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There has been growing research interest in developingmethodology to evaluate

healthcare centers’ performance with respect to patient outcomes. Conven-

tional assessments can be conducted using fixed or random effects models, as

seen in provider profiling. We propose a new method, using fusion penalty

to cluster healthcare centers with respect to a survival outcome. Without any

prior knowledge of the grouping information, the new method provides a

desirable data-driven approach for automatically clustering healthcare centers

into distinct groups based on their performance. An efficient alternating direc-

tion method of multipliers algorithm is developed to implement the proposed

method. The validity of our approach is demonstrated through simulation stud-

ies, and its practical application is illustrated by analyzing data from the national

kidney transplant registry.

KEYWORD S

fixed effects, fusion penalty, latent class, provider profiling, random effects

1 INTRODUCTION

Assessing the comparative performance of healthcare centers (eg, hospitals, nursing homes, transplant centers, or dialysis

facilities) has attracted significant interest over the past decades. The objective is to outline and compare the performance

of these centers in order to facilitate improvements through accountability and feedback. This information can aid indi-

viduals in selecting themost suitable healthcare facility and also enable stakeholders and payers to identify areas requiring

enhancements.

Our motivating example is the national kidney transplant registry data collected by the U.S. Organ Procurement and

Transplantation Network (OPTN). Our goal is to evaluate transplant centers based on their five-year post-transplant graft

survival rates. For patients with end-stage renal disease, kidney transplantation provides the best opportunity for survival.

The Scientific Registry of Organ Recipients (SRTR) commonly utilizes the five-year post-transplant graft survival metric,

defined as the time until either death or graft failure within five years following transplantation, for regulatorymonitoring
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of transplant centers.1,2 Consequently, we will employ the five-year post-transplant graft survival to assess the quality of

care provided by transplant centers.

Traditionally, profiling methods have been developed to evaluate the quality of care provided by various healthcare

centers, using multiple patient outcome quality measures, such as readmission, mortality, and hospitalization. Existing

transplant center profiling approaches typically employ inference-based procedures and generate a three-tier system, indi-

cating whether centers performworse than “expected”, “as expected”, or “better than expected”. Random effects and fixed

effects models are two prevalent analytical methods used in profiling.3-6 However, both models have their drawbacks.

For random effects models, healthcare centers on the tails of the distribution tend to have small sample sizes, leading

to substantially shrunk estimates toward the population mean.7,8 This may result in reduced sensitivity when classify-

ing healthcare centers in the tail areas, causing the majority of healthcare centers to be classified as “expected”, despite

noticeable heterogeneity.9 Additionally, misspecification of the random effects distribution can pose challenges in both

estimation and inference. In contrast, fixed effects models suffer from a loss of efficiency due to a large number of param-

eters. Moreover, the simultaneous testing of the null hypothesis for extensive healthcare center effects is computationally

demanding.

In order to offer more comprehensive ratings for kidney transplantation, the SRTR has implemented a five-tier rating

system10,11 that indicates whether a transplant center performs “better than expected”, “somewhat better than expected”,

“as expected”, “somewhat worse than expected”, or “worse than expected”. However, concerns arise regarding the selec-

tion of appropriate cutoffs to categorize transplant centers into distinct groups. Furthermore, the decision regarding the

total number of tiers is arbitrary.

To tackle the aforementioned challenges, we introduce a new fused effects model12 designed to automatically iden-

tify homogeneous groups of healthcare centers without requiring a priori classification knowledge. We employ Cox’s

proportional hazards model13 with fusion penalty14 to cluster transplant centers based on the post-transplant graft sur-

vival outcome. Unlike random or fixed effects models, this new method offers a data-driven approach that does not rely

on inference tests of statistical significance. Our model can also investigate risk factors associated with post-transplant

graft survival. Our method can be considered as an alternative of the latent class model, where we use fusion penalty to

“classify” providers into different latent groups.

We employ a local quadratic approximation to the partial likelihood and optimize the penalized partial likelihood

with the fusion penalty. Prioritizing clustering accuracy, we opt for the smoothly clipped absolute deviation (SCAD)15

penalty function over the LASSO penalty.16 Compared to the LASSO, the SCAD penalty is nearly unbiased in identifying

groups and enforces a sparser solution more aggressively.17 The alternating direction method of multipliers (ADMM)

algorithm can be utilized to implement the estimation, ensuring rapid convergence.18 Due to the information loss during

computation, we perform refitting by maximizing the log partial likelihood with the grouped data to obtain accurate

parameter estimates.

The remainder of this article is structured as follows: in Section 2, we outline the penalized Cox’s regression model

with fusion penalty for clustering healthcare centers. Section 3 evaluates the performance of our approach throughMonte

Carlo simulation studies. In Section 4,we demonstrate the proposedmethodusing the kidney transplant data as a practical

example. Finally, we summarize our methodology and discuss potential future directions in Section 5.

