L)
o Instant-3D: Instant Neural Radiance Field Training Towards

On-Device AR/VR 3D Reconstruction

Sixu Li"
Georgia Institute of Technology
Atlanta, GA, USA
sli941@gatech.edu

Boyang (Tony) Yu
Georgia Institute of Technology
Atlanta, GA, USA
eiclab.gatech@gmail.com

Haoran You
Georgia Institute of Technology
Atlanta, GA, USA
hyou37@gatech.edu

Chaojian Li*
Georgia Institute of Technology
Atlanta, GA, USA
cli851@gatech.edu

Yang (Katie) Zhao
Georgia Institute of Technology
Atlanta, GA, USA
eiclab.gatech@gmail.com

Huihong Shi
Georgia Institute of Technology
Atlanta, GA, USA
eiclab.gatech@gmail.com

Wenbo Zhu
Georgia Institute of Technology
Atlanta, GA, USA
eiclab.gatech@gmail.com

Cheng Wan
Georgia Institute of Technology
Atlanta, GA, USA
cwan39@gatech.edu

Yingyan (Celine) Lin
Georgia Institute of Technology
Atlanta, GA, USA
celine lin@gatech.edu

ABSTRACT

Neural Radiance Field (NeRF) based 3D reconstruction is highly
desirable for immersive Augmented and Virtual Reality (AR/VR) ap-
plications, but achieving instant (i.e., < 5 seconds) on-device NeRF
training remains a challenge. In this work, we first identify the
inefficiency bottleneck: the need to interpolate NeRF embeddings
up to 200,000 times from a 3D embedding grid during each training
iteration. To alleviate this, we propose Instant-3D, an algorithm-
hardware co-design acceleration framework that achieves instant
on-device NeRF training. Our algorithm decomposes the embed-
ding grid representation in terms of color and density, enabling
computational redundancy to be squeezed out by adopting different
(1) grid sizes and (2) update frequencies for the color and density
branches. Our hardware accelerator further reduces the dominant
memory accesses for embedding grid interpolation by (1) mapping
multiple nearby points’ memory read requests into one during the
feed-forward process, (2) merging embedding grid updates from
the same sliding time window during back-propagation, and (3)
fusing different computation cores to support the different grid
sizes needed by the color and density branches of Instant-3D algo-
rithm. Extensive experiments validate the effectiveness of Instant-
3D, achieving a large training time reduction of 41X - 248X while
maintaining the same reconstruction quality. Excitingly, Instant-
3D has enabled instant 3D reconstruction for AR/VR, requiring a
reconstruction time of only 1.6 seconds per scene and meeting the
AR/VR power consumption constraint of 1.9 W.

“Equal contribution.

This work is licensed under a Creative Commons Attribution International 4.0 License.

ISCA °23, June 17-21, 2023, Orlando, FL, USA.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06...$15.00
https://doi.org/10.1145/3579371.3589115

CCS CONCEPTS

« Hardware — Application specific processors; - Computer
systems organization — Neural networks; Embedded hard-
ware.

KEYWORDS
Neural Radiance Field (NeRF), Hardware Accelerator

ACM Reference Format:

Sixu Li, Chaojian Li, Wenbo Zhu, Boyang (Tony) Yu, Yang (Katie) Zhao,
Cheng Wan, Haoran You, Huihong Shi, and Yingyan (Celine) Lin. 2023.
Instant-3D: Instant Neural Radiance Field Training Towards On-Device
AR/VR 3D Reconstruction. In Proceedings of the 50th Annual International
Symposium on Computer Architecture (ISCA °23), June 17-21, 2023, Or-
lando, FL, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3579371.3589115

1 INTRODUCTION

On-the-fly 3D reconstruction has become a fundamental task in nu-
merous augmented and virtual reality (AR/VR) applications which
involve fast-changing environments [11, 12, 39], e.g., virtual room
planner [2], VR painting [31], metaverse 3D asset creation [34], and
virtual telepresence [3]. Specifically, 3D reconstruction takes 2D
images from a set of sparsely sampled views of a 3D scene as its in-
puts and then generates images of the same scene from any desired
new view. Compared to offloading to the cloud, on-the-fly 3D recon-
struction can offer a smaller communication data size and enhanced
privacy protection. For example, a 20 MB reconstructed model [22]
may be used instead of 120 MB jpeg images [10]. This alternative is
critical for application scenarios with unstable or unavailable inter-
net connections, such as virtual telepresence [3] under which each
attendee’s environment needs to be reconstructed under varying
internet bandwidths at a latency of < 2 seconds [23, 25].

Among the tremendously growing efforts devoted to pushing for-
ward the achievable quality of 3D reconstruction, neural radiance
field (NeRF)-based reconstruction has stood out [22] thanks to its
state-of-the-art (SOTA) performance in terms of photorealistic re-
construction quality. However, while instant (i.e., < 5 seconds [24])

ISCA °23, June 17-21, 2023, Orlando, FL, USA.

Reconstruction Inputs NeRF Model Reconstruction Outputs
- -

4

l Multilayer Perceptron l

3D Embedding Grid 2D Images From Any New View of the Reconstructed Scene

Sparsely Sampled Images

Figure 1: An illustration of NeRF-based 3D reconstruction,
which takes 2D images from a set of sparsely sampled views
of a 3D scene as its inputs and then generates images of the
same scene from any desired new view.

NeRF-based reconstruction on AR/VR devices for new scenes is
highly desirable in unleashing the big promise of photorealistic 3D
reconstruction in many emerging applications, it is still not possible
even using the most efficient SOTA NeRF training algorithm [24].

To close the aforementioned gap, we first set out to understand
and identify the key bottleneck that has limited the achievable
runtime efficiency of training NeRF-based reconstruction for new
scenes. To do so, we start by conducting extensive profiling mea-
surements of the most efficient NeRF training algorithm, called
Instant-NGP [24], on multiple commercial devices with varying
levels of power consumption (e.g., 10 W ~ 20 W). After that, we
perform various analyses on the runtime breakdown of each step in
Instant-NGP [24]’s training pipeline and locate the key bottleneck:
the step of interpolating NeRF embeddings from a 3D embedding
grid and its corresponding back-propagation process. The purpose
of this step is to generate the embeddings of 3D points in the scene
to be reconstructed, which include the corresponding points’ color
and density information, during the reconstruction process. This
step needs to be executed more than 200,000 times during each
training iteration to ensure photorealistic reconstruction quality.
In particular, the heavy workload of this step dominates around
80% of the training runtime of the whole pipeline, as discussed and
analyzed in Sec. 2.2.

To tackle the inefficiency bottleneck identified above, we de-
velop an algorithm-hardware co-design acceleration framework,
and make the following contributions:

e We comprehensively profile and analyze the runtime bot-
tleneck in the pipeline of the most efficient NeRF training
algorithm [24] on multiple devices, and identify the primary
cause of the inefficiency: the necessity of interpolating NeRF
embeddings from a 3D embedding grid > 200,000 times per
training iteration.

e We develop an algorithm-hardware co-design acceleration
framework called Instant-3D for training NeRFs, which to
the best of our knowledge is the first that has achieved in-
stant on-device NeRF-based 3D reconstruction. Specifically,
Instant-3D targets resolving the aforementioned inefficiency
by developing dedicated algorithm and hardware innova-
tions that compress the storage requirement, the number of
computations, and the number of accesses for the 3D embed-
ding grid in the identified bottleneck step of embedding grid
interpolation.

e On the algorithm level, leveraging our discovery that color
and density have different sensitivities when it comes to

Li, et al.

compressing NeRFs, we propose to decompose the afore-
mentioned embedding grid in the identified bottleneck in
terms of color and density, and then adopt different (1) grid
sizes and (2) update frequencies for the resulting color
and density branches, allowing for orthogonally squeezing
out the computational redundancy in both branches without
compromising the reconstruction quality.

e On the hardware level, we propose a dedicated accelerator
that leverages the properties of the aforementioned algo-
rithm to boost hardware efficiency while further reducing the
dominant memory accesses during the required embedding
grid interpolation of NeRFs. The latter leverages our find-
ing that the memory access pattern during embedding grid
interpolation is predictable within a specific region of the
scene to be reconstructed, as shown in Sec. 4.2. Specifically,
our Instant-3D accelerator highlights (1) a feed-forward
read mapper that maps the memory read requests of the
embeddings of multiple nearby points into one read request
during the feed-forward process of NeRF training, (2) a back-
propagation update merger that merges multiple embed-
ding grid updates from the same sliding time window into
one update during the back-propagation phase of NeRF train-
ing, and (3) a multi-core-fusion-based reconfigurable
scheme to fuse different computation cores for support-
ing the different grid sizes needed by the color and density
branches of the Instant-3D algorithm.

e Benchmarking experiments and ablation studies on NeRF-
Synthetic [22], SILVR [9], and ScanNet [10] consistently
validate the effectiveness of Instant-3D, achieving a training
run reduction of 41X - 248X while maintaining the same
reconstruction quality as the most efficient NeRF training so-
lution. Excitingly, Instant-3D has enavked instant on-device
NeRF-based 3D reconstruction for AR/VR, requiring only 1.6
seconds per scene to reach a decent reconstruction PSNR of
25 (acceptable for image representations [20, 38]) on NeRF-
Synthetic [22] dataset while meeting the AR/VR power con-
sumption constraint of 1.9 W.

