




2.2. Parameter-efficient Tuning

Motivated by the impressive pretraining performance

of FViTs on large-scale datasets, there has been a grow-

ing interest in applying FViTs to real-world applications.

The common solution follows the pretraining-then-tuning

paradigm, which tunes pretrained FViTs on various down-

stream tasks based on the corresponding applications’

needs. However, with conventional weight tuning, each

task would need to store an additional set of model weights,

which can lead to cumbersome and prohibitive storage over-

head. To this end, various parameter-efficient tuning meth-

ods have been proposed [2,33,53,72]. In parameter-efficient

tuning, a set of tiny learnable modules are added to the pre-

trained FViTs, while the weights of the backbone FViTs

remain unchanged during tuning [32±34]. This approach

offers two benefits: (1) it allows FViTs to be tuned on

new downstream tasks with negligible additional parame-

ters, and (2) the pretrained FViTs can be easily retrieved at

any time by simply removing the added parameter-efficient

tuning modules.

Among recent parameter-efficient tuning techniques,

LoRA [33] proposes to learn a set of low-rank weights and

apply them on top of the backbone weights, and VPT [34]

proposes to use the idea of prompt tuning, inserting a set of

task-specific prompts as additional tokens. More recently,

NPS [72] proposes to search for the optimal combination of

parameter-efficient tuning techniques and their correspond-

ing hyperparameters through neural architecture search.

2.3. Few-shot Tuning

Few-shot tuning aims to tune pretrained models on new

tasks with limited samples per class [18, 21, 28, 39, 42]. It

has gained increasing attention in recent years [59] as high-

quality data is scarce in many real-world applications [3].

Recently, a few pioneering works that target few-shot tun-

ing for ViTs propose to customize meta-learning tasks and

learning objectives under the guidance of self-attention

modules [8, 10, 38, 61, 65]. In this paper, we aim to en-

hance FViTs’ few-shot tuning accuracy from an orthogonal

direction, i.e., adaptively augmenting the few-shot tuning

samples to compensate for their lack of diverse features.

2.4. Data Augmentation

Data augmentation aims to enhance data diversity and

thus the feature diversity of the models [9, 11, 24, 31,

49, 60, 68, 71, 74]. An effective data augmentation strat-

egy should properly enhance data diversity, while simul-

taneously avoiding the generation of out-of-manifold data

caused by excessive augmentation intensity [57, 71]. Al-

though various data augmentation techniques have been

proposed, how to effectively augment the data under few-

shot tuning settings is still an open question. The limited

data diversity in few-shot data calls for techniques that can

generate novel but meaningful features [62,63]. To this end,

most existing few-shot data augmentation techniques adopt

generative models to generate in-domain data, which, how-

ever, further increase the memory and storage overhead of

tuning FViTs [23, 29, 37, 43].

One potential way to alleviate the aforementioned chal-

lenges is to use adversarial techniques to generate samples

with beneficial features [20, 51, 59]. However, the major-

ity of these works focus on improving adversarial robust-

ness instead of the clean accuracy [20, 26, 51, 59, 70, 73].

In contrast, our work explores the opportunities of leverag-

ing adversarial training to generate beneficial features that

can boost the clean accuracy during few-shot parameter-

efficient tuning.

3. The Proposed Hint-Aug Framework

3.1. Hint-Aug: Motivation

We first identify that the characteristics of parameter-

efficient tuning together with pretrained FViTs provide a

unique opportunity for FViTs’ parameter-efficient tuning.

Based on this observation, we then propose our Hint-Aug

framework, which utilizes these characteristics to enhance

the tuning effectiveness. We describe each of the character-

istics in detail below:

Characteristics of parameter-efficient tuning: As

mentioned in Sec. 2.1 and Sec. 2.2, the weights of pre-

trained FViTs are fixed during tuning. Therefore, the

tuned FViTs behave the same as their pretrained counter-

part after the added tuning modules (e.g., those adopted in

Adapter [32], VPT [34], and LoRA [33]) are removed [72].

This motivates us to consider whether we can make use of

this characteristic to improve the achievable few-shot tuning

accuracy by leveraging the pretrained FViTs.

Characteristics of pretrained FViTs: Existing works

have shown that pretrained FViTs have two promising char-

acteristics regarding their learned features: (1) pretrained

FViTs can identify complex but meaningful features [16,

41], even on unseen datasets without tuning [6, 30, 36];

(2) the learned features in FViTs can be reversely pro-

jected to the input image space using gradient-based meth-

ods [22, 44, 46].

