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Abstract

Understanding the temporal succession of ecological communities and the underlying
mechanisms in response to climate warming is critical for future climate projections.
However, despite its fundamental importance in ecology and evolution, little is known about
how the Archaea domain responds to warming. Here, we showed that experimental warming
of a tallgrass prairie ecosystem significantly altered the community structure of soil archaea
and reduced their taxonomic and phylogenetic diversity. In contrast to previous observations
in bacteria and fungi, we showed convergent succession of the soil archaeal community
between warming and control. Although stochastic processes dominated the archaeal
community, their relative importance decreased over time. Furthermore, the warming-
induced changes in the archaeal community and soil chemistry had significant impacts on
ecosystem functioning. Our results imply that, although the detrimental effects of
biodiversity loss on ecosystems could be much severer, the soil archaeal community structure

would be more predictable in a warmer world.
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Since its formal recognition in 1990!, the archaea domain has challenged our views on the
diversity, ecology, and evolution of life, yet remains the least understood?. In contrast to the
traditional wisdom that archaea prefer extreme environments>~>, archaea are prominent members
of all terrestrial and marine communities® and are abundant in water columns, ocean sediments,
and soils> ®. Possessing unusual physiologies’, they play central roles in mediating global
carbon (C), nitrogen (N), and sulfur (S) cycles®!°. They are also an important component of the
human microbiome, though their role in health and disease remains undetermined!'.
Furthermore, the recent discovery of the Asgard archaeal superphylum leads to a possibility of
archaea as ancestors of eukaryotic life!>!%. Thus, understanding the physiology, ecology and

evolution of archaea represents one of the most exciting frontiers in biology?.

Despite such recent exciting discoveries, we have a limited understanding of archaea in
terrestrial environments, particularly in soils® 1518, Archaea are ubiquitously present in soil,
represent a mass of 0.5 Gt C (a comparable amount with 7 Gt C for soil bacteria)'®, and are vital
to soil nitrification and methanogenesis due to the high numbers of ammonia-oxidizing archaea
(AOA) and methanogenic archaea'®?°. It was reported that their spatial distribution patterns in
soils are distinct from those of soil bacteria® !°, including biodiversity distribution and ecological
drivers® '>7. However, our understanding of the responses of soil archaea to climate change

remains rudimentary?!-24,

Climate warming represents one of the biggest disturbance factors imposed on human society
and global ecosystems. As temperature is a major driver of biological processes, climate

warming will impact various ecological communities. Based on long-term time-series data, our
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previous studies revealed that experimental warming leads to the divergent succession of soil
bacterial and fungal communities®®, accelerates microbial temporal scaling®®, reduces the
biodiversity of soil bacteria, fungi, and protists?’, but increases bacterial network complexity and
stability®. However, how climate warming affects the temporal succession of the archaeal
community remains elusive. On the one hand, since archaea and bacteria are both prokaryotic
and share greater structural similarity?, it is expected that climate warming could lead to the
divergent succession of soil archaeal communities similarly as it does for bacteria and fungi. On
the other hand, soil archaeal communities could exhibit distinct temporal responses to climate

warming as convergent or idiosyncratic®’ since archaea have unique physiology’.

Here, we conducted a long-term in situ warming experiment in a native, tallgrass prairie
ecosystem at the Kessler Atmospheric and Ecological Field Station (KAEFS) in the US Great
Plains in Central Oklahoma (34° 59’ N, 97° 31’ W)?>:3!, This long-term multifactor climate
change experiment was established in 2009 with a split-block design, in which the warming
treatment plots have been subjected to continuous + 3 °C warming by infrared radiators and the
control plots by “dummy” infrared radiators to account for the shading effect®!. In this study, we
focus on the warming effects on soil archaeal community diversity and succession by
determining: (i) whether and how warming affects the diversity and succession of soil archaeal
community; (ii) what the relative roles of deterministic and stochastic processes are in
controlling the temporal dynamics of soil archaeal community in response to climate warming;
and (iii) whether and how warming-induced changes of soil archaeal community mediate
ecosystem functioning. We hypothesize that soil archaeal community would undergo divergent

succession under warming due to increased deterministic filtering effects over time, similar to
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what was observed for bacteria and fungi, and that decreases in the taxonomical and functional
diversity of soil archaeal community under warming would negatively impact linked ecosystem

functions.

Impacts of warming on archaeal diversity. At the higher taxonomical levels, such as phylum
and order, the soil archaecal community was primarily composed of Thaumarchaeota
(Nitrososphaerales; > 96.5% in abundance, > 41.3% in incidence) and Euryarchaeota
(Methanomassiliicoccales; ~ 0.35% in abundance, ~ 2.1% in incidence), and to a lesser extent of
Pacearchaeota (unclassified), Woesearchaeota (unclassified), and Crenarchaeota (unclassified)
(Fig. 1a, Extended Data Fig. 1). The major Nitrososphaerales clade identified was potentially
responsible for ammonia oxidation process*?, and the Methanomassiliicoccales clade was

potential methanogens™.

To examine the warming effects on soil archaeal community diversity, linear mixed-effects models
(LMM) were used, in which the regression coefficients represent the directions and magnitudes of
the warming effect, namely effect sizes (). Warming had strong negative effects (f = -0.64 ~ -
0.60, p <0.008) on archaeal richness and Faith’s phylogenetic diversity (PD) (Fig. 1b), as richness
decreased by 1.4% (B = -0.64, p = 0.008) and PD by 7.3% (B = -0.60, p = 0.006). Similarly,
warming also decreased the functional richness of the archaeal community measured by a probe-
based microarray GeoChip (B =-0.17, p = 0.070). However, such decreases in functional richness
were not detected by metagenome EcoFUN-MAP (B =0.14, p = 0.533; Fig. 1b), which was most
likely due to the inherent problems of lower reproducibility, quantitative capability and sensitivity

associated with shotgun sequencing approaches**¢. These results indicate that experimental
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warming significantly reduced soil archaeal biodiversity, consistent with the observations for

bacteria, fungi, and protists®” 3737,

The warming effects on soil archaea varied considerably for individual operational taxonomic
units (OTUs). Warming significantly decreased the relative abundance of Nitrososphaerales-
affiliated OTU2 (response ratios (RR) =-0.45 + 0.32; 9.1% under warming vs 14.3% under
control; Supplementary Table S1), but increased the relative abundance of other
Nitrososphaerales-affiliated taxa, including OTU4 (RR =0.40 £ 0.27; 10.9% vs 7.4%) and
OTU11 (RR=0.75%0.60; 1.3% vs 0.6%). Two rare Methanobacteriales-affiliated taxa
(OTU1057 and OTUS35) were significantly negatively impacted by warming (RR < -2.30;
<0.001% under warming vs. 0.01% under control). These results suggest high variability even
within the same taxonomical clade in responses to warming, consistent with our previous
observations on the differential effects of warming on various microbial groups of bacteria and

fungi®.