2 BACKGROUND AND MOTIVATION

2.1 Preliminaries of NeRFs

The Training Pipeline of Vanilla NeRFs. To reconstruct a spe-
cific 3D scene, NeRF takes a set of sparsely sampled views of the
same scene as inputs and optimizes an underlying continuous volu-
metric scene function, i.e., a multilayer perceptron (MLP) model [22].
Specifically, NeRFs’ training pipeline involves the following six
steps as illustrated in Fig. 2. Step @ randomly samples pixels as a
batch: One batch of data during each training iteration consists of
pixels randomly sampled from all the training images, and these
sampled pixels’ coordinates and their corresponding RGB colors are
the inputs and the ground truth label of the whole NeRF training
pipeline, respectively; Step @ maps the pixels to rays: For each sam-
pled pixel, based on its coordinate, a ray formulated as r = o + td is
emitted from the origin (i.e., the camera’s center) o of its correspond-
ing training view along direction d to pass through this particular
pixel, where ¢ represents the distance between the sampled point
along this ray and the origin o; Step @ queries features of the points

Instant-3D: Instant Neural Radiance Field Training Towards On-Device AR/VR 3D Reconstruction

Step ©:
Randomly Sample
Pixels as a Batch

..) R et Step ®: Back-Propagate
Step @: Query the Features [s | Sten @: Predict Pixels’ Col
of Points Along the Rays (e ep ©9: Predict Pixels Colors

Figure 2: NeRF [22]’s training process involves a total of six
steps: Step @ randomly samples pixels as a batch, Step @
maps the sampled pixels to rays r = o + td by emitting rays
to pass through the corresponding pixels, Step ® queries the
features (i.e., the RGB color and the density o) of points along
the rays by providing their locations and directions as the
inputs to an MLP model, Step @ predicts the pixels’ colors
following the principle of classical volume rendering [21],
Step ® computes the loss as the squared error between the
predicted colors and ground truth colors, and Step ® back-
propagates through the above fully differentiable pipeline.

along the rays: For each point that has a distance t; (k € [1,N],
where N represents the total number of the sampled points along
each ray) from o, both its location o + t;.d and direction d are ap-
plied to an MLP model as inputs. The MLP model then outputs the
corresponding density o; and an RGB color ¢ as the extracted
features of this particular point, i.e., (0 + txd,d) — (0%, cx); Step
O predicts the pixels’ colors: Following the principle of classical
volume rendering [21], the predicted color C(r) of the pixel corre-
sponding to the ray r can be computed by integrating the features
of all the points along the ray:

N
C(r) =)" Tie(1 — exp(=0k (tes1 — 1))k
k=1

k
where T = exp(— Z oj(tjv1 — tj)), (1)
j=1

where N is the number of sampled points along ray r and Ty denotes
the accumulated transmittance along ray r to point o + t;d, which
represents the probability of the ray traveling to the point without
hitting any other points; Step @ computes the loss of reconstructing
the scene, which is defined as the total squared error between the
predicted colors C(r) and the ground truth colors C(r):

£=3 [lew-cwl;]. ?)

reR

where R is the set of rays in each batch; Finally, Step ® performs
back-propagation: As all of the operations of the previous steps (e.g.,
Eq. 1 and Eq. 2) are differentiable, the weights of the MLP model in
Step © can be updated via gradient back-propagation based on the
reconstruction loss computed in Step ©.

After training, to generate the 2D image corresponding to any
desired new view of the reconstructed scene, the only difference
from the above pipeline is to replace the randomly sampled pixels
in Step @ with all the pixels in the image of the new view and then

ISCA °23, June 17-21, 2023, Orlando, FL, USA.

stop at Step @ without further computing the reconstruction loss
or back-propagation.

Vanilla NeRFs’ Training Cost. To achieve photorealistic re-
construction quality, the aforementioned training process typically
takes around 150,000 iterations per scene, where each iteration exe-
cutes an MLP model of 1 million FLOPs with a batch size of 786,432
(192 points/pixel X 4,096 pixels). Therefore, the required total train-
ing FLOPs is as large as 353,895 trillion FLOPs, requiring > 1 day
of training time on one V100 GPU [30]. Such a long training time
prohibits vanilla NeRFs [22] from being used for instant on-device
AR/VR scene reconstruction which is highly desirable for many
emerging applications, such as photorealistic telepresence [3].

SOTA Efficient NeRF Training Technique: Instant-NGP. To
alleviate the aforementioned prohibitive cost of training vanilla
NeRFs, various works [1, 5, 16, 24] have been proposed to accelerate
NeRFs’ training process. Among them, Instant-NGP [24] achieved
SOTA training speed vs. reconstruction quality trade-offs, e.g., it
requires only 5 seconds per scene on a high-end RTX3090 GPU [28]
and thus has been included in all mainstream NeRF-based 3D re-
construction infrastructures [8, 19, 36]. However, Instant-NGP still
cannot fulfill the requirement of instant 3D reconstructions on
resource-constrained AR/VR devices. In particular, to accelerate the
NeRF training process, Instant-NGP [24] replaces the MLP model in
Step @, which is used to query the features of points along the rays,
of vanilla NeRFs with a 3D embedding grid; The latter is stored as a
compact 1D hash table. In this way, the more costly MLP inference
operations (e.g., 1 million FLOPs) in vanilla NeRFs are now con-
verted into much less costly embeddings interpolation operations
(e.g., < 0.00005 million FLOPs). Therefore, as visualized in Fig. 3,
Step @ in Instant-NGP’s training pipeline consists of the following
two steps: Step ©-O interpolates embeddings from the embedding
grid. Specifically, for each queried point along the rays passing
through the pixels of training images, the embeddings e; of its eight
nearest vertices i € {000,001, ...,111} in the 3D embedding grid
will be fetched from the compact 1D hash table of size T through
the hash table index h; based on their coordinates (x;, y;, z;). Fi-
nally, the result of the trilinear interpolation on these eight vertices’
embeddings will be used as the embeddings of the queried point.
In particular, the hash function H(-) that maps the grid vertices’
coordinate (x;, yj, z;) to the hash table index h; is defined as:

hi = H(xi,yi, zi) = (m1x; @ m2y; @ n3z;) mod T, (3)
Step ©-D: ings From the ing Grid E ings Direction
- < ey s
hunt e [
€111 +
et e, MLP
H()/-v €000 €001 /€101 [/ %
hooo| @ el @47 4.
: N €110 +
€000" ey
Trilinear Ir 1 EG gl

3D Embedding Grid Stored in
the 1D Hash Table Format

Step ®-@: Compute the
Features of the Queried Points

Figure 3: Instant-NGP [24] achieves SOTA training efficiency
by replacing Step © (i.e., querying the features of points
along the rays using a large 10-layer MLP model) in vanilla
NeRFs [22] with both Step ®-® - Interpolating embeddings
from the embedding grid and Step ®-®@ - Computing the
features of the queried points using a small MLP model.

ISCA °23, June 17-21, 2023, Orlando, FL, USA.

rr“‘Step ®-(and the Back-Propagation of Step ®-10

Step ®-@ and the Back-Propagation of Step ©-@ @0 Other Steps

0% 20% 40% 60% 80% 100%

Devices
[
(1]
a
[7]
o
-
-
x
N

Jetson Nano

Runtime Breakdown

Figure 4: Training runtime breakdown averaged on the eight
scenes of NeRF-Synthetic [22] on three representative com-
mercial devices, suggesting that the most efficient NeRF train-
ing algorithm [24] is bottlenecked by Step ©-@ (i.e., interpo-
lating embeddings from the embedding grid) and its corre-
sponding back-propagation process on all considered scenes
and devices.

where @ denotes the bit-wise XOR operation, 11 = 1, 1o = 2654435761,
and 73 = 805459861, following the spatial hash function design
in [37]. After the queried points, which are along the rays passing
through the pixels of training images, obtain their corresponding
embeddings from Step ®-®, the embeddings will be applied as the
inputs for Step ®-®, which computes the features of the queried
points. Specifically, for each queried point, its embeddings e and
direction d are sent as inputs to a small MLP model to obtain the cor-
responding density o and view-dependent color c. Here the small
MLP only consists of 3 layers with 64 hidden units, in contrast to
the required 10 layers with each having 256 hidden units in the
vanilla NeRF [22]. Both the aforementioned lower-cost steps enable
Instant-NGP [24]’s SOTA training efficiency. However, even using
Instant-NGP [24], it still requires minutes to days of training time
to reconstruct each new scene on edge GPUs [26, 27, 29], which
is far from the desired instant runtime (i.e., < 5 seconds [24]) for
practical on-device 3D reconstruction.