Given the aforementioned characteristics of both

parameter-efficient tuning and pretrained FViTs, we hy-

pothesize that these characteristics provide a unique oppor-

tunity to effectively leverage the pretrained FViTs to aug-

ment the few-shot tuning data. To validate our hypothesis,

we aim to explore proper ways to leverage the learned fea-

tures in pretrained FViTs to boost the effectiveness of few-

shot tuning. Specifically, given the two commonly recog-

nized major challenges of few-shot tuning, which are over-

fitting [1, 58] and the lack of data diversity in the tuning

data [62, 63], we set out to answer the following questions:
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Input Image (a)

(b) Accuracy: 64.37% (c) Accuracy: 61.59%

Figure 3. Visualization of the attention-score map from the (a) pre-

trained foundation model, called ViT-base, (b) parameter-efficient

tuned ViT-base model with 20% of the total tuning epochs, achiev-

ing an accuracy of 64.37%, and (c) parameter-efficient tuned ViT-

base model with an accuracy of 61.55%.

to identify both the existence of over-fitting and which

patch contributes most to the over-fitting issue. Specifi-

cally, given the attention-score maps SP = [sP1 , · · · , s
P
N ]

generated from the pretrained FViT (denoted as P ) and

ST = [sT1 , · · · , s
T
N ] generated from the FViT model to be

tuned (denoted as T ), we define the over-fitting indicator as:

I =

{

0,
∑

i ∥s
P
i − sTi ∥ < λ

∑

i ∥s
P
i ∥

1, otherwise
(3)

where λ is a hyperparameter to control the sensitivity of

over-fitting detection.

When over-fitting occurs (i.e., I = 1), we select the

patch that significantly changes the attention-score map as

the target patch to be augmented in order to alleviate the

over-fitting issue. Thus, we select the patch p to augment,

where p is defined by:

p = argmax
i

(∥sPi − sTi ∥) (4)

Otherwise, when there is no detected over-fitting issue,

we select the patch p with the highest attention-score as the

target patch to be augmented from all patches in the corre-

sponding image.

3.4. Enabler 2: Confusion-based Feature Infusion

With the selected over-fitted patch detected by the AOD

above, the remaining question is how to augment the se-

lected patch with meaningful features to (1) alleviate the

over-fitting issue and (2) increase the diversity of tuning

data with meaningful features. Therefore, we propose CFI

that uses adversarial attack-based methods to extract the

learned features from the pretrained FViT model and infuse

them into the selected patch with the aim of improving the

feature diversity in a meaningful way, thus alleviating the

over-fitting issue.

However, achieving a meaningful feature extraction and

infusion that can help boost the few-shot tuning accuracy

is non-trivial. Naively augmenting samples with commonly

used attack objectives (e.g., perturbing the image to reduce

the value of the model’s output logit on the correct class)

can easily lead to out-of-manifold samples, as shown in our

alation study in Sec. 4.3.2. To overcome this, the CFI mod-

ule incorporates injected features to steer the model predic-

tion towards a synthetic target label. This target label is

determined by utilizing a confusion matrix, which quanti-

fies the degree to which the model is prone to confusion

between pairs of classes.

Specifically, we construct a confusion matrix C ∈
R

M×M
≥0 in CFI, where M is the total number of classes.

As shown in a recent study on open set detection [56], a

pre-softmax model output has a better ability to preserve a

model’s uncertainty of samples. We thus define C as fol-

lows:

Ci,j =
∑

X:y(X)=j

(

fi(X)−min
i′

fi′(X)
)

(5)

where i and j are coordinates in C that represent two

classes; y and f ∈ R
M are the ground truth label and pre-

softmax output given the input image X . The generated

confusion matrix C helps to identify the class-wise similar-

ity learned by the model and distinguish the class pairs that

are easy to be confused by the model.

To infuse the easy-to-confuse features to the patch, given

input X with label y, we propose to design the attack label

f̃(X) ∈ R
M
≥0 where the i-th element is computed as:

f̃i(X) =

{

Ci,y∑
j
Cj,y−Cy,y

, i ̸= y

0, i = y
(6)

The loss function is defined as

Ltar = CrossEntropy(softmax(f), softmax(f̃)) (7)

By optimizing the patch to minimize the above loss, the

generated features are further shifted towards the direction

where the model considers an easy-to-confuse class from

the current class. This shift allows the model to learn to dif-

ferentiate between the current class and the easy-to-confuse

class, effectively extending the decision boundary of the

current class.

4. Experimental Results

4.1. Experimental Setup

Datasets, few-shot settings, models, and parameter-

efficient tuning techniques. Datasets and few-shot

11106



settings. We adopt five commonly-used datasets for few-

shot tuning, including Food [5], Pet [48], Cars [35], Flow-

ers [34], and Aircraft [45], and benchmark our Hint-Aug

under 1/2/4/8/12/16-shot scenarios to provide a thorough

evaluation of its achieved accuracy across different few-shot

tuning scenarios. Models. We conduct our experiment on

a widely used FViT model, i.e., ViT-Base [16]. Adopted

parameter-efficient tuning methods. We consider three most

widely used parameter-efficient tuning methods including

Adapter [32], LoRA [33], and VPT [34].

