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ABSTRACT

Novel view synthesis is an essential functionality for enabling im-
mersive experiences in various Augmented- and Virtual-Reality
(AR/VR) applications, for which Neural Radiance Field (NeRF) has
emerged as the state-of-the-art (SOTA) technique. In particular, gen-
eralizable NeRFs have gained increasing popularity thanks to their
cross-scene generalization capability, which enables NeRFs to be
instantly serviceable for new scenes without per-scene training. De-
spite their promise, generalizable NeRFs aggravate the prohibitive
complexity of NeRFs due to their required extra memory accesses
needed to acquire scene features, causing NeRFs’ ray marching
process to be memory-bounded. To tackle this dilemma, existing
sparsity-exploitation techniques for NeRFs fall short, because they
require knowledge of the sparsity distribution of the target 3D
scene which is unknown when generalizing NeRFs to a new scene.

To this end, we propose Gen-NeRF, an algorithm-hardware co-
design framework dedicated to generalizable NeRF acceleration,
which aims to win both rendering efficiency and generalization
capability in NeRFs. To the best of our knowledge, Gen-NeRF is
the first to enable real-time generalizable NeRFs, demonstrating a
promising NeRF solution for next-generation AR/VR devices. On
the algorithm side, Gen-NeRF integrates a coarse-then-focus sam-
pling strategy, leveraging the fact that different regions of a 3D
scene contribute differently to the rendered pixels depending on
where the objects are located in the scene, to enable sparse yet
effective s ampling. In addition, Gen-NeRF replaces the ray trans-
former, which is generally included in SOTA generalizable NeRFs
to enhance density estimation, with a novel Ray-Mixer module to
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reduce workload heterogeneity. On the hardware side, Gen-NeRF
highlights an accelerator micro-architecture dedicated to accelerat-
ing the resulting model workloads from our Gen-NeRF algorithm to
maximize the data reuse opportunities among different rays by mak-
ing use of their epipolar geometric relationship. Furthermore, our
Gen-NeRF accelerator features a customized dataflow to enhance
data locality during point-to-hardware mapping and an optimized
scene feature storage strategy to minimize memory bank conflicts
across camera rays of NeRFs. Extensive experiments validate the
effectiveness of our proposed Gen-NeRF framework in enabling
real-time and generalizable novel view synthesis.
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1 INTRODUCTION

The booming Augmented- and Virtual-Reality (AR/VR) market
has motivated a tremendously increased demand for immersive
AR/VR experiences [21]. To enable a truly immersive interactive
AR/VR experience, novel view synthesis which can generate a
novel view of a scene given only sparsely sampled views, is one key
enabler (2, 6, 7, 48]. Hence, substantial advances have been made
in novel view synthesis to enhance the 3D scene representation [9,
12, 20, 26, 33]. Among them, Neural Radiance Field (NeRF) [20],
which encodes a continuous volume representation of the density
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and view-dependent color of a target scene, has gained increasing
popularity thanks to its state-of-the-art (SOTA) rendering quality
for photorealistic novel views.

Despite NeRFs’ impressive rendering quality, enabling real-time
rendering of NeRFs on resource-constrained AR/VR devices, which
is highly desirable for numerous AR/VR applications, is still par-
ticularly challenging due to the following bottlenecks: (1) Vanilla
NeRFs require per-scene optimization and thus cannot be effectively
generalized to a new scene specified by a user; (2) The volume ren-
dering process in NeRFs has a prohibitive complexity of H X W X P,
where H and W denote the height and width of the rendered image,
respectively, and P is the number of sampled points along each
camera ray. Such a cubic complexity results in a throughput of <0.1
frame-per-second (FPS) even on an NVIDIA desktop GPU [11].

To tackle the aforementioned bottleneck-(1), generalizable NeRFs
[5, 17, 43, 46] have become the mainstream solution for improving
NeRFs’ generalization capability. Specifically, their key spirit is to
condition vanilla NeRFs on a set of source views by extracting scene
features from those source views, which are then fed into vanilla
NeRFs as inputs. By doing so, generalizable NeRFs eliminate the
need for per-scene optimization and thus hold the promise of being
the most feasible NeRF solution for commercial AR/VR applications.

However, the boosted generalization capability of generaliz-
able NeRFs comes at the cost of aggravating the aforementioned
bottleneck-(2), posing new challenges for achieving real-time NeRFs.
First, conditioning NeRFs on the source views mentioned above
requires extra memory accesses to fetch scene features, which can
make NeRFs’ ray marching process memory-bounded and thus
cause hardware under-utilization issues. In particular, to infer the
density and color of each sampled point in a 3D scene, generaliz-
able NeRFs project the sampled point onto the image planes of §
different source views and then apply the resulting D-dimension
scene features of the projection point to the inputs of vanilla NeRFs.
As such, the total number of memory accesses for acquiring the
scene features becomes H X W X P X S X D, which can result in
significant latency overhead as profiled in Sec. 2.3.

The second challenge is that while it is natural to consider us-
ing SOTA sparsity-exploitation techniques for NeRFs to boost the
acceleration efficiency of generalizable NeRFs, these techniques
rely on the knowledge of the spatial sparsity distribution in the
target 3D scene, which is unknown for a new scene. Therefore,
these techniques are not applicable to generalizable NeRFs because
the spatial distributions of different scenes may vary significantly,
thus making it infeasible to predict and utilize the spatial sparsity
of new scenes. Third, extra ray transformers [31, 42, 43] are often
introduced in SOTA model structures of generalizable NeRFs for
more accurately predicting the densities of new scenes that have a
complex geometry [43]. These additional transformer modules with
attention operations [40] increase the workload heterogeneity of
generalizable NeRFs, further challenging their execution efficiency.

To tackle the aforementioned challenges of enabling real-time
generalizable NeRFs, we first identify opportunities unique to gen-
eralizable NeRFs that can boost their achievable acceleration effi-
ciency and then develop an algorithm-hardware co-design frame-
work, dubbed Gen-NeRF, which to the best of our knowledge is the
first to achieve real-time efficiency of generalizable NeRFs.
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On the algorithm side, the key insight that motivates our work
is that the contributions of different regions in a 3D scene to the
rendered pixels can vary depending on the location of objects, of-
fering an opportunity for sparse sampling. Specifically, sampled
points in empty or occluded regions of the scene contribute less
to the rendered pixels and thus fewer sampled points are needed
in such regions of the target 3D scene. To leverage this, our Gen-
NeRF algorithm integrates a coarse-then-focus sampling scheme to
enable sparse yet effective sampling. Additionally, our Gen-NeRF
algorithm further reduces the workload heterogeneity in generaliz-
able NeRF models by introducing an MLP-based module, dubbed
Ray-Mixer, to replace the ray transformer [31, 42, 43] in SOTA gen-
eralizable NeRFs. The advantage of doing this is that the Ray-Mixer
module can maintain the capability of accurately estimating the
density of the former while enabling the reuse of the computing
units that are dedicated to generalizable NeRFs” MLPs needed for
implicitly encoding the continuous volume representation.