2.2 Profiling Analysis of the SOTA Efficient
NeRF Training Process

To close the aforementioned gap between the desired instant on-
device 3D reconstruction runtime and the achievable training run-
time of the most efficient NeRF training algorithm [24], we conduct
extensive profiling measurements of Instant-NGP [24] on commer-
cial devices with varying levels of power consumption, including
Jetson Nano [29], which typically consumes power consumption of
10 W, Jetson TX2 [26], which typically consumes power consump-
tion of 15 W, and Xavier NX [27], which typically consumes 20 W.
As shown in Fig. 4, the runtime breakdown on the eight commonly
used scenes of NeRF-Synthetic [22] consistently indicates that Step
®-@ (i.e, interpolating embeddings from the embedding grid) and
its corresponding back-propagation process dominate the overall
training runtime of Instant-NGP [24] on all these devices. Based on
the above observations, we develop dedicated algorithm and hard-
ware innovations to compress (1) the storage size of, (2) the number
of computations of, and (3) the number of accesses to the 3D embed-
ding grid in the identified bottleneck of Step ®-® (i.e., interpolating
embeddings from the embedding grid). We present our algorithm
design in Sec. 3 and hardware design in Sec. 4, respectively.

Li, et al.

3 INSTANT-3D: PROPOSED ALGORITHM

In this section, we present our proposed Instant-3D algorithm. First,
we hypothesize that the color and density features have different
sensitivities when it comes to compressing NeRFs, and thus can
evolve at a different pace during NeRF training. Our hypothesis has
been empirically validated based on the consistent qualitative obser-
vations as well as the quantified analyses across different datasets,
as discussed in Sec. 3.1. Second, to alleviate the training runtime
bottleneck during embedding grid interpolation in Instant-NGP, we
leverage the above verified sensitivity difference by decoupling the
embedding grid into color and density parts. Specifically, this opens
up opportunities to adopt (1) different grid sizes (see Sec. 3.2) and (2)
different update frequencies (see Sec. 3.3) for the aforementioned
color and density branches of the 3D embedding grid. In this way,
the computational redundancy can be squeezed out orthogonally
in both branches adaptively to boost the overall training efficiency
without compromising the reconstruction quality.

3.1 Different Paces of Color and Density During
Training
To validate our hypothesis that the color and density features have
different sensitivities to the reconstruction quality of NeRFs, and
thus can evolve at a different pace during NeRF training, we have
conducted extensive visualization experiments and analysis. Both
consistently validate our hypothesis. Here we illustrate and discuss
one set of experiment results. Fig. 5(a) visualizes the reconstructed

Reconstructed Ground Truth Reconstructed Ground Truth
Depth Image Depth Image RGB Image RGB Image

o 24 | =@ RGB Images
5 —— Depth Images|
o 22
@
(=2}
S 20
2
<18
60 80 100 120 140 160 180 200
Number of Training Iterations
(b)

Figure 5: (a) Color and density feature visualization during
training: Colors are learned faster than the densities under
the same number of training iterations. Here we can see that
the color features are of higher quality than those of the
density under the same number of training iterations (i.e., at
the 160th iteration) on the Ficus scene [22], where the ground
truth color and density features are shown as a reference. (b)
Quantified PSNR of the color and density features during the
whole training trajectory: The PSNR of the color features is
consistently higher than that of the density features during
the whole training process. Here the plot shows the average
RGB/depth images PSNR on the eight scenes [22] vs. the
number of training iterations.

Instant-3D: Instant Neural Radiance Field Training Towards On-Device AR/VR 3D Reconstruction

RGB image and depth image of the same scene under the same
number of training iterations (here a total of 160). It is worth not-
ing that the depth image is not generated during training and is
merely used to test the learned density quality here. We can see
that the color information has been better learned than that of
the density information under the same training iterations, as the
reconstructed RGB color of the ficus is closer to the ground truth
one while the fine-grained geometry of the ficus, which is decided
by the learned density feature, is still not as clear as compared to
its ground truth counterpart. Meanwhile, to further quantify the
difference regarding the color and density features, Fig. 5(b) shows
the Peak Signal-to-Noise Ratio [13] (PSNR) (a higher value corre-
sponds to a better-reconstructed quality) of both the reconstructed
color and density features during the whole training trajectory.
The averaged PSNR vs. the number of training epochs on eight
different datasets shows that the color feature is learned at a faster
pace than that of density during NeRF training. For example, it
takes a total of 160 iterations vs. 200 iterations for the color and
density features to evolve to a quality of 24 dB PSNR. We conjecture
that the aforementioned observations are caused by the different
optimization for the color and density, i.e., the training loss (Eq. 2)
is based on the predicted color rather than the predicted density,
indicating that optimizing the color is easier and thus the color
features are less sensitive to model compression. Motivated by our
above discovery regarding the different sensitivities and pace of
the color and density features during NeRF training, we propose to
decompose the embedding grid into a color one and a density one.
In this way, we can explore the possibility of adopting different grid
sizes and different update frequencies for the decomposed branches,
as discussed and analyzed in the following two subsections.

3.2 Different Grid Sizes for the Color and
Density Branches

Observations. Leveraging the discovery above and our proposed
decomposition of the embedding grid, we propose to adopt differ-
ent grid sizes for the resulting color and density branches of the
decomposed embedding grids, aiming to reduce the training time
without hurting the achieved reconstruction quality.

Table 1: The achieved recon-
struction quality (PSNR) vs.
the required training time
on the eight scenes of NeRF-

Tab. 1 shows one set of
our validation experiments
in terms of the achieved
reconstruction PSNR vs.

ISCA ’23, June 17-21, 2023, Orlando, FL, USA.

12.5% while maintaining the same PSNR as compared to Instant-
NGP [24]. (2) Color features are less sensitive than density
features when their grid size is reduced. Particularly, when the
color grid size or density grid size is reduced to 0.25x of the vanilla
one in Instant-NGP [24], the achieved reconstruction PSNR is 26.0
dB vs. 25.4 dB, respectively, indicating the lower sensitivity of the
former to the grid size (i.e., a higher level of spatial redundancy).

Proposed Technique. Built upon our discovery above and con-
sistent observation, we propose to use a smaller grid size for the
color grid than that for the density grid, i.e., we ensure Sp > Sc in
our Instant-3D algorithm as visualized in Fig. 6.

3.3 Different Update Frequencies for the Color
and Density Branches

Observations. With similar motivation, we propose to adopt differ-
ent update frequencies for the resulting color and density branches
of the decomposed embedding grids to reduce the training time
without hurting the reconstruction quality.

Tab. 2 shows one set of Table 2: The achieved recon-
our validation experiments struction quality (PSNR) vs.
in terms of the achieved the required training time

reconstruction PSNR vs.
the measured training time,
where we vary the update
frequencies for the density

on the eight scenes of NeRF-
Synthetic [22], when adopting
different update frequencies
for the density grid Fp and the

the measured training time,
where we vary the den-
sity grid size Sp and color
grid size Sc from Sp

Synthetic [22], when adopt-
ing different grid sizes for the
density grid Sp and the color
grid Sc. Here the training run-

Sc = 025 : 1toSp time is measured on an edge
Sc = 1 : 0.25. Here we GPU [27].
make two observations. (1)
A i iff i . Average Training Average

_doPtlng different gl‘ld Sp:Se Runtime (s) Test PSNR
sizes for the color and | s T
density grids leads to a . .

. 0.25:1 65 (1 9.7%) 25.4

better PSNR vs. training 1:0.25 H 63 (| 12.5%) H 26.0

runtime trade-off, as com-
pared to adopting the same grid size for both grids as in Instant-
NGP [24]. In particular, doing so reduces the training runtime by

grid Fp and color grid Fe
from Fp : Fc = 0.5 : 1to
Fp : Fc = 1:0.5. Similarly,
we can make two observa-

color grid Fc. Here the train-
ing runtime is measured on an
edge GPU [27].

t (1) Adopti differ- . Average Training Average
1ons () opting . Fp:Fe Runtime (s) Test PSNR
ent update frequencies | . [260
for the color and density '0 o L6 24'3
grids leads to a better PSNR 105 H 65 (] 9:7";) H 25.9

vs. training runtime trade-
off, as compared to adopting the same update frequency for both
as in Instant-NGP [24]. Specifically, doing so reduces the train-
ing runtime by 9.7% while keeping a similar PSNR as compared
to Instant-NGP [24]. (2) Color features are less sensitive than
density features when the update frequency is reduced. In par-
ticular, when the update frequency for the color or density grid is
reduced to 0.5X of the vanilla one in Instant-NGP [24], the achieved
reconstruction PSNR is 25.9 dB vs. 24.3 dB, respectively, indicating
the lower sensitivity of the former to the update frequency (i.e., a
higher level of temporal redundancy).

Proposed Technique. Similarly, we propose to use a lower
update frequency for the color grid than that for the density grid,
i.e., Fp > Fc in our Instant-3D algorithm (see Fig. 6).

4 INSTANT-3D: PROPOSED ACCELERATOR

In this section, we first profile Instant-NGP [24] when applying
our proposed algorithm (see Sec. 4.1), showing that the achieved
training time is still not satisfactory for instant on-device NeRF
training. After that, we further analyze the memory access pat-
terns of the dominant embedding grid interpolation during both
the feed-forward and back-propagation processes when training
Instant-NGP [24] using our algorithm in Sec. 4.2. Finally, we present

ISCA °23, June 17-21, 2023, Orlando, FL, USA.