Effects of warming on community structure and succession. As revealed by three
complementary non-parametric multivariate statistical tests (Adonis, ANOSIM, and MRPP), the
overall archaeal community structure was significantly different (p < 0.05) between the warmed
and control plots (Table 1, Supplementary Table S2). Time also had significant (p < 0.03) effects
on the soil archaeal community (Table 1). The detrended correspondence analysis (DCA)
showed that the soil archaeal community structure was shifted over time by warming (Extended
Data Fig. 2). Before starting warming treatment in 2009, the soil samples from both warmed and

control plots were closely clustered. In the subsequent years, the warmed samples were generally
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separated from the control samples on a yearly basis (Extended Data Fig. 2). Together, these
results suggest that experimental warming significantly altered soil archaeal community structure
and succession, which agrees with the results for bacteria and fungi observed in this site®’.
Studies with plants have shown similar results with climate warming impacting phylogenetic
diversity of grassland plant communities*’, abundance within species ranges of trees*’, and local

species extinctions of plants*!.

The community differences between the paired warmed and control plots decreased significantly
with time based on both the Sorensen metric (Fig. 1c; slope =-0.009, p = 0.043) and
phylogenetic distance metric (Fig. 1c; slope =-0.013, p = 0.020). In contrast, the corresponding
community differences between warming and control increased with time for bacteria (Fig. Ic;
slope =0.011, p = 0.004 for Sorensen metrics and slope = 0.009, p = 0.001 for unweighted
Unifrac metrics), and fungi (Extended Data Fig. 3; slope = 0.020, p = 0.007 for Sorensen metrics
and slope = 0.014, p = 0.003 for unweighted Unifrac metrics). Also, both potential ammonia
oxidizer (Nitrososphaerales) and the dominant methanogen (Methanomassiliicoccales) showed
similar trends as the domain Archaea (Extended Data Fig. 4). In addition, the archaeal functional
gene-based (amoA gene) community distances between warming and control decreased
significantly (p < 0.05) over time (Fig. 1d). All these results suggest the convergent succession
of the soil archaeal community between warming and control, which is opposite to those

observed in bacteria.

The contrasting directions of succession between the domains of Archaea and Bacteria in

response to experimental warming invalidated our hypothesis of similar succession patterns
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between the two domains. The opposite directions in succession between soil archaea and
bacteria could be due to distinctions in biochemistry, genetics, physiology, ecology, and
evolution*> **. For instance, the soil archaeal community has relatively low taxonomic and
phylogenetic diversity (primarily Nitrososphaerales). These detected archaeal species are also
functionally similar with narrow ecological niches (i.e., nitrification) and are replacing each
other over time, which could result in convergent succession between warming and control. In
contrast, the soil bacterial community is taxonomically, phylogenetically, and functionally highly
diverse. They occupy heterogeneous niches, and could be subjected to multiple selection forces
(e.g., resource limitation and intraspecific competition)*? structuring community composition in

response to climate warming, which could lead to the more dissimilar community over time.

Effects of warming on archaeal functional structure. The warming-altered archaeal
taxonomic and phylogenetic composition could affect functional community structure. To test
this, the microbial communities were further analyzed by both GeoChip-based functional gene

arrays> 44

and shotgun metagenomic sequencing. While the shotgun sequencing-based
metagenomic approach is ideal for the novel discovery of phylotypes, functional genes,
regulators, and/or metabolic pathways, the microarray-based detection has advantages for
comparative studies in terms of sensitivity, quantitation, and reproducibility**. Warming had
significant (p < 0.001) impacts on the archaeal community functional structure (Adonis analysis,
Table 1). Among the 188 archaea-specific genes detected by GeoChip, the abundances of 45
genes (23.9%) significantly decreased under warming (Supplementary Table S3). Some of these

significantly impacted genes (16 out of 45 genes) were involved in C and N cycling (Fig. le,

Supplementary Table S3). Among the 163 archaea-specific genes detected by metagenome
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EcoFUN-MAP, warming had positive impacts on the abundances of eight genes and negative
impacts on 16 genes, as shown by the response ratios (Supplementary Table S4). Four out of 24
genes significantly altered by warming were involved in C and N cycling (Fig. le,
Supplementary Table S4). Two genes, aceB and ara, involved in C cycling were detected by
both GeoChip and metagenome EcoFUN-MAP with significant differences between warming
and control (Fig. 1e). However, the impacts of warming on these two genes by the two methods
were opposite. It was most likely that the direction determined by GeoChip (decreased in
abundance under warming) reflected the actual impact of warming as the results from amoA gene
amplicon sequencing agreed with GeoChip data (Fig. le). In addition, four genes (ara, cda,
xylanase, and amoA) from GeoChip but none from EcoFUN-MAP were strongly correlated with
ecosystem C fluxes, including gross primary productivity (GPP) and ecosystem respiration (ER)
(Supplementary Table S5 and S6). The ara, cda, and xylanase genes involve in C degradation
processes, and amoA gene in nitrification. Collectively, these results indicate that warming
significantly decreased the abundances of certain C and N cycling genes in the soil archaeal
community but could strengthen the linkages between the archaeal functional community

structure and ecosystem processes.

Community assembly processes in response to warming. To disentangle the community
assembly mechanisms involved in the observed temporal succession patterns of soil archaeal
community, we used a phylogenetic bin-based null model analysis (iCAMP)* and found that
homogeneous selection (HoS; selection under homogeneous abiotic and biotic conditions in
space and time) and drift (DR; random changes in the relative abundances of different species

within a community due to the inherent stochastic processes of birth, death, and reproduction)
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dominated archaeal community assembly, with the relative importance of 14.7% and 84.4% (Fig.
2a), respectively. Correspondingly, the partial canonical correlation analysis (CCA)-based
variation partitioning analysis indicated that the majority of the community variations (86.4%)
could not be explained by the measured soil and plant variables and time (Supplementary Fig. S5
and S6), suggesting that stochastic processes could play dominant roles in the assembly of soil

archaeal community.