2 METHODS

2.1 Model

We begin by introducing notations to formulate our model. For subject j = 1, … ,ni from healthcare center i = 1, … ,m,

we have data in the format (yij, xij, 𝛿ij), where the observed time yij is the minimum of the censoring time cij and the event

time tij, 𝛿ij = I(tij ≤ cij) is the censoring indicator, and xij is a p × 1 vector of predictors. The Cox’s proportional hazards

model is

hij(t|xij) = h0(t) exp(ai + x⊤ij𝜷), (1)

where hij(t) is the hazard for patient j of center i at time t, h0(t) is a baseline hazard function, ai is the center-specific

effect, and 𝜷 = (𝛽1, … , 𝛽p)
⊤ is the vector of covariate coefficients. A constraint

∑m
i=1ai = 0 ensures that all parameters

are identifiable. For estimation and inference, we often rely on the partial likelihood, where the unspecified baseline
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hazards can be canceled out. Patients are assumed to be independent within each healthcare center, that is, we assume

independence of yij given xij and ai. The partial likelihood for Model (1) can be written as

L(a, 𝜷) =

m∏
i=1

ni∏
j=1

[
exp(ai + x⊤

ij
𝜷)

∑m
i′=1

∑ni′

j′=1
I(yi′j′ ≥ yij) exp(ai′ + x⊤

i′j′
𝜷)

]𝛿ij

, (2)

wherea = (a1, … , am)⊤.We assume thatai belongs to one ofK groups1, … ,K , which aremutually exclusive partitions
of {1, … ,m}; and the number of groups is much smaller than that of centers, that is, K ≪ m. Moreover, the number of

groups and the group membership are unknown in advance.

We utilize the fused SCAD penalty to identify homogeneous center performance and then fuse them as shared param-

eters to classify groups of healthcare centers. Incorporating the fusion penalty into the partial likelihood (2) results in the

following optimization problem:

(â, 𝜷) = arg min

[
−𝓁(a, 𝜷) +

∑
1≤i<k≤m

p𝛾 (|ai − ak|, 𝜆)
]
, (3)

where 𝓁(a, 𝜷) is the log of the partial likelihood, and p𝛾 (t, 𝜆) is the SCAD penalty function15 defined as

p𝛾 (t, 𝜆) = 𝜆∫
|t|

0

min {1, (𝛾 − x∕𝜆)+∕(𝛾 − 1)} dx,

with (x)+ = x if x > 0 and = 0 otherwise, 𝜆 ≥ 0 is a tuning parameter, 𝛾 ≥ 0 is a parameter that controls the concavity of

the penalty functions. Following Ma et al,17 we treat 𝛾 as a fixed constant.

2.2 Estimation procedure

Note that the penalty function p𝛾 (|ai − ak|, 𝜆) cannot be written in the form of addition of separate terms of p𝛾 (|ai|, 𝜆) and
p𝛾 (|ak|, 𝜆) as in LASSO. Here, we introduce a new set of parameters 𝜃ik = ai − ak, which are equivalent to the pairwise

differences of healthcare center effects. Consequently, the above minimization problem (3) can be transformed into the

following constraint optimization problem:

F0(a, 𝜷,𝜽) = −𝓁(a, 𝜷) +
∑
i<k

p𝛾 (|𝜃ik|, 𝜆) subject to ai − ak − 𝜃ik = 0, (4)

where 𝜽 = {𝜃ik, i < k}⊤. As a result, the alternating direction method of multipliers (ADMM) algorithm can be used to

identify the groups in the objective function (4). The ADMM algorithm combines the strengths of dual decomposition

and augmented Lagrangian methods for constrained optimization. The estimates of the parameters are obtained by the

augmented Lagrangian

F(a, 𝜷,𝜽, 𝝊) = F0(a, 𝜷,𝜽) +
∑
i<k

𝜐ik(𝜃ik − ai + ak) +
𝜗

2

∑
i<k

(𝜃ik − ai + ak)
2, (5)

where 𝝊 = {𝜐ik, i < k}⊤ are Lagrange multipliers, 𝜗 is the penalty parameter. We use ADMM to iteratively compute the

estimates of (a, 𝜷,𝜽, 𝝊). For given 𝜽(s), 𝝊(s) at step s, the iterations can be specified as follows:

(a(s+1), 𝜷 (s+1)) = argmin
a,𝜷

F(a, 𝜷,𝜽(s), 𝝊(s)), (6)

𝜽(s+1) = argmin
𝜽
F(a(s+1), 𝜷(s+1),𝜽, 𝝊(s)), (7)

𝜐
(s+1)

ik
= 𝜐

(s)

ik
+ 𝜗(a(s+1)

i
− a(s+1)

k
− 𝜃

(s+1)

ik
). (8)
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To update a and 𝜷, minimizing (6) is equivalent to minimizing

f (a, 𝜷) = −𝓁(a, 𝜷) +
𝜗

2

∑
i<k

(ai − ak − 𝜃
(s)

ik
+ 𝜗−1𝜐

(s)

ik
)2 + C, (9)

where C is the constant independent of a and 𝜷. To solve the optimization problem (9), we approximate the

nonlinear log-partial likelihood function using a two-term Taylor series expansion. At each iteration, we solve a

reweighted least squares problem.19 Specifically, let y = (y⊤1 , … , y⊤m)
⊤ with yi = (yi1, … , yini)

⊤, X = (X⊤
1 , … ,X⊤

m)
⊤

with Xi = (xi1, … , xini)
⊤, A = diag(1n1 , … , 1nm) with 1ni = (1, … , 1)⊤ being the vector with ni ones, and 𝜼 = A a +

X 𝜷. Let 𝓁′(𝜼),𝓁′′(𝜼) denote the gradient and Hessian of the log-partial likelihood with respect to 𝜼, respectively.