. Grid Size Sp Grid Size Sc.
:: LKL e = oMLP
AU _»%a-»,c\ﬁg%«
= ’ \

: U 7

Density ,’ *, Color

1 ’ \ 15 .
Update Every —— lterations + Sp > Sc « Update Every —— Iterations
Fp ¢ FosF, o Fo
(________________ D3>IC e mmcccmcm== == =))

Figure 6: Overview of the proposed Instant-3D algorithm
pipeline with the decomposed color and density branches.

our proposed Instant-3D accelerator in Sec. 4.3, where the featured
components include (1) a feed-forward read mapper to make good
use of the on-chip multi-bank SRAM arrays (see Sec. 4.4), (2) a
back-propagation update merger to minimize the number of re-
quired SRAM writes (see Sec. 4.5), and (3) a multi-core-fusion-based
reconfigurable scheme to support the different grid sizes needed
by our Instant-3D algorithm (see Sec. 4.6).

4.1 Motivation: Profiling Instant-NGP with Our
Algorithm

Fig. 7 depicts the profiling results of our proposed algorithm, de-
scribed in Sec. 3, which accelerates the most efficient NeRF training
algorithm Instant-NGP [24] by 17.0% on average. However, the
required training time per scene to achieve the satisfactory average
PSNR of > 25 dB [20, 38] is still around 60 seconds when being exe-
cuted on edge GPU Xavier NX [27], as shown in Tab. 1 and Tab. 2.
Thus, the achievable training runtime is still far from the desired
instant (i.e., < 5 seconds [24]) on-device 3D reconstruction. From
Fig. 7, we observe that Step ®-® (interpolating embeddings from
the embedding grid) and its corresponding back-propagation pro-
cess still dominate the training runtime, accounting for around 80%
of the total training runtime, motivating us to develop a dedicated
accelerator to further boost the training efficiency for achieving
instant on-device NeRF-based reconstruction.

4.2 Analyzing the Memory Access Patterns
During Training

Memory Access Patterns During Feed-Forward. Motivated by

the observation that memory capacity is the bottleneck of runtime

in [24], we further analyze the memory access patterns during

the embedding grid interpolation that dominates the total training

_'Q"’Step ®-D and the Back-Propagation of Step &-®
Step ®-@ and the Back-Propagation of Step ®-@ ”mher Steps

0% 20% 40% 60% 80% 100%

Instant-NGP

The Proposed
Instant-3D
Algorithm

Runtime Breakdown

Figure 7: Although the proposed Instant-3D algorithm can
further accelerate the most efficient NeRF training algo-
rithm [24] by 17.0% on average, the runtime breakdown av-
eraged on the eight scenes of NeRF-Synthetic [22] on edge
GPU Xavier NX [27] suggests that Step ®-O (i.e., interpolat-
ing embeddings from the embedding grid) still dominates
the training runtime of the proposed Instant-3D algorithm.

Li, et al.

runtime. As illustrated in Sec. 2.1, to obtain the embeddings of
each queried point along the camera rays passing through the
pixels of the training images, the embeddings of the eight nearest
surrounding vertices of the queried point are read from the 3D
embedding grid. Multiple 3D points can share the same cube of the
3D embedding grid; thus, their gradients will back-propagate to the
same embedding of the cube, indicating the opportunity to merge
those memory accesses to the same or similar addresses. Specifically,
we inspect all accessed addresses of the embedding grid during the
feed-forward process by clustering the eight surrounding vertices
into four groups, each of which contains two vertices with the
same y-axis and z-axis, as illustrated in Fig. 8. Through extensive
measurements on eight scenes [22], we find that (1) the inter-group
distances can be very large (the average distance is as high as
60,000); and (2) about 90% of intra-group distances are < 5, as
shown in Fig. 9. Both phenomena are consistently observed across
different training iterations.

We conjecture that the above two memory access patterns are
caused by the remoteness and locality of memory accessing,
respectively. Specifically, after passing the coordinates of the sur-
rounding vertices as the inputs to the hash function in Eq. 3, the
output addresses of the embedding grid can be classified into the
following two cases. Case 1: If the differences between the coordi-
nates of the surrounding vertices happen on the y-axis or z-axis,
then such differences will be amplified by 72 = 2654435761 or
3 = 805459861, respectively, according to Eq. 3. Such remoteness
results in quite different addresses among the different groups as
observed above (e.g., 60,000 on average, as shown in Fig. 8). Case
2: If the aforementioned differences of coordinates happen on the
x-axis, then such differences will not be amplified because of 77 = 1
in Eq. 3. Such locality results in similar addresses in the same
group as observed above (e.g., 90% of the address distances are < 5,
as shown in Fig. 9).

Motivated by (1) the fact that the 1D hash table, which represents
the 3D embedding grid, is stored in multi-bank SRAM arrays due
to the limited SRAM cell’s size and (2) the aforementioned unique
memory access patterns of the embedding grid during the feed-
forward process, we propose a feed-forward read mapper to map
the memory read requests of multiple nearby points’ embeddings
without bank access collisions into one read request, aiming to
improve the resource utilization of the multi-bank SRAM arrays.
We introduce the proposed detailed design of the feed-forward read
mapper in Sec. 4.4.

Address
‘th
Address: h 111
011. My ——— ULy e hon} Group 1
Average

hoo
Group 2
& hio1 } P Inter-Group

. hooo Distance: 60,000
g hlUO} Group 3

Address: g Z‘ﬁg@— Group 4

3D Embedding Grid ~ | ?ve:sage
Stored in the 1D Hash Mira-faroup
Table Format Distance: 2

Figure 8: The addresses for the embeddings of the eight neigh-
boring vertices during embedding grid interpolation can be
clustered into four groups, which is consistently observed
on the eight scenes of NeRF-Synthetic [22].

Instant-3D: Instant Neural Radiance Field Training Towards On-Device AR/VR 3D Reconstruction

> 90% Distances are in [-5, 5]

—100
150

1 .
o 50“ of \terat\ons

0 5

50
Ad Two 100
dresses to Reg de,f’by Ve’tices-
rom

Figure 9: More than 90% of distances between the accessed
addresses of neighboring vertices are between [-5, 5] when
observing the memory access patterns during the training
of the eight scenes in NeRF-Synthetic [22].

Memory Access Patterns During Back-Propagation. As in-
dicated by Eq. 3, when the size of the 1D hash table that stores
the 3D embedding grid is larger than the number of vertices in
the grid, multiple vertices can share the same stored embeddings
in the 1D hash table. This indicates an opportunity to reduce the
memory accesses by merging multiple accesses of such shared em-
beddings into only one. To verify whether such shared embeddings
are common in the bottleneck step of embedding grid interpola-
tion, we analyze the number of unique accessed addresses within a
small sliding time window (e.g., within 1000 continuous accesses)
in Fig. 10. We can observe that (1) the number of unique accessed
addresses varies along the training process and features predictable
access patterns during the feed-forward and back-propagation pro-
cesses; (2) for the access patterns during the feed-forward process,
the aforementioned cases of shared embeddings do not exist, i.e., all
of the 1000 continuous accesses in the sliding window are unique;
(3) for the access patterns during the back-propagation process,
there exists the cases of shared embeddings among more than five
accesses from different timesteps, where ~200 unique accesses are
observed among the 1000 continuous accesses.

Based on such consistently observed patterns of shared embed-
dings during the back-propagation process, we propose a back-
propagation update merger to merge the embedding grid updates

1000 =

>
800 Feed-Forward

More Shared Addresses 600
During Back-Propagation

1000

800

600

400

200
0.00 0.25

Figure 10: The number of unique accessed addresses within
a sliding window of 1000 continuous accesses indicates that
there are fewer unique accessed addresses during the back-
propagation process, enabling the opportunity to merge the
accesses to those addresses of the shared embeddings.

400 ’

Back-Propagation

200
T -
1.50-7

[TITIT

0.50 0.75 1.00 1.25 1.50 175

Timestep of the Sliding Window x10°

of Unique
Addresses

ISCA °23, June 17-21, 2023, Orlando, FL, USA.

that share the same embedding addresses but in different timesteps
into one update operation. We present the detailed design of the
proposed back-propagation update merger in Sec. 4.5.

4.3 Proposed Instant-3D Accelerator

Overview of Our Proposed Instant-3D Accelerator. Aiming to
design a complete acceleration system for NeRF-based 3D recon-
struction, our system includes Dynamic Random Access Memory
(DRAM), a host System on Chip (SoC), and our proposed accel-
erator that consists of three major components: the I/O interface,
the MLP units, and the grid cores, as shown in Fig. 11. Specifi-
cally, during the feed-forward process of each training iteration,
the host SoC first performs Step @ (i.e., randomly sampling pixels
as a batch) and Step @ (i.e., mapping pixels to rays) in the NeRF
training pipeline demonstrated in Sec. 2.1. After that, in Step ©
(i.e., querying the features of points along the rays), the coordinates
of those queried points along the rays that pass through the pix-
els of the training images are applied to our proposed Instant-3D
accelerator. Inside our Instant-3D accelerator, Step ©-@ (i.e., inter-
polating embeddings from the embedding grid) and Step ®-® (i.e.,
computing the features of the queried points) are accelerated by
the grid cores and MLP units, respectively. Finally, the features (i.e.,
color and density) of the queried points outputted by our Instant-
3D accelerator are fed back to the DRAM, and then the remaining
Step @ (i.e., predicting pixels’ color) and Step @ (i.e., computing
the reconstruction loss) are performed by the host SoC. The cor-
responding back-propagation process follows the same workload
assignment as the aforementioned feed-forward process, e.g., the
back-propagation of Step ®-O and Step ®-@, which are identified
as the bottleneck step of NeRF training in Sec. 2.2, are performed
on the proposed Instant-3D accelerator by the grid cores and MLP
units, respectively. We provide detailed descriptions of our grid
core and MLP unit designs as follows.