Over the years, the archaeal community variation between warming and control showed
significant declines in stochasticity (Fig. 2b; slope =-0.015, p = 0.016) and DR (Fig. 2b; slope =
-0.016, p = 0.028), but increase in HoS (Fig. 2b; slope = 0.015, p = 0.015), suggesting
cumulatively enhanced deterministic filtering effect of warming on soil archaeal community. The
increase in warming-induced determinism over time was significantly correlated with total plant
biomass and total N (Fig. 2¢, Supplementary Table S7; [R| = 0.186, p < 0.060). Previous studies
reported mixed effects of plant variables (richness and biomass) on deterministic assembly
processes of soil bacterial communities*> %, but few on those of soil archaeal communities. Soil
N content can be a determining factor for the fitness of AOA, the predominant group in soil

archaeal communities*’.

The relative importance of different ecological processes varied substantially among different
lineages (bins) (Fig. 3). The members of the predominating order Nitrososphaerales distributed
in two bins, Bin2 (containing 23 OTUs, and accounting for 83.5% relative abundance) and Binl
(46 OTUs, 15.1% relative abundance) (Fig. 3a, b). Unexpectedly, these two bins were dominated

by different ecological processes — DR for Bin2 (99.8%) and HoS for Binl (97.2%).
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Furthermore, the warming-induced decrease of DR was mainly due to Bin2 (69.1%, Fig. 3¢ and
Extended Data Fig. 7), with OTU1 and OTU2 as the major contributors (contributed 24.3% and
26.1%, respectively; Supplementary Table S8). In contrast, the warming-induced increase of
HoS was mainly attributed to the responses of Binl (98.6%, Fig. 3d and Extended Data Fig. 7),
with OTU3 and OTU11 as top contributors (contributed 33.6% and 20.3%, respectively;
Supplementary Table S8). Altogether, these results demonstrated complex assembly mechanisms

of different taxa in response to warming, even within Nitrososphaerales.

Links between archaeal community structure and functioning. We compared correlations
between archaeal community structure and environmental variables and ecosystem functioning
under control and warming (Fig. 4a, Extended Data Fig. 8). The archaeal community measured
by both taxonomical and gene functional compositions generally exhibited stronger correlations
with various environmental variables and ecosystem functioning under warming than control
(Fig. 4a, Extended Data Fig. 8). In fact, NH4'-N, C; plant biomass, ER, and GPP were
significantly correlated with archaeal community structure under warming (Fig. 4a, Extended
Data Fig. 8; p <0.05). Year was the most influential factor affecting archaeal community
taxonomical and functional compositions under both warming and control, followed by total
plant biomass. In addition, soil pH, precipitation of the sampling month, drought index, soil
moisture, and ecosystem C fluxes including net ecosystem exchange (NEE) and heterotrophic
soil respiration (Rn) were also factors significantly associated with archaeal community structure
shared under warming and control (Fig. 4a, Extended Data Fig. 8; p < 0.05). Nevertheless, only a
limited number of examined variables showed significant correlations with archaeal community

taxonomical and functional structures under both warming and control.
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Partial least squares (PLS) analysis was further used to understand the environmental drivers of
archaeal community diversity, succession, and associated functions under warming treatment
(Fig. 4b, Supplementary Table S9). Warming had a strong positive influence on soil temperature
(Pearson correlation r = 0.92, partial R?= 0.38, p = 0.044) and to a lesser extent on soil pH (r=
0.003, partial R>= 0.17, p = 0.015), but a negative influence on soil moisture (r= -0.50, partial
R?=0.22, p = 0.007). Warming decreased archaeal community richness (r = -0.52, partial R>=
0.21, p = 0.016), archaeal C degradation gene abundances (r=-0.57, partial R*= 0.25, p = 0.002)
and N functional gene abundances (r= -0.62, partial R?>= 0.20, p = 0.001). In addition, warming
could shape archaeal community structure (i.e., B-diversity, PC2) indirectly through soil
temperature (r=-0.03, partial R?=0.23, p = 0.036) and archaeal community richness (r=-0.94,
partial R>= 0.45, p = 0.005). Soil total N (partial R?> 0.24, p < 0.005) and archaeal functional
traits (i.e., nitrification and denitrification; partial R>> 0.20, p < 0.011) also had strong effects on
archaeal B-diversity. Furthermore, the archaeal community functional traits involved in methane
and denitrification could positively impact ecosystem functions by affecting ER (partial R? >
0.17, p £0.006). Lastly, the PLS model showed that soil properties such as soil total organic C,
soil NH4"-N, soil moisture, and soil temperature could directly shape ecosystem functions,
including autotrophic respiration (Ra), Rn, NEE, and ER (partial R?> 0.34, p < 0.006). Together,
these results indicated that experimental warming could shape the soil archaeal community
directly or indirectly through soil temperature and that soil archaeal community structure was

crucial in mediating changes in ecosystem functioning.

Concluding remarks
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Understanding temporal dynamics and its underlying mechanisms within the context of climate
change is a fundamental issue in ecology; however, very few studies have examined the impacts
of climate warming on Archaea. This study provides several important insights into the responses
of the archaeal community to climate warming. First, consistent with our recent findings on the
soil bacteria, fungi, and protists?’, we demonstrate that climate warming reduced the taxonomic,
phylogenetic, and possibly functional diversity of soil archaeal community, which provides
explicit evidence supporting microbial biodiversity loss under long-term climate warming in a
field setting. Second, in contrast to the soil bacteria and fungi**, we reveal that warming played an
important role in accelerating the temporal succession of the soil archaeal community towards
higher convergence, which could be primarily due to their distinct differences in biochemistry,
physiology, ecology, and evolution®. In addition, our results demonstrated that the succession of
soil archaeal community to the perturbations of climate warming was primarily controlled by

stochastic processes, and experimental warming, acting as a filtering factor, reduced stochasticity.

Our findings have important implications for understanding and predicting the ecological
consequences of climate change. Because stochasticity reduces under warming as time proceeds,
the communities can converge more quickly to a community state with less stochasticity under
warming. As a result, the archaeal community composition and structure might be less variable
and more predictable under future climate warming. Also, since soil archaeal biodiversity
decreases under warming, the future ecosystems in a warmer world will be less diverse. It is
expected that the linked ecosystem functions and services could become more vulnerable under
future climate warming scenarios®®. Consequently, the detrimental effects of biodiversity loss

could be more severe. However, further research is needed to examine whether the warming-



312 induced convergent succession, archaeal biodiversity loss, and associated mechanisms are

313  applicable to other ecosystems.



