (CV; probe signal 688 

SD/signal) >0.8. Then, the signal-to-noise ratio (SNR) was calculated with the average signal of 689 

Agilent’s negative control probes within each subarray. The signal intensity for each spot was 690 

corrected by subtracting the background signal intensity. If the net difference was <0, the spots 691 

http://ieg.ou.edu/microarray


were excluded from subsequent analysis44. To normalize signal intensities, the sum of the signal 692 

intensity was calculated for each array, and the maximum sum value was used to normalize the 693 

signal intensity of all spots in each array. We extracted 2524 archaea-specific probes from the 694 

entire datasets based on their lineage information, which belonged to 188 archaea-specific genes. 695 

All the analyses were done using the extracted subset of data.  696 

 697 

Metagenomics of individual samples from 2009 to 2016 was also used for functional profiling. 698 

Metagenomic libraries were prepared using a KAPA Hyper Prep Kit (KR0961) following the 699 

manufacturer’s instructions and sequenced at the Oklahoma Medical Research Foundation’s 700 

Genomics Core using the Illumina HiSeq 3000 platform with a 2 × 150 bp paired-end kit. We 701 

obtained 1100.14 gigabases (Gb) of data in total, with an average of 17.19 ± 2.68 Gb per 702 

sample27. Processing of the metagenomic sequences included quality evaluation by FastQC79, 703 

duplicate removal by CD-HIT80 with an identity cutoff of 100%, and quality filtering by NGS 704 

QC Toolkit (version 2.3.3)81. Bases with a quality score <20 were trimmed from the 3’ end until 705 

the first base had a quality score  20. Trimmed reads with a length of > 120 and an average 706 

quality score   20 were kept. In addition, reads with more than one ambiguous base were 707 

removed27. All reads were submitted to our EcoFUN-MAP pipeline 708 

(http://www.ou.edu/ieg/tools/dataanalysis-pipeline.html) to extract shotgun sequence reads of 709 

environmental importance36. Archaea-specific gene clusters were extracted from the entire 710 

datasets based on their lineage information, resulting in 21031 gene clusters belonging to 163 711 

genes. This archaea-specific dataset was used in the following analyses.  712 

 713 

http://www.ou.edu/ieg/tools/dataanalysis-pipeline.html


Community assembly. The iCAMP framework was used to investigate the community 714 

assembly mechanisms at the level of individual taxa/lineages45. The R code for iCAMP was 715 

available as an open-source R package, iCAMP, and a web-based 716 

pipeline (http://ieg3.rccc.ou.edu:8080) built on the Galaxy platform (version 18.09)61. iCAMP 717 

could differentiate the relative importance of five assembly processes to both the whole 718 

community and individual taxa/lineages, including homogeneous selection (HoS), heterogeneous 719 

selection (HeS), dispersal limitation (DL), homogenizing dispersal (HD), and drift and others 720 

(DR)45, 82. Defined in iCAMP, HoS and HeS constituted deterministic processes, while DL, HD, 721 

and DR constituted stochastic processes. Our analyses were based on a phylogenetic distance 722 

threshold for the significant phylogenetic signal of 0.2 and a minimal bin size of 12. Detailed 723 

explanations of the settings for individual parameters could be found in a previous study45. The 724 

five assembly processes were assessed for their relative importance in governing community 725 

variations between warmed plots and control plots. Then, the relative importance of each process 726 

was fitted to an LMM with a random intercept and slope effect among different pairs of plots 727 

(blocks). The model was set as M ~ t + (1 + t)|Block, where M represents the relative importance 728 

(%) of a process and t represents year. The coefficient of determination (R2) and the significance 729 

of each LMM was determined as described above.  730 

 731 

Statistical analyses. Statistical analyses were carried out using R software 4.0.2 with the 732 

package vegan (v.2.5-7) unless otherwise indicated. Three different non-parametric multivariate 733 

statistical tests (Adonis, ANOSIM, and MRPP) were used to test the differences in soil microbial 734 

communities under warming and control treatments51. For Adonis, the one-way repeated-735 

measures ANOVA model was set as ‘dissimilarity ~ warming + block  year’ when using the 736 

http://ieg3.rccc.ou.edu:8080/


function Adonis in the R package vegan. For ANOSIM and MRPP, the permutation was 737 

constrained within each block in each year by setting ‘strata’ in the functions ANOSIM and 738 

MRPP in the R package vegan25. CCA was performed to determine the linkage between 739 

ecosystem functional parameters and microbial community structures. The significance of the 740 

