

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Yonggan Fu, Zhifan Ye, Jiayi Yuan, Shunyao Zhang, Sixu Li, Haoran You, and Yingyan (Celine) Lin

and view-dependent color of a target scene, has gained increasing

popularity thanks to its state-of-the-art (SOTA) rendering quality

for photorealistic novel views.

Despite NeRFs’ impressive rendering quality, enabling real-time

rendering of NeRFs on resource-constrained AR/VR devices, which

is highly desirable for numerous AR/VR applications, is still par-

ticularly challenging due to the following bottlenecks: (1) Vanilla

NeRFs require per-scene optimization and thus cannot be effectively

generalized to a new scene specified by a user; (2) The volume ren-

dering process in NeRFs has a prohibitive complexity of 𝐻 ×𝑊 × 𝑃 ,

where 𝐻 and𝑊 denote the height and width of the rendered image,

respectively, and 𝑃 is the number of sampled points along each

camera ray. Such a cubic complexity results in a throughput of ≤0.1

frame-per-second (FPS) even on an NVIDIA desktop GPU [11].

To tackle the aforementioned bottleneck-(1), generalizable NeRFs

[5, 17, 43, 46] have become the mainstream solution for improving

NeRFs’ generalization capability. Specifically, their key spirit is to

condition vanilla NeRFs on a set of source views by extracting scene

features from those source views, which are then fed into vanilla

NeRFs as inputs. By doing so, generalizable NeRFs eliminate the

need for per-scene optimization and thus hold the promise of being

the most feasible NeRF solution for commercial AR/VR applications.

However, the boosted generalization capability of generaliz-

able NeRFs comes at the cost of aggravating the aforementioned

bottleneck-(2), posing new challenges for achieving real-timeNeRFs.

First, conditioning NeRFs on the source views mentioned above

requires extra memory accesses to fetch scene features, which can

make NeRFs’ ray marching process memory-bounded and thus

cause hardware under-utilization issues. In particular, to infer the

density and color of each sampled point in a 3D scene, generaliz-

able NeRFs project the sampled point onto the image planes of 𝑆

different source views and then apply the resulting 𝐷-dimension

scene features of the projection point to the inputs of vanilla NeRFs.

As such, the total number of memory accesses for acquiring the

scene features becomes 𝐻 ×𝑊 × 𝑃 × 𝑆 × 𝐷 , which can result in

significant latency overhead as profiled in Sec. 2.3.

The second challenge is that while it is natural to consider us-

ing SOTA sparsity-exploitation techniques for NeRFs to boost the

acceleration efficiency of generalizable NeRFs, these techniques

rely on the knowledge of the spatial sparsity distribution in the

target 3D scene, which is unknown for a new scene. Therefore,

these techniques are not applicable to generalizable NeRFs because

the spatial distributions of different scenes may vary significantly,

thus making it infeasible to predict and utilize the spatial sparsity

of new scenes. Third, extra ray transformers [31, 42, 43] are often

introduced in SOTA model structures of generalizable NeRFs for

more accurately predicting the densities of new scenes that have a

complex geometry [43]. These additional transformer modules with

attention operations [40] increase the workload heterogeneity of

generalizable NeRFs, further challenging their execution efficiency.

To tackle the aforementioned challenges of enabling real-time

generalizable NeRFs, we first identify opportunities unique to gen-

eralizable NeRFs that can boost their achievable acceleration effi-

ciency and then develop an algorithm-hardware co-design frame-

work, dubbed Gen-NeRF, which to the best of our knowledge is the

first to achieve real-time efficiency of generalizable NeRFs.

On the algorithm side, the key insight that motivates our work

is that the contributions of different regions in a 3D scene to the

rendered pixels can vary depending on the location of objects, of-

fering an opportunity for sparse sampling. Specifically, sampled

points in empty or occluded regions of the scene contribute less

to the rendered pixels and thus fewer sampled points are needed

in such regions of the target 3D scene. To leverage this, our Gen-

NeRF algorithm integrates a coarse-then-focus sampling scheme to

enable sparse yet effective sampling. Additionally, our Gen-NeRF

algorithm further reduces the workload heterogeneity in generaliz-

able NeRF models by introducing an MLP-based module, dubbed

Ray-Mixer, to replace the ray transformer [31, 42, 43] in SOTA gen-

eralizable NeRFs. The advantage of doing this is that the Ray-Mixer

module can maintain the capability of accurately estimating the

density of the former while enabling the reuse of the computing

units that are dedicated to generalizable NeRFs’ MLPs needed for

implicitly encoding the continuous volume representation.

On the hardware side, we discover that there exist inherent

opportunities for making use of the geometric relationships among

different camera rays to reduce the required number of memory

accesses for acquiring scene features of different source views. As

such, we develop a dedicated accelerator to accelerate the resulting

workloads from our Gen-NeRF algorithm. In particular, our Gen-

NeRF accelerator leverages the epipolar geometric analysis [47]

and highlights three components: (1) a customized data�ow that

enhances data locality during point-to-hardware mapping. More

specifically, we partition the points in the 3D scene into point

patches that can be projected to the same or neighboring regions

on the image planes of different source views based on their epipolar

geometric relationships, thus enhancing scene feature reuses; (2)

an optimized scene feature storage strategy for avoiding memory

bank con�icts when loading scene features of different rays; (3) a

customized ray marching micro-architecture that accelerates Gen-

NeRF’s algorithm by orchestrating the coarse and focused sampling

processes and features a run-time workload scheduler to efficiently

execute the above 3D-point-patch partition at run-time. Finally, we

summarize our contributions as follows:

• We propose an algorithm-hardware co-design framework,

dubbed Gen-NeRF, which is the first to enable real-time

generalizable NeRFs, offering a promising NeRF solution

for next-generation AR/VR applications. Furthermore, the

opportunities we identify can also shed light on future inno-

vations for accelerating more diverse NeRF pipelines.

• On the algorithm side, Gen-NeRF integrates a coarse-then-

focus sampling strategy that leverages the fact that different

regions in a 3D scene can feature diverse sparsity ratios

depending on where the objects are located in the scene to

enable sparse yet effective sampling. In addition, Gen-NeRF

develops a novel Ray-Mixer module, which replaces the ray

transformer that is generally included in SOTA generalizable

NeRFs in order to enhance NeRFs’ density estimation, aiming

at reducing workload heterogeneity.

• On the hardware side, Gen-NeRF highlights an accelerator

micro-architecture dedicated to accelerating the resulting

model workloads from our Gen-NeRF algorithm to maximize

the data reuse opportunities among different rays by making

Gen-NeRF: E�icient and Generalizable Neural Radiance Fields via Algorithm-Hardware Co-Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

View 1

View 2

Source view

Target view

Ray

Transformer

MLP

CNN

Encoder

Scene FeatureSource View Rendered Img

2

Render Loss

Volume Rendering

ray distance

0Step

1Step 2Step

3Step

4Step
5Step

2Ground Truth

pp

Figure 1: Visualizing the typical execution pipeline of existing generalizable NeRFs [31, 42, 43], which condition NeRF on source

views and enhance density estimation via a ray transformer. This illustration is modified from the visualization style of [43].

use of their epipolar geometric relationships. Furthermore,

our Gen-NeRF accelerator features a customized data�ow

to enhance data locality during point-to-hardware mapping

and an optimized scene feature storage strategy to minimize

memory bank con�icts across camera rays.

• Extensive experiments validate the effectiveness of our Gen-

NeRF in enabling real-time and generalizable novel view

synthesis, e.g., Gen-NeRF achieves a 255.8× speed-up over

the NVIDIA RTX 2080Ti GPU while maintaining a photore-

alistic rendering quality.

2 PRELIMINARIES AND ANALYSIS OF
GENERALIZABLE NERF WORKLOADS

2.1 Preliminaries of NeRFs

We first introduce vanilla NeRFs’ rendering pipeline. To render a

pixel corresponding to a camera ray that is emitted from the camera

center and passes through this pixel, NeRF performs a ray marching

process, i.e., it samples 3D points along the ray, estimates the color

and density of each sampled point, and then composites the colors

and densities of the sampled points to derive the pixel value.