314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

Acknowledgements

We thank all the former and current members of the Institute for Environmental Genomics for
their time and energy in maintaining the long-term climate change experiment. This work is
supported by the US Department of Energy, Office of Science, Genomic Science Program under
Award Number DE-SC0004601 and DE-SC0010715, and the Office of the Vice President for
Research at the University of Oklahoma. The data analysis performed by D.N. and N.X. was also

partially supported by NSF Grants EF-2025558 and DEB-2129235.

Author contributions

All authors contributed intellectual input and assistance to this study. The original concepts were
conceived by Y.Z. and J.Z. Field management was carried out by Y.Z., Linwei W., M.Y., X.Z.,
X.G.,SJ.,Z2Y.,SH,JF,JK,CC,CB, YF,JM, Y.O, YF, DN, ZS., NX.,, AZ. and
Liyou W. Sampling collection, soil chemical and microbial characterization were carried out by
Y.H., M.Y., Linwei W., J.G., and Z.G. Data analyses were done by Y.Z. and D.N. with the
assistance provided by Linwei W., and J.Z. All data analysis and integration were guided by J.Z.

The manuscript was prepared by Y.Z., DN., X.L., Y.Y.,J.T., and J.Z.

Competing interests

The authors declare no competing interests.



334
335
336

337
338
339
340
341
342

Table 1. Summary of permutational multivariate analysis of warming, year, block on soil
archaea community structure.

16S rRNA gene GeoChip Metagenome EcoFUN-
Variables MAP

F R’ p F R? p F R? p
Warming (W)  3.923  0.040 0.014 6.037  0.047  0.001 2215  0.031  0.001
Year (Y) 3.877 0274  0.001 8.857 0.485  0.001 1.922  0.189  0.001
Block (B) 2277  0.069  0.026 1.847  0.043  0.031 1.194  0.050  0.071
Y*B 1.437 0305 0.066 1.113  0.183  0.278 1.002  0.295 0.443

Permutational multivariate analysis of variance (Adonis) was used based on Bray—Curtis dissimilarity
matrices. The two-way repeated measures ANOVA model was set as dissimilarity ~ warming + year x block
using function adonis in R package vegan. Significant effects (p < 0.05) are shown in bold text. EcOFUN-MAP

is a method designed for annotating metagenomic sequences by comparing them with functional genes used to
fabricate GeoChip.



343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

Figure Legends

Fig. 1. Effects of experimental warming on the archaeal community diversity and
succession across seven years. a, Archaecal community composition under unwarmed and
warmed conditions. Cumulative richness is expressed as the number of operational taxonomic
units (OTUs). b, The effect sizes of warming on archaeal biodiversity (including taxonomic,
phylogenetic, and functional diversity). The estimated effect sizes () are regression coefficients
based on rescaled response variables (rescaled to one with mean zero and unit standard
deviation) in the linear mixed-effects (LMMs) models. Bars represent mean =+ s.e.m. of effect
sizes. Statistical significance is based on Wald type II y? tests (n = 64; two-sided, p = 0.008,
0.006, 0.070, 0.533 for 16S richness, 16S PD, GeoChip richness, and ECOFUN-MAP richness,
respectively). Significance was expressed as ***p < 0.01; **p < 0.05; *p < 0.10. EcoFUN-MAP
is a method designed for annotating metagenomic sequences by comparing them with functional
genes used to fabricate GeoChip. ¢ and d, Temporal changes in community differences between
warming and control conditions. ¢, 16S rRNA genes (left: Sorensen dissimilarity metrics; right:
unweighted UniFrac dissimilarity metrics); d, amoA genes. The slopes of the archaeal
community and the bacterial community are significantly different in ¢ (p = 0.007 and p <
0.001). The first year is 2009 (year 0). Considering the repeated-measures design, the warming-
versus-control dissimilarity values at each block were fitted to LMMs with a fixed effect of time
and a random intercept and slope effect among different pairs of plots (blocks). The slopes are
presented as a coefficient in fixed effect + standard error in random effect. The »° values are
calculated (details in Methods) to reflect the variance explained by the whole LMM model. p
values were based on permutation tests (two-sided). The lines showed the fixed effects of the
LMM. e, Differences in functional gene abundances between warming and control by response
ratios. Bars represent mean + 95% confidence interval of response ratios. Only genes showing
significant differences between warming and control (p < 0.05, n = 64) are shown. EFM:

metagenome ECOFUN-MAP; A: amoA genes (mean relative abundance > 10.0%).
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Fig. 2. Ecological processes and community assembly mechanisms associated with the
temporal dynamics in the soil archaeal community. a, Relative importance of deterministic
processes (homogeneous selection, HoS; heterogeneous selection, HeS) and stochastic processes
(dispersal limitation, DL; homogenizing dispersal, HD; and drift and others, DR) between
warming and control treatment. b, Changes in the relative importance of stochastic processes,
HoS, and DR (%) between warming and control at each block over the years. Results are based
on LMMs (statistical tests and significance are the same as in Fig. 1¢-d). ¢, Effects of
environmental factors on deterministic processes defined by the phylogenetic bin-based null
model analysis (ICAMP) based on the Mantel test (two-sided). It only shows the factors with
significant correlations (p = 0.039, 0.062, 0.049, 0.029 for total N, total organic C, total plant
biomass, and the difference of plant richness). See Supplementary Table S7 for other factors. R,
coefficient of determination from the Mantel analysis. The correlation was determined based on
the difference (with a triangle before the name) or the mean (without a triangle) of a factor

between each pair of samples. Significance was expressed as ***p < 0.01; **p < 0.05; *p <0.10.

Fig. 3. Variations of ecological processes across different phylogenetic groups. The
phylogenetic tree is displayed at the center. a, Relative importance of different ecological
processes in each bin (stacked bars in the 1% annulus). b, Relative abundance of individual
taxonomic units (2" annulus). All 287 taxonomic units are shown. ¢, Warming-induced change
in taxonomic unit contribution to drift (3™ annulus), and d, homogeneous selection (4" annulus),
where positive (outward bar) and negative (inward bar) represented increase and decrease by
warming, respectively. The most abundant bins are marked in the figure, including Bin2 (83.5%
relative abundance; dominated by Nitrososphaerales), Binl (15.1%; Nitrososphaerales), Bin4

(0.9%; Methanomassiliicoccales) and Bin3 (0.2%; unclassified Euryarchaeota).