CCA model was tested using ANOVA. Based on CCA results, variation partitioning analysis 741 

was performed to determine the contributions of each variable or group of variables to total 742 

variations in the soil microbial community composition. Mantel and partial Mantel tests were 743 

also performed to calculate the correlations between environmental factors and soil microbial 744 

communities.  745 

 746 

The PLS model was used to explore the relationships among treatments (warming), archaea 747 

community diversity, plant variables, and soil properties83. Each optimum PLS model is forward 748 

selected from all factors which may affect the dependent variable in biology/biogeochemistry, 749 

based on predictive performance counting in the explained variation (R2Y) and model 750 

significance (p for R2
Y and Q2

Y < 0.05, where significant Q2
Y helps to avoid overfitting). To 751 

visualize relevant associations, we only include the most relevant variable(s) with Variable 752 

Influence on Projection (VIP) values higher than 1.0083. When used as independent variables in 753 

PLS, the archaeal community beta-diversity was represented by the PC1-3 from Principal 754 

Coordinates Analysis of Sorensen distance. Inspired by VIP, we proposed a partial R2 index 755 

based on PLS to represent the proportion of variance explained by each independent variable 756 

(Eq.1). As a reference, we also calculated the pairwise correlation coefficient (as well as the R2) 757 

among the factors and the significance is based on Pearson correlation (between vectors) or 758 

Mantel test (between distance matrixes). The PLS-related analysis was performed using the ropls 759 



package in R84, and the Mantel test by the vegan package75. A list of potential predictors 760 

(independent variables, X) for each factor (dependent variable, Y) tested by PLS was included in 761 

Supplementary Table S9.  762 

 763 

RPLS j
2 = RY

2 ×
∑ (Wjf

2 ×SSYf)f

SSYcum
=

∑ (Wjf
2 ×SSYf)f

SSY
    (Eq.1) 764 

 765 

RPLS j
2  Partial R2 of variable j based on PLS. 766 

Wjf The PLS weight of variable j on component f. 767 

SSYf The sum of squares of Y explained by component f. 768 

SSYcum The cumulative sum of squares of Y explained by all components. 769 

RY
2  The percentage of Y dispersion (i.e., sum of squares) explained by the PLS model. 770 

SSY Y dispersion, i.e., sum of squares of Y. 771 

 772 

 773 

Data availability 774 

The DNA sequences of the archaeal 16S rRNA gene amplicons are available in the National 775 

Center for Biotechnology Information (NCBI) Sequence Read Archive under project accession 776 

number PRJNA861672. The DNA sequences of the bacterial 16S rRNA gene amplicons were 777 

under the project accession number PRJNA331185. Raw shotgun metagenomic sequences are 778 

deposited in the European Nucleotide Archive (http://www.ebi.ac.uk/ena) under study no. 779 

PRJNA533082. The soil physical and chemical attributes, and plant biomass and richness are 780 

downloadable online at http://www.ou.edu/ieg/publications/datasets. Silva 132 Ref NR database 781 

is available at https://www.arb-silva.de/documentation/release-132/. Greengene reference data 782 

set is available from the QIIME GitHub repository https://github.com/biocore/qiime-default-783 

reference/blob/master/qiime_default_reference/gg_13_8_otus/rep_set/97_otus.fasta.gz. Source 784 

data are provided with this paper. 785 

 786 
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Code availability 787 

R scripts for statistical analyses are available on GitHub at 788 

https://github.com/yazhang2022/OKwarmingsiteArchaea. 789 
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  875 



 876 



Fig. 1. Effects of experimental warming on the archaeal community diversity and 877 

succession across seven years. a, Archaeal community composition under unwarmed and 878 

warmed conditions. Cumulative richness is expressed as the number of operational taxonomic 879 

units (OTUs). b, The effect sizes of warming on archaeal biodiversity (including taxonomic, 880 

phylogenetic, and functional diversity). The estimated effect sizes (β) are regression coefficients 881 

based on rescaled response variables (rescaled to one with mean zero and unit standard 882 

deviation) in the linear mixed-effects (LMMs) models. Bars represent mean ± s.e.m. of effect 883 

sizes. Statistical significance is based on Wald type II χ² tests (n = 64; two-sided; p = 0.008, 884 

0.006, 0.070, 0.533 for 16S richness, 16S PD, GeoChip richness, and EcoFUN-MAP richness, 885 

respectively). Significance was expressed as ***p < 0.01; **p < 0.05; *p < 0.10. EcoFUN-MAP 886 

is a method designed for annotating metagenomic sequences by comparing them with functional 887 

genes used to fabricate GeoChip. c and d, Temporal changes in community differences between 888 

warming and control conditions. c, 16S rRNA genes (left: Sorensen dissimilarity metrics; right: 889 

unweighted UniFrac dissimilarity metrics); d, amoA genes. The slopes of the archaeal 890 

community and the bacterial community are significantly different in c (p = 0.007 and p < 891 

0.001). The first year is 2009 (year 0). Considering the repeated-measures design, the warming-892 

versus-control dissimilarity values at each block were fitted to LMMs with a fixed effect of time 893 

and a random intercept and slope effect among different pairs of plots (blocks). The slopes are 894 

presented as a coefficient in fixed effect ± standard error in random effect. The r2 values are 895 

calculated (details in Methods) to reflect the variance explained by the whole LMM model. p 896 

values were based on permutation tests (two-sided). The lines showed the fixed effects of the 897 