On the hardware side, we discover that there exist inherent
opportunities for making use of the geometric relationships among
different camera rays to reduce the required number of memory
accesses for acquiring scene features of different source views. As
such, we develop a dedicated accelerator to accelerate the resulting
workloads from our Gen-NeRF algorithm. In particular, our Gen-
NeRF accelerator leverages the epipolar geometric analysis [47]
and highlights three components: (1) a customized dataflow that
enhances data locality during point-to-hardware mapping. More
specifically, we partition the points in the 3D scene into point
patches that can be projected to the same or neighboring regions
on the image planes of different source views based on their epipolar
geometric relationships, thus enhancing scene feature reuses; (2)
an optimized scene feature storage strategy for avoiding memory
bank conflicts when loading scene features of different rays; (3) a
customized ray marching micro-architecture that accelerates Gen-
NeRF’s algorithm by orchestrating the coarse and focused sampling
processes and features a run-time workload scheduler to efficiently
execute the above 3D-point-patch partition at run-time. Finally, we
summarize our contributions as follows:

e We propose an algorithm-hardware co-design framework,
dubbed Gen-NeRF, which is the first to enable real-time
generalizable NeRFs, offering a promising NeRF solution
for next-generation AR/VR applications. Furthermore, the
opportunities we identify can also shed light on future inno-
vations for accelerating more diverse NeRF pipelines.

e On the algorithm side, Gen-NeRF integrates a coarse-then-
focus sampling strategy that leverages the fact that different
regions in a 3D scene can feature diverse sparsity ratios
depending on where the objects are located in the scene to
enable sparse yet effective sampling. In addition, Gen-NeRF
develops a novel Ray-Mixer module, which replaces the ray
transformer that is generally included in SOTA generalizable
NeRFs in order to enhance NeRFs’ density estimation, aiming
at reducing workload heterogeneity.

e On the hardware side, Gen-NeRF highlights an accelerator
micro-architecture dedicated to accelerating the resulting
model workloads from our Gen-NeRF algorithm to maximize
the data reuse opportunities among different rays by making
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Figure 1: Visualizing the typical execution pipeline of existing generalizable NeRFs [31, 42, 43], which condition NeRF on source
views and enhance density estimation via a ray transformer. This illustration is modified from the visualization style of [43].

use of their epipolar geometric relationships. Furthermore,
our Gen-NeRF accelerator features a customized dataflow
to enhance data locality during point-to-hardware mapping
and an optimized scene feature storage strategy to minimize
memory bank conflicts across camera rays.

e Extensive experiments validate the effectiveness of our Gen-
NeRF in enabling real-time and generalizable novel view
synthesis, e.g., Gen-NeRF achieves a 255.8% speed-up over
the NVIDIA RTX 2080Ti GPU while maintaining a photore-
alistic rendering quality.

2 PRELIMINARIES AND ANALYSIS OF
GENERALIZABLE NERF WORKLOADS

2.1 Preliminaries of NeRFs

We first introduce vanilla NeRFs’ rendering pipeline. To render a
pixel corresponding to a camera ray that is emitted from the camera
center and passes through this pixel, NeRF performs a ray marching
process, i.e., it samples 3D points along the ray, estimates the color
and density of each sampled point, and then composites the colors
and densities of the sampled points to derive the pixel value.

Specifically, a camera ray can be parameterized as r(t) = o + td,
with o € R3 denoting the ray origin (i.e., the camera center) and
d € R3 denoting the ray unit direction vector, where t € [ty, trl
is the depth along the ray between the predefined near bound t,
and far bound t. To acquire the color and density of each sampled
point given both its location in the 3D space x € R3 and view
direction unit vector d € R3, a volumetric radiance field f returns
a differential density o and RGB color ¢, i.e., (0,¢) = f(x,d). Next,
the volume along the ray r can be rendered into a 2D pixel C(r) via
an integral over the colors of sampled points:

C(r) = /ttf T(t)o(t)e(t) dt (1)

where T(t) = exp (— /t: o(s) ds) denotes the accumulated trans-
mittance along the ray from ¢, to t, which refers to the probability
that the ray travels from ¢, to t without hitting any other particle
and is to measure the occlusion effect. In practice, the integral in

Eq. 1 is approximated with numerical quadrature by sampling N
points along each camera ray:

N

€)= ) T (1 - exp(=0 (trs1 — ) ok @)
k=1

where T, = exp (— Zf;ll oj(tjv1 — tj)). To train the volumetric
radiance field f, a Mean-Square-Error (MSE) loss is applied between
the rendered pixels and the ground truth pixels from all camera
rays of the target view:

~ 2
£=)" ¢ -cwl; 3)
reR
where R is the set of all camera rays. As the inputs to vanilla NeRFs
only include the scene-invariant point location x and view direction
d, it is difficult to generalize them across different scenes.

2.2 The Pipeline of Generalizable NeRFs

Generalizable NeRF variants [5, 17, 31, 43] enable cross-scene gen-
eralization via two modifications on top of vanilla NeRFs: (1) con-
ditioning NeRFs on the source views of new scenes, i.e., given a
limited number of observed source views of a new scene, the fea-
tures extracted from those source views via a CNN encoder are
used as scene priors and fed into a vanilla NeRF model as inputs,
and (2) adopting a ray transformer on top of all the points across
the same ray to enhance the density prediction.

As an example, we illustrate the execution pipeline of a repre-
sentative generalizable NeRF called IBRNet [43] in Fig. 1, which
is the first to propose the two aforementioned modules and has
served as a cornerstone for follow-up generalizable NeRF variants.
Specifically, rendering a pixel in IBRNet involves the following
steps: Step @ calculates the 2D feature maps {W,—}iS:1 from a total
of S source views {Ii}f:1 via a CNN encoder E, where W; = E(I;) is
a 3D tensor. Note that this requires only a one-time effort for each
new scene; Step @ emits a ray r(¢) = o+ td from the origin o along
the view direction d to pass through the pixel to be rendered and
sample 3D points {x; } along the ray based on an ordered depth
sequence {t} sampled from a certain distribution; Step @ projects
each sampled 3D point x; to the image planes of source views with
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Figure 2: Profile our generalizable NeRF model on two GPU
devices across three datasets with different resolutions.

a project transformation 7 and acquires the corresponding scene
features, i.e., {[Wil(x) }f:l; Step @ applies the obtained scene
features above to an MLP model f to derive the color ¢ and density
feature f7 of each point; Step @ feeds the density features of all
sampled points along the ray into a ray transformer T to acquire
the predicted density oy for each point; Step @ performs volume
rendering following Eq. 2 to finally derive the rendered pixel. Dur-
ing training, the networks E, f, and T are updated using the MSE
loss in Eq. 3.