Fig. 4. Environmental drivers of archaeal community structure and functioning. a,
Relationships between archaeal community structure and environmental variables and ecosystem
processes under warming. See Supplementary Fig. S8 for under control. Archaeal community

structures, which include taxonomical composition by 16S rRNA genes and functional gene



404  composition by GeoChip and EcoFUN-MAP, were tested against time, soil and plant variables,
405  and ecosystem C fluxes. The edge width corresponds to Mantel’s r value, and the edge color
406  denotes statistical significance (two-sided). Pairwise correlations of these variables are shown
407  with a color gradient denoting Pearson’s correlation coefficient. Soil variables include soil nitrate
408  (NOs"), ammonium (NH4"), total nitrogen (TN), total organic C (TOC), pH, precipitation of the
409  sampling month (Prcp SM), temperature, moisture, and drought index; plant variables include
410  Cs and C4 aboveground biomass, plant richness, and total biomass; ecosystem C fluxes include
411  ecosystem respiration (ER), gross primary productivity (GPP), net ecosystem exchange (NEE),
412  autotrophic respiration (Ra), heterotrophic respiration (Rn), and total soil respiration (R¢). b,
413  Partial least squares (PLS) models on the relationships among treatments (warming), soil

414  properties, plant variables, archaeal community diversity and functional traits, and ecosystem
415  functions. Directions for all arrows are from independent variable(s) to a dependent variable in
416  the forward selected PLS models (p < 0.05 for both R?y and Q?y; two-sided); only the most
417  relevant variables (variable influence on projection > 1) are presented. The numbers near the
418  pathway arrow indicate the proportion of variance explained for every dependent variable, with
419  the top row representing the partial R? index based on PLS (See details in Methods) and the
420  bottom row representing Pearson correlation R?. The asterisks denote the significance levels of
421  each optimum PLS model (top row) and Pearson correlation (bottom row). ***p <0.01, **p <
422 0.05 and *p < 0.10. The widths of pathways are proportional to the partial R? index.
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Methods:

Site description. The study site was located at the Kessler Atmospheric and Ecological Field
Station (KAEFS) in the US Great Plains in McClain County, Oklahoma (34°59' N, 97°31' W)3!,
The design of this site has been described in detail in our previous publications®> 2 48, Briefly,
KAEFS is a temperate grassland with an average air temperature of 16.3 °C and an average
annual precipitation of 914 mm (data from the Oklahoma Climatological Survey from 1948 to
1999). The experimental site was dominated by Cs forbs (Solanum carolinense, Ambrosia trifida
and Euphorbia dentate), C3 grasses (Bromus sps) and Cy4 grasses (Tridens flavus and Sorghum
halapense). The soil type was Port-Pulaski-Keokuk complex, with a neutral pH, a high available
water holding capacity (37%) and a deep (ca. 70 cm), moderately penetrable root zone?*. The soil
has a high available water holding capacity (37%), neutral pH, and a deep (ca. 70 cm),
moderately penetrable root zone. The concentrations of soil organic matter and total N are 1.9%

and 0.1%, respectively, and the soil bulk density is 1.2 g/cm®.

The field experiment started in July 2009 and is a split-block design, with warming (+3 °C) as
the primary factor. Two levels of warming (ambient and + 3°C) were set for four pairs of 2.5 m x
1.75 m plots by utilizing a ‘real’ infrared radiator (Kalglo Electronics) for warmed plots or a
‘dummy’ infrared radiator (Kalglo Electronics) for the corresponding control plots to account for

the shading effects. In this study, data generated from this site between 2009 and 2016 was used.

Field measurements. Soil temperature was monitored using constantan-copper thermocouples
every 15 min at 7.5, 20, 45 and 75 cm in the center of each plot. We used the annual average

values at 7.5 cm depth across the whole year to represent the microclimate of the surface soil



555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

sampled (0-15 cm). Soil moisture, expressed as volumetric soil water content (%V), was
measured once or twice a month using a portable time domain reflectometer (Soil Moisture
Equipment Corp.) from the soil surface to a 15-cm depth. The average values of three
measurements in each plot were used as monthly averages and the average of soil moisture data
across each year was presented in this study. All species within each plot were identified to
estimate species richness. Above-ground plant biomass was estimated by a modified pin-touch

d*!* with C; and C4 species separated™.

metho
Ecosystem C fluxes, including NEE, ER, GPP, soil total respiration (R¢), Rn, and R, were
measured once or twice a month between 10:00 and 15:00 (local time)*">>!. NEE and ER were
measured using an LI-6400 portable photosynthesis system (LI-COR) attached to a transparent
chamber (0.5 m x 0.5 m x 0.7 m). R¢ and Ry, were measured using an LI-8100A soil flux system
attached to a soil COz flux chamber (LI-COR)*%. GPP was estimated as the difference between
NEE and ER and Ra was the difference between R and Ri. The average values of ecosystem C

fluxes and respirations across each year were used in this study.

Sampling. We collected eight surface (0-15 cm) soil samples annually in four control and four
warmed plots from 2010 to 2016 (Y 1-Y7) during the peak plant biomass season (September to
October). Eight pre-warmed samples were taken in 2009 (YO0). Each soil sample was a mixture
of three soil cores (2.5 cm diameter X 15 cm depth) taken with a soil sampler tube to reduce the
variation caused by soil heterogeneity. A total of 64 soil samples from four replicate plots under

warming and control (ambient) conditions were included and analyzed in this study. Soil samples
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were kept on ice for less than two hours before they were transferred to the laboratory located at

the University of Oklahoma.

Soil chemistry. After removing visible roots (> 0.25 cm) and rocks, soil samples were sent to the
Soil, Water, and Forage Analytical Laboratory at the Oklahoma State University (Stillwater, OK,
USA) for chemical analyses, including organic C and total N contents, soil nitrate (NO3~) and
ammonia (NH4"), and soil pH. Detailed information was provided in our previous publication by
Guo et al.®. As shown previously, experimental warming significantly altered aboveground
plants, ecosystem processes, and soil conditions®>*®, For microbiological analyses, samples were

stored at -80 °C before DNA extraction.

DNA extraction. Soil DNA was extracted from 1.5g of each well-mixed soil sample by a
protocol® > including freeze-grinding treatment, SDS-based lysis, followed by purification with
a MoBio PowerSoil DNA isolation kit (MoBio Laboratories, Carlsbad, CA, USA). DNA quality
was assessed with a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and a ratio of 2.0-2.2 for OD260/0D230 and 1.7-2.0 for OD260/0D280
indicated good quality. The final DNA concentrations were quantified by PicoGreen using a
FLUOstar Optima fluorescence plant reader (BMG Labtech, Orthenberg, Germany). DNAs were

stored at -80 °C before sequencing analysis®.