Specifically, a camera ray can be parameterized as r(𝑡) = o + 𝑡d,

with o ∈ R3 denoting the ray origin (i.e., the camera center) and

d ∈ R3 denoting the ray unit direction vector, where 𝑡 ∈ [𝑡𝑛, 𝑡𝑓]

is the depth along the ray between the predefined near bound 𝑡𝑛
and far bound 𝑡𝑓 . To acquire the color and density of each sampled

point given both its location in the 3D space x ∈ R3 and view

direction unit vector d ∈ R3, a volumetric radiance field 𝑓 returns

a differential density 𝜎 and RGB color c, i.e., (𝜎, c) = 𝑓 (x, d). Next,

the volume along the ray r can be rendered into a 2D pixel Ĉ(r) via

an integral over the colors of sampled points:

Ĉ(r) =

∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎 (𝑡)c(𝑡) d𝑡 (1)

where 𝑇 (𝑡) = exp
(

−
∫ 𝑡

𝑡𝑛
𝜎 (𝑠) d𝑠

)

denotes the accumulated trans-

mittance along the ray from 𝑡𝑛 to 𝑡 , which refers to the probability

that the ray travels from 𝑡𝑛 to 𝑡 without hitting any other particle

and is to measure the occlusion effect. In practice, the integral in

Eq. 1 is approximated with numerical quadrature by sampling 𝑁

points along each camera ray:

Ĉ(r) =

𝑁
∑

𝑘=1

𝑇𝑘 (1 − exp(−𝜎𝑘 (𝑡𝑘+1 − 𝑡𝑘))) c𝑘 (2)

where 𝑇𝑘 = exp
(

−
∑𝑘−1

𝑗=1 𝜎 𝑗 (𝑡 𝑗+1 − 𝑡 𝑗)
)

. To train the volumetric

radiance field 𝑓 , a Mean-Square-Error (MSE) loss is applied between

the rendered pixels and the ground truth pixels from all camera

rays of the target view:

L =

∑

r∈R

�

�Ĉ(r) − C(r)
�

�

2
2 (3)

where R is the set of all camera rays. As the inputs to vanilla NeRFs

only include the scene-invariant point location x and view direction

d, it is difficult to generalize them across different scenes.

2.2 The Pipeline of Generalizable NeRFs

Generalizable NeRF variants [5, 17, 31, 43] enable cross-scene gen-

eralization via two modifications on top of vanilla NeRFs: (1) con-

ditioning NeRFs on the source views of new scenes, i.e., given a

limited number of observed source views of a new scene, the fea-

tures extracted from those source views via a CNN encoder are

used as scene priors and fed into a vanilla NeRF model as inputs,

and (2) adopting a ray transformer on top of all the points across

the same ray to enhance the density prediction.

As an example, we illustrate the execution pipeline of a repre-

sentative generalizable NeRF called IBRNet [43] in Fig. 1, which

is the first to propose the two aforementioned modules and has

served as a cornerstone for follow-up generalizable NeRF variants.

Specifically, rendering a pixel in IBRNet involves the following

steps: Step 0 calculates the 2D feature maps {W𝑖 }
𝑆
𝑖=1 from a total

of 𝑆 source views {I𝑖 }
𝑆
𝑖=1 via a CNN encoder 𝐸, whereW𝑖 = 𝐸 (I𝑖) is

a 3D tensor. Note that this requires only a one-time effort for each

new scene; Step 1 emits a ray r(𝑡) = o+ 𝑡d from the origin o along

the view direction d to pass through the pixel to be rendered and

sample 3D points {x𝑘 } along the ray based on an ordered depth

sequence {𝑡𝑘 } sampled from a certain distribution; Step 2 projects

each sampled 3D point x𝑘 to the image planes of source views with

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Yonggan Fu, Zhifan Ye, Jiayi Yuan, Shunyao Zhang, Sixu Li, Haoran You, and Yingyan (Celine) Lin

DeepVoxels

 512x512

NeRF Syn

 800x800

LLFF

1008x756

L
a
te

n
c
y
 (

s
)

(a) NVIDIA RTX 2080Ti (b) NVIDIA Jetson TX2

Acquire Features Ray TransformerMLP Others

DeepVoxels

 512x512

NeRF Syn

 800x800

LLFF

1008x756

Figure 2: Profile our generalizable NeRF model on two GPU

devices across three datasets with different resolutions.

a project transformation 𝜋 and acquires the corresponding scene

features, i.e., {[𝑊𝑖]𝜋 (x�) }
𝑆
𝑖=1; Step 3 applies the obtained scene

features above to an MLP model 𝑓 to derive the color c𝑘 and density

feature 𝑓 𝜎
𝑘

of each point; Step 4 feeds the density features of all

sampled points along the ray into a ray transformer 𝑇 to acquire

the predicted density 𝜎𝑘 for each point; Step 5 performs volume

rendering following Eq. 2 to finally derive the rendered pixel. Dur-

ing training, the networks 𝐸, 𝑓 , and 𝑇 are updated using the MSE

loss in Eq. 3.

2.3 Profiling Results and Analysis

Setup. To understand the real-device efficiency of generalizable

NeRFs, we profile our adopted generalizable NeRF model, which is

built on top of [43] as elaborated in Sec. 5.2, in terms of the latency

breakdown for rendering one image with 10 source views and 196

points per ray, following [43], on two devices, including a desktop

GPU NVIDIA RTX 2080Ti and an edge GPU NVIDIA Jetson TX2,

with a batch size of 4096 and 128 rays, respectively.

Observations. As shown in Fig. 2, we can observe that (1) the

real-time requirement cannot be satisfied on both devices, e.g., RTX

2080Ti can only achieve a �0.249 FPS; (2) even if more computing

resources are available to reduce the DNN inference time, the sig-

nificant overhead for acquiring scene features will still prohibit the

real-time execution; and (3) the ray transformer counts for 44.1% of

the total DNN inference time on RTX 2080Ti while its �oating-point

operations (FLOPs) counts for only 13.8% of total DNN FLOPs on

LLFF [19], indicating that the attention operations may not be well

accelerated by RTX 2080Ti.

2.4 Identified Opportunities for Acceleration

Unique sparsity opportunities in 3D scenes. The sources of

sparsity stem from the varying contributions of sampled points in

different regions to the rendered pixels. Specifically, camera rays

emitted through regions, (1) with low particle density or (2) with

low accumulated transmittance due to occlusion, require fewer sam-

pled points without sacrificing rendering quality. We hypothesize

that properly leveraging these sparsity opportunities in 3D scenes

can reduce the total number of points that are needed to be sampled

while maintaining the rendering quality. In this way, the data move-

ment and computational cost of Steps 2 - 4 corresponding points

that do not have to be sampled can be skipped, thus improving the

achievable frame-per-second (FPS).

Potential scene feature reuses across rays and points. The

sampled 3D points from different rays may be projected to the

same 2D points on the image planes of the source views. Therefore,

there exist opportunities to reuse scene features across those points.

As such, we hypothesize that properly designing the algorithm-

to-hardware data�ow to map the rays/points of which the scene

features can be reused can reduce the overall data movement cost of

generalizable NeRFs. However, since the position and view direction

of a user can arbitrarily change during run-time, the geometric

relationship among different rays emitted from a user’s camera

center is unknown before NeRF deployment, i.e., whether different

rays/points can reuse the same scene features is uncertain. It is thus

highly desirable to develop techniques that can efficiently derive

the geometric relationship among rays given the position and view

direction of a user’s camera and then derive the point-to-hardware

mapping schemes accordingly to maximize scene feature reuses.

3 GEN-NERF: ALGORITHM

3.1 Algorithm Overview

Our Gen-NeRF’s algorithm aims to (1) leverage the sparsity oppor-

tunities in target 3D scenes as analyzed in Sec. 2.4 to reduce the

total number of required sampling points and thus corresponding

data movement and computational costs while maintaining the

rendering quality, and (2) reduce the heterogeneity of generalizable

NeRF workloads caused by diverse computation patterns between

the ray transformer 𝑇 and the MLP 𝑓 modules, thus enhancing

the ease of acceleration. Our Gen-NeRF fulfills these two objec-

tives via developing a coarse-then-focus sampling strategy and an

MLP-based Ray-Mixer module as an efficient alternative of the ray

transformer as elaborated in Sec. 3.2 and Sec. 3.3, respectively.

3.2 The Proposed Coarse-then-Focus Sampling
The overall pipeline. Fig. 3 shows our coarse-then-focus sampling

strategy featuring three steps: Step � performs lightweight coarse

sampling to acquire the density distribution of the target 3D scene;

Step � identifies and filters the empty/occluded regions based on

the estimated density distribution from the previous step and de-

rives the sampling probability density function (PDF); Step � con-

ducts focused sampling based on the sampling PDF above, where the

sampled points are non-uniformly and sparsely distributed across

different rays. Finally, the sampled points are processed, following

the vanilla generalizable NeRF pipeline (i.e., Steps 2 - 5 in Sec. 2.2)

to obtain the rendered pixels. Next, we elaborate Steps �-� below.

Step �: Lightweight coarse sampling. As the goal of this step

is only to estimate the density distribution for identifying empty

or occluded regions and deriving the sampling PDF in the next

step, we find that its complexity can be aggressively trimmed down

without hurting the final rendering quality. Therefore, we adopt a

lightweight design to implement coarse sampling by conditioning

the NeRF process on only a limited number of views (denoted as 𝑆𝑐)

that are the closest to the user’s view direction and also sampling

fewer points (𝑁𝑐) along each ray as shown in Fig. 3 (b).