Baselines. We benchmark our proposed Hint-Aug

against two baselines, including the SOTA data augmen-

tation technique for parameter-efficient FViT tuning intro-

duced in [72] (denoted as NPS) and the vanilla tuning with-

out augmentation (denoted as No-Aug). It is worth noting

that, given the unique challenge of limited data diversity

in the few-shot tuning scenarios, even the SOTA data aug-

mentation technique, i.e., the aforementioned NPS [72], can

lead to an inferior accuracy than that of the vanilla tuning

without augmentation (as shown in Fig. 1). Thus, it is nec-

essary to include No-Aug as one of the baselines.

Tuning settings. In our experiments, we set l = 5 and

adopt the center patch in each image as the query patch (i.e.,

k = 90), following [22]. We follow the widely adopted

few-shot tuning settings in [72]. Specifically, we tune the

model for 100 epochs using a batch size of 256, a learning

rate of 0.01, and an SGD optimizer starting from the Ima-

geNet [14] pretrained ViT-Base [16]. Following NPS [72],

we also use data augmentation techniques including color-

jitter with a factor of 0.4 and RandAugment [13] with a

magnitude of 9 and a standard deviation equal to 0.5. We set

λ in Eq. 3 as 0.1 and use FGSM [25] to generate the adver-

sarial samples with attack radius ϵ = 0.001. Additionally,

we run all experiments in the paper three times and report

the average accuracy, following NPS [72].

4.2. Benchmark on Few-shot Image Classification

We first benchmark our proposed method on five com-

monly used few-shot image classification datasets [5,34,35,

45, 48] with different parameter-efficient tuning techniques

and few-shot settings. As shown in Fig. 4, although the

SOTA augmentation baseline NPS [72] suffers from con-

siderable accuracy degradation compared with the vanilla

tuning method No-Aug on fine-grained image classification

dataset (e.g., a 5.55% accuracy drop on [45]), our proposed

Hint-Aug achieves 0.25% ∼ 6.10%, 0.10% ∼ 32.91%, and

0.04% ∼ 6.17% higher accuracies across different shot se-

lections over baselines when using Adapter [32], VPT [34],

and LoRA [33] tuning, respectively.

In particular, we draw the following two exciting obser-

vations: (1) the features generated by Hint-Aug can com-

pensate for the lack of sufficient tuning data and improve

accuracy under more stringent few-shot settings. Specif-

Table 1. Ablation study on each enabler’s contribution to the final

accuracy.

AOD CFI Food Pets Cars

66.25 86.97 40.83

68.53 88.01 42.17

70.52 89.07 43.55

71.04 89.42 44.80

ically, Hint-Aug boosts the accuracy of 8-shot tuning by

2.45% ∼ 4.96% and surpasses the 12-shot tuning with

NPS [72] by a 0.73% ∼ 2.22% higher accuracy when tun-

ing Adapter and LoRA on the Food and Pets datasets; (2)

Hint-Aug’s ability to extract features from the pretrained

FViTs and infuse them into the tuning data can considerably

boost accuracy in extreme few-shot scenarios (e.g., 1-shot

tuning). For example, on the Pets dataset, tuning VPT with

Hint-Aug under a 1-shot setting leads to a 32.91% higher

accuracy than that of NPS [72].

4.3. Ablation Studies

4.3.1 Accuracy Improvement Breakdown

Setup. To better understand the contribution of each en-

abler of Hint-Aug, including AOD and CFI, to the final

accuracy, we conduct an ablation study where we run 8-

shot tuning with Adapter [32] on three datasets, namely

Food [5], Pets [48], and Cars [35]. We implement this

accuracy improvement breakdown experiment as follows:

(1) when using AOD only, we adopt the data augmentation

method in [72] to augment the selected patch; (2) when us-

ing CFI only, we generate the samples with Ltar loss and

randomly select a patch to augment in each image.

Observations. As shown in Tab. 1, when augment-

ing a selected patch, we can observe that (1) enabling ei-

ther AOD or CFI can lead to an accuracy improvement of

1.04% ∼ 2.28% and 2.10% ∼ 4.27% over the baseline

(e.g., neither AOD nor CFI enabled), respectively. This in-

dicates that both key challenges (i.e., the over-fitting issue

and lack of feature diversity as analyzed in Sec. 3.1) in-

deed hurt the achievable accuracy of few-shot tuning and

our proposed enablers can effectively alleviate the challenge

in over-fitting; (2) Combining both AOD and CFI can marry

the merit of both, thus further boosting the achievable accu-

racy by 0.35% ∼ 2.63% over that of enabling only one of

AOD or CFI.