Amplicon sequencing. We used a two-step PCR amplification protocol for constructing the
sequencing library to reduce sequencing errors, minimize amplification bias, and preserve semi-

quantitative information of PCR amplification®® 3* 3, In this study, we used one primer set
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targeting the V3—V4 hypervariable region of the archaeal 16S rRNA genes, 519F (5’ -
CAGYMGCCRCGGKAAHACC -3") and 806R (5’ - GGACTACNSGGGTMTCTAAT -3")°6-%8,
To amplify the archaeal amoA genes, the primer set (5’ -STAATGGTCTGGCTTAGACG-3")
and (5’ -GCGGCCATCCATCTGTATGT-3")* was used. In addition, the primer set, 515F (5’ -
GTGCCAGCMGCCGCGGTAA-3") and 806R (5' -GGACTACHVGGGTWTCTAAT-3'), were
used for bacterial community profiling®. During the first amplification step, 10 ng DNA from
each sample was PCR-amplified for 10 cycles in a 25 pl reaction volume with the primers
without adaptors. The obtained PCR products were then purified and dissolved in 50 pl
deionized water. During the second amplification step, 15 pl of the PCR products from each
sample were amplified using the primers with adaptors, barcodes, and spacers for an additional
15 cycles. The PCR reactions at each step were done in triplicates. Paired-end sequencing of the
amplicons (2 % 250 bp) was done with an Illumina MiSeq platform (Illumina, Inc., San Diego,
CA, USA) following manufacturer’s instructions for both the archaeal and bacterial 16S rRNA
genes>* 3. For sequencing the archaeal amoA gene amplicons, MiSeq Reagent Kit v3 (2 x 300
bp) (Illumina, Inc., San Diego, CA, USA) was used. An average of 29,900 + 20,800, 25296 +
20560, and 59900 + 36,700 sequence reads per sample were obtained for the archaeal 16S rRNA

genes, archaeal amoA genes, and bacterial 16S rRNA genes, respectively.

Sequence preprocessing. The raw reads of sequences were analyzed using a sequence analysis
pipeline built on the Galaxy platform (version 0.1.0), developed by the Institute for

Environmental Genomics®! (http://zhoulab5.rccc.ou.edu:8080). Primer sequences were trimmed

from the paired-end sequences and filtered by the Btrim program®® with a threshold of QC > 20

over a 5-bp window size. Forward and reverse reads of the same sequence with at least 20 bp
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overlap and < 5% mismatches were combined using FLASH®®. Any joined sequences with an
ambiguous base or a length of <245 bp were discarded. Because the expected lengths of the
archaeal amoA gene amplicons (635 bp) were larger than the summed length of forward and
reverse reads (600 bp), we only used the forward reads of the archaeal amoA4 gene amplicons
with a cutoff length of 273 nt. Thereafter, OTUs were clustered by UPARSE®* at 97% identity
and singletons were removed from the remaining sequences® %°. The Greengenes reference data
set%® for 16S data was used as reference databases to remove chimeras. For the archaeal
community, each sample was rarefied to a sequencing depth of 7,860 to achieve the same total
read abundance. A total of 287 OTUs (at 97% similarity) were obtained across all samples.
Rarefaction curves approached saturation, suggesting that this level of sequencing effort was
sufficient to estimate the diversity of the soil archaeal community (Extended Data Fig. 9). In
comparison, the bacterial community was rarefied to a sequencing depth of 21,200 with 35,306
OTUs across all samples. OTU taxonomic classification was performed using representative
sequences from each OTU through the Ribosomal Database Project Classifier with 50%
confidence estimates®’. We also constructed community profiling based on amplicon sequence
variants (ASVs) by three widely-used denoising packages UNOISE3®®, DADA2%, and Deblur’’.
We compared the effects of experimental warming on the resulting community profiles by three
non-parametric multivariate statistical tests (Adonis, ANOSIM, and MRPP; Supplementary
Table S2). OTU-based archaeal community structure was significantly altered by seven years’
warming treatment with all three statistical tests (p < 0.050), while UNOISE3, DADA2, and
Deblur community profiles showed significant (p < 0.050) or marginally significant (p < 0.100)
differences by warming treatment in some of the tests but not all (Supplementary Table S1). It

suggested that the community structure obtained from OTU-based clustering was more robust to
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different statistical tests and agreed with the experimental setup. Therefore, the community

profiling obtained from OTU-based clustering was used in the following analyses.

Diversity analyses. Richness and Faith’s index were used to measure taxonomic and phylogenetic
a-diversity, respectively, and they were computed using the Picante R package’!. To estimate
phylogenetic B-diversity, the representative amplicon sequences were aligned using Clustal
Omega v1.2.2" for constructing the phylogenetic tree by FastTree2 v2.1.1073. The FastTree
topology search was constrained with the relatively reliable 16S-based phylogenetic tree in Silva
Living Tree Project’ release 132. Unweighted UniFrac distances and Sorensen dissimilarity
metrics were calculated to estimate B-diversity based on the resampled OTU tables in R using the

vegan package’’.

Measurement of community turnover. The impacts of warming on the temporal change in the
archaeal and bacterial community structure were measured by the distances of microbial
communities between warming and control at each block in each year’¢. As we had four
replicates (one replicate within each block) for both warming and control treatments, four
pairwise comparisons were obtained each year. In this way, the difference between each pair of
plots (D) was not subject to (in theory) the effects of experimental noise due to annual sampling
time differences, environmental fluctuations, molecular marker resolution, and/or technical
variation on community temporal turnovers. We then fitted the temporal change to the linear
mixed effects model (LMM) with a random intercept and sloped effect among different pairs of
plots (blocks)*, D ~t + (1 + t)[Block. In this model, D represents dissimilarity between warming

and control and t represents year. The slope of the model is the rate of temporal change in
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community structure between warming and control, which is a measure of community turnover.
The coefficient of determination (R?) was calculated for each LMM as described previously
(named conditional R? in Nakagawa and Schielzeth’s method)’’. The significance of each LMM
was calculated by a permutation test, randomized the eight time points (years) for > 40,000 times
(complete enumeration), and the p value was calculated by comparing the Akaike information
criterion of the observed LMM with the permuted ones. We also performed a permutation test to

calculate the significance of the difference in slopes between warming and control’®

. The p-value
was generated by comparing the observed slope difference between warming and control with

the difference in the permuted data sets?.