2.3 Profiling Results and Analysis

Setup. To understand the real-device efficiency of generalizable
NeRFs, we profile our adopted generalizable NeRF model, which is
built on top of [43] as elaborated in Sec. 5.2, in terms of the latency
breakdown for rendering one image with 10 source views and 196
points per ray, following [43], on two devices, including a desktop
GPU NVIDIA RTX 2080Ti and an edge GPU NVIDIA Jetson TX2,
with a batch size of 4096 and 128 rays, respectively.

Observations. As shown in Fig. 2, we can observe that (1) the
real-time requirement cannot be satisfied on both devices, e.g., RTX
2080Ti can only achieve a <0.249 FPS; (2) even if more computing
resources are available to reduce the DNN inference time, the sig-
nificant overhead for acquiring scene features will still prohibit the
real-time execution; and (3) the ray transformer counts for 44.1% of
the total DNN inference time on RTX 2080Ti while its floating-point
operations (FLOPs) counts for only 13.8% of total DNN FLOPs on
LLFF [19], indicating that the attention operations may not be well
accelerated by RTX 2080Ti.

2.4 Identified Opportunities for Acceleration

Unique sparsity opportunities in 3D scenes. The sources of
sparsity stem from the varying contributions of sampled points in
different regions to the rendered pixels. Specifically, camera rays
emitted through regions, (1) with low particle density or (2) with
low accumulated transmittance due to occlusion, require fewer sam-
pled points without sacrificing rendering quality. We hypothesize
that properly leveraging these sparsity opportunities in 3D scenes
can reduce the total number of points that are needed to be sampled
while maintaining the rendering quality. In this way, the data move-
ment and computational cost of Steps @-@ corresponding points
that do not have to be sampled can be skipped, thus improving the
achievable frame-per-second (FPS).
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Potential scene feature reuses across rays and points. The
sampled 3D points from different rays may be projected to the
same 2D points on the image planes of the source views. Therefore,
there exist opportunities to reuse scene features across those points.
As such, we hypothesize that properly designing the algorithm-
to-hardware dataflow to map the rays/points of which the scene
features can be reused can reduce the overall data movement cost of
generalizable NeRFs. However, since the position and view direction
of a user can arbitrarily change during run-time, the geometric
relationship among different rays emitted from a user’s camera
center is unknown before NeRF deployment, i.e., whether different
rays/points can reuse the same scene features is uncertain. It is thus
highly desirable to develop techniques that can efficiently derive
the geometric relationship among rays given the position and view
direction of a user’s camera and then derive the point-to-hardware
mapping schemes accordingly to maximize scene feature reuses.

3 GEN-NERF: ALGORITHM

3.1 Algorithm Overview

Our Gen-NeRF’s algorithm aims to (1) leverage the sparsity oppor-
tunities in target 3D scenes as analyzed in Sec. 2.4 to reduce the
total number of required sampling points and thus corresponding
data movement and computational costs while maintaining the
rendering quality, and (2) reduce the heterogeneity of generalizable
NeRF workloads caused by diverse computation patterns between
the ray transformer T and the MLP f modules, thus enhancing
the ease of acceleration. Our Gen-NeRF fulfills these two objec-
tives via developing a coarse-then-focus sampling strategy and an
MLP-based Ray-Mixer module as an efficient alternative of the ray
transformer as elaborated in Sec. 3.2 and Sec. 3.3, respectively.

3.2 The Proposed Coarse-then-Focus Sampling
The overall pipeline. Fig. 3 shows our coarse-then-focus sampling
strategy featuring three steps: Step @ performs lightweight coarse
sampling to acquire the density distribution of the target 3D scene;
Step @ identifies and filters the empty/occluded regions based on
the estimated density distribution from the previous step and de-
rives the sampling probability density function (PDF); Step ® con-
ducts focused sampling based on the sampling PDF above, where the
sampled points are non-uniformly and sparsely distributed across
different rays. Finally, the sampled points are processed, following
the vanilla generalizable NeRF pipeline (i.e., Steps @-@ in Sec. 2.2)
to obtain the rendered pixels. Next, we elaborate Steps @-® below.

Step @: Lightweight coarse sampling. As the goal of this step
is only to estimate the density distribution for identifying empty
or occluded regions and deriving the sampling PDF in the next
step, we find that its complexity can be aggressively trimmed down
without hurting the final rendering quality. Therefore, we adopt a
lightweight design to implement coarse sampling by conditioning
the NeRF process on only a limited number of views (denoted as S.)
that are the closest to the user’s view direction and also sampling
fewer points (N.) along each ray as shown in Fig. 3 (b).

Step @: Empty/occluded region discovery and sampling PDF
estimation. The regions that contribute less to the rendered pixels
caused by low density o (i.e., empty regions) and/or low accu-
mulated transmittance Ty (i.e., occluded regions) can be identified
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Figure 3: Illustrating (left) the sampling process in vanilla NeRFs and (right) our coarse-then-focus sampling strategy.

based on the hitting probability wy = Ty (1 — exp(—ok (tgp1 — tr)))
according to Eq. 2, i.e,, regions containing sampled points with low
hitting probability wy < 7, obtained from the previous coarse sam-
pling step, are considered to be unimportant for the rendered pixels,
where 7 is a predefined threshold. To leverage this opportunity
toward sparse and thus more efficient sampling, we filter out these
regions and assign more sampled points to important regions that
contribute more to the rendered pixels in the subsequent focused
sampling. To achieve this, we define sampled points with wy > 7
obtained from the coarse sampling step as critical points, and the
probability P(j) of sampling from the j-th ray is proportional to the
number of critical points Nj?’ on that ray, i.e., P(j) = N;’ /2 N;’ .
As such, the PDF P(k, j) of sampling the k-th point on the j-th ray
in the subsequent focused samphng is set as P(k, j) = P(k|j) - P(j)
where P(k|j) = Wy wl Sk w and Wk is the hitting probability of the
k-th point on the j-th ray, followmg [20]. This strategy produces a
piecewise-constant PDF along each ray as shown in Fig. 3 (c).
Step @: Sparse focused sampling. We further sample another
set of H X W X Ny points in the 3D space based on the calculated
sampling PDF above, where Ny is the average number of sampled
points per ray and H/W denotes the height/width of the rendered
image, respectively. Different from uniform sampling, the resulting
sampled points are non-uniformly distributed across the rays, where
fewer points are allocated on empty/occluded regions, thus allowing
higher sampling sparsity while maintaining the rendering quality.
During the training process, the number of sampled points on
each ray is required to be constant for facilitating the commonly
used batch training of NeRFs. To satisfy this constraint, we first
perform focused sampling based on the sampling PDF in Step @ and
then pad the sampled points along all rays to Nmax, a predefined
maximal number of sampled points per camera ray. Note that the
padded ones do not contribute to the volume rendering in Eq. 2 and
also do not participate in the rendering process at run-time.
Differences from NeRF’s hierarchical volume sampling.
Our coarse-then-focus sampling is built on top of the hierarchical
volume sampling in vanilla NeRF [20], which aims to refine the
details by rendering at two levels of granularity while sampling
the same numbers of points across different rays. In contrast, our
coarse-then-focus sampling has two major differences: (1) it lever-
ages the sparsity in 3D scenes to trim down the complexity of the
ray marching process, which is implemented by adopting a super
lightweight coarse sampling only to predict the sampling PDF of
the target 3D space without reconstructing the RGB value to boost