Grid Core Design. To perform the embedding grid interpola-
tion and its corresponding back-propagation process of Step &-@,
our Instant-3D accelerator consists of four grid cores, four of our
proposed Back-Propagation Update Merger (BUM) units (i.e., 1
BUM unit per grid core), and seven of our proposed Feed-Forward
Read Mapper (FRM) units (i.e., 4 FRM unit inside grid cores and
3 FRM unit among grid cores). In particular, to perform Step &
(i.e., interpolating embeddings from the embedding grid) with the
grid cores in our Instant-3D accelerator, the components in the grid
cores adopt the following order to execute the feed-forward process
of this step: (1) The 3D Coordinate Buffer SRAM first caches all
the 3D coordinates of the queried points along the rays that pass
through the pixels of the current batch’s training images; (2) The
coordinates of each queried points’ nearest eight vertices in the
grid are calculated by the Interpolation Coord. Pre Compute Unit; (3)
The aforementioned eight vertices’ coordinates are applied to the
Hash Function Compute Unit to execute the hash function (Eq. 3)
and output the corresponding eight addresses of the embedding
grid stored in a 1D hash table format; (4) The addresses of the em-
bedding grid to be accessed are fed into the Interpolation Address
Multi-Output Double Buffer; (5) The FRM units (see Sec. 4.4) first
map multiple embedding grid read requests into fewer ones with-
out causing memory bank access collisions and then send those

ISCA °23, June 17-21, 2023, Orlando, FL, USA.

... .
Host SoC - Address Address Hash Table Interpolation H
CPU GPU || DRAM Controller 1 Calculation L Scheduling | Access _|_ Write Merge H
> € >l€ >|€
H 7 7
Instant-3D Accelerator 3 : 4" 7 7 7
H 3 y3 L
1/ Interface Grid Cores 5
- Level 2 Fusion Grid Core 0

4 Cores

Level 1 Fusion .

MLP Units : Level 1 Fusion

2Tores "1

“2Tores

Hash Table

Interpolation Unit
SRAM Banks /

Gradient Compute Unit]

FPl6 !

Wul-Add Grid Core 3
Tree

Pre Compute Unit

Grid Core 0

3D Coordinate
P Buffer SRAM

Interpolation Coord.

Address R

Mutti-Output [] l(’;;‘) BUM Unit
Double Buffer

Interpolation Unit
/

Hash Function
Compute Unit

(Gradient Compute Unit]

FP16
Systolic FRM Unit (B16)
Array

i
1 :
1 H
] H
1 H
1 H
1 :
1 H
1 FRM

GridCore1 |, * : Unit
H : (B32)

FRM Unit (B32)

MLP Grid Core 2
On-Chip
Buffer

A

SRAM Bank
E“:‘:‘ FP16
(B': & Mal-Add Tree

[rRmsRAMLogic |

A 7

Figure 11: Overall architecture of our proposed Instant-3D accelerator. There are 3 different modes corresponding to different
hash table sizes: (1) For a hash table size of 256 KB, Level 0 standalone mode (marked as red) is activated. In this mode, the four
grid cores run independently, and the SRAM access of each core is managed by its internal FRM unit (B8); (2) For a hash table
size of 512 KB, Level 1 Fusion mode (marked as blue) is activated, during which two grid cores are fused by scheduling the
SRAM access of the two cores in the shared FRM Unit (B16); (3) For a hash table size of 1MB, Level 2 Fusion mode (marked as
green) is activated, during which all the 4 grid cores are fused together, and the SRAM access is managed by one FRM Unit

(B32). Here the "B8/B16/B32" stands for 8/16/32 SRAM banks.

requests to the Hash Table SRAM Banks to fetch the corresponding
embeddings; (6) Finally, the fetched embeddings are applied into
the Interpolation Unit to obtain the trilinear interpolated values
for generating the embeddings of the queried points. During the
back-propagation of Step @, all the aforementioned components,
except the Interpolation Unit, perform the same workload as the
aforementioned feed-forward process. Meanwhile, the Interpola-
tion Unit is reconfigured into the Gradient Computation Unit for
the calculation of the gradients of each accessed embeddings in the
current batch. Moreover, to reduce memory accesses during the
aforementioned action of writing back the updated embeddings, we
propose to include the BUM unit (see Sec. 4.5) in each grid core to
merge the updates of the same address into one update operation.

MLP Unit Design. To perform the feed-forward and back-
propagation process of MLP in Step ®-®@, we adopt two types
of computing unit for them: (1) a systolic array MLP Unit and (2) a
multiplier-adder-tree MLP Unit, dedicated to matrix multiplications
with (1) a relatively large output channel (e.g., > 3) and (2) a rela-
tively small output channel (e.g., < 3), respectively. Such a design
with two unit types is inspired by the observations in [14, 33], show-
ing that the multiplier-adder-tree can achieve a higher hardware
utilization than the systolic array under the cases with relatively
small output channels (e.g., < 3).

4.4 Feed-Forward Read Mapper to Better Use
SRAM Arrays

As mentioned in Sec. 4.2, to read all the eight embeddings of each
queried point’s nearest vertices in the embedding grid, we divide
the whole 1D hash table that stores the 3D embedding grid into
eight banks equally and consider 2 cells per bank. Thus, the four
clustered groups of eight embeddings are observed to be distributed
in four or two memory banks, which causes low utilization of the
multi-bank SRAM arrays (i.e., 4/8 = 50% or 2/8 = 25% SRAM bank
utilization, assuming 8 banks in total for this case). To improve

the memory utilization, we propose the FRM unit to better utilize
SRAM bandwidth during the feed-forward process. Specifically, as
shown in Fig. 12(a), multiple SRAM read requests from different
clock cycles can be mapped into one clock cycle when there is no
bank access collision. To achieve the goal of improving memory
utilization, as shown in Fig. 12(b), the FRM unit is designed to first
fetch a batch of addresses from the address buffer, then detect the
bank access collisions of those addresses. After that, the FRM unit
maps the memory read requests without collisions into one and
finally sends those mapped requests to the SRAM banks.

4.5 Back-Propagation Update Merger
Minimizing SRAM Writes

During the back-propagation process of each training iteration,

there can be multiple (e.g., more than five) update operations to

Bank 1 o o |
Bank 2 [o |
Bank 3 i o |
Bank 4 [o |
Bank 5 [o |
Bank 6 Feed-Forward | [[X
Bank 7 Read Mapper ([[0 @
Bank 8 (FRM) Unit (|
. s .
@

Inputs: Low Utilization Pid Outputs: High Utilization
Read Requests _ll Read Requests
Address Buffer FRM Unit Hash Table

SRAM Banks

1)

1

Interpolation !
Address)
Buffer A 1
1

1

]

1

:
H|M

Detector

Figure 12: The proposed FRM unit maps low utilization
read requests to high utilization ones, as visualized in its
(a) dataflow and implemented by its (b) hardware schematic.

Instant-3D: Instant Neural Radiance Field Training Towards On-Device AR/VR 3D Reconstruction

the same embeddings of the embedding grid, because of the cases
where multiple vertices in the grid share the same embeddings
stored in the 1D hash table, as analyzed in Sec. 4.2. Inspired by the
design strategy of trading higher-cost memory storage/access for
lower-cost computation in [6, 40], we propose a BUM unit to trade
higher-cost memory write accesses for the lower-cost operations
of merging the updates by accumulating the update values first and
then writing back to the embedding grid.

Specifically, as shown in Fig 13(a), with the proposed BUM unit,
if the current input address matches any cached ones in the BUM
buffer (i.e., the case of ty in Fig 13(a)), the corresponding update
operations will be merged into one by accumulating the values to
be updated; If the current input address does not match any cached
ones (i.e., the case of #; in Fig 13(a)), then the input address will
be inserted into the BUM buffer. Meanwhile, if any address in the
BUM buffer reaches the tail of the BUM buffer, this address will
be popped out, and the corresponding accumulated values to be
updated will be one write request to the SRAM.

In the proposed BUM unit shown in Fig 13(b), for each input
address and its corresponding gradient, the gradient is multiplied
by the pre-set learning rate, and the address is first fed into the One-
to-All-Match module to verify whether it matches the addresses in
different entries of the BUM buffer; After that, the address is sent
to the matched entry to perform the accumulation of the values
to be updated. However, if there is no matched entry for the input
address, an empty entry is used to store the input address and its
corresponding values to be updated (i.e., the gradient multiplied
by the learning rate). Because the size of the BUM buffer is fixed, a
controller and a counter to count the timesteps to the last update
values accumulation for each entry are included in the BUM unit

ISCA °23, June 17-21, 2023, Orlando, FL, USA.

to read out the accumulated values to be updated in the entry
and write them to the SRAM when the counter exceeds a pre-set
threshold. Thus, the proposed BUM unit with the aforementioned
design can merge the multiple memory write accesses to the same
address into a single one by accumulating the update values in the
BUM buffer.