The log-partial likelihood 𝓁(a, 𝜷) can be approximated by the following quadratic form (see the Supplementary

Material)

1

2
(z −A a − X 𝜷)⊤𝓁′′(𝜼)(z −A a − X 𝜷),

where z = 𝜼 − 𝓁
′′(𝜼)−1𝓁′(𝜼) with

𝜕𝓁(𝜼)

𝜕𝜂ij
= 𝛿ij − exp(𝜂ij)

∑
i′j′∈Dij

1∑
uv∈Ri′ j′

exp(𝜂uv)
,

𝜕2𝓁(𝜼)

𝜕𝜂2
ij

= −exp(𝜂ij)
∑
i′j′∈Dij

1∑
uv∈Ri′ j′

exp(𝜂uv)
+ exp(2𝜂ij)

∑
i′j′∈Dij

1

{
∑

uv∈Ri′ j′
exp(𝜂uv)}2

,

where Dij is the set of indices i′j′ with ti′j′ ≤ yij (the times for which observation of the ith subject in the jth center is

still at risk) and Ri′j′ is the set of indices uv with yuv ≥ ti′j′ (those at risk at time ti′j′). Since 𝓁
′′(𝜼) is a full matrix, it

requires computation of O(N2) elements, we instead replace 𝓁
′′(𝜼) by a diagonal matrix with the same diagonal ele-

ments as 𝓁
′′(𝜼).19-21 This substitution works well because the diagonal elements of 𝓁′′(𝜼) are much larger than the

off-diagonal elements. Denote−𝓁′′(𝜼) byW.W and z are computed based ona(s) and 𝜷 (s) at iteration s. Equation (9) can be

rewritten as

f (a, 𝜷) =
1

2
(z −A a − X 𝜷)⊤W(z −A a − X 𝜷) +

𝜗

2
||�a − 𝜽(s) + 𝜗−1𝝊(s)||2 + C, (10)

where � =
{
(ei − ej), i < j

}⊤
with ei being an m × 1 vector whose ith element is 1 and the remaining elements are 0.

Thus, for given 𝜽(s), 𝝊(s) at the sth step, we set the derivatives 𝜕f (a, 𝜷)∕𝜕a = 0 and 𝜕f (a, 𝜷)∕𝜕𝜷 = 0 to obtain the following

updates a(s+1) and 𝜷 (s+1):

a(s+1) = (A⊤QxA + 𝜗�⊤
�)−1[A⊤Qxz + 𝜗�⊤(𝜽(s) − 𝜗−1𝝊(s))], (11)

whereQx = W −WX(X⊤X)−1X⊤W. We let a(s+1) = a(s+1) −mean(a(s+1)) to guarantee that the estimate a(s+1) satisfies the

constraint
∑m

i=1ai = 0, and

𝜷(s+1) = (X⊤WX)−1X⊤W(z −Aa(s+1)). (12)

To update 𝜽, we minimize the function

𝜗

2
(𝜃ik − 𝜋

(s)

ik
)2 +

∑
i<k

p𝛾 (|𝜃ik|, 𝜆),

where 𝜋(s)

ik
= a(s)

i
− a(s)

k
+ 𝜗−1𝜐

(s)

ik
. It is worth noting that by using the concave penalties, the objective function F(a, 𝜷,𝜽, 𝝊)

is no longer a convex function. However, it is convex with respect to each 𝜃ik when 𝛾 > 1∕𝜗 + 1 for the SCAD penalty;

consequently, given (a, 𝜷, 𝝊), the minimizer of F(a, 𝜷,𝜽, 𝝊)with respect to 𝜃ik is unique and has a closed-form solution as

follows:
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𝜃
(s+1)

ik
=

⎧⎪⎪⎨⎪⎪⎩

S(𝜋(s)

ik
, 𝜆∕𝜗) |𝜋(s)

ik
| ≤ 𝜆 + 𝜆∕𝜗,

S(𝜋(s)

ik
,𝛾𝜆∕((𝛾−1)𝜗))

1−1∕((𝛾−1)𝜗)
𝜆 + 𝜆∕𝜗 < |𝜋(s)

ik
| ≤ 𝜆𝛾,

𝜋
(s)

ik
|𝜋(s)

ik
| > 𝜆𝛾,

(13)

where S(x, t) = x(1 − t∕|x|)+ is a groupwise soft thresholding operator. Finally, the Lagrange multiplier 𝜐ik is updated by
(8). This process is conducted iteratively until the convergence over a grid of values for 𝜆. The iterative algorithm termi-

nates when primal residuals r(s+1)
primal

= �a(s+1) − 𝜽(s+1) and dual residuals r(s+1)
dual

= 𝜗�⊤(𝜽(s+1) − 𝜽(s)) are close to zero, that is,

||r(s+1)
primal

|| < 𝜖
(s+1)
primal

and ||r(s+1)
dual

|| < 𝜖
(s+1)
dual

, where 𝜖(s+1)
dual

and 𝜖(s+1)
primal

are specified as suggested by Boyd et al.18 It is important to

find appropriate initial values for the ADMM algorithm. In this article, the initial values a(0) are obtained from the fixed

effects Cox model, then we set 𝜃(0)
ik

= a(0)
i

− a(0)
k
and 𝝊(0) = 0. If 𝜃ik = 0, ai and ak are classified into the same group. As a

result, we obtain K̂ estimated groups ̂1, … , ̂K̂ , and set 𝛼k to be the common value of ai’s from the kth group.

