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1 | INTRODUCTION

Assessing the comparative performance of healthcare centers (eg, hospitals, nursing homes, transplant centers, or dialysis
facilities) has attracted significant interest over the past decades. The objective is to outline and compare the performance
of these centers in order to facilitate improvements through accountability and feedback. This information can aid indi-
viduals in selecting the most suitable healthcare facility and also enable stakeholders and payers to identify areas requiring
enhancements.

Our motivating example is the national kidney transplant registry data collected by the U.S. Organ Procurement and
Transplantation Network (OPTN). Our goal is to evaluate transplant centers based on their five-year post-transplant graft
survival rates. For patients with end-stage renal disease, kidney transplantation provides the best opportunity for survival.
The Scientific Registry of Organ Recipients (SRTR) commonly utilizes the five-year post-transplant graft survival metric,
defined as the time until either death or graft failure within five years following transplantation, for regulatory monitoring
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of transplant centers.!*> Consequently, we will employ the five-year post-transplant graft survival to assess the quality of
care provided by transplant centers.

Traditionally, profiling methods have been developed to evaluate the quality of care provided by various healthcare
centers, using multiple patient outcome quality measures, such as readmission, mortality, and hospitalization. Existing
transplant center profiling approaches typically employ inference-based procedures and generate a three-tier system, indi-
cating whether centers perform worse than “expected”, “as expected”, or “better than expected”. Random effects and fixed
effects models are two prevalent analytical methods used in profiling.>¢ However, both models have their drawbacks.
For random effects models, healthcare centers on the tails of the distribution tend to have small sample sizes, leading
to substantially shrunk estimates toward the population mean.”® This may result in reduced sensitivity when classify-
ing healthcare centers in the tail areas, causing the majority of healthcare centers to be classified as “expected”, despite
noticeable heterogeneity.® Additionally, misspecification of the random effects distribution can pose challenges in both
estimation and inference. In contrast, fixed effects models suffer from a loss of efficiency due to a large number of param-
eters. Moreover, the simultaneous testing of the null hypothesis for extensive healthcare center effects is computationally
demanding.

In order to offer more comprehensive ratings for kidney transplantation, the SRTR has implemented a five-tier rating
system!®!! that indicates whether a transplant center performs “better than expected”, “somewhat better than expected”,
“as expected”, “somewhat worse than expected”, or “worse than expected”. However, concerns arise regarding the selec-
tion of appropriate cutoffs to categorize transplant centers into distinct groups. Furthermore, the decision regarding the
total number of tiers is arbitrary.

To tackle the aforementioned challenges, we introduce a new fused effects model!? designed to automatically iden-
tify homogeneous groups of healthcare centers without requiring a priori classification knowledge. We employ Cox’s
proportional hazards model'? with fusion penalty'# to cluster transplant centers based on the post-transplant graft sur-
vival outcome. Unlike random or fixed effects models, this new method offers a data-driven approach that does not rely
on inference tests of statistical significance. Our model can also investigate risk factors associated with post-transplant
graft survival. Our method can be considered as an alternative of the latent class model, where we use fusion penalty to
“classify” providers into different latent groups.

We employ a local quadratic approximation to the partial likelihood and optimize the penalized partial likelihood
with the fusion penalty. Prioritizing clustering accuracy, we opt for the smoothly clipped absolute deviation (SCAD)"
penalty function over the LASSO penalty.'® Compared to the LASSO, the SCAD penalty is nearly unbiased in identifying
groups and enforces a sparser solution more aggressively.!” The alternating direction method of multipliers (ADMM)
algorithm can be utilized to implement the estimation, ensuring rapid convergence.!® Due to the information loss during
computation, we perform refitting by maximizing the log partial likelihood with the grouped data to obtain accurate
parameter estimates.

The remainder of this article is structured as follows: in Section 2, we outline the penalized Cox’s regression model
with fusion penalty for clustering healthcare centers. Section 3 evaluates the performance of our approach through Monte
Carlo simulation studies. In Section 4, we demonstrate the proposed method using the kidney transplant data as a practical
example. Finally, we summarize our methodology and discuss potential future directions in Section 5.