LMM. e, Differences in functional gene abundances between warming and control by response 898 

ratios. Bars represent mean ± 95% confidence interval of response ratios. Only genes showing 899 

significant differences between warming and control (p < 0.05, n = 64) are shown. EFM: 900 

metagenome EcoFUN-MAP; A: amoA genes (mean relative abundance > 10.0%).  901 

 902 

 903 

 904 



  905 
Fig. 2. Ecological processes and community assembly mechanisms associated with the 906 

temporal dynamics in the soil archaeal community. a, Relative importance of deterministic 907 

processes (homogeneous selection, HoS; heterogeneous selection, HeS) and stochastic processes 908 

(dispersal limitation, DL; homogenizing dispersal, HD; and drift and others, DR) between 909 

warming and control treatment. b, Changes in the relative importance of stochastic processes, 910 

HoS, and DR (%) between warming and control at each block over the years. Results are based 911 

on LMMs (statistical tests and significance are the same as in Fig. 1c-d). c, Effects of 912 

environmental factors on deterministic processes defined by the phylogenetic bin-based null 913 

model analysis (iCAMP) based on the Mantel test (two-sided). It only shows the factors with 914 

significant correlations (p = 0.039, 0.062, 0.049, 0.029 for total N, total organic C, total plant 915 

biomass, and the difference of plant richness). See Supplementary Table S7 for other factors. R, 916 

coefficient of determination from the Mantel analysis. The correlation was determined based on 917 



the difference (with a triangle before the name) or the mean (without a triangle) of a factor 918 

between each pair of samples. Significance was expressed as ***p < 0.01; **p < 0.05; *p < 0.10.  919 

 920 

 921 



Fig. 3. Variations of ecological processes across different phylogenetic groups. The 922 

phylogenetic tree is displayed at the center. a, Relative importance of different ecological 923 

processes in each bin (stacked bars in the 1st annulus). b, Relative abundance of individual 924 

taxonomic units (2nd annulus). All 287 taxonomic units are shown. c, Warming-induced change 925 

in taxonomic unit contribution to drift (3rd annulus), and d, homogeneous selection (4th annulus), 926 

where positive (outward bar) and negative (inward bar) represented increase and decrease by 927 

warming, respectively. The most abundant bins are marked in the figure, including Bin2 (83.5% 928 

relative abundance; dominated by Nitrososphaerales), Bin1 (15.1%; Nitrososphaerales), Bin4 929 

(0.9%; Methanomassiliicoccales) and Bin3 (0.2%; unclassified Euryarchaeota).  930 



 931 



Fig. 4. Environmental drivers of archaeal community structure and functioning. a, 932 

Relationships between archaeal community structure and environmental variables and ecosystem 933 

processes under warming. See Supplementary Fig. S8 for under control. Archaeal community 934 

structures, which include taxonomical composition by 16S rRNA genes and functional gene 935 

composition by GeoChip and EcoFUN-MAP, were tested against time, soil and plant variables, 936 

and ecosystem C fluxes. The edge width corresponds to Mantel’s r value, and the edge color 937 

denotes statistical significance (two-sided). Pairwise correlations of these variables are shown 938 

with a color gradient denoting Pearson’s correlation coefficients. Soil variables include soil 939 

nitrate (NO3
-), ammonium (NH4

+), total nitrogen (TN), total organic C (TOC), pH, precipitation 940 

of the sampling month (Prcp_SM), temperature, moisture, and drought index; plant variables 941 

include C3 and C4 aboveground biomass, plant richness, and total biomass; ecosystem C fluxes 942 

include ecosystem respiration (ER), gross primary productivity (GPP), net ecosystem exchange 943 

(NEE), autotrophic respiration (Ra), heterotrophic respiration (Rh), and total soil respiration (Rt). 944 

b, Partial least squares (PLS) models on the relationships among treatments (warming), soil 945 

properties, plant variables, archaeal community diversity and functional traits, and ecosystem 946 

functions. Directions for all arrows are from independent variable(s) to a dependent variable in 947 

the forward selected PLS models (p < 0.05 for both R2
Y and Q2

Y; two sided); only the most 948 

relevant variables (variable influence on projection > 1) are presented. The numbers near the 949 

pathway arrow indicate the proportion of variance explained for every dependent variable, with 950 

the top row representing the partial R2 index based on PLS (See details in Methods) and the 951 

bottom row representing Pearson correlation R2. The asterisks denote the significance levels of 952 

each optimum PLS model (top row) and Pearson correlation (bottom row). ***p < 0.01, **p < 953 

0.05 and *p < 0.10. The widths of pathways are proportional to the partial R2 index. 954 
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