Due to the approximation in the computation, Equation (10) does not fully capture parameter information, and the

iteration may also lead to a loss in efficiency. Once the groups have been identified, we conduct a refitting step to estimate

a and 𝜷 by maximizing the following log-partial likelihood with the grouped information:

𝓁(𝜶, 𝜷) =

K̂∑
k=1

∑
i=̂k

ni∑
j=1

𝛿ij

⎧
⎪⎨⎪⎩
𝛼k + x⊤ij𝜷 − log

⎡⎢⎢⎣
∑

i′j′∈Rij,i
′∈̂k

exp(𝛼k + x⊤i′j′𝜷)
⎤⎥⎥⎦

⎫
⎪⎬⎪⎭
, (14)

where 𝜶 = (𝛼1, … , 𝛼K̂)
⊤, and Rij is the set of indices i′j′ with yi′j′ ≥ tij (those at risk at time tij). Here rather than

the constraint
∑K̂

i=1𝛼k = 0 (as for ai in Section 2.1), we assume that 𝛼k̂ = 0 to simplify the interpretation, where k̂ =

arg mink=1,… ,K̂ |𝛼k|. The above procedure can be conveniently implemented using R function coxph, which also provides
standard errors and p-values of 𝜶 and 𝜷.

After obtaining a path of solutions, it becomes essential to choose an optimal tuning parameter 𝜆 by minimizing the

modified Bayesian Information Criterion (BIC) using a grid search.22 The BIC is given by

BIC(𝜆) = −2𝓁(â(𝜆), 𝜷(𝜆)) + CN(K̂(𝜆) + p) logN,

where â(𝜆), 𝜷(𝜆) and K̂(𝜆) are the estimates of a, 𝜷 and K at given 𝜆, respectively. 𝓁(â(𝜆), 𝜷(𝜆)) is the log-partial likelihood

evaluated at â(𝜆) and 𝜷(𝜆), p is the dimension of the parameter 𝜷, and CN is a positive number depending on the total

number of observations N =
∑m

i=1ni. If CN=1, the modified BIC reduces to the traditional BIC.
23 Following Wang et al,22

CN = log(log(N + p)).

We summarize our method in Algorithm 1 below.

3 SIMULATION

In this section, we evaluate the finite sample performance of the proposed methods through simulation studies. Conven-

tionally, in Model (1), the healthcare center effect ai is treated as either a random effect or a fixed effect. We compare our

fused effectsmodelwith SCADpenalty (SCAD) to the randomeffectsmodel (RE) and fixed effectsmodel (FE). Specifically,

we examine the efficiency of estimation and the accuracy of healthcare center classification. We consider two different

numbers of centers,m = 50 and 100, and obtain all simulation results via 100 replicates.

Example 1. To assess the relative performance of different models, we mimic the censoring rate observed in

the real-life application of kidney transplant centers in Section 4. We assume that among them center effects

ai’s, 10% are set to −1, representing healthcare centers performing “better than expected,” 10% are set to 1,

indicating centers performing “worse than expected,” and the remaining 80% are set to 0, representing centers

performing “as expected.” The survival time is generated from the Weibull distribution with scale and shape

parameters of 2 and 3, respectively. The censoring time is generated from a uniform distribution U(0, 1) to

achieve approximately a 70% censoring rate, which is close to the real data. The covariates xij = (xi1, xi2)⊤ are
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Algorithm 1. ADMM algorithm for healthcare center clustering

Require: Initialize 𝜽(0), 𝝊(0), a(0) and 𝜷 (0).

for s = 0, 1, 2, · · ·do

Compute a(s+1) using (11)

Compute 𝜷(s+1) using (12)

Compute 𝜽(s+1) using (13)

Compute 𝝊(s+1) using (8)

if the convergence criterion is met, then

Stop and denote the last iteration by (â(𝜆), 𝜷(𝜆)),

else

s = s + 1.

end if

end for

After identifying the groups, estimate (𝜶̂, 𝜷) using (14).

Ensure: Output

TABLE 1 The mean, median, and standard deviation (SD) of K̂, the percentage (per) of K̂ equal to the true number of subgroups, and

the Rand Index (RI) value by our method withm = 50, 100 in Examples 1 to 3, respectively.

m mean median SD per RI

Example 1 50 3.08 3.00 0.339 0.91 0.960

100 3.05 3.00 0.261 0.93 0.969

Example 2 50 8.23 8.00 1.362

100 9.43 9.00 1.653

Example 3 50 4.06 4.00 0.343 0.91 0.963

100 4.04 4.00 0.281 0.92 0.970

generated from themultivariate normal distribution withmean 0, variance 1 and an exchangeable correlation

𝜌 = 0.2. The coefficient 𝜷 = (2, 2)⊤. We consider the number of patients in each center ni ∼Uniform (50, 100).