2 | METHODS
2.1 | Model

We begin by introducing notations to formulate our model. For subjectj = 1, ... , n; from healthcare centeri =1, ... ,m,
we have data in the format (y;;, X, 6;), where the observed time yj; is the minimum of the censoring time ¢;; and the event
time f;;, 6; = I(t; < c;) is the censoring indicator, and x;; is a p X 1 vector of predictors. The Cox’s proportional hazards
model is

hy(t|x5) = ho(t) exp(a; + X;ﬁ), ¢Y)

where h;y;(t) is the hazard for patient j of center i at time ¢, h(f) is a baseline hazard function, a; is the center-specific
effect, and g = (B, ... ,ﬁp)T is the vector of covariate coefficients. A constraint Z;’;lai = 0 ensures that all parameters
are identifiable. For estimation and inference, we often rely on the partial likelihood, where the unspecified baseline
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hazards can be canceled out. Patients are assumed to be independent within each healthcare center, that is, we assume
independence of y; given x;; and a;. The partial likelihood for Model (1) can be written as

5

mom exp(a; + X ) i
L(a, p) = y - @)
e re——
wherea = (ay, ... ,a,)". We assume that a; belongs to one of K groups G, ... , Gg, which are mutually exclusive partitions
of {1, ... ,m}; and the number of groups is much smaller than that of centers, that is, K < m. Moreover, the number of

groups and the group membership are unknown in advance.

We utilize the fused SCAD penalty to identify homogeneous center performance and then fuse them as shared param-
eters to classify groups of healthcare centers. Incorporating the fusion penalty into the partial likelihood (2) results in the
following optimization problem:

@ B) = arg min l—f(a,ﬁ)+ Y plai—al,df, ©)

1<i<k<m
where #(a, p) is the log of the partial likelihood, and p, (¢, A) is the SCAD penalty function'> defined as

It
py(t,A) =4 min {1,(y —x/A)+/(y — D} dx,
0

with (x), = xif x > 0 and = 0 otherwise, 4 > 0 is a tuning parameter, y > 0 is a parameter that controls the concavity of
the penalty functions. Following Ma et al,!” we treat y as a fixed constant.

2.2 | Estimation procedure

Note that the penalty function p, (|a; — ax|, ) cannot be written in the form of addition of separate terms of p, (|a;|, 4) and
D,(lak|, 4) as in LASSO. Here, we introduce a new set of parameters 6;, = a; — ax, which are equivalent to the pairwise
differences of healthcare center effects. Consequently, the above minimization problem (3) can be transformed into the
following constraint optimization problem:

Fo(a,B,0) = —f(a, B) + Zpy(wikl, A) subjectto a; —ax — 0k =0, 4)

i<k

where 0 = {0;.i < k} . As a result, the alternating direction method of multipliers (ADMM) algorithm can be used to
identify the groups in the objective function (4). The ADMM algorithm combines the strengths of dual decomposition
and augmented Lagrangian methods for constrained optimization. The estimates of the parameters are obtained by the
augmented Lagrangian

F(a, B,0,v) = Fy(a, B,0) + Z o (O — a; + ag) + gZ(Gik —a; + ap)?, (5)

i<k i<k

where v = {vy,i <k} are Lagrange multipliers, J is the penalty parameter. We use ADMM to iteratively compute the
estimates of (a, §, 0, v). For given 09 p® at step s, the iterations can be specified as follows:

(@, g¢*Y) = arg minF(a, B, 0%, o), (6)
¢tV = arg mginF (@, g+ 9, p), (7)

(s+1) _ () (s+1) _ (s+1) _ p(s+1)
vy, =vy + 9 a, 0, ) (8)
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To update a and g, minimizing (6) is equivalent to minimizing

f@.p)=—¢@ B+ 5 Y (@ —ac— 03 + 87 R +C, ©

i<k

where C is the constant independent of @ and B. To solve the optimization problem (9), we approximate the
nonlinear log-partial likelihood function using a two-term Taylor series expansion. At each iteration, we solve a
reweighted least squares problem.! Specifically, let y = (yI, YT with y; = Qi e Vi) T, X = &I, X7
with X; = X1, ... ,Xin)", A =diag(,,, ... ,1, ) with 1, =(1, ... ,1)T being the vector with n; ones, and n=A a +
X B. Let £2'(y),¢" () denote the gradient and Hessian of the log-partial likelihood with respect to n, respectively.
The log-partial likelihood #(a, f) can be approximated by the following quadratic form (see the Supplementary
Material)

%u—Aa—XmVWm@—Aa—Xm,

where z = - " (n)~1¢' (i7) with

ot (n) 1
5'71'1 ’ ! i’]%ij ZMVERirjr eXp(an)