4.6 Reconfigurable Scheme Supporting
Different Grid Sizes

To leverage the properties of our proposed Instant-3D algorithm,
i.e., adopting different grid sizes and update frequencies for the
decomposed color and density grids (see Sec. 3), it is desirable for
our Instant-3D accelerator to be scalable to different grid sizes and
update frequencies. Meanwhile, it is worth noting that our Instant-
3D accelerator is naturally scalable to different update frequencies
by skipping one back-propagation process every (ﬁ) iteration,
where F can denote the update frequencies of the color or density
grid. Thus, the key is to support different grid sizes.

To tackle the aforementioned challenge, we propose a multi-core-
fusion-based reconfigurable scheme. As shown in Fig. 14, such a
scheme is implemented by including a 16-bank FRM unit for each
pair of grid cores to enable a Level 1 Fusion Mode for the pair (i.e.,
utilizing two grid cores in total to support a grid size of 512KB) and
a 32-bank FRM unit between two pairs of the grid cores to make
up a Level 2 Fusion Mode for the two pairs (i.e., utilizing four grid
cores in total to support a grid size of 1MB).

5 EVALUATION

In this section, we first introduce the detailed settings for evaluating
our proposed Instant-3D framework in Sec. 5.1, and then benchmark

| — > Match Failed

—>Match Succeed —> No updates for N Cycles, write to SRAM

EO Match Succeed t1 Match Failed 2

>

BUM Buffer
I
[=]
O] «=-
b

ADDR A Move
Backward

ADDR ...
Move
| None _ ERemw

(a)

Timestep

Back-Propagation Update Merger (BUM) Unit

: Counter & Update to SRAM
1 Controller
1
1
. = | Entryo | o -
.] F > = 18
® [€
1 E. | Entry 1 | Merge g ; Data E %’
1 = >
! 3l | Entry2 | = = g 2E
1 2 g > 2
! - = g g
1 S [Entry15 |[Create| §
- New }/
. \
17 [2
- 1]
o
[
| Counter | Feature Address g
R S
Addr Reg €9 Input Gradient 3
nput Reg & i =
Update Address Gradient
(b)

Figure 13: The proposed BUM unit merges the update operations to the same embeddings but at different timesteps into one
update operation, as visualized in its (a) dataflow and implemented by its (b) hardware schematic. Case 1 (marked as red): A
match fails between the input address and any cached address in the BUM buffer (e.g., Address B at timestep ¢;), then BUM
creates a new entry to store the input address and its corresponding values to be updated; Case 2 (marked as green): A successful
match (e.g., Address A at timestep f)), then the corresponding update operations of the matched pair are merged into one. If
any address in the BUM buffer has not been matched for N cycles, its corresponding values to be updated will be written back

to SRAM (marked as blue).

ISCA °23, June 17-21, 2023, Orlando, FL, USA.

Grid Core 256 KB w/ 8 Banks Level 1 Fusion 512 KB w/ 16 Banks

[—> ToB16 Grid Core |—>|"RM Unitle 1 Grid core

—> To B32 B16

FRM Unit B8

k2
[FRM Unit B32

Level 2 Fusion
1MB w/ 32 Banks

.
!
.
I— | : : A .
|| From B16| / .
From B321 | Grid Core |—>{"F¥. U™ e Grid Core
!

Figure 14: A reconfigurable scheme for supporting differ-
ent grid sizes in our Instant-3D algorithm in Sec. 3, where
B8/B16/B32 stands for 8/16/32 SRAM banks. Because differ-
ent numbers of SRAM banks require different input sizes
for enabling full utilization (e.g., 8/16/32 banks need 8/16/32
addresses), we design the FRM unit with different bank sizes
for achieving full utilization of the SRAM bandwidth.

our proposed Instant-3D algorithm and accelerator in Sec. 5.2 and
Sec. 5.3, respectively.

5.1 Evaluation Settings

Datasets & Baselines. Datasets: To evaluate the achieved recon-
struction quality and training efficiency of our proposed Instant-3D,
we conduct experiments on the commonly-used NeRF-Synthetic [22],
the large-scale SILVR [9], and the real-world-captured ScanNet [10]
datasets. The reconstruction quality is measured by the PSNR of
the corresponding test set. Baselines: We consider three commercial
hardware devices as our baselines, including a Jetson Nano [29]
with a typical power consumption of 10 W, a Jetson TX2 [26] with
a typical power consumption of 15 W, and a Xavier NX [27] with
a typical power consumption of 20 W. In our experiments, the
energy of the aforementioned baseline devices is measured using
embedded power-rail monitors following [17]. We emphasize that
to the best of our knowledge, our proposed Instant-3D is the first
to develop accelerators for NeRF-based 3D reconstruction training,
and thus there are no dedicated NeRF training accelerator base-
lines for comparison. The hardware specifications of all baselines
and our Instant-3D are summarized in Tab. 3. Note that we do not
benchmark with RT-NeRF [15] and ICRUAS [33], which are the
prior works on NeRF acceleration, as they can only perform NeRF
inference instead of NeRF training, failing to support the desired
instant on-device 3D reconstruction.

Instant-3D Algorithm Implementation. The implementation
of the proposed Instant-3D algorithm is based on the open-sourced
Instant-NGP [24]’s official CUDA implementation. We follow the
default algorithm settings in Instant-NGP [24] excepting for the

Table 3: A summary of the considered devices’ specifications.

Device Hjetson Nano [29] Jetson TX2 [26] Xavier NX [27] Instant-3D
Technology H 20 nm 16 nm 12 nm 28 nm
SRAM || 2.5 MB 5MB 11 MB 1.5 MB
Area H 118 mm? N/A 350 mm? 6.8 mm?
Frequency H 0.9 GHz 1.4 GHz 1.1 GHz 0.8 GHz
DRAM H LPDDR4-1600 ~ LPDDR4-1866 ~ LPDDR4-1866 LPDDR4-1866
Bandwidth 25.6 GB/s 59.7 GB/s 59.7 GB/s 59.7 GB/s
Typical Power || 10w 15W 20 W 1L9W

Li, et al.

density grid’s size and update frequency, i.e., Sp and Fp, and the
color grid’s size and update frequency, i.e., Sc and Fc, which are set
as Sp : Sc =1:0.25 and Fp : Fc = 1:0.5. Such a configuration is
selected as the one that compresses the training cost most but also
maintains the same reconstruction quality with Instant-NGP [24]
by performing a grid search from 1 : 0.125, 1 : 0.25, 1 : 0.5, and
1:0.75. Thus, to implement Sp : Sc = 1 : 0.25, the 1D hash tables
store the density grid and color grid that have 21 and 2'® entries,
respectively, and both have 2 features per entry, following Instant-
NGP [24]. Additionally, to implement Fp : Fo = 1: 0.5, the density
grid is updated by the back-propagation of the reconstruction loss
every iteration, and the color grid is updated every two iterations.
Instant-3D Accelerator Implementation. To evaluate the
energy and the area of the proposed Instant-3D accelerator, we
implement our accelerator in RTL, synthesize the RTL design using
Synopsys Design Compiler [35], and then place & route the design
using Cadence Innovus [4], based on a commercial 28nm CMOS
technology. In all our experiments, we set the reordering pipeline
depth of our proposed FRM and BUM units to be 16, based on
empirical observations and find it to be generally applicable to all
datasets in our experiments; and each SRAM array connected to
FRM and BUM units can handle eight unique memory accesses.
Specifically, we use 16-bit half-precision floating-point arithmetic
for all algorithm-related computations to ensure minimal rendering
quality degradation due to quantization. In addition, we develop
a cycle-accurate simulator to estimate the training efficiency of
our proposed Instant-3D accelerator on different datasets with
the assumption of a 59.7 GB/s DRAM bandwidth, which is the
same as the typical DRAM bandwidth in LPDDR4-1866 used in the
baseline hardware devices, Jetson TX2 [26] and Xavier NX [27].
The proposed Instant-3D accelerator consumes an area of 6.8 mm?
and an average power consumption of 1.9 W, depicted in Fig. 15

5.2 Instant-3D Algorithm’s Performance

Benchmark with the SOTA Efficient NeRF Training Algo-
rithm. To evaluate the effectiveness of our Instant-3D algorithm

Layout of Our Proposed Accelerator Accelerator Specs

Ew = == Technology 28 nm
Tf Area 6.8 mm?*
pontesy
g e | . ~ Voltage 1V
S = Frequency 800 MHz
wezex
St =t SRAM Size 1.5 MB
]
e - Power 1.9W
(a)
Area Energy
Breakdown Breakdown 0 mep
M 21% @ 8% I} Grid Core
3% 7% :
° ? -l BUM Unit
78% Bl :
-l FRM Unit

(b)

Figure 15: (a) The layout and performance specifications and
(b) the layout, energy, and area breakdown of our Instant-3D
accelerator.