The Rand Index (RI)24 is employed to assess the level of agreement between the estimated partitions and the true

partitions. Each pair of observations ai and ak falls to one of four categories: (i) true positive (TP) where ai and ak from the

same group are assigned to the same cluster; (ii) true negative (TN) where ai and ak from different groups are assigned

to different clusters; (iii) false negative (FN) where ai and ak from different groups are assigned to the same cluster; (iv)

false positive (FP) where ai and ak from the same group are assigned to different clusters. The Rand Index is given by

RI =
TP + TN

TP + FP + TN + FN
=
TP + TN(

N

2

) .

Intuitively, TP and TN represent agreement between the true group and the estimated cluster, while FP and FN indicate

disagreement between the true group and the estimated cluster. RI ranges from 0 to 1, with a larger value indicating a

higher degree of agreement.

The top panel of Table 1 presents the mean, median, and standard deviation (SD) of the estimated number of groups

K̂, the percentage of K̂ equal to the true number of groups (per), and the RI for evaluating the classification accuracy. As

expected, the RI and the percentages of correctly classifying centers in comparison to the reference are very close to 1 and

improve asm increases. To visually display the distribution of K̂, the histograms of K̂ are depicted in Figure 1.

Let 𝛼1, 𝛼2 and 𝛼3 be the average estimates of center effects from “better than expected”, “as expected”, and “worse than

expected” groups, with true values being−1, 0 and 1, respectively. The top panel of Table 2 presents the bias, the standard

deviation (SD), the standard error (SE), and the coverage probability of 95% confidence intervals (CP) of the estimators

𝛼1 and 𝛼3. The estimator 𝛼2 serves as a reference, such as the national norm. The Oracle estimators are obtained with
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F IGURE 1 The histograms of K̂ in Example 1-3.

TABLE 2 The bias, standard deviation (SD), standard error (SE), and the coverage probability of 95% confidence intervals (CP) of the

estimators in Example 1 and Example 3.

m=50 m=100

Method Bias SD SE CP Bias SD SE CP

Example 1 𝛼1 SCAD 0.014 0.090 0.113 98.9 0.008 0.070 0.078 97.8

Oracle 0.009 0.094 0.105 96.0 0.018 0.078 0.074 94.0

𝛼3 SCAD 0.028 0.094 0.086 91.5 0.010 0.055 0.061 97.8

Oracle 0.006 0.094 0.084 92.0 0.006 0.055 0.060 98.0

Example 3 𝛼1 SCAD 0.009 0.086 0.087 93.4 0.004 0.063 0.062 97.4

Oracle 0.004 0.082 0.087 95.0 0.002 0.061 0.062 98.0

𝛼3 SCAD 0.005 0.069 0.089 97.8 0.019 0.058 0.062 94.8

Oracle 0.004 0.084 0.086 96.0 0.004 0.059 0.061 94.0

𝛼4 SCAD 0.006 0.088 0.085 92.3 0.008 0.057 0.060 93.5

Oracle 0.009 0.087 0.085 93.0 0.006 0.055 0.060 96.0
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TABLE 3 The bias, standard deviation (SD), standard error (SE), and the coverage probability of 95% confidence intervals (CP) of the

estimators in Examples 1 to 3.

â 𝜷1 𝜷2

m Method MSE Bias SD SE CP Bias SD SE CP

Example 1 50 SCAD 0.022 0.011 0.043 0.045 95.0 0.012 0.043 0.045 95.0

FE 0.078 0.029 0.045 0.047 91.0 0.026 0.045 0.047 94.0

RE 0.189 0.005 0.044 0.046 97.0 0.008 0.044 0.046 95.0

Oracle 0.002 0.003 0.043 0.046 97.0 0.005 0.043 0.046 94.0

100 SCAD 0.017 0.002 0.034 0.032 93.0 0.004 0.033 0.032 94.0

FE 0.074 0.034 0.032 0.033 88.0 0.032 0.034 0.033 87.0

RE 0.034 0.001 0.032 0.033 95.0 0.001 0.033 0.033 94.0

Oracle 0.001 0.002 0.032 0.032 95.0 0.001 0.033 0.032 93.0

Example 2 50 SCAD 0.321 0.001 0.032 0.030 93.0 0.002 0.031 0.030 94.0

FE 1.183 0.002 0.033 0.030 93.0 0.002 0.031 0.030 94.0

RE 1.810 4e-4 0.032 0.030 94.0 0.003 0.031 0.030 94.0

100 SCAD 0.242 0.002 0.019 0.021 97.0 0.002 0.022 0.021 93.0

FE 1.080 0.001 0.020 0.021 98.0 0.003 0.022 0.021 93.0

RE 0.060 0.001 0.019 0.021 98.0 0.001 0.022 0.021 93.0

Example 3 50 SCAD 0.016 0.004 0.047 0.046 94.0 0.007 0.044 0.046 97.0

FE 0.079 0.031 0.046 0.047 90.0 0.027 0.045 0.047 92.0

RE 0.847 0.003 0.045 0.046 96.0 0.006 0.044 0.046 96.0

Oracle 0.003 9e-5 0.044 0.046 96.0 0.003 0.042 0.046 97.0

100 SCAD 0.012 0.001 0.033 0.032 94.0 1e-4 0.032 0.032 92.0

FE 0.077 0.035 0.032 0.033 88.0 0.034 0.033 0.032 89.0

RE 0.039 0.003 0.032 0.033 94.0 0.001 0.033 0.033 92.0

Oracle 0.001 0.003 0.032 0.032 94.0 0.002 0.033 0.032 92.0

a priori knowledge of the true grouping information. As not all replications are clustered into three groups by SCAD,

we only use the replications with the estimated number of groups equal to three to compute the bias, SD, SE, and CP of

𝛼1 and 𝛼3. For the Oracle, the measures are calculated based on all 100 replications. From Table 2, We notice that our

method performs very closely to the Oracle, as it can accurately recover the group structure. Evidently, our estimators 𝛼1
and 𝛼3 align well with the corresponding true values on average for all cases. The inference is also adequately precise,

with a strong correspondence between SD and SE, and the coverage probabilities are near the nominal level of 0.95. All

the original estimates of 𝛼1, 𝛼2, and 𝛼3 without the refitting step are reported in Table S1 of the Supplementary Material.