0*¢(n) 1 1
= —exp(n;)) —————— +exp(2ny) ,
071;. i/Jéy ZuveR,-/j/ exp(fuy) w%[j {ZquRi;j/ eXp(nuv)}Z

where Dy; is the set of indices ij with t;; <y; (the times for which observation of the ith subject in the jth center is
still at risk) and Ry; is the set of indices uv with y,, > tyy (those at risk at time t;;). Since #” () is a full matrix, it
requires computation of O(N?) elements, we instead replace #”(n) by a diagonal matrix with the same diagonal ele-
ments as " ().} This substitution works well because the diagonal elements of #”(;7) are much larger than the
off-diagonal elements. Denote —#" (1) by W. W and z are computed based on a® and p at iteration s. Equation (9) can be

rewritten as

fla, p) = %(z —Aa-Xp)Wz-Aa—Xp)+ gHAa — 69 + 992 4 C, (10)

where A = {(ei —€),i< j}T with e; being an m x 1 vector whose ith element is 1 and the remaining elements are 0.
Thus, for given 8®), o® at the sth step, we set the derivatives df (a, f)/da = 0 and df (a, #)/dp = 0 to obtain the following
updates a®*V and g¢:

a(s+1) — (ATQXA + lgATA)_l [ATsz + 19AT(6(S) — 19_11)(5))]7 (11)

where Q, = W — WX(X'X)"'X"W. We let a®*V = a®*) — mean(a®*") to guarantee that the estimate a®*V satisfies the
constraint };",a; = 0, and

Y = XTWX) ' XTW(z — Aa®t). (12)

To update 0, we minimize the function

9
O =77 + 3 p,(10ul. 2.
i<k

where 7¢ = ¢ — o

" ; Pt 19‘105;). It is worth noting that by using the concave penalties, the objective function F(a, 8, 0, v)
is no longer a convex function. However, it is convex with respect to each 6; when y > 1/9 + 1 for the SCAD penalty;
consequently, given (a, f, v), the minimizer of F(a, 8, 6, v) with respect to 6 is unique and has a closed-form solution as

follows:
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( (
S(zy,- 4/9) 1701 < 2+ 4/9,
(s)
o8TY = § Sty 74/~ 1) ®) 13
w 11/(G-19) A+A/8 < |my’l < Ay, (13)
) (s)
Tk |z, | > Ay,

where S(x, t) = x(1 — t/|x|)+ is a groupwise soft thresholding operator. Finally, the Lagrange multiplier vy is updated by
(8). This process is conducted iteratively until the convergence over a grid of values for 4. The iterative algorithm termi-
nates when primal residuals r®*" = Aa®+D — 9**D and dual residuals r®*Y = 9AT (0D — 69) are close to zero, that is,

primal dual
(s+1) (s+1) (s+1) (s+1) (s+1) (s+1) s 18 P
||rprim1 || < € primal dual | < €gqual » Where e, " and €primal 21€ specified as suggested by Boyd et al.*® It is important to

find appropriate initial values for the ADMM algorithm. In this article, the initial values a® are obtained from the fixed
effects Cox model, then we set 01.(;3) = ago) - a;?) and o© = 0. If fy = 0, a; and ay, are classified into the same group. As a

and ||r

result, we obtain K estimated groups él, e é}(, and set ay to be the common value of a;’s from the kth group.

Due to the approximation in the computation, Equation (10) does not fully capture parameter information, and the
iteration may also lead to a loss in efficiency. Once the groups have been identified, we conduct a refitting step to estimate
a and f by maximizing the following log-partial likelihood with the grouped information:

& o
Ca, B =) D Y ojqa+xip—log| Y, expla+x,p) |, (14)
k=1 i=é){j=1 i/j/ERij,i'Eék
where @ = (a1, ... ,ap)", and Ry is the set of indices i/j/ with yyy > t; (those at risk at time t;). Here rather than

the constraint Zfilak = 0 (as for g; in Section 2.1), we assume that a; = 0 to simplify the interpretation, where k=
arg min_, ¢ |a|. The above procedure can be conveniently implemented using R function coxph, which also provides
standard errors and p-values of @ and .

After obtaining a path of solutions, it becomes essential to choose an optimal tuning parameter A by minimizing the
modified Bayesian Information Criterion (BIC) using a grid search.?? The BIC is given by

BIC(A) = —2Z(a(4), B(/l)) + Cn(R(2) +p)logN,

where a(4), ﬁ(/l) and I?(/l) are the estimates of @, f and K at given 4, respectively. Z(@(4), ﬁ(/l)) is the log-partial likelihood
evaluated at @(4) and ﬁ(/l), p is the dimension of the parameter 8, and Cy is a positive number depending on the total
number of observations N = Y\ n;. If Cy=1, the modified BIC reduces to the traditional BIC.?* Following Wang et al,??
Cn = log(log(N + p)).

We summarize our method in Algorithm 1 below.