Instant-3D: Instant Neural Radiance Field Training Towards On-Device AR/VR 3D Reconstruction ISCA 23, June 17-21, 2023, Orlando, FL, USA.

N Jetson Nano (Instant-NGP) Jetson TX2 (Instant-NGP) S\ Xavier NX (Instant-NGP) %% Instant-3D Accelerator (Instant-3D Algorithm)

1162.1 1135.1 1149 1251.2 1350.1 1155.6 12791 11536 11985

2173 2122 214.8 2339 2487 216.1 239.1 215.7 2241

=)
©

-
=)
o
=)
o

-
N

Norm. Speedup (x)

Norm. Energy Efficiency (x)

S
>

-
=)
>

Chair Drums Ficus Hotdog Lego Materials Mic Ship GeoMean Chair Drums Ficus Hotdog Lego Materials Ship GeoMean

(a) Normalized speedup w.r.t. Jetson Nano. (b) Nor

d energy efficiency w.r.t. Jetson Nano.

Figure 16: The normalized speedup and energy efficiency achieved by our proposed Instant-3D and three baseline devices on
the eight scenes of NeRF-Synthetic [22]. The legends follow the “device (algorithm)” format.

N Speedup by Instant3D's Hardware Scheduling Ablation Study on the Effectiveness of the Proposed FRM

%% Speedup by Instant-3D's FRM and BUM /77 Speedup by Instant-3D's Algorithm and BUM Units. As illustrated in the Sec. 4.4 and Sec. 4.5, we
. 5.3% g 3.1x D o propose an FRM unit to make good use of the on-chip multi-bank
Instant-3D [0 00000000 NNeSsS SRAM arrays and a BUM unit to minimize the number required

wio Our Algorithm {G OGO OOV VSV RNNNNNNN
w/o Our FRM and BUM

SRAM writes. To verify the effectiveness of the two proposed units,
we summarize the runtime of Instant-3D w/o the FRM unit or BUM

Speedup Over Instant-NGP Algorithm on Xaiver NX Edge GPU unit in Fig. 18. In particular, the proposed FRM unit can trim down
Figure 17: The speedup (in logarithmic scale) over Instant- the runtime by 31.1% on average. Additionally, with the proposed
NGP [24] algorithm on Xaiver NX Edge GPU [27] achieved BUM unit on top of the FRM unit, the runtime reduction ratio
by different techniques of our proposed Instant-3D on NeRF- can be further enlarged to 68.6%, which indicates that both the
Synthetic dataset [22]. proposed FRM unit and BUM unit are necessary for our Instant-3D
accelerator to achieve the desired instant on-device NeRF-based
in Sec. 3, we benchmark it with the most efficient NeRF training al- reconstruction. It is worth noting that, to the best of our knowledge,
gorithm, Instant-NGP [24], in terms of the achieved reconstruction controlling the precise/fine-grained memory accesses required by
PSNR and training runtime on edge GPU, Xavier NX [27]. As shown the FRM and BUM units is not currently supported by CUDA’s APIs
in Tab. 4, we can observe that our proposed Instant-3D algorithm on the benchmark devices summarized in Tab. 3.
surpasses the most efficient NeRF training algorithm [24] in terms Ablation Study on Necessity of Co-Design. To the best of our
of the reconstruction quality vs. training runtime trade-offs, e.g., knowledge, our proposed Instant-3D, as an algorithm-hardware co-
60 seconds vs. 72 seconds to achieve the same quality (26.0 PNSR design acceleration framework, is the first that has achieved instant
averaged on the 8 scenes of NeRF-Synthetic [22]). on-device NeRF-based 3D reconstruction. To verify the necessity
of such a co-design strategy, we summarize the runtime of our
5.3 Instant-3D Accelerator’s Performance Instant-3D w/o the proposed algorithm techniques or hardware
Benchmark with the SOTA Efficient NeRF Training Devices. techniques in Tab. 5. Specifically, with our proposed Instant-3D
We summarize the NeRF training efficiency improvements achieved algorithm, we can trim down the runtime by 83.0% as compared to
by our proposed Instant-3D accelerator in Fig. 16. Specifically, as the most efficient NeRF training algorithm [24] on the same edge
compared to the three baselines on NeRF-Sythetic [22], the pro- GPU Xavier NX [27]. Moreover, with both our proposed Instant-3D
posed Instant-3D accelerator offers on average 224x/132x/45X algorithm and accelerator, the runtime can be reduced to 2.2% of
speedups and 1198%/1089x/479x more energy efficiency over Jetson the most efficient NeRF training solution (Instant-NGP [24] on a

Nano [29]/Jetson TX2 [26]/Xavier NX [27], respectively. Specifically,
our Instant-3D’s 45X speedup over Xaiver NX [27] results from (1)
2.7x speedup by the Instant-3D algorithm, (2) 3.1x speedup by our [S\ instant-3D wio FRM and BUM Instant-3D wio FRM &3 Instant-30D |
FRM and BUM units, which are inspired by the observed memory
access patterns in Sec. 4.2, and (3) 5.3x speedup by better hard-
ware scheduling, i.e., our multi-core-fusion-based-reconfigurable-
scheme, as shown in Fig. 17.

=)
=3

131.1%

a ~
S a

Norm. Runtime (%)
»
b

Table 4: Benchmark our proposed Instant-3D algorithm with
the most efficient NeRF training algorithm [24], in terms of 0
the PSNR and training runtime on edge GPU Xavier NX [27].

i

Mic

N
N
N
N
N
N
N
N
N
\
N
N
N

S|

hi

Figure 18: The normalized runtime achieved by our proposed

Avg, Train. Runtime PSNR Instant-3D accelerator w/o the proposed FRM unit, depicted
NeRF-Synthetic [22] SILVR [9] ScanN NeRF-Synthetic [22] SILVR [9] ScanN 0

RESynihetic (2] (9 Scantet [10]| | NeRr Synthetic [22 (0] Scaniet (10) in Sec. 4.4, or w/o BUM unit, depicted in Sec. 4.5, on the eight

Instant-NGP [24] 72 sec. 135sec. 84 sec. 26.0 25.0 24.9
Instant-3D 60 sec. 111sec. 72 sec. 26.0 25.1 25.1 scenes of NeRF-Synthetic [22].

Methods

ISCA ’23, June 17-21, 2023, Orlando, FL, USA.

Table 5: The normalized runtime achieved by our Instant-
3D framework w/o the proposed algorithm techniques or
hardware techniques on different datasets.

NeRF Training Solution Normalized Runtime (%) on
(Algorithm @ Hardware) NeRF-Synthetic [22] SILVR [9] ScanNet [10]

Instant-NGP [24] @ Xavier NX [27] I 100 100 100

Instant-3D Algorithm @ Xavier NX [27] || 83.3 82.2 85.7
Instant-3D Algorithm @ Instant-3D AcceleratorH 2.3 34 3.2

Xavier NX [27]), which indicates the necessity of the co-design
strategy of our Instant-3D framework.

6 RELATED WORKS

To the best of our knowledge, both of the only two existing works
on designing dedicated accelerators for NeRF [15, 33] can only
perform NeRF inference, and thus cannot be adopted to achieve
the goal of instant on-device 3D reconstruction. When compared
with the SOTA NeRF inference accelerator [15], our Instant-3D
can achieve real-time (> 30 FPS) rendering speed-up while only
consuming 19.5% of energy per frame and 36% of the chip area.
Moreover, Instant-3D achieves a 1,8002x speedup over an MLP-
based NeRF inference accelerator [33]. It is worth noting that the
prior works on MLP or Convolutional Neural Network (CNN) train-
ing acceleration [7, 18, 32] do not support the dominant operations
of interpolating embeddings from the embedding grid, as analyzed
in Sec. 2.2. Thus, they are not applicable to accelerate NeRF training.

7 CONCLUSION

We propose Instant-3D, which to the best of our knowledge is the
first that has achieved instant on-device NeRF-based 3D reconstruc-
tion. Instant-3D algorithm decomposes the bottleneck embedding
grid in terms of color and density to orthogonally squeeze out the
redundancy in both branches; Instant-3D accelerator integrates an
FRM unit to make good use of the on-chip multi-bank SRAM ar-
rays, a BUM unit to minimize the number of required SRAM writes,
and a reconfigurable scheme to support our instant-3D algorithm.
We believe this work can open up an exciting perspective toward
instant on-device 3D reconstruction for AR/VR.

ACKNOWLEDGMENTS

This work was supported by the NSF Computing and Communica-
tion Foundations (CCF) program (Award ID: 2211815) and CoCoSys,
one of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

REFERENCES

[1] Alex Yu and Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin
Recht, and Angjoo Kanazawa. 2021. Plenoxels: Radiance Fields without Neural
Networks. arXiv:2112.05131 [cs.CV]

[2] Arkio ehf. 2022. Design, mix and share realities. https://www.arkio.is/, accessed
2022-11-01.

[3] Meta Quest Blog. 2020. Tackling telepresence: ’spatial” delivers collaborative
computing on Oculus quest. https://www.meta.com/nl-nl/blog/quest/tackling-
telepresence-spatial-delivers-collaborative- computing-on-oculus-quest.