efficiency; and (2) our focused sampling results in different numbers
of sampled points across different rays depending on the estimated
sampling PDF, enabling more sampled points on important regions.

3.3 The Proposed Ray-Mixer Module

Considering that the ray transformer T introduced in Sec. 2.2 is
executed once per ray whereas the MLP model f is executed for
inferring every sampled point along the ray, designing a customized
module to accelerate the ray transformer’s attention operations is
inefficient in terms of area and can cause hardware under-utilization.
As such, it is highly desirable to unify the computation patterns of
the MLP and ray transformer modules for boosted efficiency.
Inspired by [39], we achieve the aforementioned goal by devel-
oping a module dubbed Ray-Mixer to fuse the density features
{fk”}]]?/:1 of all points along the same ray, which is to replace the
attention operations commonly used in generalizable NeRFs [5, 17,
31, 43]. This module is implemented using three fully connected
(FC) layers, eliminating the attention operations and thus reduc-
ing the heterogeneity in the required workload. In particular, for
£ € RN*D wwhere N and D are the numbers of points along the
ray and the feature dimension, respectively, our Ray-Mixer adopts
the first FC layer along the point dimension to fuse the informa-
tion across all sampled points on the same ray and then adopts
another FC layer along the feature dimension for independently
processing each sampled point to deliver their density prediction.
We formulate the execution process of our Ray-Mixer as follows:

Fgl.: f’l+(;'>(W1f61), fori=1...D (4)
oj :W3(FJC{* + (W2 F](.’:*)), forj=1...N (5)

where W1 and W, are the weights of the two aforementioned FC
layers, W3 is the weight of a projection layer from density features
to estimated densities, and ¢ is an activation function.

4 GEN-NERF: HARDWARE

Our Gen-NeRF accelerator leverages the deductions of epipolar
geometry [10] to analyze and accelerate the target workloads to
maximize the data reuses among rays. To present our accelerator,
we first introduce the basics and deductions of epipolar geometry
referring to [10] and then identify corresponding scene feature
reuse opportunities in Sec. 4.1, leveraging which we develop our
accelerator with optimized dataflow, feature storage format, and
micro-architecture in Sec. 4.3-Sec. 4.5, respectively.
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Figure 4: Visualize the epipolar geometric relationship among (a) the sampled 3D points and their projections on the source
view for one pixel/ray, (b) those for multiple pixels/rays, and (c) the rays with corresponding pixels located on the same line
that passes through the epipole ¢,. These geometric relationships are deductions of the epipolar geometric analysis in [10].

4.1 Epipolar Geometric Analysis

As the ray marching process in generalizable NeRFs is performed in
a 3D space, the memory access patterns of different rays, which are
emitted from the novel views determined by the user at run-time,
are complex to be analyzed. As such, it is highly desired to map such
workloads into a 2D space for better analyzing the ray behaviors.

Epipolar geometry in generalizable NeRFs. Epipolar geome-
try [10] is used to depict the geometric relations among the pixels
(as well as the corresponding rays and sampled 3D points) observed
from different viewpoints of a 3D scene, i.e., the novel views and
source views in our case. Specifically, it infers the projections of
sampled 3D points on the rays emitted from novel views onto the
2D image planes of corresponding source views and thus can be
leveraged to analyze the scene feature access patterns.

Basics of epipolar geometry. Fig. 4 (a) visualizes the geometric
relationship among the sampled 3D points along two specific rays
emitted from the novel view V}, and their projections on the 2D
image planes on one of the source views Vs, where O, and O; are
the camera centers for V;, and Vi, respectively, and PL,/PLs are
the corresponding novel/source image planes. A more general case
of the geometry among multiple rays is visualized in Fig. 4 (b).
Formally, the triangle plane defined by the connection 0,05 and
the ray Oppn is called epipolar plane (highlighted in green) and
the intersections between line O, Os and the two image planes e,
and e, are called epipoles.

Our leveraged property. We intend to analyze the access pat-
terns and reuse opportunities of source features by leveraging the
following property as analyzed in [10]:

Property-1: For sampled 3D points along the same ray, their
projections on the source image plane PLg are on the same line
with its corresponding epipole es, which is dubbed an epipolar line.

In particular, to render a pixel P on novel images, N points
{pi }f\il are sampled from the ray OP, which are projected to {p; }fil
on the source image plane PL; as introduced in Step @ in Sec. 2.2.
Property-1indicates that {ﬁ,}f\i ; are on the same epipolar line espy,
along which the scene features should be acquired to render the
same pixel P. We thus leverage this to analyze the memory access
patterns of the feature acquisition step of generalizable NeRFs, as
elaborated below.

Projection locality for scene feature reuse. Property-1reveals
the memory access patterns of generalizable NeRFs via mapping
the 3D ray marching process onto 2D image planes, which inspires
us that the sampled 3D points that can be projected to locally close

regions on the 2D image planes can enjoy the opportunities of scene
feature reuses. This observation holds for both 3D points along the
same ray and those across different rays, considering the 3D points
on different rays are likely to be projected to the same or close re-
gions on the 2D image planes, which is determined by the geometric
relationship among rays. This calls for both customized dataflows
that can leverage the projection locality mentioned above to maxi-
mize scene feature reuses and customized micro-architecture that
can derive the geometric relationship among rays at run-time.

To leverage projection locality during point-to-hardware map-
pings, we start from a special but highly desired case when only
one source view is available in Sec. 4.2 and then extend to cases
with multiple source views in Sec. 4.3.