We compute the mean squared error (MSE) of â using the formula
∑m

i=1(âi − ai)2∕m for each replicated dataset. The

top panel of Table 3 presents the MSE of the estimator â, the bias, the standard deviation (SD), the standard error (SE),

and the coverage probability of 95% confidence intervals (CP) for the estimators 𝛽1 and 𝛽2. It is worth mentioning that, in

contrast to Table 2, which only displays results for replications with an estimated group count of three, Table 3 includes

results for all replicates, regardless of whether the estimated number of groups is three or not. The MSEs of â from our

fused effects model are much smaller than those from the random effects and fixed effects models in all cases. As a

result, our method not only accurately classifies centers but also obtains precise estimates of these centers. To graphically

visualize the numerical results of Table 3, the boxplots of the MSE of â are depicted in Figure 2. For the estimators 𝜷, our

method and the random effects model exhibit satisfactory performance, while the fixed effects model yields larger bias.

Example 2. In this example, we generate the covariates xij = (xi1, xi2)⊤ from the multivariate normal distri-

bution with mean 0, variance 1, and an exchangeable correlation 𝜌 = 0.2. The survival time is generated from

the Weibull distribution with scale and shape parameters being 2 and 3, respectively. The censoring time is
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F IGURE 2 The boxplots of the MSE of â withm = 50 andm = 100 in Example 1.

generated from a uniform distribution U(0, 1) to achieve about a 70% censoring rate. We set the coefficient

𝜷 = (0.1, 0.1)⊤, and the number of patients in each center ni ∼Uniform (50, 100). To demonstrate the robust-

ness of our method, ai is simulated from the standard normal distribution N(0, 1). Consequently, the random

effects model is the correct model.

The grouping results of âi using ourmethod are presented in themiddle panel of Table 1. Themedian of the estimated

number of groups K̂ is 8 with m = 50 and 9 with m = 100. The fusion penalty generally tends to select fewer groups

for m = 50 and more groups for m = 100. As the number of parameters increases with m, the median and the standard

deviation of K̂ also grow. To graphically visualize the distribution of K̂, the histograms of K̂ are shown in Figure 1.

Themiddle panel of Table 3 presents themean squared error (MSE) of the estimator â, the bias, the standard deviation

(SD), the standard error (SE), and the coverage probability of 95% confidence intervals (CP) for the estimators 𝛽1 and 𝛽2.

From Table 3, we observe that the MSE values of â using our method are smaller than those in the fixed effects model.

Moreover, our method outperforms the random effects model when the number of centers is small (m = 50), likely due to

the shrinkage of the predicted values of ai’s in the random effects model. As the number of centers increases, the random

effects model performs the best, but our method’s performance is only slightly worse than the random effects model and

still much better than the fixed effects model. All methods exhibit similar performance in estimating 𝛽1 and 𝛽2.

Example 3. In this example, we evaluate the performance of the proposed model with four groups. The

covariates xij, 𝜷, ni, h0(t), and the censoring time are generated from the same distributions as in Example 1.

We assume that among the m center effects ai’s, 10% are set to 1 and 10% are set to 2, indicating centers

performing at different levels of “worse than expected”; 20% are set to −1.5, signifying centers performing

“better than expected”; the remaining 60% are set to 0, indicating centers performing “as expected”.

The grouping results of âi using ourmethod are presented in the bottom panel of Table 1, where themedians of K̂ over

the 100 replicates are 4, which is the true number of subgroups, and the mean values are very close to 4. Furthermore, the

RI values and the percentage of correctly selecting the number of subgroups approach 1. Therefore, our methods perform

well in cases with an even number of groups. To graphically visualize the distribution of K̂, the histograms of K̂ are shown

in Figure 1.

Let 𝛼1, 𝛼2, 𝛼3, and 𝛼4 be the average estimates for the ai’s from four groups where the true values are −1.5, 0, 1, and

2, respectively. The bottom panel of Table 2 presents the bias, the standard deviation (SD), the standard error (SE), and

the coverage probability of 95% confidence intervals (CP) for the estimators 𝛼1, 𝛼3, and 𝛼4. The estimator 𝛼2, which has

the smallest absolute value, is set as the reference. From the bottom panel of Table 2, we can see that the means of 𝛼1, 𝛼3,
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and 𝛼4 are close to the true values and the Oracle estimators. We also observe that the SDs of 𝛼1, 𝛼3, and 𝛼4 are close to

the corresponding SEs, resulting in valid coverage probabilities.