[4] Cadence. 2022. Innovus Implementation System - Cadence.
//www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-
implementation-and-floorplanning/innovus-implementation-system.html,
accessed 2022-05-20.

[5] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:
Tensorial Radiance Fields. arXiv preprint arXiv:2203.09517 (2022).

https:

G

7

[11

(12]

[13]

[14

[15

(16

[17

[19

[20

[21

[22

~
&

&
=)

™~
2

w
—

Li, et al.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 367-379.

Seungkyu Choi, Jaehyeong Sim, Myeonggu Kang, Yeongjae Choi, Hyeonuk Kim,
and Lee-Sup Kim. 2020. An energy-efficient deep convolutional neural network
training accelerator for in situ personalization on smart devices. IEEE Journal of
Solid-State Circuits 55, 10 (2020), 2691-2702.

XRNeRF Contributors. 2022. OpenXRLab Neural Radiance Field Toolbox and
Benchmark. https://github.com/openxrlab/xrnerf.

Martijn Courteaux, Julie Artois, Stijn De Pauw, Peter Lambert, and Glenn Van Wal-
lendael. 2022. SILVR: A Synthetic Immersive Large-Volume Plenoptic Dataset.
arXiv preprint arXiv:2204.09523 (2022).

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,
and Matthias Nief3ner. 2017. ScanNet: Richly-annotated 3D Reconstructions of
Indoor Scenes. In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE.
Nashwan Dawood, R Marasini, and John Dean. 2009. 19 VR-Roadmap: A vision
for 2030 in the built environment. Virtual Futures for Design, Construction and
Procurement (2009), 261.

Francesco Fassi, Alessandro Mandelli, Simone Teruggi, Fabrizio Rechichi, Fausta
Fiorillo, and Cristiana Achille. 2016. VR for cultural heritage. In International
conference on augmented reality, virtual reality and computer graphics. Springer,
139-157.

Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In
2010 20th international conference on pattern recognition. IEEE, 2366-2369.
Mingqiang Huang, Yucen Liu, Changhai Man, Kai Li, Quan Cheng, Wei Mao,
and Hao Yu. 2022. A High Performance Multi-Bit-Width Booth Vector Sys-
tolic Accelerator for NAS Optimized Deep Learning Neural Networks. IEEE
Transactions on Circuits and Systems I: Regular Papers 69, 9 (2022), 3619-3631.
hitps://doi.org/10.1109/TCSI.2022.3178474

Chaojian Li, Sixu Li, Yang Zhao, Wenbo Zhu, and Yingyan Lin. 2022. RT-NeRF:
Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Ren-
dering. In 2022 IEEE/ACM International Conference on Computer-Aided Design.
Chaojian Li, Bichen Wu, Albert Pumarola, Peizhao Zhang, Yingyan Lin, and
Peter Vajda. 2023. INGeo: Accelerating Instant Neural Scene Reconstruction
with Noisy Geometry Priors. In Computer Vision—-ECCV 2022 Workshops: Tel Aviv,
Israel, October 23-27, 2022, Proceedings, Part III. 686—-694.

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You,
Qixuan Yu, Yue Wang, and Yingyan Lin. 2021. Hw-nas-bench: Hardware-aware
neural architecture search benchmark. arXiv preprint arXiv:2103.10584 (2021).
Jiajun Li, Guihai Yan, Wenyan Lu, Shuhao Jiang, Shijun Gong, Jingya Wu, Junchao
Yan, and Xiaowei Li. 2019. TNPU: An efficient accelerator architecture for training
convolutional neural networks. In Proceedings of the 24th Asia and South Pacific
Design Automation Conference. 450-455.

Ruilong Li, Matthew Tancik, and Angjoo Kanazawa. 2022. NerfAcc: A General
NeRF Acceleration Toolbox. arXiv preprint arXiv:2210.04847 (2022).

Xiangjun Li and Jianfei Cai. 2007. Robust transmission of JPEG2000 encoded
images over packet loss channels. In 2007 IEEE International Conference on Multi-
media and Expo. IEEE, 947-950.

Nelson Max. 1995. Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics 1, 2 (1995), 99-108.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance
fields for view synthesis. In European conference on computer vision. Springer,
405-421.

Robert B Miller. 1968. Response time in man-computer conversational transac-
tions. In Proceedings of the December 9-11, 1968, fall joint computer conference,
part I 267-277.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. arXiv preprint
arXiv:2201.05989 (2022).

Fiona Fui-Hoon Nah. 2004. A study on tolerable waiting time: how long are web
users willing to wait? Behaviour & Information Technology 23, 3 (2004), 153-163.
NVIDIA Inc. 2021. NVIDIA Jetson TX2. https://www.nvidia.com/en-us/
autonomous-machines/embedded- systems/jetson-tx2/, accessed 2020-09-01.
NVIDIA Inc. 2022. Jeston Xavier NX Series Modules. https://www.nvidia.com/en-
us/autonomous-machines/embedded- systems/jetson-xavier-nx/, accessed 2022-
06-01.

NVIDIA LLC. 2021. GEFORCE RTX 3090 FAMILY. https://www.nvidia.com/en-
us/geforce/graphics-cards/30-series/rtx-3090-3090ti/, accessed 2022-06-01.
NVIDIA LLC. 2021. Jetson Nano Developer Kit. https://developer.nvidia.com/
embedded/jetson-nano-developer-kit, accessed 2020-09-01.

NVIDIA LLC. 2021. NVIDIA V100 TENSOR CORE GPU. https://www.nvidia.
com/en-us/data-center/v100/, accessed 2020-09-01.

Oisoi Studio. 2022. Painting VR on Quest 2. https://www.oculus.com/experiences/
quest/3106117596158066/, accessed 2022-11-01.

Ximing Qiao, Xiong Cao, Huanrui Yang, Linghao Song, and Hai Li. 2018. Atom-
Layer: A universal ReRAM-based CNN accelerator with atomic layer computation.
In Proceedings of the 55th Annual Design Automation Conference. 1-6.

Instant-3D: Instant Neural Radiance Field Training Towards On-Device AR/VR 3D Reconstruction

[33]

[34]

[35

[36]

Chaolin Rao, Huangjie Yu, Haochuan Wan, Jindong Zhou, Yueyang Zheng, Minye
Wu, Yu Ma, Anpei Chen, Binzhe Yuan, Pinggiang Zhou, Xin Lou, and Jingyi Yu.
2022. ICARUS: A Specialized Architecture for Neural Radiance Fields Rendering.
ACM Trans. Graph. 41, 6, Article 234 (nov 2022), 14 pages. https://doi.org/10.
1145/3550454.3555505

Sketchfab. 2022. Metaverse 3D models. https://sketchfab.com/tags/metaverse,
accessed 2022-11-01.

Synopsys. 2022. Design Compiler - Synopsys. https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/dc-ultra.html, accessed 2022-05-
20.

Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin Kerr, Ter-
rance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja,
David McAllister, and Angjoo Kanazawa. 2023. Nerfstudio: A Modular Frame-
work for Neural Radiance Field Development. arXiv preprint arXiv:2302.04264
(2023).

[37

[38

[39

ISCA ’23, June 17-21, 2023, Orlando, FL, USA.

Matthias Teschner, Bruno Heidelberger, Matthias Miiller, Danat Pomerantes,
and Markus H Gross. 2003. Optimized spatial hashing for collision detection of
deformable objects.. In Vmv, Vol. 3. 47-54.

Nikolaos Thomos, Nikolaos V Boulgouris, and Michael G Strintzis. 2005. Opti-
mized transmission of JPEG2000 streams over wireless channels. IEEE Transac-
tions on image processing 15, 1 (2005), 54-67.

Shulin Zhao, Haibo Zhang, Sandeepa Bhuyan, Cyan Subhra Mishra, Ziyu Ying,
Mahmut T Kandemir, Anand Sivasubramaniam, and Chita R Das. 2020. Déja
view: Spatio-temporal compute reuse for ‘energy-efficient 360 vr video streaming.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 241-253.

Yang Zhao, Xiaohan Chen, Yue Wang, Chaojian Li, Haoran You, Yonggan Fu, Yuan
Xie, Zhangyang Wang, and Yingyan Lin. 2020. Smartexchange: Trading higher-
cost memory storage/access for lower-cost computation. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 954-967.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Preliminaries of NeRFs
	2.2 Profiling Analysis of the SOTA Efficient NeRF Training Process

	3 Instant-3D: Proposed Algorithm
	3.1 Different Paces of Color and Density During Training
	3.2 Different Grid Sizes for the Color and Density Branches
	3.3 Different Update Frequencies for the Color and Density Branches

	4 Instant-3D: Proposed Accelerator
	4.1 Motivation: Profiling Instant-NGP with Our Algorithm
	4.2 Analyzing the Memory Access Patterns During Training
	4.3 Proposed Instant-3D Accelerator
	4.4 Feed-Forward Read Mapper to Better Use SRAM Arrays
	4.5 Back-Propagation Update Merger Minimizing SRAM Writes
	4.6 Reconfigurable Scheme Supporting Different Grid Sizes

	5 Evaluation
	5.1 Evaluation Settings
	5.2 Instant-3D Algorithm's Performance
	5.3 Instant-3D Accelerator's Performance

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