Step �: Empty/occluded region discovery and sampling PDF

estimation. The regions that contribute less to the rendered pixels

caused by low density 𝜎𝑘 (i.e., empty regions) and/or low accu-

mulated transmittance 𝑇𝑘 (i.e., occluded regions) can be identified

Gen-NeRF: E�icient and Generalizable Neural Radiance Fields via Algorithm-Hardware Co-Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

1Step 2Step 3Step

Our Proposed Coarse-then-Focus SamplingSampling in Vanilla NeRFs

PDF

Focused samplingCoarse samplingSampling in Vanilla NeRFs

(a) (b) (c) (d)

Figure 3: Illustrating (left) the sampling process in vanilla NeRFs and (right) our coarse-then-focus sampling strategy.

based on the hitting probability𝑤𝑘 = 𝑇𝑘 (1 − exp(−𝜎𝑘 (𝑡𝑘+1 − 𝑡𝑘)))

according to Eq. 2, i.e., regions containing sampled points with low

hitting probability𝑤𝑘 < 𝜏 , obtained from the previous coarse sam-

pling step, are considered to be unimportant for the rendered pixels,

where 𝜏 is a predefined threshold. To leverage this opportunity

toward sparse and thus more efficient sampling, we filter out these

regions and assign more sampled points to important regions that

contribute more to the rendered pixels in the subsequent focused

sampling. To achieve this, we define sampled points with𝑤𝑘 ≥ 𝜏

obtained from the coarse sampling step as critical points, and the

probability 𝑃 (𝑗) of sampling from the 𝑗-th ray is proportional to the

number of critical points 𝑁𝑐𝑟
𝑗 on that ray, i.e., 𝑃 (𝑗) = 𝑁𝑐𝑟

𝑗 /
∑

𝑗 𝑁
𝑐𝑟
𝑗 .

As such, the PDF 𝑃 (𝑘, 𝑗) of sampling the 𝑘-th point on the 𝑗-th ray

in the subsequent focused sampling is set as 𝑃 (𝑘, 𝑗) = 𝑃 (𝑘 | 𝑗) · 𝑃 (𝑗)

where 𝑃 (𝑘 | 𝑗) = 𝑤
𝑗

𝑘
/
∑

𝑘 𝑤
𝑗

𝑘
and𝑤

𝑗

𝑘
is the hitting probability of the

𝑘-th point on the 𝑗-th ray, following [20]. This strategy produces a

piecewise-constant PDF along each ray as shown in Fig. 3 (c).

Step �: Sparse focused sampling. We further sample another

set of 𝐻 ×𝑊 × 𝑁𝑓 points in the 3D space based on the calculated

sampling PDF above, where 𝑁𝑓 is the average number of sampled

points per ray and 𝐻 /𝑊 denotes the height/width of the rendered

image, respectively. Different from uniform sampling, the resulting

sampled points are non-uniformly distributed across the rays, where

fewer points are allocated on empty/occluded regions, thus allowing

higher sampling sparsity while maintaining the rendering quality.

During the training process, the number of sampled points on

each ray is required to be constant for facilitating the commonly

used batch training of NeRFs. To satisfy this constraint, we first

perform focused sampling based on the sampling PDF in Step � and

then pad the sampled points along all rays to 𝑁max, a predefined

maximal number of sampled points per camera ray. Note that the

padded ones do not contribute to the volume rendering in Eq. 2 and

also do not participate in the rendering process at run-time.

Differences from NeRF’s hierarchical volume sampling.

Our coarse-then-focus sampling is built on top of the hierarchical

volume sampling in vanilla NeRF [20], which aims to refine the

details by rendering at two levels of granularity while sampling

the same numbers of points across different rays. In contrast, our

coarse-then-focus sampling has two major differences: (1) it lever-

ages the sparsity in 3D scenes to trim down the complexity of the

ray marching process, which is implemented by adopting a super

lightweight coarse sampling only to predict the sampling PDF of

the target 3D space without reconstructing the RGB value to boost

efficiency; and (2) our focused sampling results in different numbers

of sampled points across different rays depending on the estimated

sampling PDF, enabling more sampled points on important regions.

3.3 The Proposed Ray-Mixer Module

Considering that the ray transformer 𝑇 introduced in Sec. 2.2 is

executed once per ray whereas the MLP model 𝑓 is executed for

inferring every sampled point along the ray, designing a customized

module to accelerate the ray transformer’s attention operations is

inefficient in terms of area and can cause hardware under-utilization.

As such, it is highly desirable to unify the computation patterns of

the MLP and ray transformer modules for boosted efficiency.

Inspired by [39], we achieve the aforementioned goal by devel-

oping a module dubbed Ray-Mixer to fuse the density features

{𝑓 𝜎
𝑘
}𝑁
𝑘=1

of all points along the same ray, which is to replace the

attention operations commonly used in generalizable NeRFs [5, 17,

31, 43]. This module is implemented using three fully connected

(FC) layers, eliminating the attention operations and thus reduc-

ing the heterogeneity in the required workload. In particular, for

𝑓 𝜎 ∈ R𝑁×𝐷 , where 𝑁 and 𝐷 are the numbers of points along the

ray and the feature dimension, respectively, our Ray-Mixer adopts

the first FC layer along the point dimension to fuse the informa-

tion across all sampled points on the same ray and then adopts

another FC layer along the feature dimension for independently

processing each sampled point to deliver their density prediction.

We formulate the execution process of our Ray-Mixer as follows:

𝐹𝜎∗,𝑖 = 𝑓 𝜎∗,𝑖 + 𝜙
(

W1 𝑓
𝜎
∗,𝑖

)

, for 𝑖 = 1 . . . 𝐷 (4)

𝜎 𝑗 = W3 (𝐹
𝜎
𝑗,∗ + 𝜙

(

W2 𝐹
𝜎
𝑗,∗

)

), for 𝑗 = 1 . . . 𝑁 (5)

whereW1 andW2 are the weights of the two aforementioned FC

layers, W3 is the weight of a projection layer from density features

to estimated densities, and 𝜙 is an activation function.

4 GEN-NERF: HARDWARE

Our Gen-NeRF accelerator leverages the deductions of epipolar

geometry [10] to analyze and accelerate the target workloads to

maximize the data reuses among rays. To present our accelerator,

we first introduce the basics and deductions of epipolar geometry

referring to [10] and then identify corresponding scene feature

reuse opportunities in Sec. 4.1, leveraging which we develop our

accelerator with optimized data�ow, feature storage format, and

micro-architecture in Sec. 4.3-Sec. 4.5, respectively.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Yonggan Fu, Zhifan Ye, Jiayi Yuan, Shunyao Zhang, Sixu Li, Haoran You, and Yingyan (Celine) Lin

...

Novel viewSource view Source view Novel view

(a) (b)
Source view Novel view

(c)

Figure 4: Visualize the epipolar geometric relationship among (a) the sampled 3D points and their projections on the source

view for one pixel/ray, (b) those for multiple pixels/rays, and (c) the rays with corresponding pixels located on the same line

that passes through the epipole 𝑒𝑛 . These geometric relationships are deductions of the epipolar geometric analysis in [10].

4.1 Epipolar Geometric Analysis

As the ray marching process in generalizable NeRFs is performed in

a 3D space, the memory access patterns of different rays, which are

emitted from the novel views determined by the user at run-time,

are complex to be analyzed. As such, it is highly desired to map such

workloads into a 2D space for better analyzing the ray behaviors.

Epipolar geometry in generalizable NeRFs. Epipolar geome-

try [10] is used to depict the geometric relations among the pixels

(as well as the corresponding rays and sampled 3D points) observed

from different viewpoints of a 3D scene, i.e., the novel views and

source views in our case. Specifically, it infers the projections of

sampled 3D points on the rays emitted from novel views onto the

2D image planes of corresponding source views and thus can be

leveraged to analyze the scene feature access patterns.

Basics of epipolar geometry. Fig. 4 (a) visualizes the geometric

relationship among the sampled 3D points along two specific rays

emitted from the novel view 𝑉𝑛 and their projections on the 2D

image planes on one of the source views 𝑉𝑠 , where 𝑂𝑛 and 𝑂𝑠 are

the camera centers for 𝑉𝑛 and 𝑉𝑠 , respectively, and 𝑃𝐿𝑛/𝑃𝐿𝑠 are

the corresponding novel/source image planes. A more general case

of the geometry among multiple rays is visualized in Fig. 4 (b).

Formally, the triangle plane defined by the connection 𝑂𝑛𝑂𝑠 and

the ray 𝑂𝑛𝑝𝑁 is called epipolar plane (highlighted in green) and

the intersections between line 𝑂𝑛𝑂𝑠 and the two image planes 𝑒𝑛
and 𝑒𝑠 are called epipoles.