The bottom panel of Table 3 reports the MSE of the estimator â, the bias, the standard deviation (SD), the standard

error (SE), and the coverage probability of 95% confidence intervals (CP) for the estimators 𝛽1 and 𝛽2. From the bottom

panel of Table 3, we observe that the MSE values of â using SCAD are smaller than those of the random effects and fixed

effects models. For the estimators 𝜷, our method and the random effects model exhibit satisfactory performance, while

the fixed effects model produces larger bias. These results indicate that the proposed method performs well with an even

number of groups.

4 APPLICATION

To demonstrate the proposed methods, we conduct an evaluation of kidney transplant centers using the national kid-

ney transplant registry data obtained from the U.S. Organ Procurement and Transplantation Network (https://optn.

transplant.hrsa.gov/data/). We limit the study cohort to adult kidney transplant recipients (age ≥ 18) who received a

transplant between January 1, 2007, and December 31, 2007. The analysis cohort includes 4198 patients from 60 cen-

ters, with the number of patients per center ranging from 50 to 100. In our dataset, out of 4198 patients who received

their kidney transplant in 2007, 1137 (27.1%) either died or experienced graft failure within five years after receiving a

kidney transplant. All others were censored at five years of follow-up. In our survival analysis, the failure time (termed

“graft survival”) tij is defined as the duration (in years) from transplantation to graft failure or death, whichever occurred

first. The censoring time cij is at the end of the five-year period after the transplantation. Thus, the observed time to

event is yij = min(tij, cij), with a 72.9% censoring rate. We apply our method to investigate the risk factors of five-year

graft survival using Cox’s proportional hazards model and assess the performance of centers concerning their graft

outcomes.

The study cohort included 15 baseline characteristics of donors and recipients as follows: Time on end-stage renal dis-

ease (ESRD, reference:<1 years), donor age (reference: 30-45 years old), donor gender (male= 1, female= 0), donor body

mass index (BMI, reference: normal), donor race (reference: white), donor history of hypertension (DON-HTN, yes = 1,

no = 0), donor meeting expanded criteria (DON-EC, yes = 1, no = 0), recipient gender (male=1, female=0), recipient

race (reference: white), recipient insulin dependent diabetes (REC-DIAB Type I, yes = 1, no = 0), recipient non-insulin

dependent diabetes (REC-DIAB Type II, yes = 1, no = 0), recipient age at transplant (REC-AGE, reference: 50-60), recipi-

ent body mass index (reference: normal), recipient previous kidney transplant (REC-PREV-KI, yes = 1, no = 0), recipient

total cold ischemia time (REC-COLD-ISCH, > 20 hours=1, < 20 hours=0).

We use the Akaike Information Criteria (AIC) to assess the performance of three methods. A smaller value of AIC

indicates better performance. When treating the center effect ai as a random intercept, we obtain an AIC of 18501.43.

For the fixed effects model, the AIC value is 18535.64. If ai is estimated by our fused effects model, the 60 cen-

ters are classified into 3 groups with an AIC of 18451.24. Our method leads to a significant improvement in model

fitting.

Table 4 reports the estimate (Est.), standard error (SE), and p-value of 𝜷 for testing the significance of the coefficients

by our fused effects model with the SCAD penalty (SCAD), the fixed effects model (FE) and the random effects model

(RE). Longer time spent in end-stage renal disease, donor age over 60, black donor, donor history of hypertension, black

recipient, recipient aged 60 or older at transplant, recipientwith non-insulin dependent diabetes, and donorwith lowbody

mass index all have a significantly worse effect on five-year graft survival according to all three methods, with p-values

less than 0.05. Asian recipients, on the other hand, tended to experience better survival outcomes.

Next we utilize the standardized mortality ratio (SMR) as an evaluation measure to assess center-specific survival,

defined as the ratio of the observed number of deaths at a given center to the number expected if the center had mortality

equal to the population average.4,25 An SMR greater or smaller than 1 indicates that the center’s observed mortality ratio

is under-performing or over-performing relative to the population norm, respectively. Let 𝛼k be the common value of

estimators âi’s in group ̂k with k = 1, 2, 3. Table 5 reports the estimates 𝛼1 and 𝛼3 relative to a reference 𝛼2 and the number

of elements (num.) in each group, standard error (SE), p-value and SMR by our fused effects method. We identify 75.0%

(45) of centers as the reference, 10.0% (6) of centers better than the reference and 15.0% (9) of centers worse than the

reference. The estimated SMR of better and worse centers are 0.574 and 1.636, respectively.

In our national kidney transplant dataset, we only have a center-specific factor- the numbers of patientswithin a center

(denoted by center size ni). Since center-level confounder, for example, ni is not identifiable with the center-specific effect
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TABLE 4 The estimates (Est.), standard error (SE), and p-value of 𝜷 in the national kidney transplant study.

