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RGB image and depth image of the same scene under the same

number of training iterations (here a total of 160). It is worth not-

ing that the depth image is not generated during training and is

merely used to test the learned density quality here. We can see

that the color information has been better learned than that of

the density information under the same training iterations, as the

reconstructed RGB color of the ficus is closer to the ground truth

one while the fine-grained geometry of the ficus, which is decided

by the learned density feature, is still not as clear as compared to

its ground truth counterpart. Meanwhile, to further quantify the

difference regarding the color and density features, Fig. 5(b) shows

the Peak Signal-to-Noise Ratio [13] (PSNR) (a higher value corre-

sponds to a better-reconstructed quality) of both the reconstructed

color and density features during the whole training trajectory.

The averaged PSNR vs. the number of training epochs on eight

different datasets shows that the color feature is learned at a faster

pace than that of density during NeRF training. For example, it

takes a total of 160 iterations vs. 200 iterations for the color and

density features to evolve to a quality of 24 dB PSNR. We conjecture

that the aforementioned observations are caused by the different

optimization for the color and density, i.e., the training loss (Eq. 2)

is based on the predicted color rather than the predicted density,

indicating that optimizing the color is easier and thus the color

features are less sensitive to model compression. Motivated by our

above discovery regarding the different sensitivities and pace of

the color and density features during NeRF training, we propose to

decompose the embedding grid into a color one and a density one.

In this way, we can explore the possibility of adopting different grid

sizes and different update frequencies for the decomposed branches,

as discussed and analyzed in the following two subsections.

3.2 Different Grid Sizes for the Color and
Density Branches

Observations. Leveraging the discovery above and our proposed

decomposition of the embedding grid, we propose to adopt differ-

ent grid sizes for the resulting color and density branches of the

decomposed embedding grids, aiming to reduce the training time

without hurting the achieved reconstruction quality.

Table 1: The achieved recon-

struction quality (PSNR) vs.

the required training time

on the eight scenes of NeRF-

Synthetic [22], when adopt-

ing different grid sizes for the

density grid 𝑆𝐷 and the color

grid 𝑆𝐶 . Here the training run-

time is measured on an edge

GPU [27].

𝑆𝐷 : 𝑆𝐶
Average Training Average

Runtime (s) Test PSNR

1:1 [24] 72 26.0

0.25:1 65 (↓ 9.7%) 25.4

1:0.25 63 (↓ 12.5%) 26.0

Tab. 1 shows one set of

our validation experiments

in terms of the achieved

reconstruction PSNR vs.

themeasured training time,

where we vary the den-

sity grid size 𝑆𝐷 and color

grid size 𝑆𝐶 from 𝑆𝐷 :

𝑆𝐶 = 0.25 : 1 to 𝑆𝐷 :

𝑆𝐶 = 1 : 0.25. Here we

make two observations. (1)

Adopting different grid

sizes for the color and

density grids leads to a

better PSNR vs. training

runtime trade-off, as com-

pared to adopting the same grid size for both grids as in Instant-

NGP [24]. In particular, doing so reduces the training runtime by

12.5% while maintaining the same PSNR as compared to Instant-

NGP [24]. (2) Color features are less sensitive than density

features when their grid size is reduced. Particularly, when the

color grid size or density grid size is reduced to 0.25× of the vanilla

one in Instant-NGP [24], the achieved reconstruction PSNR is 26.0

dB vs. 25.4 dB, respectively, indicating the lower sensitivity of the

former to the grid size (i.e., a higher level of spatial redundancy).

Proposed Technique. Built upon our discovery above and con-

sistent observation, we propose to use a smaller grid size for the

color grid than that for the density grid, i.e., we ensure 𝑆𝐷 > 𝑆𝐶 in

our Instant-3D algorithm as visualized in Fig. 6.

3.3 Different Update Frequencies for the Color
and Density Branches

Observations.With similar motivation, we propose to adopt differ-

ent update frequencies for the resulting color and density branches

of the decomposed embedding grids to reduce the training time

without hurting the reconstruction quality.

Table 2: The achieved recon-

struction quality (PSNR) vs.

the required training time

on the eight scenes of NeRF-

Synthetic [22], when adopting

different update frequencies

for the density grid 𝐹𝐷 and the

color grid 𝐹𝐶 . Here the train-

ing runtime is measured on an

edge GPU [27].