4.2 A Case Study with One Single Source View

Generalizing NeRFs to new scenes with only one source view avail-
able is an extreme but highly desired setting, which eases users’
efforts for manually capturing the new scene of interest and thus
has gained increasing attention [44, 46]. We customize the dataflow
under a single source view based on the following property that
we infer from Property-1:

Property-2: The rendered pixels located on the same line that
passes through the epipole e, on the plane PL, share the same
epipolar line on the source image plane PLs. More specifically, as
shown in Fig. 4 (c), the rays emitted from the pixels located on
the same line that passes through the epipole e, are on the same
epipolar plane and thus they share the same epipolar line, which is
geometrically the intersection between the epipolar plane and the
source image plane PL;.

Customized dataflow under single source view. Property-2
indicates that the rays corresponding to the pixels located on the
same line that passes through the epipole e, can share the scene
feature reuse opportunities thanks to their shared epipolar line.
To leverage this, a simple but effective solution is to prioritize the
rendering on pixels that share the same epipolar line via simulta-
neously mapping them to the hardware. In particular, as shown in
the top-right part of Fig. 4 (c), we divide the pixels (and the corre-
sponding rays) into groups via drawing lines that pass through the
epipole ey, where each line corresponds to one ray group. The rays
in the same ray group are emitted and processed simultaneously,
following Steps @-@ in Sec. 2.2, and thus the scene features of their
sampled 3D points can be reused via being fetched and buffered
only once by our micro-architecture introduced in Sec. 4.5.
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Figure 5: Visualize our greedy 3D-point-patch partition that divides sampled 3D points into patches to maximize data reuses.

Challenges for extending to multiple source views. How-
ever, the aforementioned solution is not directly applicable to new
scenes with multiple source views. This is because the epipole e,
is defined over a pair of views, i.e., the epipoles between the novel
view and different source views are different, and thus the rays
that share the same epipolar line on one specific source view may
not necessarily share the epipolar line on another source view,
thus diminishing the effectiveness of the aforementioned dataflow.
Therefore, a more principled point-to-hardware mapping strategy
is required for handling new scenes with multiple source views.

4.3 The Proposed Point-to-Hardware Mappings

To make use of the scene feature reuse opportunities for new scenes
with varied numbers of source views, we identify the following
deduction from epipolar geometry [10], which depicts the spatial
locality of epipolar geometry:

Property-3: The sampled 3D points that are close in 3D locations
will share close epipolar lines on the source views no matter being
observed from any novel view, implying that the source features on
their epipolar lines can be simultaneously acquired and processed.

Our proposed dataflow. Property-3 motivates us to simultane-
ously map the rays that share the closer depth and view directions
onto the hardware, where the achievable acceleration efficiency is
determined by how to divide the 3D points into patches that are
simultaneously processed. To achieve this, we describe the target
workload as a 3D cube that covers the information of both view
directions and depths. In particular, for rendering a 2D image with
a resolution of H X W and N, N sampled points along each ray lie
in different depths of the corresponding ray, and the depth range
between the near plane to the far plane is denoted as D, where the
aforementioned 3D cube features a shape of H X W X D. For sched-
uling the point-to-hardware mapping, our proposed dataflow slices
a point patch dh X dw X dd from the 3D cube, which is prefetched
and processed at one time to exploit the scene feature reuse.

As analyzed in Sec. 4.1, the scene feature reuse opportunities
among points are determined by their geometric relationship, which
keeps changing along with the movement of novel view directions
from the users’ perspective at run-time. Therefore, it is highly
desirable to efficiently derive the optimal 3D-point-patch partition
strategy, i.e., the patch shape §h X dw X §d per processing, at run-
time based on the epipolar geometric analysis to fully unleash the
potential of our dataflow.

Proposed greedy 3D-point-patch partition. We propose a
greedy 3D-point-patch partition algorithm to divide the 3D work-
load cube H X W X D into point patches at run-time. The rationale
of our strategy is to iteratively select the partition strategy for
each local region that contains the same number of 3D sampled

points while greedily minimizing the required memory accesses of
scene features at each iteration. The reason that we adopt a greedy
scheme is to ease the corresponding hardware implementation for
reduced run-time overhead.

As shown in Fig. 5, our algorithm gradually partitions the 3D
workload cube into patches from the top-left in the near plane,
ie, (h,w,d) = (0,0,0), to the bottom-right in the far plane, i.e.,
(h,w,d) = (H,W, D). To decide the shape of each point patch, we
greedily search for the optimal patch shape, which aims to maximize
the scene feature reuse opportunities, among M predefined patch
shape candidates {5h;, Swi, 5di}?il shown in the left part of Fig. 5
(b). More specifically, as visualized in the right part of Fig. 5 (b), a
point patch candidate essentially constructs a frustum in the 3D
world coordinate when being transformed from the (h, w, d) space.
We leverage the epipolar geometry to project each frustum onto the
2D image planes of corresponding source views, and use the total
covered area of the projection, which is a 2D tetragon that covers
the epipolar lines of all rays within the frustum, to estimate the
required memory access for processing this point patch candidate.
After selecting the optimal patch shape {Shopt, Iwopt, ddopt } that
minimizes the memory access at each iteration, we assign the points
that fall into the corresponding frustum in the 3D space to the same
patch, which is pushed into a patch queue for sequential processing.
We iteratively perform the partition until all sampled 3D points are
assigned to a patch.

Note that we enforce two constraints during this scheduling
process: (1) we enforce the patches located at the same height h
and width w but different depth d, which corresponds to the same
set of pixels, to share the same patch partition strategy to ease
the hardware logic when accumulating their predicted colors in
Step @ in Sec. 2.2, and (2) we guarantee that the total read size
during prefetching, which is determined by the patch shape, does
not exceed the maximum prefetch buffer size.

4.4 Optimize the Scene Feature Storage Strategy

Considering the scene features with a shape of SXHs X W XC, where
S is the number of source views, Hs/Ws are the feature height/width,
respectively, and C is the feature dimension, are stored in DRAM
and prefetched to a prefetch buffer for each point patch, an improper
storage strategy, as shown in Fig. 6 (a), may result in memory bank
conflicts when simultaneously querying the scene features stored
on the same memory bank, resulting in reduced bandwidths. To this
end, we optimize the storage strategy of scene features to balance
the read/write volume between the memory banks.

Our proposed strategy. Motivated by the projection locality
introduced by our dataflow, which simultaneously accesses the
scene features in a local region on the 2D image planes of the
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Figure 6: Visualize different strategies for storing features.

source views, it can be highly expected that the scene features
in the 2D local region can be read out without bank conflicts. To
achieve this, we propose a spatial interleaving storage format along
the Hy and Ws dimensions as shown in Fig. 6 (b), where neighboring
features on the image plane are stored in different memory banks
so that the bank conflicts can be alleviated for prefetching each
point patch from a multi-bank DRAM.