3 | SIMULATION

In this section, we evaluate the finite sample performance of the proposed methods through simulation studies. Conven-
tionally, in Model (1), the healthcare center effect qg; is treated as either a random effect or a fixed effect. We compare our
fused effects model with SCAD penalty (SCAD) to the random effects model (RE) and fixed effects model (FE). Specifically,
we examine the efficiency of estimation and the accuracy of healthcare center classification. We consider two different
numbers of centers, m = 50 and 100, and obtain all simulation results via 100 replicates.

Example 1. To assess the relative performance of different models, we mimic the censoring rate observed in
the real-life application of kidney transplant centers in Section 4. We assume that among the m center effects
a;’s, 10% are set to —1, representing healthcare centers performing “better than expected,” 10% are set to 1,
indicating centers performing “worse than expected,” and the remaining 80% are set to 0, representing centers
performing “as expected.” The survival time is generated from the Weibull distribution with scale and shape
parameters of 2 and 3, respectively. The censoring time is generated from a uniform distribution U(0, 1) to
achieve approximately a 70% censoring rate, which is close to the real data. The covariates x; = (xi1, ;)" are
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Algorithm 1. ADMM algorithm for healthcare center clustering

Require: Initialize 6, 0©, a® and .
fors=0,1,2,---do
Compute a®*V using (11)
Compute g using (12)
Compute 8V using (13)
Compute oV using (8)
if the convergence criterion is met, then
Stop and denote the last iteration by (@(4), ﬁ(/l)),
else
s=s+1.
end if
end for
After identifying the groups, estimate (@, B using (14).
Ensure: Output

TABLE 1 The mean, median, and standard deviation (SD) of X, the percentage (per) of R equal to the true number of subgroups, and
the Rand Index (RI) value by our method with m = 50,100 in Examples 1 to 3, respectively.

m mean median SD per RI
Example 1 50 3.08 3.00 0.339 0.91 0.960
100 3.05 3.00 0.261 0.93 0.969
Example 2 50 8.23 8.00 1.362
100 9.43 9.00 1.653
Example 3 50 4.06 4.00 0.343 0.91 0.963
100 4.04 4.00 0.281 0.92 0.970

generated from the multivariate normal distribution with mean 0, variance 1 and an exchangeable correlation
p = 0.2. The coefficient = (2, 2)T. We consider the number of patients in each center n; ~ Uniform (50, 100).

The Rand Index (RI)** is employed to assess the level of agreement between the estimated partitions and the true
partitions. Each pair of observations a; and ay, falls to one of four categories: (i) true positive (TP) where a; and ay from the
same group are assigned to the same cluster; (ii) true negative (TN) where a; and a; from different groups are assigned
to different clusters; (iii) false negative (FN) where a; and a, from different groups are assigned to the same cluster; (iv)
false positive (FP) where a; and ay from the same group are assigned to different clusters. The Rand Index is given by

TP + TN _TP+TN

T TP+FP+TN+FN (N)
2

Intuitively, TP and TN represent agreement between the true group and the estimated cluster, while FP and FN indicate
disagreement between the true group and the estimated cluster. RI ranges from 0 to 1, with a larger value indicating a
higher degree of agreement.

The top panel of Table 1 presents the mean, median, and standard deviation (SD) of the estimated number of groups
R, the percentage of R equal to the true number of groups (per), and the RI for evaluating the classification accuracy. As
expected, the RI and the percentages of correctly classifying centers in comparison to the reference are very close to 1 and
improve as m increases. To visually display the distribution of R, the histograms of R are depicted in Figure 1.

Let @;, @, and @; be the average estimates of center effects from “better than expected”, “as expected”, and “worse than
expected” groups, with true values being —1, 0 and 1, respectively. The top panel of Table 2 presents the bias, the standard
deviation (SD), the standard error (SE), and the coverage probability of 95% confidence intervals (CP) of the estimators
a; and a;. The estimator @, serves as a reference, such as the national norm. The Oracle estimators are obtained with
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TABLE 2 The bias, standard deviation (SD), standard error (SE), and the coverage probability of 95% confidence intervals (CP) of the
estimators in Example 1 and Example 3.

m=50 m=100

Method Bias SD SE CP Bias SD SE CP
Example 1 a SCAD 0.014 0.090 0.113 98.9 0.008 0.070 0.078 97.8
Oracle 0.009 0.094 0.105 96.0 0.018 0.078 0.074 94.0
a3 SCAD 0.028 0.094 0.086 91.5 0.010 0.055 0.061 97.8
Oracle 0.006 0.094 0.084 92.0 0.006 0.055 0.060 98.0
Example 3 @ SCAD 0.009 0.086 0.087 93.4 0.004 0.063 0.062 97.4
Oracle 0.004 0.082 0.087 95.0 0.002 0.061 0.062 98.0
a3 SCAD 0.005 0.069 0.089 97.8 0.019 0.058 0.062 94.8
Oracle 0.004 0.084 0.086 96.0 0.004 0.059 0.061 94.0
ay SCAD 0.006 0.088 0.085 92.3 0.008 0.057 0.060 93.5
Oracle 0.009 0.087 0.085 93.0 0.006 0.055 0.060 96.0
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TABLE 3 The bias, standard deviation (SD), standard error (SE), and the coverage probability of 95% confidence intervals (CP) of the
estimators in Examples 1 to 3.