Functional profiling. GeoChip 5.0 M, a functional gene array**, was used for functional
profiling for the 64 samples from 2009 to 2016. GeoChip hybridization, scanning, and data
processing were performed in the Institute for Environmental Genomics, the University of

Oklahoma, following an established protocol®* #4,

The slides hybridized with genomic DNA were imaged as a Multi-TIFF with a NimbleGen
MS200 Microarray Scanner (Roche NimbleGen, Madison, WI, United States). The raw signals

from NimbleGen were submitted to the Microarray Data Manager (http://ieg.ou.edu/microarray),

cleaned, normalized, and analyzed using the data analysis pipeline. First, probes with poor or low
signals were removed using a cutoff for the coefficient of variance (CV; probe signal

SD/signal) >0.8. Then, the signal-to-noise ratio (SNR) was calculated with the average signal of
Agilent’s negative control probes within each subarray. The signal intensity for each spot was

corrected by subtracting the background signal intensity. If the net difference was <0, the spots
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were excluded from subsequent analysis**. To normalize signal intensities, the sum of the signal
intensity was calculated for each array, and the maximum sum value was used to normalize the
signal intensity of all spots in each array. We extracted 2524 archaea-specific probes from the
entire datasets based on their lineage information, which belonged to 188 archaea-specific genes.

All the analyses were done using the extracted subset of data.

Metagenomics of individual samples from 2009 to 2016 was also used for functional profiling.
Metagenomic libraries were prepared using a KAPA Hyper Prep Kit (KR0961) following the
manufacturer’s instructions and sequenced at the Oklahoma Medical Research Foundation’s
Genomics Core using the [llumina HiSeq 3000 platform with a 2 x 150 bp paired-end kit. We
obtained 1100.14 gigabases (Gb) of data in total, with an average of 17.19 + 2.68 Gb per
sample®’. Processing of the metagenomic sequences included quality evaluation by FastQC®,
duplicate removal by CD-HIT®® with an identity cutoff of 100%, and quality filtering by NGS
QC Toolkit (version 2.3.3)%!. Bases with a quality score <20 were trimmed from the 3’ end until
the first base had a quality score > 20. Trimmed reads with a length of > 120 and an average
quality score > 20 were kept. In addition, reads with more than one ambiguous base were
removed?’. All reads were submitted to our EcOFUN-MAP pipeline

(http://www.ou.edu/ieg/tools/dataanalysis-pipeline.html) to extract shotgun sequence reads of

environmental importance®®. Archaea-specific gene clusters were extracted from the entire
datasets based on their lineage information, resulting in 21031 gene clusters belonging to 163

genes. This archaea-specific dataset was used in the following analyses.
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Community assembly. The iCAMP framework was used to investigate the community
assembly mechanisms at the level of individual taxa/lineages*. The R code for iCAMP was
available as an open-source R package, iCAMP, and a web-based

pipeline (http:/ieg3.rccc.ou.edu:8080) built on the Galaxy platform (version 18.09)°'. iCAMP

could differentiate the relative importance of five assembly processes to both the whole
community and individual taxa/lineages, including homogeneous selection (HoS), heterogeneous
selection (HeS), dispersal limitation (DL), homogenizing dispersal (HD), and drift and others
(DR)*:82_ Defined in iCAMP, HoS and HeS constituted deterministic processes, while DL, HD,
and DR constituted stochastic processes. Our analyses were based on a phylogenetic distance
threshold for the significant phylogenetic signal of 0.2 and a minimal bin size of 12. Detailed
explanations of the settings for individual parameters could be found in a previous study*’. The
five assembly processes were assessed for their relative importance in governing community
variations between warmed plots and control plots. Then, the relative importance of each process
was fitted to an LMM with a random intercept and slope effect among different pairs of plots
(blocks). The model was set as M ~t + (1 + t)|Block, where M represents the relative importance
(%) of a process and t represents year. The coefficient of determination (R?) and the significance

of each LMM was determined as described above.

Statistical analyses. Statistical analyses were carried out using R software 4.0.2 with the
package vegan (v.2.5-7) unless otherwise indicated. Three different non-parametric multivariate
statistical tests (Adonis, ANOSIM, and MRPP) were used to test the differences in soil microbial
communities under warming and control treatments®!. For Adonis, the one-way repeated-

measures ANOV A model was set as ‘dissimilarity ~ warming + block x year’ when using the
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function Adonis in the R package vegan. For ANOSIM and MRPP, the permutation was
constrained within each block in each year by setting ‘strata’ in the functions ANOSIM and
MRPP in the R package vegan®>. CCA was performed to determine the linkage between
ecosystem functional parameters and microbial community structures. The significance of the
CCA model was tested using ANOVA. Based on CCA results, variation partitioning analysis
was performed to determine the contributions of each variable or group of variables to total
variations in the soil microbial community composition. Mantel and partial Mantel tests were
also performed to calculate the correlations between environmental factors and soil microbial

communities.

The PLS model was used to explore the relationships among treatments (warming), archaea
community diversity, plant variables, and soil properties®®>. Each optimum PLS model is forward
selected from all factors which may affect the dependent variable in biology/biogeochemistry,
based on predictive performance counting in the explained variation (R2Y) and model
significance (p for R?y and Q%y < 0.05, where significant Q%y helps to avoid overfitting). To
visualize relevant associations, we only include the most relevant variable(s) with Variable
Influence on Projection (VIP) values higher than 1.00%*. When used as independent variables in
PLS, the archaeal community beta-diversity was represented by the PC1-3 from Principal
Coordinates Analysis of Sorensen distance. Inspired by VIP, we proposed a partial R? index
based on PLS to represent the proportion of variance explained by each independent variable
(Eq.1). As a reference, we also calculated the pairwise correlation coefficient (as well as the R?)
among the factors and the significance is based on Pearson correlation (between vectors) or

Mantel test (between distance matrixes). The PLS-related analysis was performed using the ropls
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package in R¥, and the Mantel test by the vegan package’. A list of potential predictors
(independent variables, X) for each factor (dependent variable, Y) tested by PLS was included in

Supplementary Table S9.

r (WhxssYg) 3¢ (WExssye)
RiLsj = Ry X (SS;(cum = S]SY (Eq.1)

Rpps; Partial R* of variable j based on PLS.

W; The PLS weight of variable j on component f.

SSY; The sum of squares of Y explained by component f.

SSY.umThe cumulative sum of squares of Y explained by all components.

R% The percentage of Y dispersion (i.e., sum of squares) explained by the PLS model.
SSY Y dispersion, i.e., sum of squares of Y.

Data availability

The DNA sequences of the archaeal 16S rRNA gene amplicons are available in the National
Center for Biotechnology Information (NCBI) Sequence Read Archive under project accession
number PRINA861672. The DNA sequences of the bacterial 16S rRNA gene amplicons were
under the project accession number PRINA331185. Raw shotgun metagenomic sequences are

deposited in the European Nucleotide Archive (http://www.ebi.ac.uk/ena) under study no.