4.5 Gen-NeRF’s Micro-architecture

Micro-architecture overview. Fig. 7 shows our Gen-NeRF accel-
erator’s micro-architecture, integrating a memory controller to han-
dle the communication with the off-chip DRAM, a prefetch double
buffer to store scene features for data reuses, a workload scheduler
to partition the workloads and support the dataflow introduced
in Sec. 4.3, and a rendering engine to perform the coarse/focused
sampling and ray marching.

Rendering on Gen-NeRF’s micro-architecture. Here we de-
scribe how the rendering process is executed in our Gen-NeRF’s
micro-architecture (see Fig. 7). Given a sparse set of source views of
a scene and a novel view from the user, the workload scheduler con-
tinuously performs the greedy 3D-point-patch partition in Sec. 4.3
to generate and enqueue point patches when the patch queue is
not full, which are next processed by the prefetch buffer and the
rendering engine. The prefetch buffer is executed in a double-buffer
manner to hide the off-chip communication latency, i.e., when one
of the SRAMs in the prefetch buffer is used to provide scene features
for the rendering engine, the other SRAM will be used to prefetch
the next point patch from the patch queue.

The rendering engine features two execution stages for support-
ing our coarse-then-focus sampling in Sec. 3.2. In the first stage,
the rendering engine performs the lightweight coarse sampling for
the scheduled point patch; In the second stage, it performs sam-
pling PDF estimation, focused sampling, and volume rendering.
Both stages can be further divided into Steps €-@ as mentioned in
Sec. 2.2, where Steps @-@ are carried out in a pipelined manner and
the ray transformer in Step @ is replaced with our Ray-Mixer. In
particular, based on the partitioned point patches from the workload
scheduler, the preprocessing unit samples 3D points and acquires
their corresponding source features from the prefetch double buffer
(i.e., Steps @-@). Next, the source features are fed to the PE pool
for executing the MLP and our Ray-Mixer (i.e., Steps @-@). Finally,
the predicted density and colors from Step @ are written into the
local memory of the rendering engine and are used to generate the
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final pixels in Step @ after the pipeline is done for the patch. Fig. 8
shows the corresponding workflow diagram of only one stage.

Design details of each featured component. The prefetch
buffer is a pair of SRAMs, forming a double buffer to enable the
buffer to read and write in parallel. Each SRAM is divided into
multiple banks and we also leverage the spatial interleaving storage
format introduced in Sec. 4.4 to store scene features for balancing
the communication between SRAM banks in each prefetch buffer
and thus improve the effective bandwidth.

The workload scheduler is composed of a top-left sequencer for
indicating the next location to be processed based on a mask-bitmap
memory, which is a bitmap to indicate whether a 3D point has been
assigned to a patch during the iterative 3D-point-patch partition
process, a vertex projector that projects 3D frustums in the 3D
space into tetragons on source image planes, an area calculator and
the corresponding comparator to derive the optimal patch shape,
and a patch queue to store the partitioned point patches.

The rendering engine comprises a preprocessing unit, a local
buffer, a weight buffer, a PE pool, and a special function unit. In
particular, the preprocessing unit handles (1) the focused sampling
from the estimated sampling PDF in Sec. 3.2 using inverse transform
sampling in Monte-Carlo methods [37] and (2) the loading and
preprocessing of scene features via first projecting the sampled
points onto source image planes by the projector and then bilinearly
interpolating the exact scene features among those of the closest
four elements by the interpolator. The PE pool is composed of
multiple PEs, each of which is a systolic array, to execute the MLP
and Ray-Mixer modules. The special function unit is composed of
a PE line to calculate the exponential function and accumulate the
colors of sampled points along the ray in Eq. 2.

Comparisons with GPUs. If we compare our architecture with
GPUs [23], the roles of the PE pool and the prefetch double buffer
in Fig. 7 could emulate the thread blocks and L2-cache that can be
accessed by different blocks, respectively. Our architecture differs in
(1) the preprocessing unit that handles our proposed point sampling
strategy introduced in Sec. 3.2, and (2) the workload scheduler that
implements our proposed 3D-point-patch partition to maximize
source feature reuses.

5 EXPERIMENTAL RESULTS
5.1 Experiment Setup

Datasests. We use the training sets in [43], which integrates both
synthetic data and real data from Google Scanned Objects [32],
RealEstate10K [50], the Spaces dataset [8], LLFF [19], and self-
captured real scenes from handheld cellphones [43]. For evaluation,
we follow [20, 43] and use both synthetic objects and real scenes,
including four Lambertian objects from DeepVoxels [36], eight
synthetic objects from [20], and eight complex real-world scenes
captured with roughly forward-facing images from LLFF [19].
Algorithm setup. We build our framework on top of IBR-
Net [43] as it is the most representative generalizable NeRF design
with its pipeline inherited by follow-up generalizable NeRF vari-
ants. We train the models for 250K steps using an Adam optimizer
and an initial learning rate of 5e-4 with exponential decay, follow-
ing [43]. During the lightweight coarse sampling, we fix the number
of source views as 4 and apply a channel scale of 0.25 to the coarse
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Figure 7: An illustration of the micro-architecture in our Gen-NeRF accelerator, where the block diagram is shown in the middle
and two blocks are further visualized at the left and right parts, including the preprocessing unit and workload scheduler.
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MLPs. The typical workload of rendering an 800x800 image, which
samples 64 points per ray on average during the focused sampling
and is conditioned on 6 source views, involves 0.328 trillion FLOPs.

Hardware setup. We implement our hardware modules (e.g.,
the rendering engine and workload scheduler in Fig. 7) in Verilog
and use Cadence Genus to synthesize the gate-level design for esti-
mating the chip area, timing, and power consumption information
based on a commercial 28nm CMOS technology. In particular, the
synthesized frequency is set to 1GHz. The rendering engine con-
sists of a PE pool with 40 16"16 INT8 systolic arrays, a 256KB local
buffer, and an 8KB weight buffer. Each of the prefetch buffers is a
256KB scratchpad memory. The detailed area and power of each
hardware module are provided in Tab. 1.

Due to the lack of an RTL model for DRAM, an end-to-end
verilog-simulation is not feasible. As such, we build a cycle-accurate
simulator to characterize the behaviors of our accelerator based on
(1) the timing and power information derived from gate-level simu-
lations and (2) a commonly-used tool for DRAM, Ramulator [14],
to estimate the DRAM latency/energy. Specifically, we calculate the
number of cycles of each hardware module and record all memory
requests to the off-chip DRAM, i.e., an LPDDR4-2400 DRAM with
17.8 GB/s bandwidth that is commonly used for AR/VR devices [18].