A~ ~

a B B2

m Method MSE Bias SD SE CP Bias SD SE CP
Example 1 50 SCAD 0.022 0.011 0.043 0.045 95.0 0.012 0.043 0.045 95.0
FE 0.078 0.029 0.045 0.047 91.0 0.026 0.045 0.047 94.0
RE 0.189 0.005 0.044 0.046 97.0 0.008 0.044 0.046 95.0
Oracle 0.002 0.003 0.043 0.046 97.0 0.005 0.043 0.046 94.0
100 SCAD 0.017 0.002 0.034 0.032 93.0 0.004 0.033 0.032 94.0
FE 0.074 0.034 0.032 0.033 88.0 0.032 0.034 0.033 87.0
RE 0.034 0.001 0.032 0.033 95.0 0.001 0.033 0.033 94.0
Oracle 0.001 0.002 0.032 0.032 95.0 0.001 0.033 0.032 93.0
Example 2 50 SCAD 0.321 0.001 0.032 0.030 93.0 0.002 0.031 0.030 94.0
FE 1.183 0.002 0.033 0.030 93.0 0.002 0.031 0.030 94.0
RE 1.810 4e-4 0.032 0.030 94.0 0.003 0.031 0.030 94.0
100 SCAD 0.242 0.002 0.019 0.021 97.0 0.002 0.022 0.021 93.0
FE 1.080 0.001 0.020 0.021 98.0 0.003 0.022 0.021 93.0
RE 0.060 0.001 0.019 0.021 98.0 0.001 0.022 0.021 93.0
Example 3 50 SCAD 0.016 0.004 0.047 0.046 94.0 0.007 0.044 0.046 97.0
FE 0.079 0.031 0.046 0.047 90.0 0.027 0.045 0.047 92.0
RE 0.847 0.003 0.045 0.046 96.0 0.006 0.044 0.046 96.0
Oracle 0.003 9e-5 0.044 0.046 96.0 0.003 0.042 0.046 97.0
100 SCAD 0.012 0.001 0.033 0.032 94.0 le-4 0.032 0.032 92.0
FE 0.077 0.035 0.032 0.033 88.0 0.034 0.033 0.032 89.0
RE 0.039 0.003 0.032 0.033 94.0 0.001 0.033 0.033 92.0
Oracle 0.001 0.003 0.032 0.032 94.0 0.002 0.033 0.032 92.0

a priori knowledge of the true grouping information. As not all replications are clustered into three groups by SCAD,
we only use the replications with the estimated number of groups equal to three to compute the bias, SD, SE, and CP of
@; and @3. For the Oracle, the measures are calculated based on all 100 replications. From Table 2, We notice that our
method performs very closely to the Oracle, as it can accurately recover the group structure. Evidently, our estimators a;
and @ align well with the corresponding true values on average for all cases. The inference is also adequately precise,
with a strong correspondence between SD and SE, and the coverage probabilities are near the nominal level of 0.95. All
the original estimates of a3, @,, and a3 without the refitting step are reported in Table S1 of the Supplementary Material.
We compute the mean squared error (MSE) of @ using the formula Y\, (@; — a;)*/m for each replicated dataset. The
top panel of Table 3 presents the MSE of the estimator @, the bias, the standard deviation (SD), the standard error (SE),
and the coverage probability of 95% confidence intervals (CP) for the estimators ﬂAl and ﬁz It is worth mentioning that, in
contrast to Table 2, which only displays results for replications with an estimated group count of three, Table 3 includes
results for all replicates, regardless of whether the estimated number of groups is three or not. The MSEs of @ from our
fused effects model are much smaller than those from the random effects and fixed effects models in all cases. As a
result, our method not only accurately classifies centers but also obtains precise estimates of these centers. To graphically
visualize the numerical results of Table 3, the boxplots of the MSE of @ are depicted in Figure 2. For the estimators B, our
method and the random effects model exhibit satisfactory performance, while the fixed effects model yields larger bias.