Fused FE RE

Variable Est SE p-value Est SE p-value Est SE p-value

Time on ESRD

< 1 years Ref

1-5 years 0.093 0.041 0.022 0.100 0.041 0.015 0.086 0.041 0.035

> 5 years 0.150 0.040 0.000 0.142 0.042 0.001 0.143 0.041 0.001

Donor age

< 15 −0.063 0.044 0.149 −0.073 0.044 0.098 −0.069 0.044 0.114

15-30 −0.066 0.042 0.113 −0.067 0.042 0.112 −0.075 0.042 0.073

30-45 Ref

45-60 0.073 0.040 0.068 0.076 0.040 0.061 0.075 0.040 0.062

> 60 0.113 0.043 0.009 0.115 0.044 0.009 0.114 0.043 0.009

Donor race

White Ref

Black 0.066 0.028 0.021 0.072 0.029 0.015 0.071 0.029 0.013

Asian 0.001 0.030 0.987 0.004 0.031 0.908 0.001 0.030 0.969

DON-HTN 0.090 0.035 0.011 0.088 0.036 0.014 0.087 0.035 0.014

DON-EC −0.003 0.045 0.953 −0.002 0.046 0.973 −0.003 0.046 0.947

Recipient gender 0.048 0.030 0.115 0.053 0.031 0.086 0.053 0.031 0.083

Recipient race

White Ref

Black 0.079 0.030 0.009 0.090 0.034 0.008 0.091 0.032 0.004

Asian −0.100 0.037 0.007 −0.105 0.038 0.005 −0.099 0.037 0.008

Recipient BMI

Normal Ref

Under 0.054 0.029 0.068 0.050 0.030 0.093 0.054 0.030 0.070

Over 0.005 0.037 0.896 0.003 0.038 0.934 −0.001 0.037 0.971

Obesity 0.026 0.037 0.484 0.024 0.038 0.530 0.027 0.037 0.472

REC-PREV-KI 0.046 0.030 0.127 0.038 0.031 0.220 0.053 0.030 0.084

REC-COLD-ISCH 0.006 0.030 0.837 −0.004 0.033 0.895 0.014 0.031 0.662

REC-AGE

18-35 0.050 0.034 0.150 0.055 0.035 0.116 0.045 0.035 0.189

35-50 −0.029 0.038 0.439 −0.025 0.039 0.520 −0.029 0.038 0.449

50-60 Ref

60-70 0.112 0.034 0.001 0.110 0.035 0.001 0.114 0.034 0.001

> 70 0.082 0.030 0.006 0.081 0.030 0.007 0.095 0.030 0.001

REC-DIAB

Type I 0.056 0.029 0.054 0.061 0.030 0.042 0.057 0.030 0.055

Type II 0.075 0.030 0.012 0.071 0.031 0.021 0.075 0.030 0.014

Donor gender 0.005 0.030 0.872 0.007 0.030 0.818 0.005 0.030 0.863

Donor BMI

Normal Ref

Under 0.104 0.037 0.005 0.108 0.037 0.004 0.103 0.037 0.005

Over 0.037 0.035 0.292 0.036 0.035 0.300 0.034 0.035 0.329

Obesity −0.008 0.035 0.815 −0.009 0.035 0.798 −0.003 0.035 0.927
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TABLE 5 Results of 𝛼i in the national kidney transplant study.

𝜶̂1 𝜶̂2 𝜶̂3

Est −0.556 ref 0.492

num 6 45 9

SE 0.129 ref 0.073

p-value <0.001 ref <0.001

SMR 0.574 1.000 1.636

50

60

70

80

90

100

−0.556 0 0.492

Estimated center effects

C
e

n
te

r 
s
iz

e

F IGURE 3 The boxplots of center size from three groups in the national kidney transplant study.

ai, we cannot include ni directly in our model. Along the lines of He et al,4 we instead fit the model ni = 𝛽âi + 𝜖i, where âi
is the estimated center specific effect. The p-value is 0.915, suggesting a minimal correlation between the center-specific

effects and the center size. This observation is further supported by the boxplots in Figure 3.

5 DISCUSSION

In this study, we proposed an innovative fusion method to assess healthcare centers concerning survival outcomes. Our

method proves more efficient than the fixed effects model by using fewer parameters for healthcare centers. Additionally,

it outperforms random effects models in identifying healthcare centers with better classification accuracy and lower bias.

Through simulation studies, we demonstrated that ourmethod surpasses existing approaches in performance. Ourmodel

can be thought as an alternative way to latent classmodels, as we use fusion penalty to classify different healthcare centers

into latent subgroups.

There are several potential extensions for our method. First, when the number of centers is very large, fitting the

pairwise fusion penalized Cox model directly becomes computationally demanding. In such cases, we could employ

the divide-and-conquer strategy,26 which typically involves dividing the full sample into multiple subsets, solving the

optimization problem for each subset, and combining the subset-specific estimates into a single estimate. Second, our

method can be applied to cluster regression coefficients in the Cox’s proportional hazards model when parameters are

partially heterogeneous across subgroups. For instance, grouping treatment heterogeneity can enable the provision of

precise medical treatments to diverse patient subgroups.17,27
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Finally, it is of interest to consider more sophisticated hierarchical data, for example, patients clustered within practi-

tioners which are clustered within practices. For this case, a three-level Cox’s proportional hazardsmodel with two fusion

effects can be proposed. Let xijk denote the covariates for patient k nested within doctor j in center i, the three-level Cox

model can be written as

hijk(t|xijk) = h0(t) exp(ai + bij + x⊤
ijk
𝜷),

where ai is the center-specific effect, bij is the practitioner-specific effect, hijk(t) is the hazard for patient k treated by

practitioner j in center i at time t, and h0(t) is a baseline hazard function. We can cluster ai and bij by using two fusion

penalties. Estimation and inference of this model is of future interest.
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