Our leveraged property.We intend to analyze the access pat-

terns and reuse opportunities of source features by leveraging the

following property as analyzed in [10]:

Property-1: For sampled 3D points along the same ray, their

projections on the source image plane 𝑃𝐿𝑠 are on the same line

with its corresponding epipole 𝑒𝑠 , which is dubbed an epipolar line.

In particular, to render a pixel 𝑃 on novel images, 𝑁 points

{𝑝𝑖 }
𝑁
𝑖=1 are sampled from the ray𝑂𝑃 , which are projected to {𝑝𝑖 }

𝑁
𝑖=1

on the source image plane 𝑃𝐿𝑠 as introduced in Step 2 in Sec. 2.2.

Property-1 indicates that {𝑝𝑖 }
𝑁
𝑖=1 are on the same epipolar line 𝑒𝑠 ˆ𝑝𝑁 ,

along which the scene features should be acquired to render the

same pixel 𝑃 . We thus leverage this to analyze the memory access

patterns of the feature acquisition step of generalizable NeRFs, as

elaborated below.

Projection locality for scene feature reuse. Property-1 reveals

the memory access patterns of generalizable NeRFs via mapping

the 3D ray marching process onto 2D image planes, which inspires

us that the sampled 3D points that can be projected to locally close

regions on the 2D image planes can enjoy the opportunities of scene

feature reuses. This observation holds for both 3D points along the

same ray and those across different rays, considering the 3D points

on different rays are likely to be projected to the same or close re-

gions on the 2D image planes, which is determined by the geometric

relationship among rays. This calls for both customized data�ows

that can leverage the projection locality mentioned above to maxi-

mize scene feature reuses and customized micro-architecture that

can derive the geometric relationship among rays at run-time.

To leverage projection locality during point-to-hardware map-

pings, we start from a special but highly desired case when only

one source view is available in Sec. 4.2 and then extend to cases

with multiple source views in Sec. 4.3.

4.2 A Case Study with One Single Source View

Generalizing NeRFs to new scenes with only one source view avail-

able is an extreme but highly desired setting, which eases users’

efforts for manually capturing the new scene of interest and thus

has gained increasing attention [44, 46]. We customize the data�ow

under a single source view based on the following property that

we infer from Property-1:

Property-2: The rendered pixels located on the same line that

passes through the epipole 𝑒𝑛 on the plane 𝑃𝐿𝑛 share the same

epipolar line on the source image plane 𝑃𝐿𝑠 . More specifically, as

shown in Fig. 4 (c), the rays emitted from the pixels located on

the same line that passes through the epipole 𝑒𝑛 are on the same

epipolar plane and thus they share the same epipolar line, which is

geometrically the intersection between the epipolar plane and the

source image plane 𝑃𝐿𝑠 .

Customized dataflow under single source view. Property-2

indicates that the rays corresponding to the pixels located on the

same line that passes through the epipole 𝑒𝑛 can share the scene

feature reuse opportunities thanks to their shared epipolar line.

To leverage this, a simple but effective solution is to prioritize the

rendering on pixels that share the same epipolar line via simulta-

neously mapping them to the hardware. In particular, as shown in

the top-right part of Fig. 4 (c), we divide the pixels (and the corre-

sponding rays) into groups via drawing lines that pass through the

epipole 𝑒𝑛 , where each line corresponds to one ray group. The rays

in the same ray group are emitted and processed simultaneously,

following Steps 1 - 5 in Sec. 2.2, and thus the scene features of their

sampled 3D points can be reused via being fetched and buffered

only once by our micro-architecture introduced in Sec. 4.5.

Gen-NeRF: E�icient and Generalizable Neural Radiance Fields via Algorithm-Hardware Co-Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Option 1

…

Option 2

Option 3

Figure 5: Visualize our greedy 3D-point-patch partition that divides sampled 3D points into patches to maximize data reuses.

Challenges for extending to multiple source views. How-

ever, the aforementioned solution is not directly applicable to new

scenes with multiple source views. This is because the epipole 𝑒𝑛
is defined over a pair of views, i.e., the epipoles between the novel

view and different source views are different, and thus the rays

that share the same epipolar line on one specific source view may

not necessarily share the epipolar line on another source view,

thus diminishing the effectiveness of the aforementioned data�ow.

Therefore, a more principled point-to-hardware mapping strategy

is required for handling new scenes with multiple source views.

4.3 The Proposed Point-to-Hardware Mappings

To make use of the scene feature reuse opportunities for new scenes

with varied numbers of source views, we identify the following

deduction from epipolar geometry [10], which depicts the spatial

locality of epipolar geometry:

Property-3: The sampled 3D points that are close in 3D locations

will share close epipolar lines on the source views no matter being

observed from any novel view, implying that the source features on

their epipolar lines can be simultaneously acquired and processed.

Our proposed dataflow. Property-3 motivates us to simultane-

ously map the rays that share the closer depth and view directions

onto the hardware, where the achievable acceleration efficiency is

determined by how to divide the 3D points into patches that are

simultaneously processed. To achieve this, we describe the target

workload as a 3D cube that covers the information of both view

directions and depths. In particular, for rendering a 2D image with

a resolution of 𝐻 ×𝑊 and 𝑁 , 𝑁 sampled points along each ray lie

in different depths of the corresponding ray, and the depth range

between the near plane to the far plane is denoted as 𝐷 , where the

aforementioned 3D cube features a shape of 𝐻 ×𝑊 ×𝐷 . For sched-

uling the point-to-hardware mapping, our proposed data�ow slices

a point patch 𝛿ℎ × 𝛿𝑤 × 𝛿𝑑 from the 3D cube, which is prefetched

and processed at one time to exploit the scene feature reuse.

As analyzed in Sec. 4.1, the scene feature reuse opportunities

among points are determined by their geometric relationship, which

keeps changing along with the movement of novel view directions

from the users’ perspective at run-time. Therefore, it is highly

desirable to efficiently derive the optimal 3D-point-patch partition

strategy, i.e., the patch shape 𝛿ℎ × 𝛿𝑤 × 𝛿𝑑 per processing, at run-

time based on the epipolar geometric analysis to fully unleash the

potential of our data�ow.

Proposed greedy 3D-point-patch partition. We propose a

greedy 3D-point-patch partition algorithm to divide the 3D work-

load cube 𝐻 ×𝑊 × 𝐷 into point patches at run-time. The rationale

of our strategy is to iteratively select the partition strategy for

each local region that contains the same number of 3D sampled

points while greedily minimizing the required memory accesses of

scene features at each iteration. The reason that we adopt a greedy

scheme is to ease the corresponding hardware implementation for

reduced run-time overhead.

As shown in Fig. 5, our algorithm gradually partitions the 3D

workload cube into patches from the top-left in the near plane,

i.e., (ℎ,𝑤,𝑑) = (0, 0, 0), to the bottom-right in the far plane, i.e.,

(ℎ,𝑤,𝑑) = (𝐻,𝑊 , 𝐷). To decide the shape of each point patch, we

greedily search for the optimal patch shape, which aims tomaximize

the scene feature reuse opportunities, among𝑀 predefined patch

shape candidates {𝛿ℎ𝑖 , 𝛿𝑤𝑖 , 𝛿𝑑𝑖 }
𝑀
𝑖=1 shown in the left part of Fig. 5

(b). More specifically, as visualized in the right part of Fig. 5 (b), a

point patch candidate essentially constructs a frustum in the 3D

world coordinate when being transformed from the (ℎ,𝑤,𝑑) space.

We leverage the epipolar geometry to project each frustum onto the

2D image planes of corresponding source views, and use the total

covered area of the projection, which is a 2D tetragon that covers

the epipolar lines of all rays within the frustum, to estimate the

required memory access for processing this point patch candidate.

After selecting the optimal patch shape {𝛿ℎ𝑜�𝑡 , 𝛿𝑤𝑜�𝑡 , 𝛿𝑑𝑜�𝑡 } that

minimizes the memory access at each iteration, we assign the points

that fall into the corresponding frustum in the 3D space to the same

patch, which is pushed into a patch queue for sequential processing.

We iteratively perform the partition until all sampled 3D points are

assigned to a patch.

Note that we enforce two constraints during this scheduling

process: (1) we enforce the patches located at the same height ℎ

and width𝑤 but different depth 𝑑 , which corresponds to the same

set of pixels, to share the same patch partition strategy to ease

the hardware logic when accumulating their predicted colors in

Step 5 in Sec. 2.2, and (2) we guarantee that the total read size

during prefetching, which is determined by the patch shape, does

not exceed the maximum prefetch buffer size.