Example 2. In this example, we generate the covariates x; = (i1, %2)" from the multivariate normal distri-
bution with mean 0, variance 1, and an exchangeable correlation p = 0.2. The survival time is generated from
the Weibull distribution with scale and shape parameters being 2 and 3, respectively. The censoring time is
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FIGURE 2 Theboxplots of the MSE of @ with m = 50 and m = 100 in Example 1.

generated from a uniform distribution U(0, 1) to achieve about a 70% censoring rate. We set the coefficient
B =(0.1,0.1)7, and the number of patients in each center n; ~ Uniform (50, 100). To demonstrate the robust-
ness of our method, g; is simulated from the standard normal distribution N(0, 1). Consequently, the random
effects model is the correct model.

The grouping results of @; using our method are presented in the middle panel of Table 1. The median of the estimated
number of groups R is 8 with m = 50 and 9 with m = 100. The fusion penalty generally tends to select fewer groups
for m = 50 and more groups for m = 100. As the number of parameters increases with m, the median and the standard
deviation of K also grow. To graphically visualize the distribution of K, the histograms of K are shown in Figure 1.

The middle panel of Table 3 presents the mean squared error (MSE) of the estimator @, the bias, the standard deviation
(SD), the standard error (SE), and the coverage probability of 95% confidence intervals (CP) for the estimators ﬂAl and //3\2
From Table 3, we observe that the MSE values of @ using our method are smaller than those in the fixed effects model.
Moreover, our method outperforms the random effects model when the number of centers is small (m = 50), likely due to
the shrinkage of the predicted values of a;’s in the random effects model. As the number of centers increases, the random
effects model performs the best, but our method’s performance is only slightly worse than the random effects model and
still much better than the fixed effects model. All methods exhibit similar performance in estimating ﬁl and ﬁz

Example 3. In this example, we evaluate the performance of the proposed model with four groups. The
covariates x;;, B, n;, ho(t), and the censoring time are generated from the same distributions as in Example 1.
We assume that among the m center effects a;’s, 10% are set to 1 and 10% are set to 2, indicating centers
performing at different levels of “worse than expected”; 20% are set to —1.5, signifying centers performing
“better than expected”; the remaining 60% are set to 0, indicating centers performing “as expected”.

The grouping results of 4; using our method are presented in the bottom panel of Table 1, where the medians of K over
the 100 replicates are 4, which is the true number of subgroups, and the mean values are very close to 4. Furthermore, the
RI values and the percentage of correctly selecting the number of subgroups approach 1. Therefore, our methods perform
well in cases with an even number of groups. To graphically visualize the distribution of R, the histograms of R are shown
in Figure 1.

Let @, @, @3, and @4 be the average estimates for the a;’s from four groups where the true values are —1.5, 0, 1, and
2, respectively. The bottom panel of Table 2 presents the bias, the standard deviation (SD), the standard error (SE), and
the coverage probability of 95% confidence intervals (CP) for the estimators @;, @3, and @4. The estimator @,, which has
the smallest absolute value, is set as the reference. From the bottom panel of Table 2, we can see that the means of @;, @,
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and a, are close to the true values and the Oracle estimators. We also observe that the SDs of @, a3, and a4 are close to
the corresponding SEs, resulting in valid coverage probabilities.

The bottom panel of Table 3 reports the MSE of the estimator @, the bias, the standard dev1at10n (SD), the standard
error (SE), and the coverage probability of 95% confidence intervals (CP) for the estimators ﬁl and /32 From the bottom
panel of Table 3, we observe that the MSE values of @ using SCAD are smaller than those of the random effects and fixed
effects models. For the estimators ﬁ, our method and the random effects model exhibit satisfactory performance, while
the fixed effects model produces larger bias. These results indicate that the proposed method performs well with an even
number of groups.

4 | APPLICATION

To demonstrate the proposed methods, we conduct an evaluation of kidney transplant centers using the national kid-
ney transplant registry data obtained from the U.S. Organ Procurement and Transplantation Network (https://optn.
transplant.hrsa.gov/data/). We limit the study cohort to adult kidney transplant recipients (age > 18) who received a
transplant between January 1, 2007, and December 31, 2007. The analysis cohort includes 4198 patients from 60 cen-
ters, with the number of patients per center ranging from 50 to 100. In our dataset, out of 4198 patients who received
their kidney transplant in 2007, 1137 (27.1%) either died or experienced graft failure within five years after receiving a
kidney transplant. All others were censored at five years of follow-up. In our survival analysis, the failure time (termed
“graft survival”) t; is defined as the duration (in years) from transplantation to graft failure or death, whichever occurred
first. The censoring time c; is at the end of the five-year period after the transplantation. Thus, the observed time to
event is y; = min({;, ¢;), with a 72.9% censoring rate. We apply our method to investigate the risk factors of five-year
graft survival using Cox’s proportional hazards model and assess the performance of centers concerning their graft
outcomes.