PRJINAS533082. The soil physical and chemical attributes, and plant biomass and richness are

downloadable online at http://www.ou.edu/ieg/publications/datasets. Silva 132 Ref NR database

is available at https://www.arb-silva.de/documentation/release-132/. Greengene reference data

set is available from the QIIME GitHub repository https://github.com/biocore/qgiime-default-

reference/blob/master/qiime_default_reference/gg 13 8 otus/rep_set/97 otus.fasta.gz. Source

data are provided with this paper.
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Code availability

R scripts for statistical analyses are available on GitHub at

https://github.com/yazhang2022/OKwarmingsite Archaea.
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Fig. 1. Effects of experimental warming on the archaeal community diversity and
succession across seven years. a, Archaecal community composition under unwarmed and
warmed conditions. Cumulative richness is expressed as the number of operational taxonomic
units (OTUs). b, The effect sizes of warming on archaeal biodiversity (including taxonomic,
phylogenetic, and functional diversity). The estimated effect sizes (p) are regression coefficients
based on rescaled response variables (rescaled to one with mean zero and unit standard
deviation) in the linear mixed-effects (LMMs) models. Bars represent mean + s.e.m. of effect
sizes. Statistical significance is based on Wald type II y? tests (n = 64; two-sided; p = 0.008,
0.006, 0.070, 0.533 for 16S richness, 16S PD, GeoChip richness, and ECOFUN-MAP richness,
respectively). Significance was expressed as ***p < 0.01; **p < 0.05; *p < 0.10. EcoFUN-MAP
is a method designed for annotating metagenomic sequences by comparing them with functional
genes used to fabricate GeoChip. ¢ and d, Temporal changes in community differences between
warming and control conditions. ¢, 16S rRNA genes (left: Sorensen dissimilarity metrics; right:
unweighted UniFrac dissimilarity metrics); d, amoA genes. The slopes of the archaeal
community and the bacterial community are significantly different in ¢ (p = 0.007 and p <
0.001). The first year is 2009 (year 0). Considering the repeated-measures design, the warming-
versus-control dissimilarity values at each block were fitted to LMMs with a fixed effect of time
and a random intercept and slope effect among different pairs of plots (blocks). The slopes are
presented as a coefficient in fixed effect + standard error in random effect. The 7° values are
calculated (details in Methods) to reflect the variance explained by the whole LMM model. p
values were based on permutation tests (two-sided). The lines showed the fixed effects of the
LMM. e, Differences in functional gene abundances between warming and control by response
ratios. Bars represent mean + 95% confidence interval of response ratios. Only genes showing
significant differences between warming and control (p < 0.05, n = 64) are shown. EFM:

metagenome EcoOFUN-MAP; A: amoA genes (mean relative abundance > 10.0%).
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Fig. 2. Ecological processes and community assembly mechanisms associated with the
temporal dynamics in the soil archaeal community. a, Relative importance of deterministic
processes (homogeneous selection, HoS; heterogeneous selection, HeS) and stochastic processes
(dispersal limitation, DL; homogenizing dispersal, HD; and drift and others, DR) between
warming and control treatment. b, Changes in the relative importance of stochastic processes,
HoS, and DR (%) between warming and control at each block over the years. Results are based
on LMMs (statistical tests and significance are the same as in Fig. 1¢-d). ¢, Effects of
environmental factors on deterministic processes defined by the phylogenetic bin-based null
model analysis (ICAMP) based on the Mantel test (two-sided). It only shows the factors with
significant correlations (p = 0.039, 0.062, 0.049, 0.029 for total N, total organic C, total plant
biomass, and the difference of plant richness). See Supplementary Table S7 for other factors. R,

coefficient of determination from the Mantel analysis. The correlation was determined based on
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Fig. 3. Variations of ecological processes across different phylogenetic groups. The
phylogenetic tree is displayed at the center. a, Relative importance of different ecological
processes in each bin (stacked bars in the 1% annulus). b, Relative abundance of individual
taxonomic units (2" annulus). All 287 taxonomic units are shown. ¢, Warming-induced change
in taxonomic unit contribution to drift (3 annulus), and d, homogeneous selection (4" annulus),
where positive (outward bar) and negative (inward bar) represented increase and decrease by
warming, respectively. The most abundant bins are marked in the figure, including Bin2 (83.5%
relative abundance; dominated by Nitrososphaerales), Binl (15.1%; Nitrososphaerales), Bin4

(0.9%; Methanomassiliicoccales) and Bin3 (0.2%; unclassified Euryarchaeota).
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Fig. 4. Environmental drivers of archaeal community structure and functioning. a,
Relationships between archaeal community structure and environmental variables and ecosystem
processes under warming. See Supplementary Fig. S8 for under control. Archaeal community
structures, which include taxonomical composition by 16S rRNA genes and functional gene
composition by GeoChip and EcOFUN-MAP, were tested against time, soil and plant variables,
and ecosystem C fluxes. The edge width corresponds to Mantel’s r value, and the edge color
denotes statistical significance (two-sided). Pairwise correlations of these variables are shown
with a color gradient denoting Pearson’s correlation coefficients. Soil variables include soil
nitrate (NO3"), ammonium (NH4"), total nitrogen (TN), total organic C (TOC), pH, precipitation
of the sampling month (Prcp_SM), temperature, moisture, and drought index; plant variables
include Cs and C4 aboveground biomass, plant richness, and total biomass; ecosystem C fluxes
include ecosystem respiration (ER), gross primary productivity (GPP), net ecosystem exchange
(NEE), autotrophic respiration (Ra), heterotrophic respiration (Ru), and total soil respiration (Ry).
b, Partial least squares (PLS) models on the relationships among treatments (warming), soil
properties, plant variables, archaeal community diversity and functional traits, and ecosystem
functions. Directions for all arrows are from independent variable(s) to a dependent variable in
the forward selected PLS models (p < 0.05 for both R?y and Q?y; two sided); only the most
relevant variables (variable influence on projection > 1) are presented. The numbers near the
pathway arrow indicate the proportion of variance explained for every dependent variable, with
the top row representing the partial R? index based on PLS (See details in Methods) and the
bottom row representing Pearson correlation R2. The asterisks denote the significance levels of
each optimum PLS model (top row) and Pearson correlation (bottom row). ***p < 0.01, **p <

0.05 and *p < 0.10. The widths of pathways are proportional to the partial R? index.