4.4 Optimize the Scene Feature Storage Strategy

Considering the scene features with a shape of 𝑆×𝐻𝑠×𝑊𝑠×� , where

𝑆 is the number of source views,𝐻𝑠 /𝑊𝑠 are the feature height/width,

respectively, and � is the feature dimension, are stored in DRAM

and prefetched to a prefetch buffer for each point patch, an improper

storage strategy, as shown in Fig. 6 (a), may result in memory bank

con�icts when simultaneously querying the scene features stored

on the same memory bank, resulting in reduced bandwidths. To this

end, we optimize the storage strategy of scene features to balance

the read/write volume between the memory banks.

Our proposed strategy. Motivated by the projection locality

introduced by our data�ow, which simultaneously accesses the

scene features in a local region on the 2D image planes of the

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Yonggan Fu, Zhifan Ye, Jiayi Yuan, Shunyao Zhang, Sixu Li, Haoran You, and Yingyan (Celine) Lin

1 3 4 5 6 7

17 18 19 20 21 22 23 24

25 26 27 28 29

2 8

9 11 12 13 14 1510 16

30 31 32

33 35 36 37 38 3934 40

41 43 44 45 46 4742 48

1 3 4 5 6 7

17 18 19 20 21 22 23 24

25 26 27 28 29

2 8

9 11 12 13 14 1510 16

30 31 32

33 35 36 37 38 3934 40

41 43 44 45 46 4742 48

1

17 19

1 4 5 6 ...

17 18 21 22 ...

25 26 27 28 29

9 13 14 ...

30 ...

Bank 1

Bank 2

Bank 3

Bank 4

5 7 17 ...

13 15 25 27 ...

14 16 26

6 8 18 ...4

28 ...

Bank 1

Bank 2

Bank 3

Bank 4

10

10

2

19 20

1211

31

9

19

12

20

11

32

(a) Store scene feature by rows (b) Our spatial interleaving strategy

Unbalanced Memory Request Balanced Memory Request

Figure 6: Visualize different strategies for storing features.

source views, it can be highly expected that the scene features

in the 2D local region can be read out without bank con�icts. To

achieve this, we propose a spatial interleaving storage format along

the𝐻𝑠 and𝑊𝑠 dimensions as shown in Fig. 6 (b), where neighboring

features on the image plane are stored in different memory banks

so that the bank con�icts can be alleviated for prefetching each

point patch from a multi-bank DRAM.

4.5 Gen-NeRF’s Micro-architecture

Micro-architecture overview. Fig. 7 shows our Gen-NeRF accel-

erator’s micro-architecture, integrating a memory controller to han-

dle the communication with the off-chip DRAM, a prefetch double

buffer to store scene features for data reuses, a workload scheduler

to partition the workloads and support the data�ow introduced

in Sec. 4.3, and a rendering engine to perform the coarse/focused

sampling and ray marching.

Rendering on Gen-NeRF’s micro-architecture. Here we de-

scribe how the rendering process is executed in our Gen-NeRF’s

micro-architecture (see Fig. 7). Given a sparse set of source views of

a scene and a novel view from the user, the workload scheduler con-

tinuously performs the greedy 3D-point-patch partition in Sec. 4.3

to generate and enqueue point patches when the patch queue is

not full, which are next processed by the prefetch buffer and the

rendering engine. The prefetch buffer is executed in a double-buffer

manner to hide the off-chip communication latency, i.e., when one

of the SRAMs in the prefetch buffer is used to provide scene features

for the rendering engine, the other SRAM will be used to prefetch

the next point patch from the patch queue.

The rendering engine features two execution stages for support-

ing our coarse-then-focus sampling in Sec. 3.2. In the first stage,

the rendering engine performs the lightweight coarse sampling for

the scheduled point patch; In the second stage, it performs sam-

pling PDF estimation, focused sampling, and volume rendering.

Both stages can be further divided into Steps 1 - 5 as mentioned in

Sec. 2.2, where Steps 1 - 4 are carried out in a pipelinedmanner and

the ray transformer in Step 4 is replaced with our Ray-Mixer. In

particular, based on the partitioned point patches from theworkload

scheduler, the preprocessing unit samples 3D points and acquires

their corresponding source features from the prefetch double buffer

(i.e., Steps 1 - 2). Next, the source features are fed to the PE pool

for executing the MLP and our Ray-Mixer (i.e., Steps 3 - 4). Finally,

the predicted density and colors from Step 4 are written into the

local memory of the rendering engine and are used to generate the

final pixels in Step 5 after the pipeline is done for the patch. Fig. 8

shows the corresponding work�ow diagram of only one stage.

Design details of each featured component. The prefetch

buffer is a pair of SRAMs, forming a double buffer to enable the

buffer to read and write in parallel. Each SRAM is divided into

multiple banks and we also leverage the spatial interleaving storage

format introduced in Sec. 4.4 to store scene features for balancing

the communication between SRAM banks in each prefetch buffer

and thus improve the effective bandwidth.

The workload scheduler is composed of a top-left sequencer for

indicating the next location to be processed based on a mask-bitmap

memory, which is a bitmap to indicate whether a 3D point has been

assigned to a patch during the iterative 3D-point-patch partition

process, a vertex projector that projects 3D frustums in the 3D

space into tetragons on source image planes, an area calculator and

the corresponding comparator to derive the optimal patch shape,

and a patch queue to store the partitioned point patches.

The rendering engine comprises a preprocessing unit, a local

buffer, a weight buffer, a PE pool, and a special function unit. In

particular, the preprocessing unit handles (1) the focused sampling

from the estimated sampling PDF in Sec. 3.2 using inverse transform

sampling in Monte-Carlo methods [37] and (2) the loading and

preprocessing of scene features via first projecting the sampled

points onto source image planes by the projector and then bilinearly

interpolating the exact scene features among those of the closest

four elements by the interpolator. The PE pool is composed of

multiple PEs, each of which is a systolic array, to execute the MLP

and Ray-Mixer modules. The special function unit is composed of

a PE line to calculate the exponential function and accumulate the

colors of sampled points along the ray in Eq. 2.

Comparisons with GPUs. If we compare our architecture with

GPUs [23], the roles of the PE pool and the prefetch double buffer

in Fig. 7 could emulate the thread blocks and L2-cache that can be

accessed by different blocks, respectively. Our architecture differs in

(1) the preprocessing unit that handles our proposed point sampling

strategy introduced in Sec. 3.2, and (2) the workload scheduler that

implements our proposed 3D-point-patch partition to maximize

source feature reuses.

5 EXPERIMENTAL RESULTS

5.1 Experiment Setup

Datasests.We use the training sets in [43], which integrates both

synthetic data and real data from Google Scanned Objects [32],

RealEstate10K [50], the Spaces dataset [8], LLFF [19], and self-

captured real scenes from handheld cellphones [43]. For evaluation,

we follow [20, 43] and use both synthetic objects and real scenes,

including four Lambertian objects from DeepVoxels [36], eight

synthetic objects from [20], and eight complex real-world scenes

captured with roughly forward-facing images from LLFF [19].

Algorithm setup. We build our framework on top of IBR-

Net [43] as it is the most representative generalizable NeRF design

with its pipeline inherited by follow-up generalizable NeRF vari-

ants. We train the models for 250K steps using an Adam optimizer

and an initial learning rate of 5e-4 with exponential decay, follow-

ing [43]. During the lightweight coarse sampling, we fix the number

of source views as 4 and apply a channel scale of 0.25 to the coarse

Gen-NeRF: E�icient and Generalizable Neural Radiance Fields via Algorithm-Hardware Co-Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Memory

Controller

Workload

Scheduler

Memory Bus

Contorl Bus

Preprocess

-ing Unit

Local Buffer
...

...

...

Rendering Engine

Special
Function

Unit

Gen-NeRF Accelerator

Monte-Carlo

Simulator

Comparator

Array

Uniform

Sampler

RNG and MAC

Array

Projector
MAC Array with

Adder Tree

...

...

...
PE Pool

Buffer 1

Prefetch Double Buffer

Top-Left

Sequencer

Mask Bitmap

Memory

Vertex

Projector
MAC Array with

Adder Tree

Area

Calculator

MAC Array with

Adder Tree

Area

Comparator

U
p

d
a

te
 M

a
s

k

Comparator

Array

Patch Queue

Finate State

Machine

Computation

Unit

On-Chip

Memory

PDF to CDF

Convertor

Accumulator

Array

Buffer 1

Ping-Pong Buffer

Buffer 2

Buffer 2

Weight Buffer

Controller

Singal

Data

Wire

Interpolator

Local Memory

L
o

c
a

l
M

e
m

o
ry

DRAM

MAC Array with

Adder Tree

Figure 7: An illustration of the micro-architecture in our Gen-NeRF accelerator, where the block diagram is shown in the middle

and two blocks are further visualized at the left and right parts, including the preprocessing unit and workload scheduler.

Preprocess

-ing Unit

Workload

Scheduler

Memory

Controller

Special

Func. Unit

3D Point

Locations

3D Point

Patches

Prefetched

Features

Source

Features

Per-pixel

Color

...