The study cohort included 15 baseline characteristics of donors and recipients as follows: Time on end-stage renal dis-
ease (ESRD, reference: <1 years), donor age (reference: 30-45 years old), donor gender (male = 1, female = 0), donor body
mass index (BMI, reference: normal), donor race (reference: white), donor history of hypertension (DON-HTN, yes = 1,
no = 0), donor meeting expanded criteria (DON-EC, yes = 1, no = 0), recipient gender (male=1, female=0), recipient
race (reference: white), recipient insulin dependent diabetes (REC-DIAB Type I, yes = 1, no = 0), recipient non-insulin
dependent diabetes (REC-DIAB Type II, yes = 1, no = 0), recipient age at transplant (REC-AGE, reference: 50-60), recipi-
ent body mass index (reference: normal), recipient previous kidney transplant (REC-PREV-KI, yes = 1, no = 0), recipient
total cold ischemia time (REC-COLD-ISCH, > 20 hours=1, < 20 hours=0).

We use the Akaike Information Criteria (AIC) to assess the performance of three methods. A smaller value of AIC
indicates better performance. When treating the center effect a; as a random intercept, we obtain an AIC of 18501.43.
For the fixed effects model, the AIC value is 18535.64. If q; is estimated by our fused effects model, the 60 cen-
ters are classified into 3 groups with an AIC of 18451.24. Our method leads to a significant improvement in model
fitting.

Table 4 reports the estimate (Est.), standard error (SE), and p-value ofﬁ for testing the significance of the coefficients
by our fused effects model with the SCAD penalty (SCAD), the fixed effects model (FE) and the random effects model
(RE). Longer time spent in end-stage renal disease, donor age over 60, black donor, donor history of hypertension, black
recipient, recipient aged 60 or older at transplant, recipient with non-insulin dependent diabetes, and donor with low body
mass index all have a significantly worse effect on five-year graft survival according to all three methods, with p-values
less than 0.05. Asian recipients, on the other hand, tended to experience better survival outcomes.

Next we utilize the standardized mortality ratio (SMR) as an evaluation measure to assess center-specific survival,
defined as the ratio of the observed number of deaths at a given center to the number expected if the center had mortality
equal to the population average.*?> An SMR greater or smaller than 1 indicates that the center’s observed mortality ratio
is under-performing or over-performing relative to the population norm, respectively. Let @ be the common value of
estimators @;’s in group ék with k = 1, 2, 3. Table 5 reports the estimates @; and @; relative to a reference @, and the number
of elements (num.) in each group, standard error (SE), p-value and SMR by our fused effects method. We identify 75.0%
(45) of centers as the reference, 10.0% (6) of centers better than the reference and 15.0% (9) of centers worse than the
reference. The estimated SMR of better and worse centers are 0.574 and 1.636, respectively.

In our national kidney transplant dataset, we only have a center-specific factor- the numbers of patients within a center
(denoted by center size n;). Since center-level confounder, for example, n; is not identifiable with the center-specific effect
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TABLE 4 The estimates (Est.), standard error (SE), and p-value ofB in the national kidney transplant study.

Variable
Time on ESRD
< 1years
1-5 years
> 5years

Donor age
<15
15-30
30-45
45-60
> 60
Donor race
White
Black
Asian
DON-HTN
DON-EC
Recipient gender
Recipient race
White
Black
Asian
Recipient BMI
Normal
Under
Over
Obesity
REC-PREV-KI
REC-COLD-ISCH
REC-AGE
18-35
35-50
50-60
60-70
> 70
REC-DIAB

Type I
Type I

Donor gender
Donor BMI

Normal

Under

Over

Obesity

“WILEY—2**

Fused FE RE

Est SE p-value Est SE p-value Est SE p-value
Ref

0.093 0.041 0.022 0.100 0.041 0.015 0.086 0.041 0.035
0.150 0.040 0.000 0.142 0.042 0.001 0.143 0.041 0.001
—0.063 0.044 0.149 —0.073 0.044 0.098 —0.069 0.044 0.114
—0.066 0.042 0.113 —0.067 0.042 0.112 —0.075 0.042 0.073
Ref

0.073 0.040 0.068 0.076 0.040 0.061 0.075 0.040 0.062
0.113 0.043 0.009 0.115 0.044 0.009 0.114 0.043 0.009
Ref