4.3.2 Ablation on Adversarial Objectives

Setup. We conduct ablation studies to validate the choice of

loss functions for generating the adversarial sample for fea-

ture infusion. As mentioned in Sec. 3.4 and Sec. 2.3, differ-

ent loss functions can have different impacts on the tuning

accuracy and an improper loss function can lead to inferior

clean accuracy. In Tab. 2, we validate the objective function

we selected with other potential candidates when tuning on
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Figure 5. Visualization of attention score maps of images trained

with different augmentation techniques.

Table 3. Impact of adversarial attack radius on the achievable ac-

curacy of the Hint-Aug framework.

ϵ 0.01 0.005 0.001 0.0002 0.0001

Acc. (%) 70.01 70.83 71.04 71.01 70.15

Table 4. Ablation on the number of selected patches to augment.

# patches 1 2 3 8 32 All

Average Acc. 65.42 65.44 65.35 65.08 64.59 63.72

accuracy change, while changing ϵ by 10 times leads to a

0.89% ∼ 1.03% accuracy change compared with a radius

of 0.001 that we select in Hint-Aug, proving the robustness

of Hint-Aug in different selections of hyperparameters. It

is worth noting that changing ϵ by 10 times is a non-trivial

change. As suggested in [22], changing ϵ by 8 times leads

to an accuracy change larger than 27.94% when attacking

DeiT-Tiny on ImageNet.

4.3.4 Number of Patches to Augment

Motivated by the promising accuracy-data efficiency trade-

off achieved by Hint-Aug, an interesting question arises

whether augmenting more than one patch for each image

can further push forward the accuracy-efficiency trade-off.

To answer this question, we conduct an ablation study on

Hint-Aug with different numbers of augmented patches and

report the average achieved accuracy when tuning with an

8-shot VPT [34] across five datasets. Notably, augmenting

all patches (i.e., column ªAllº in Tab. 4) is equivalent to

augmenting the whole image without considering the patch

information. Our experiments show that augmenting one

to three patches in each image leads to similar average ac-

curacy (less than 0.1% accuracy change). However, when

augmenting more patches in the image, the average accu-

racy drops by 0.34% ∼ 1.70% when augmenting more than

8 patches in each image. We suspect this is because only a

few patches are prone to over-fitting in each image, as sug-

gested in Fig. 3. Augmenting too many patches may ruin the

attention-score map instead, leading to reduced accuracy.

4.4. Visualization of Attention Score Maps

To verify Hint-Aug’s effectiveness in alleviating the

over-fitting issue, we visualize the attention score maps of

the pretrained FViT, FViT tuned by NPS [72], and FViT

tuned with our proposed Hint-Aug. As shown in Fig. 5,

we can observe that (1) after tuning with our proposed

Hint-Aug, the over-fitted patches (marked in red) that are

commonly observed in the attention score maps tuned by

NPS [72] are successfully eliminated, and (2) the attention

score map obtained from Hint-Aug features similar loca-

tions of high-attention score patches to those obtained from

the pretrained FViT, indicating that Hint-Aug effectively al-

leviates the over-fitting issue.

4.5. Visualization of the Confusion Matrix

Table 5. The averaged confu-

sion matrix value of the Cats

and Dogs meta-group.

Cats Dogs

Cats 4.94 3.96

Dogs 3.96 5.72

We visualize the confu-

sion matrix using a 4-shot

Adapter [32] tuning setting

on Pets [48] to interpret the

discovered class-wise sim-

ilarity. We calculate the

averaged confusion matrix

value of the Cats and Dogs

meta-group and visualize

them in Tab. 5. We observe

that the FViT is much more confused in distinguishing be-

tween different classes within the Cat or Dog meta-group

than distinguishing between the Cat and Dog meta-groups.

This suggests that despite the simplicity of our strategy that

uses the pre-softmax output, the generated confusion matrix

can effectively identify the class pairs with easy-to-confuse

features and thus provide correct guidance for CFI.

5. Conclusion

In this paper, we propose a framework called Hint-Aug,

which is dedicated to boosting the few-shot parameter-

efficient tuning accuracy of FViTs. Specifically, Hint-

Aug features two enablers called AOD and CFI, aiming

to alleviate the over-fitting issue and the lack of diverse

data in few-shot tuning, respectively. Extensive experi-

ments and ablation studies validate that Hint-Aug achieves a

0.04% ∼ 32.91% higher accuracy over SOTA data augmen-

tation methods, opening up a new perspective towards more

effectively tuning pretrained FViTs on downstream tasks in

a realistic low-data scheme.
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