5.2 Evaluating Gen-NeRF’s Algorithm

Effectiveness of our coarse-then-focus sampling strategy. We
first benchmark our coarse-then-focus sampling with the sampling
strategy of IBRNet [43] under different numbers of sampled points.
In particular, for Gen-NeRF, we sample 8/8, 8/16, 16/32, and 32/64
points per camera ray on average during the coarse/focused sam-
pling, respectively, and Fig. 9 visualizes the achievable trade-off
between PSNR (averaged over all scenes in each dataset) and the

Table 1: Area and power of Gen-NeRF’s hardware modules.

Workload Preprocessing Rendering Engine Prefetch
Module Scheduler Unit (PPU) (except PPU) Buffer Total
Area (mmz) 0.24 1.24 14.98 1.34 17.80
Power (mW) 156.2 696.0 8359.2 473.6 9685.0

total numbers of sampled points/the corresponding FLOPs for ren-
dering one pixel. We can observe that (1) our coarse-then-focus
sampling consistently achieves a better PSNR under the same num-
ber of sampled points, e.g., a 4.67 higher PSNR with 24 sampled
points on NeRF Synthetic, and (2) thanks to the superior efficiency
of our lightweight coarse sampling, the required FLOPs for inferring
the same number of points of our method is also reduced.
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Figure 9: Benchmark our Gen-NeRF with IBRNet under dif-
ferent numbers of sampled points (top) and corresponding
million FLOPs (MFLOPs) for rendering one pixel (bottom).

Efficacy of our Ray-Mixer. We benchmark the following three
IBRNet variants: (a) vanilla IBRNet with the ray transformer, (b)
IBRNet with the ray transformer removed, and (c) IBRNet integrat-
ing our Ray-Mixer. As shown in rows 2-4 of Tab. 2, we can observe
that (1) removing the ray transformer leads to a significant PSNR
drop due to erroneous density estimation [43], and (2) integrating
Ray-Mixer results in considerably better reconstruction accuracy
over that w/o Ray-Mixer, e.g., a 3.37 PSNR improvement on aver-
age across four scenes from LLFF. In addition, our Ray-Mixer can
achieve comparable rendering quality as the ray transformer while
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Table 2: Impact of each component on the rendering quality
(PSNR1/LPIPS]) and efficiency (MFLOPs/pixel).

Method MFI.‘OPS fern fortress horns trex
/ pixel

vanilla IBRNet 13.94
- ray transformer 13.25

23.837/0.246  30.003/0.153  26.477/0.177  24.574/0.230
19.380/0.406  25.927/0.282  23.244/0.276  21.970/0.310

+ Ray-Mixer 13.88 23.716/0.247  30.028/0.153  26.427/0.177  23.810/0.236
+ Coarse-then-Focus
Sampling (16/48)

+ channel pruning
- 10 source views 0.80
- 6 source views 0.51
- 4 source views 0.37

4.27 23.657/0.252  30.087/0.154 26.512/0.181  24.158/0.239

23.258/0.266  29.418/0.163  25.723/0.198  23.733/0.251
22.554/0.284  28.904/0.178  25.168/0.212  23.327/0.261
22.226/0.302  27.879/0.193  24.508/0.227  22.694/0.279

Table 3: Benchmark the rendering quality (PSNRT/LPIPS])
and efficiency (MFLOPs/pixel) using per-scene finetuning,.

’ S.ource Method MFI.‘OPS fern fortress horns trex
Views / pixel
IBRNet 6.31
Gen-NeRF 0.368

23.759/0.247  29.893/0.165 27.149/0.162  25.293/0.217

! 23.380/0.267  29.450/0.176  26.249/0.191  24.547/0.235

IBRNet 13.94
Gen-NeRF 0.803

24.890/0.210  31.237/0.139  28.471/0.141  26.644/0.199
24.264/0.235 30.551/0.149  27.565/0.166 ~ 25.742/0.218

significantly reducing workload heterogeneity since hardware mod-
ules dedicated to attention operations are no more required.

Impact of each component on the rendering quality and
efficiency trade-off. We demonstrate the impact of each of our
techniques on both rendering quality and efficiency in Tab. 2, pro-
viding a detailed breakdown of their respective contributions on
top of four scenes from LLFF. In addition to our coarse-then-focus
sampling and Ray-Mixer, we also reduce the redundancy in the
model structure via channel pruning with a sparsity of 75%, ensur-
ing a comparable rendering quality with a <0.5 PSNR reduction
on average on LLFF, to achieve a better PSNR-efficiency trade-off
to better satisfy real-world application requirements. We can ob-
serve that (1) our coarse-then-focus sampling and Ray-Mixer can
reduce the required FLOPs by 3.26X while achieving a comparable
or even slightly higher PSNR as compared to vanilla IBRNet, and
(2) introducing channel pruning could result in a >5X extra FLOPs
reduction and the delivered model using 6 source views can reduce
the required FLOPs by 27.3x while maintaining a <1.3 PSNR drop.

Benchmark under a per-scene finetuning setting. Consider-
ing that a per-scene finetuning process on top of pretrained general-
izable NeRFs is found to enhance the reconstruction accuracy on a
specific scene [5, 17, 43], we further finetune Gen-NeRF’s delivered
models in Tab. 2 and benchmark with finetuned IBRNet on top
of four scenes from LLFF. As shown in Tab. 3, our Gen-NeRF can
significantly trim down the complexity of IBRNet by >17x while
maintaining a comparable PSNR (-0.38~-0.90).

5.3 Evaluating Gen-NeRF’s Accelerator

We benchmark our Gen-NeRF’s accelerator with both commercial
GPUs and SOTA NeRF accelerators. We adopt 64 sampled points
per ray on average and 6 source views if not specifically stated.
Benchmark with commercial GPUs. We first benchmark our
Gen-NeRF’s accelerator with NVIDIA RTX 2080Ti desktop GPU and
Jetson TX2 edge GPU for accelerating our Gen-NeRF’s algorithm on
three different datasets featuring different resolutions. The achieved
throughput is shown in Fig. 10, where we can observe that (1) our
Gen-NeRF’s accelerator consistently outperforms both GPUs in
throughput across all datasets, e.g., a 255.8%/7448.9x FPS over RTX
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Figure 10: Benchmark our Gen-NeRF with two GPU devices
on three datasets with different resolutions.
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Figure 11: Benchmark our Gen-NeRF with two GPU devices
on the NeRF Synthetic dataset with a resolution of 800x800.

2080Ti and TX2 on LLFF, respectively; (2) our accelerator can satisfy
the real-time requirement (> 24 FPS) [35] for rending an 800x800
image, indicating that our Gen-NeRF is the first to enable real-
time generalizable NeRFs with decent rendering quality, offering a
promising NeRF solution for AR/VR applications.