0.066 0.028 0.021 0.072 0.029 0.015 0.071 0.029 0.013
0.001 0.030 0.987 0.004 0.031 0.908 0.001 0.030 0.969
0.090 0.035 0.011 0.088 0.036 0.014 0.087 0.035 0.014
—0.003 0.045 0.953 —0.002 0.046 0.973 —0.003 0.046 0.947
0.048 0.030 0.115 0.053 0.031 0.086 0.053 0.031 0.083
Ref

0.079 0.030 0.009 0.090 0.034 0.008 0.091 0.032 0.004
—0.100 0.037 0.007 —0.105 0.038 0.005 —0.099 0.037 0.008
Ref

0.054 0.029 0.068 0.050 0.030 0.093 0.054 0.030 0.070
0.005 0.037 0.896 0.003 0.038 0.934 —0.001 0.037 0.971
0.026 0.037 0.484 0.024 0.038 0.530 0.027 0.037 0.472
0.046 0.030 0.127 0.038 0.031 0.220 0.053 0.030 0.084
0.006 0.030 0.837 —0.004 0.033 0.895 0.014 0.031 0.662
0.050 0.034 0.150 0.055 0.035 0.116 0.045 0.035 0.189
—0.029 0.038 0.439 —0.025 0.039 0.520 —0.029 0.038 0.449
Ref

0.112 0.034 0.001 0.110 0.035 0.001 0.114 0.034 0.001
0.082 0.030 0.006 0.081 0.030 0.007 0.095 0.030 0.001
0.056 0.029 0.054 0.061 0.030 0.042 0.057 0.030 0.055
0.075 0.030 0.012 0.071 0.031 0.021 0.075 0.030 0.014
0.005 0.030 0.872 0.007 0.030 0.818 0.005 0.030 0.863
Ref

0.104 0.037 0.005 0.108 0.037 0.004 0.103 0.037 0.005
0.037 0.035 0.292 0.036 0.035 0.300 0.034 0.035 0.329
—0.008 0.035 0.815 —0.009 0.035 0.798 —0.003 0.035 0.927
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TABLE 5 Results of @; in the national kidney transplant study.

) £9] a3
Est —0.556 ref 0.492
num 6 45 9
SE 0.129 ref 0.073
p-value <0.001 ref <0.001
SMR 0.574 1.000 1.636
100 4
90 4
o 80 ‘
N
‘»
I3
c
8 70
60 1
50 1 ‘
-0.556 0 0.492

Estimated center effects

FIGURE 3 The boxplots of center size from three groups in the national kidney transplant study.

a;, we cannot include #; directly in our model. Along the lines of He et al,* we instead fit the model n; = fd; + ¢;, where d;
is the estimated center specific effect. The p-value is 0.915, suggesting a minimal correlation between the center-specific
effects and the center size. This observation is further supported by the boxplots in Figure 3.

5 | DISCUSSION

In this study, we proposed an innovative fusion method to assess healthcare centers concerning survival outcomes. Our
method proves more efficient than the fixed effects model by using fewer parameters for healthcare centers. Additionally,
it outperforms random effects models in identifying healthcare centers with better classification accuracy and lower bias.
Through simulation studies, we demonstrated that our method surpasses existing approaches in performance. Our model
can be thought as an alternative way to latent class models, as we use fusion penalty to classify different healthcare centers
into latent subgroups.

There are several potential extensions for our method. First, when the number of centers is very large, fitting the
pairwise fusion penalized Cox model directly becomes computationally demanding. In such cases, we could employ
the divide-and-conquer strategy,?® which typically involves dividing the full sample into multiple subsets, solving the
optimization problem for each subset, and combining the subset-specific estimates into a single estimate. Second, our
method can be applied to cluster regression coefficients in the Cox’s proportional hazards model when parameters are
partially heterogeneous across subgroups. For instance, grouping treatment heterogeneity can enable the provision of
precise medical treatments to diverse patient subgroups.!”?”
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Finally, it is of interest to consider more sophisticated hierarchical data, for example, patients clustered within practi-
tioners which are clustered within practices. For this case, a three-level Cox’s proportional hazards model with two fusion
effects can be proposed. Let x;; denote the covariates for patient k nested within doctor j in center i, the three-level Cox
model can be written as

hyic(t|Xi) = ho(t) exp(a; + by + X, B).

where a; is the center-specific effect, b;; is the practitioner-specific effect, h;;(¢) is the hazard for patient k treated by
practitioner j in center i at time ¢, and hy(¢) is a baseline hazard function. We can cluster a; and b;; by using two fusion
penalties. Estimation and inference of this model is of future interest.
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