𝐹𝐷 : 𝐹𝐶
Average Training Average

Runtime (s) Test PSNR

1:1 [24] 72 26.0

0.5:1 67 (↓ 6.9%) 24.3

1:0.5 65 (↓ 9.7%) 25.9

Tab. 2 shows one set of

our validation experiments

in terms of the achieved

reconstruction PSNR vs.

themeasured training time,

where we vary the update

frequencies for the density

grid 𝐹𝐷 and color grid 𝐹𝐶

from 𝐹𝐷 : 𝐹𝐶 = 0.5 : 1 to

𝐹𝐷 : 𝐹𝐶 = 1 : 0.5. Similarly,

we can make two observa-

tions. (1) Adopting differ-

ent update frequencies

for the color and density

grids leads to a better PSNR

vs. training runtime trade-

off, as compared to adopting the same update frequency for both

as in Instant-NGP [24]. Specifically, doing so reduces the train-

ing runtime by 9.7% while keeping a similar PSNR as compared

to Instant-NGP [24]. (2) Color features are less sensitive than

density features when the update frequency is reduced. In par-

ticular, when the update frequency for the color or density grid is

reduced to 0.5× of the vanilla one in Instant-NGP [24], the achieved

reconstruction PSNR is 25.9 dB vs. 24.3 dB, respectively, indicating

the lower sensitivity of the former to the update frequency (i.e., a

higher level of temporal redundancy).

Proposed Technique. Similarly, we propose to use a lower

update frequency for the color grid than that for the density grid,

i.e., 𝐹𝐷 > 𝐹𝐶 in our Instant-3D algorithm (see Fig. 6).

4 INSTANT-3D: PROPOSED ACCELERATOR

In this section, we first profile Instant-NGP [24] when applying

our proposed algorithm (see Sec. 4.1), showing that the achieved

training time is still not satisfactory for instant on-device NeRF

training. After that, we further analyze the memory access pat-

terns of the dominant embedding grid interpolation during both

the feed-forward and back-propagation processes when training

Instant-NGP [24] using our algorithm in Sec. 4.2. Finally, we present
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Table 5: The normalized runtime achieved by our Instant-

3D framework w/o the proposed algorithm techniques or

hardware techniques on different datasets.

NeRF Training Solution Normalized Runtime (%) on

(Algorithm @ Hardware) NeRF-Synthetic [22] SILVR [9] ScanNet [10]

Instant-NGP [24] @ Xavier NX [27] 100 100 100

Instant-3D Algorithm @ Xavier NX [27] 83.3 82.2 85.7

Instant-3D Algorithm @ Instant-3D Accelerator 2.3 3.4 3.2

Xavier NX [27]), which indicates the necessity of the co-design

strategy of our Instant-3D framework.

6 RELATEDWORKS

To the best of our knowledge, both of the only two existing works

on designing dedicated accelerators for NeRF [15, 33] can only

perform NeRF inference, and thus cannot be adopted to achieve

the goal of instant on-device 3D reconstruction. When compared

with the SOTA NeRF inference accelerator [15], our Instant-3D

can achieve real-time (> 30 FPS) rendering speed-up while only

consuming 19.5% of energy per frame and 36% of the chip area.

Moreover, Instant-3D achieves a 1,8002× speedup over an MLP-

based NeRF inference accelerator [33]. It is worth noting that the

prior works on MLP or Convolutional Neural Network (CNN) train-

ing acceleration [7, 18, 32] do not support the dominant operations

of interpolating embeddings from the embedding grid, as analyzed

in Sec. 2.2. Thus, they are not applicable to accelerate NeRF training.

7 CONCLUSION

We propose Instant-3D, which to the best of our knowledge is the

first that has achieved instant on-device NeRF-based 3D reconstruc-

tion. Instant-3D algorithm decomposes the bottleneck embedding

grid in terms of color and density to orthogonally squeeze out the

redundancy in both branches; Instant-3D accelerator integrates an

FRM unit to make good use of the on-chip multi-bank SRAM ar-

rays, a BUM unit to minimize the number of required SRAM writes,

and a reconfigurable scheme to support our instant-3D algorithm.

We believe this work can open up an exciting perspective toward

instant on-device 3D reconstruction for AR/VR.
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