...

...

...

...

...
PE Pool

Prefetch

Double Buffer

Buffer 1

Buffer 2

Color/Density

Figure 8: Visualize the workflow of a single stage in our Gen-

NeRF’s rendering process.

MLPs. The typical workload of rendering an 800×800 image, which

samples 64 points per ray on average during the focused sampling

and is conditioned on 6 source views, involves 0.328 trillion FLOPs.

Hardware setup. We implement our hardware modules (e.g.,

the rendering engine and workload scheduler in Fig. 7) in Verilog

and use Cadence Genus to synthesize the gate-level design for esti-

mating the chip area, timing, and power consumption information

based on a commercial 28nm CMOS technology. In particular, the

synthesized frequency is set to 1GHz. The rendering engine con-

sists of a PE pool with 40 16*16 INT8 systolic arrays, a 256KB local

buffer, and an 8KB weight buffer. Each of the prefetch buffers is a

256KB scratchpad memory. The detailed area and power of each

hardware module are provided in Tab. 1.

Due to the lack of an RTL model for DRAM, an end-to-end

verilog-simulation is not feasible. As such, we build a cycle-accurate

simulator to characterize the behaviors of our accelerator based on

(1) the timing and power information derived from gate-level simu-

lations and (2) a commonly-used tool for DRAM, Ramulator [14],

to estimate the DRAM latency/energy. Specifically, we calculate the

number of cycles of each hardware module and record all memory

requests to the off-chip DRAM, i.e., an LPDDR4-2400 DRAM with

17.8 GB/s bandwidth that is commonly used for AR/VR devices [18].

5.2 Evaluating Gen-NeRF’s Algorithm

Effectiveness of our coarse-then-focus sampling strategy.We

first benchmark our coarse-then-focus sampling with the sampling

strategy of IBRNet [43] under different numbers of sampled points.

In particular, for Gen-NeRF, we sample 8/8, 8/16, 16/32, and 32/64

points per camera ray on average during the coarse/focused sam-

pling, respectively, and Fig. 9 visualizes the achievable trade-off

between PSNR (averaged over all scenes in each dataset) and the

Table 1: Area and power of Gen-NeRF’s hardware modules.

Module
Workload

Scheduler

Preprocessing

Unit (PPU)

Rendering Engine

(except PPU)

Prefetch

Buffer
Total

Area (mm2) 0.24 1.24 14.98 1.34 17.80

Power (mW) 156.2 696.0 8359.2 473.6 9685.0

total numbers of sampled points/the corresponding FLOPs for ren-

dering one pixel. We can observe that (1) our coarse-then-focus

sampling consistently achieves a better PSNR under the same num-

ber of sampled points, e.g., a 4.67 higher PSNR with 24 sampled

points on NeRF Synthetic, and (2) thanks to the superior efficiency

of our lightweight coarse sampling, the required FLOPs for inferring

the same number of points of our method is also reduced.

50 100 150 200

Num Sampled Points

23.0

23.5

24.0

24.5

25.0

P
S
N

R

LLFF

Gen-NeRF (Ours)

IBRNet

50 100 150 200

Num Sampled Points

22

23

24

25

26

27

P
S
N

R

NeRF Synthetic

Gen-NeRF (Ours)

IBRNet

50 100 150 200

Num Sampled Points

32

34

36

P
S
N

R

DeepVoxels

Gen-NeRF (Ours)

IBRNet

0.0 2.5 5.0 7.5 10.0 12.5

MFLOPs / Pixel

23.0

23.5

24.0

24.5

25.0

P
S
N

R

LLFF

Gen-NeRF (Ours)

IBRNet

0.0 2.5 5.0 7.5 10.0 12.5

MFLOPs / Pixel

22

23

24

25

26

27

P
S
N

R

NeRF Synthetic

Gen-NeRF (Ours)

IBRNet

0.0 2.5 5.0 7.5 10.0 12.5

MFLOPs / Pixel

32

34

36

P
S
N

R

DeepVoxels

Gen-NeRF (Ours)

IBRNet

Figure 9: Benchmark our Gen-NeRF with IBRNet under dif-

ferent numbers of sampled points (top) and corresponding

million FLOPs (MFLOPs) for rendering one pixel (bottom).

E�cacy of our Ray-Mixer.We benchmark the following three

IBRNet variants: (a) vanilla IBRNet with the ray transformer, (b)

IBRNet with the ray transformer removed, and (c) IBRNet integrat-

ing our Ray-Mixer. As shown in rows 2-4 of Tab. 2, we can observe

that (1) removing the ray transformer leads to a significant PSNR

drop due to erroneous density estimation [43], and (2) integrating

Ray-Mixer results in considerably better reconstruction accuracy

over that w/o Ray-Mixer, e.g., a 3.37 PSNR improvement on aver-

age across four scenes from LLFF. In addition, our Ray-Mixer can

achieve comparable rendering quality as the ray transformer while

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Yonggan Fu, Zhifan Ye, Jiayi Yuan, Shunyao Zhang, Sixu Li, Haoran You, and Yingyan (Celine) Lin

Table 2: Impact of each component on the rendering quality

(PSNR↑/LPIPS↓) and e�ciency (MFLOPs/pixel).

Method
MFLOPs

/ pixel
fern fortress horns trex

vanilla IBRNet 13.94 23.837/0.246 30.003/0.153 26.477/0.177 24.574/0.230

- ray transformer 13.25 19.380/0.406 25.927/0.282 23.244/0.276 21.970/0.310

+ Ray-Mixer 13.88 23.716/0.247 30.028/0.153 26.427/0.177 23.810/0.236

+ Coarse-then-Focus

Sampling (16/48)
4.27 23.657/0.252 30.087/0.154 26.512/0.181 24.158/0.239

+ channel pruning

· 10 source views 0.80 23.258/0.266 29.418/0.163 25.723/0.198 23.733/0.251

· 6 source views 0.51 22.554/0.284 28.904/0.178 25.168/0.212 23.327/0.261

· 4 source views 0.37 22.226/0.302 27.879/0.193 24.508/0.227 22.694/0.279

Table 3: Benchmark the rendering quality (PSNR↑/LPIPS↓)

and e�ciency (MFLOPs/pixel) using per-scene finetuning.

Source

Views
Method

MFLOPs

/ pixel
fern fortress horns trex

4
IBRNet 6.31 23.759/0.247 29.893/0.165 27.149/0.162 25.293/0.217

Gen-NeRF 0.368 23.380/0.267 29.450/0.176 26.249/0.191 24.547/0.235

10
IBRNet 13.94 24.890/0.210 31.237/0.139 28.471/0.141 26.644/0.199

Gen-NeRF 0.803 24.264/0.235 30.551/0.149 27.565/0.166 25.742/0.218

significantly reducing workload heterogeneity since hardware mod-

ules dedicated to attention operations are no more required.

Impact of each component on the rendering quality and

e�ciency trade-off. We demonstrate the impact of each of our

techniques on both rendering quality and efficiency in Tab. 2, pro-

viding a detailed breakdown of their respective contributions on

top of four scenes from LLFF. In addition to our coarse-then-focus

sampling and Ray-Mixer, we also reduce the redundancy in the

model structure via channel pruning with a sparsity of 75%, ensur-

ing a comparable rendering quality with a <0.5 PSNR reduction

on average on LLFF, to achieve a better PSNR-efficiency trade-off

to better satisfy real-world application requirements. We can ob-

serve that (1) our coarse-then-focus sampling and Ray-Mixer can

reduce the required FLOPs by 3.26× while achieving a comparable

or even slightly higher PSNR as compared to vanilla IBRNet, and

(2) introducing channel pruning could result in a >5× extra FLOPs

reduction and the delivered model using 6 source views can reduce

the required FLOPs by 27.3× while maintaining a <1.3 PSNR drop.

Benchmark under a per-scene finetuning setting. Consider-

ing that a per-scene finetuning process on top of pretrained general-

izable NeRFs is found to enhance the reconstruction accuracy on a

specific scene [5, 17, 43], we further finetune Gen-NeRF’s delivered

models in Tab. 2 and benchmark with finetuned IBRNet on top

of four scenes from LLFF. As shown in Tab. 3, our Gen-NeRF can

significantly trim down the complexity of IBRNet by >17× while

maintaining a comparable PSNR (-0.38∼-0.90).

5.3 Evaluating Gen-NeRF’s Accelerator

We benchmark our Gen-NeRF’s accelerator with both commercial

GPUs and SOTA NeRF accelerators. We adopt 64 sampled points

per ray on average and 6 source views if not specifically stated.