Evaluate the scalability with varied numbers of source
views and sampled points in the focused sampling. As shown
in Fig. 11, we can observe that our Gen-NeRF’s accelerator consis-
tently outperforms the two GPU baselines with > 208.8x speed-up,
indicating its scalability to different scenes with diverse source
views and complexity for different use cases.

Benchmark with SOTA NeRF accelerators. We benchmark
with ICARUS [30] in Tab. 4, where the performance of ICARUS is
their reported one. We can observe that Gen-NeRF can outperform
ICARUS with >1000x FPS under a comparable area, indicating that
our Gen-NeRF, featuring an algorithm-hardware co-design, is a
more promising solution for NeRF acceleration.

Ablation study on the dataflow and feature storage format.
To validate the effectiveness of our proposed dataflow and spatial
interleaving feature storage format, we benchmark Gen-NeRF with
its three variants as baselines, including Var-1 w/o our dataflow,
which instead prefetches and processes a patch sliced along the
row dimension and column dimension (W and H in Fig. 5) with
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Table 4: Specifications of Gen-NeRF and baseline accelerators.

Device | Gen-NeRF | ICARUS [30] Jetson TX2 [22] Nvidia RTX 2080Ti [24]
SRAM | 08MB | 096MB 2.5MB 29.5MB
Area ‘ 17.80 mm? ‘ 16.5 mm? 350 mm? 754 mm?
Frequency ‘ 1.0 GHz ‘ 400 MHz 0.9 GHz 1.35GHz
DRAM ‘ LPDDR4-2400 ‘ - LPDDR4-1600 GDDR6
Bandwidth 17.8 GB/s - 25.6 GB/s 616GB/s
Technology ‘ 28 nm ‘ 40 nm 16nm 12nm
Typical Power| ~ 97W | 282.8mW 10w 250W
Typical FPS | 24.9 | 0.02 0.003 0.096
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Figure 12: Visualize the latency breakdown and utilization
of Gen-NeRF’s variants.

a constant patch size {Shopt, SWopt, ddopt } = {k, k, D}, where k is
the maximal value that satisfies the prefetch buffer size; Var-2 w/o
both our dataflow and feature storage format, which instead stores
scene features in DRAM and SRAM via a row-wise interleaving
manner as shown in Fig. 6 (a) on top of Var-1; Var-3, which uses a
view-wise interleaving manner on top of Var-1.

We show the latency breakdown of data movement and compute
and the resulting PE utilization under different numbers of source
views in Fig. 12. We can observe that (1) the overall latency of Var-1
is bounded by memory access, since the latency of data movement
is larger than that of compute in the pipeline, resulting in low PE
utilization. In contrast, our Gen-NeRF successfully hides the data
movement latency behind the compute time, indicating the effec-
tiveness of our dataflow in enhancing scene feature reuse; and (2) as
compared to Var-1, Var-2 and Var-3 is even more memory-bounded
due to the unbalanced communication volume to different mem-
ory banks, indicating the effectiveness of our spatial interleaving
strategy in avoiding bank conflicts.

6 RELATED WORK

View synthesis and NeRF. The task of view synthesis aims to
render photorealistic images from novel viewpoints based on ob-
served images of an object or scene. To support free-viewpoint
rendering from sparsely sampled images, explicitly or implicitly
reconstructing the 3D representations of the objects/scenes is typi-
cally required. NeRF [20] has gained increasing popularity thanks to
its implicit scene representation, which fits each scene as a continu-
ous 5D radiance field parameterized by an MLP and does not suffer
from the aforementioned drawbacks. Follow-up works extend NeRF
for generative modeling [3, 34], dynamic scenes [16, 25, 27-29], or
lighting and reflection modeling [1, 38, 41].

Generalizable NeRFs. To avoid per-scene optimization and
enable the cross-scene generalization capability of NeRF, general-
izable NeRF variants [5, 13, 17, 31, 42, 43, 45, 46] are proposed to
train cross-scene multi-view aggregators, which reconstruct the
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radiance field of a new scene via a one-shot forward pass. In par-
ticular, [31, 43, 46] condition NeRF on a set of source views from
the new scene via feeding the extracted scene features from the
source views into NeRF. [5] extracts the scene features leveraging
plane-swept cost volumes, which are widely used in multi-view
stereo, for enhancing geometry awareness. [17] further predicts
the visibility of 3D points to each source view to avoid inconsistent
features from invisible views. However, generalizable NeRFs pose
new challenges for NeRF acceleration as analyzed in Sec. 4, calling
for new efficiency-enhancing techniques.

NeRF accelerators. As NeRF is still an emergent field, limited
attempts have been made for NeRF acceleration from the accel-
erator perspective. ICARUS [30] proposes an architecture for the
vanilla MLP-dominated NeRF [20], which accelerates each com-
ponent of NeRF via customized modules; [49] develops a resistive
random access memory (RRAM)-based NeRF accelerator based on
the parallel nature of NeRFs’ rendering process to enhance the uti-
lization of the RRAM array. However, both of the aforementioned
works (1) assume different rays can be executed in parallel without
acquiring extra features stored in DRAM and thus their proposed
accelerators cannot well handle the data movement cost in gener-
alizable NeRFs, and (2) lack algorithmic improvements to exploit
the intrinsic redundancy in NeRF. [15] is a pioneering work that
features an algorithm-hardware co-design for NeRFs, which tackles
the latency bottlenecks, caused by querying the occupancy grid
and calculating the voxel-wise feature embeddings, of an efficient
NeRF design dubbed TensoRF [4]. Nevertheless, their techniques
only focus on a specific type of NeRFs, i.e., TensoRF [4], which
lacks cross-scene generalization capability because of its use of
scene-specific occupancy grid and voxel-wise embeddings. There-
fore, their acceleration methods are not applicable to generalizable
NeRFs. In contrast, our work is the first algorithm-hardware co-
design targeting generalizable NeRFs, featuring a win-win in both
rendering efficiency and cross-scene generalization, both of which
are crucial for real-device deployments of NeRFs in AR/VR applica-
tions. In addition, instead of targeting one specific kind of NeRFs,
our delivered techniques and insights can be generally applicable
to generalizable NeRF variants [5, 17, 31, 43, 46].

7 CONCLUSION

To enable efficient and generalizable NeRFs towards real-time novel
view synthesis in AR/VR applications, we propose Gen-NeRF, which
is the first algorithm-hardware co-design framework dedicated
to accelerating generalizable NeRFs. Our Gen-NeRF identifies the
unique opportunities for generalizable NeRF acceleration, including
the diverse sparsity distributions in a 3D space and the scene feature
reuse opportunities derived from the epipolar geometric relation-
ship among different points and rays, leveraging which we develop
a dedicated algorithm and accelerator, respectively, to push forward
the achievable accuracy-efficiency trade-off of generalizable NeRFs.
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