Benchmark with commercial GPUs. We first benchmark our

Gen-NeRF’s accelerator with NVIDIA RTX 2080Ti desktop GPU and

Jetson TX2 edge GPU for accelerating our Gen-NeRF’s algorithm on

three different datasets featuring different resolutions. The achieved

throughput is shown in Fig. 10, where we can observe that (1) our

Gen-NeRF’s accelerator consistently outperforms both GPUs in

throughput across all datasets, e.g., a 255.8×/7448.9× FPS over RTX

F
P

S

Gen-NeRF RTX 2080Ti TX2

239.3 x
246.0 x 255.8 x

LLFF

1008x756

DeepVoxels

 512x512

NeRF Syn

 800x800

Figure 10: Benchmark our Gen-NeRF with two GPU devices

on three datasets with different resolutions.

F
P

S
F

P
S

10 6 2 1

Source Views

128 112 96 80 64

Sampled Points

Gen-NeRF RTX 2080Ti TX2

4

Figure 11: Benchmark our Gen-NeRF with two GPU devices

on the NeRF Synthetic dataset with a resolution of 800×800.

2080Ti and TX2 on LLFF, respectively; (2) our accelerator can satisfy

the real-time requirement (� 24 FPS) [35] for rending an 800×800

image, indicating that our Gen-NeRF is the first to enable real-

time generalizable NeRFs with decent rendering quality, offering a

promising NeRF solution for AR/VR applications.

Evaluate the scalability with varied numbers of source

views and sampled points in the focused sampling. As shown

in Fig. 11, we can observe that our Gen-NeRF’s accelerator consis-

tently outperforms the two GPU baselines with � 208.8× speed-up,

indicating its scalability to different scenes with diverse source

views and complexity for different use cases.

Benchmark with SOTA NeRF accelerators.We benchmark

with ICARUS [30] in Tab. 4, where the performance of ICARUS is

their reported one. We can observe that Gen-NeRF can outperform

ICARUS with >1000× FPS under a comparable area, indicating that

our Gen-NeRF, featuring an algorithm-hardware co-design, is a

more promising solution for NeRF acceleration.

Ablation study on the dataflow and feature storage format.

To validate the effectiveness of our proposed data�ow and spatial

interleaving feature storage format, we benchmark Gen-NeRF with

its three variants as baselines, including Var-1 w/o our data�ow,

which instead prefetches and processes a patch sliced along the

row dimension and column dimension (𝑊 and 𝐻 in Fig. 5) with

Gen-NeRF: E�icient and Generalizable Neural Radiance Fields via Algorithm-Hardware Co-Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 4: Specifications ofGen-NeRF and baseline accelerators.

Device Gen-NeRF ICARUS [30] Jetson TX2 [22] Nvidia RTX 2080Ti [24]

SRAM 0.8 MB 0.96 MB 2.5MB 29.5MB

Area 17.80 mm2 16.5 mm2 350 mm2 754 mm2

Frequency 1.0 GHz 400 MHz 0.9 GHz 1.35GHz

DRAM LPDDR4-2400 - LPDDR4-1600 GDDR6

Bandwidth 17.8 GB/s - 25.6 GB/s 616GB/s

Technology 28 nm 40 nm 16nm 12nm

Typical Power 9.7 W 282.8 mW 10 W 250W

Typical FPS 24.9 0.02 0.003 0.096

L
a
te

n
c
y
 (

s
)

Data

Comp.

Var-1

Var-2

Var-3

Ours

10 6 2

Source Views # Source Views

P
E

 U
ti

li
z
a
ti

o
n

Ours

Var-2

Var-1

Var-3

10 6 2

Figure 12: Visualize the latency breakdown and utilization

of Gen-NeRF’s variants.

a constant patch size {𝛿ℎ𝑜�𝑡 , 𝛿𝑤𝑜�𝑡 , 𝛿𝑑𝑜�𝑡 } = {𝑘, 𝑘, 𝐷}, where 𝑘 is

the maximal value that satisfies the prefetch buffer size; Var-2 w/o

both our data�ow and feature storage format, which instead stores

scene features in DRAM and SRAM via a row-wise interleaving

manner as shown in Fig. 6 (a) on top of Var-1; Var-3, which uses a

view-wise interleaving manner on top of Var-1.

We show the latency breakdown of data movement and compute

and the resulting PE utilization under different numbers of source

views in Fig. 12. We can observe that (1) the overall latency of Var-1

is bounded by memory access, since the latency of data movement

is larger than that of compute in the pipeline, resulting in low PE

utilization. In contrast, our Gen-NeRF successfully hides the data

movement latency behind the compute time, indicating the effec-

tiveness of our data�ow in enhancing scene feature reuse; and (2) as

compared to Var-1, Var-2 and Var-3 is even more memory-bounded

due to the unbalanced communication volume to different mem-

ory banks, indicating the effectiveness of our spatial interleaving

strategy in avoiding bank con�icts.

6 RELATED WORK

View synthesis and NeRF. The task of view synthesis aims to

render photorealistic images from novel viewpoints based on ob-

served images of an object or scene. To support free-viewpoint

rendering from sparsely sampled images, explicitly or implicitly

reconstructing the 3D representations of the objects/scenes is typi-

cally required. NeRF [20] has gained increasing popularity thanks to

its implicit scene representation, which fits each scene as a continu-

ous 5D radiance field parameterized by an MLP and does not suffer

from the aforementioned drawbacks. Follow-up works extend NeRF

for generative modeling [3, 34], dynamic scenes [16, 25, 27–29], or

lighting and re�ection modeling [1, 38, 41].

Generalizable NeRFs. To avoid per-scene optimization and

enable the cross-scene generalization capability of NeRF, general-

izable NeRF variants [5, 13, 17, 31, 42, 43, 45, 46] are proposed to

train cross-scene multi-view aggregators, which reconstruct the

radiance field of a new scene via a one-shot forward pass. In par-

ticular, [31, 43, 46] condition NeRF on a set of source views from

the new scene via feeding the extracted scene features from the

source views into NeRF. [5] extracts the scene features leveraging

plane-swept cost volumes, which are widely used in multi-view

stereo, for enhancing geometry awareness. [17] further predicts

the visibility of 3D points to each source view to avoid inconsistent

features from invisible views. However, generalizable NeRFs pose

new challenges for NeRF acceleration as analyzed in Sec. 4, calling

for new efficiency-enhancing techniques.

NeRF accelerators. As NeRF is still an emergent field, limited

attempts have been made for NeRF acceleration from the accel-

erator perspective. ICARUS [30] proposes an architecture for the

vanilla MLP-dominated NeRF [20], which accelerates each com-

ponent of NeRF via customized modules; [49] develops a resistive

random access memory (RRAM)-based NeRF accelerator based on

the parallel nature of NeRFs’ rendering process to enhance the uti-

lization of the RRAM array. However, both of the aforementioned

works (1) assume different rays can be executed in parallel without

acquiring extra features stored in DRAM and thus their proposed

accelerators cannot well handle the data movement cost in gener-

alizable NeRFs, and (2) lack algorithmic improvements to exploit

the intrinsic redundancy in NeRF. [15] is a pioneering work that

features an algorithm-hardware co-design for NeRFs, which tackles

the latency bottlenecks, caused by querying the occupancy grid

and calculating the voxel-wise feature embeddings, of an efficient

NeRF design dubbed TensoRF [4]. Nevertheless, their techniques

only focus on a specific type of NeRFs, i.e., TensoRF [4], which

lacks cross-scene generalization capability because of its use of

scene-specific occupancy grid and voxel-wise embeddings. There-

fore, their acceleration methods are not applicable to generalizable

NeRFs. In contrast, our work is the first algorithm-hardware co-

design targeting generalizable NeRFs, featuring a win-win in both

rendering efficiency and cross-scene generalization, both of which

are crucial for real-device deployments of NeRFs in AR/VR applica-

tions. In addition, instead of targeting one specific kind of NeRFs,

our delivered techniques and insights can be generally applicable

to generalizable NeRF variants [5, 17, 31, 43, 46].

7 CONCLUSION

To enable efficient and generalizable NeRFs towards real-time novel

view synthesis in AR/VR applications, we propose Gen-NeRF, which

is the first algorithm-hardware co-design framework dedicated

to accelerating generalizable NeRFs. Our Gen-NeRF identifies the

unique opportunities for generalizable NeRF acceleration, including

the diverse sparsity distributions in a 3D space and the scene feature

reuse opportunities derived from the epipolar geometric relation-

ship among different points and rays, leveraging which we develop

a dedicated algorithm and accelerator, respectively, to push forward

the achievable accuracy-efficiency trade-off of generalizable NeRFs.

ACKNOWLEDGEMENT

The work is supported by the National Science Foundation (NSF)

through the CCF program (Award number: 2211815) and CoCoSys,

one of the seven centers in JUMP 2.0, a Semiconductor Research

Corporation (SRC) program sponsored by DARPA.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Yonggan Fu, Zhifan Ye, Jiayi Yuan, Shunyao Zhang, Sixu Li, Haoran You, and Yingyan (Celine) Lin

REFERENCES
[1] Sai Bi, Zexiang Xu, Pratul P. Srinivasan, Ben Mildenhall, Kalyan Sunkavalli,

Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoor-
thi. 2020. Neural Re�ectance Fields for Appearance Acquisition. arXiv cs.CV
arXiv:2008.03824 (2020).

[2] Yulong Bian, Chenglei Yang, Fengqiang Gao, Huiyu Li, Shisheng Zhou, Hanchao
Li, Xiaowen Sun, and Xiangxu Meng. 2016. A framework for physiological
indicators of �ow in VR games: construction and preliminary evaluation. Personal
and Ubiquitous Computing 20, 5 (2016), 821–832.

[3] Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.
2021. pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware
Image Synthesis. CVPR (2021).

[4] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:
Tensorial Radiance Fields. arXiv preprint arXiv:2203.09517 (2022).

[5] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi
Yu, and Hao Su. 2021. Mvsnerf: Fast generalizable radiance field reconstruction
from multi-view stereo. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 14124–14133.

[6] Mana Farshid, Jeannette Paschen, Theresa Eriksson, and Jan Kietzmann. 2018. Go
boldly!: Explore augmented reality (AR), virtual reality (VR), and mixed reality
(MR) for business. Business Horizons 61, 5 (2018), 657–663.

[7] Francesco Fassi, Alessandro Mandelli, Simone Teruggi, Fabrizio Rechichi, Fausta
Fiorillo, and Cristiana Achille. 2016. VR for cultural heritage. In International
conference on augmented reality, virtual reality and computer graphics. Springer.

[8] John Flynn, Michael Broxton, Paul Debevec, MatthewDuVall, Graham Fyffe, Ryan
Overbeck, Noah Snavely, and Richard Tucker. 2019. Deepview: View synthesis
with learned gradient descent. CVPR (2019).

[9] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser.
2020. Local deep implicit functions for 3d shape. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4857–4866.

[10] Richard Hartley and Andrew Zisserman. 2003. Multiple view geometry in computer
vision. Cambridge university press.

[11] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul
Debevec. 2021. Baking neural radiance fields for real-time view synthesis. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 5875–
5884.

[12] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner,
Thomas Funkhouser, et al. 2020. Local implicit grid representations for 3d scenes.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 6001–6010.

[13] Mohammad Mahdi Johari, Yann Lepoittevin, and François Fleuret. 2022. Geonerf:
Generalizing nerf with geometry priors. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 18365–18375.

[14] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramulator: A fast and exten-
sible DRAM simulator. IEEE Computer architecture letters 15, 1 (2015), 45–49.

[15] Chaojian Li, Sixu Li, Yang Zhao, Wenbo Zhu, and Yingyan Lin. 2022. RT-NeRF:
Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Ren-
dering. In 2022 IEEE/ACM International Conference on Computer-Aided Design.

[16] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. 2021. Neural Scene
Flow Fields for Space-Time View Synthesis of Dynamic Scenes. CVPR (2021).

[17] Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng Wang, Christian Theobalt,
Xiaowei Zhou, and Wenping Wang. 2022. Neural rays for occlusion-aware image-
based rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 7824–7833.

[18] Meta. 2022. Meta Quest Pro. www.meta.com/quest/quest-pro/#overview,
2022-11-01.

[19] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalan-
tari, Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. 2019. Local light field fusion:
Practical view synthesis with prescriptive sampling guidelines. ACM Transactions
on Graphics (TOG) 38, 4 (2019), 1–14.

[20] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance
fields for view synthesis. In European conference on computer vision. Springer,
405–421.

[21] Stylianos Mystakidis. 2022. Metaverse. Encyclopedia 2, 1 (2022), 486–497.
[22] NVIDIA Inc. 2021. NVIDIA Jetson TX2. https://www.nvidia.com/en-us/

autonomous-machines/embedded-systems/jetson-tx2/, accessed 2020-09-01.
[23] NVIDIA LLC. [n. d.]. Cuda C++ Programming Guide. https:

//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-
technical-specifications__technical-specifications-per-compute-capability.

[24] NVIDIA LLC. 2021. GeForce RTX 2080 TI Graphics Card | NVIDIA. https:
//www.nvidia.com/en-me/geforce/graphics-cards/rtx-2080-ti/, accessed 2020-09-
01.

[25] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. 2021.
Neural Scene Graphs for Dynamic Scenes. CVPR (2021).

[26] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. 2019. Deepsdf: Learning continuous signed distance functions for
shape representation. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition. 165–174.
[27] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Gold-

man, Steven M Seitz, and Ricardo Martin-Brualla. 2021. Nerfies: Deformable
neural radiance fields. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 5865–5874.

[28] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz,
Dan B Goldman, Ricardo Martin-Brualla, and Steven M Seitz. 2021. Hypernerf:
A higher-dimensional representation for topologically varying neural radiance
fields. arXiv preprint arXiv:2106.13228 (2021).

[29] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer.
2021. D-nerf: Neural radiance fields for dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10318–10327.

[30] Chaolin Rao, Huangjie Yu, HaochuanWan, Jindong Zhou, Yueyang Zheng, Minye
Wu, Yu Ma, Anpei Chen, Binzhe Yuan, Pingqiang Zhou, et al. 2022. ICARUS: A
Specialized Architecture for Neural Radiance Fields Rendering. ACM Transactions
on Graphics (TOG) 41, 6 (2022), 1–14.

[31] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick
Labatut, and David Novotny. 2021. Common objects in 3d: Large-scale learn-
ing and evaluation of real-life 3d category reconstruction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 10901–10911.

[32] Google Research. [n. d.]. Google Scanned Objects. https://app.ignitionrobotics.
org/GoogleResearch/fuel/collections/GoogleScannedObjects.

[33] Gernot Riegler and Vladlen Koltun. 2020. Free view synthesis. In European
Conference on Computer Vision. Springer, 623–640.

[34] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. 2020. GRAF:
Generative radiance fields for 3D-aware image synthesis. NeurIPS (2020).

[35] Tomoyoshi Shimobaba, Yoshikuni Sato, Junya Miura, Mai Takenouchi, and To-
moyoshi Ito. 2008. Real-time digital holographic microscopy using the graphic
processing unit. Optics express 16, 16 (2008), 11776–11781.

[36] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wet-
zstein, and Michael Zollhofer. 2019. Deepvoxels: Learning persistent 3d feature
embeddings. CVPR (2019).

[37] Ilya M Sobol. 2018. A primer for the Monte Carlo method. CRC press.
[38] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, BenMilden-

hall, and Jonathan T. Barron. 2021. NeRV: Neural Re�ectance and Visibility Fields
for Relighting and View Synthesis. CVPR (2021).

[39] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua
Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob
Uszkoreit, et al. 2021. Mlp-mixer: An all-mlp architecture for vision. Advances in
Neural Information Processing Systems 34 (2021), 24261–24272.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[41] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron,
and Pratul P Srinivasan. 2022. Ref-nerf: Structured view-dependent appearance
for neural radiance fields. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 5481–5490.

[42] Peihao Wang, Xuxi Chen, Tianlong Chen, Subhashini Venugopalan, Zhangyang
Wang, et al. 2022. Is Attention All NeRF Needs? arXiv preprint arXiv:2207.13298
(2022).

[43] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard
Zhou, Jonathan T Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas
Funkhouser. 2021. Ibrnet: Learning multi-view image-based rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4690–4699.

[44] Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, and Zhangyang
Wang. 2022. SinNeRF: Training Neural Radiance Fields on Complex Scenes from
a Single Image. arXiv preprint arXiv:2204.00928 (2022).

[45] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli,
and Ulrich Neumann. 2022. Point-nerf: Point-based neural radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5438–5448.

[46] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. 2021. pixelnerf:
Neural radiance fields from one or few images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4578–4587.

[47] Zhengyou Zhang. 1998. Determining the epipolar geometry and its uncertainty:
A review. International journal of computer vision 27, 2 (1998), 161–195.

[48] Shulin Zhao, Haibo Zhang, Sandeepa Bhuyan, Cyan Subhra Mishra, Ziyu Ying,
Mahmut T Kandemir, Anand Sivasubramaniam, and Chita R Das. 2020. Déja
view: Spatio-temporal compute reuse for ‘energy-efficient 360 vr video streaming.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 241–253.

[49] Yueyang Zheng, Chaolin Rao, Haochuan Wan, Yuliang Zhou, Pingqiang Zhou,
Jingyi Yu, and Xin Lou. 2022. An RRAM-based Neural Radiance Field Processor.
In 2022 IEEE 35th International System-on-Chip Conference (SOCC). IEEE, 1–5.

[50] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely.
2018. Stereo Magnification: Learning View Synthesis using Multiplane Images.
SIGGRAPH (2018).

